
Multi-Agent Programming Languages, Platforms and
Applications

Summer 2006

Multi-Agent Programming Languages, Platforms and Applications 1 / 1

Outline I

Multi-Agent Programming Languages, Platforms and Applications 2 / 1

Jason

Abstract

This chapter describes Jason, an interpreter written in Java for an extended
version of AgentSpeak, a logic-based agent-oriented programming language
that is suitable for the implementation of reactive planning systems according
to the BDI architecture. We describe both the language and the various
features and tools available in the platform.

Keywords

Logic-Based Agent Programming, Beliefs-Desires-Intentions, Operational
Semantics, Speech Acts, Plan Exchange, Java-based
Extensibility/Customisation.

Multi-Agent Programming Languages, Platforms and Applications 4 / 1

Jason

The golden fleece

Now was remaining as the last conclusion of this game,
By force of chaunted herbes to make the watchfull Dragon sleepe
Within whose eyes came never winke: who had in charge to keepe
The goodly tree upon the which the golden fleeces hung.
...
The dreadfull Dragon by and by (whose eyes before that day
Wist never erst what sleeping ment) did fall so fast asleepe
That Jason safely tooke the fleece of golde that he did keepe.

P. Ovidius Naso, Metamorphoses (ed. Arthur Golding), Book VII.

Authors
Rafael H. Bordini, Jomi F. Hübner and Renata Vieira

Multi-Agent Programming Languages, Platforms and Applications 5 / 1

Jason Motivation

Results of research on MAS

A variety of techniques for the development of complex distributed
systems.

These techniques work in environments that are traditionally thought to
be too unpredictable for computer programs to handle.

But real-world MAS is comparable to the Golden Fleece.
 Jason

Multi-Agent Programming Languages, Platforms and Applications 6 / 1

Jason Motivation

AgentSpeak(L)

Is a Elegant logic-based agent-oriented programming language.

Is for reactive planning systems (PRS).

Is benefited from the experience of Beliefs-Desires-Intentions (BDI).

Is only an abstract agent programming language.

Multi-Agent Programming Languages, Platforms and Applications 7 / 1

Jason Motivation

Jason

Is an extended AgentSpeak to a practical programming language with
MAS techniques.

Provides operational semantics.

Is for real-world applications.

Jason is available Open Source under GNU LGPL at
http://jason.sourceforge.net.

Multi-Agent Programming Languages, Platforms and Applications 8 / 1

http://jason.sourceforge.net

Jason Motivation

Features available in Jason
Speech-act based inter-agent communication.

Annotations on plan labels, which can be used by elaborate selection
functions

The possibility to run a multi-agent system distributed over a network.

Fully customisable selection functions, trust functions, and overall agent
architecture.

Straightforward extensibility by means of user-defined “internal actions”.

Clear notion of multi-agent environments, which can be implemented in
Java.

Multi-Agent Programming Languages, Platforms and Applications 9 / 1

Jason Motivation

Scenario: The Airport Chronicle

Scenario
Year 2070 ad., London Heathrow, airports are now completely staffed by
together networked robots:

CPH903 robots - cute, polite handy: Welcome people, bear luggage,
provide informations.

MDS79 robots - multi-device security: Very expensive, for bomb
detection.

MDS79 and CPH903 can cooperate to ensure that reported unattended
luggage has been cleared away.

Multi-Agent Programming Languages, Platforms and Applications 10 / 1

Jason Motivation

Unattended luggage

MDS79 checks wether there is a bomb. If there is any chance of there
being a bomb the robot sends a message to the specialised
bomb-disarming team.

Once these robots are called in, the MDS79 and CPH903 robots that had
been relocated can go back to their normal duties.

The bomb-disarming robots decide whether to set off a security alert to
evacuate the airport, or alternatively they attempt to disarm the bomb or
move it to a safe area, if they can ensure such courses of action would
pose no threat to the population.

In case the MDS79 robot detects no signs of a bomb in the unattended
luggage, the job is passed on to the accompanying CPH903 robot.

Multi-Agent Programming Languages, Platforms and Applications 11 / 1

Jason Language

Definition 1.1 (AgentSpeak Agent)

AgentSpeak Agent is defined by

Beliefs: Belief base, plan library.

Goals: Achievement goals (‘!’) , test goals (‘?’).

Events: They are related either to changes in beliefs due to perception
of the environment, or to changes in the agent’s goals that
originate from the execution of plans triggered by previous
events.
A triggering event defines which events can initiate the
execution of plan.

Plans: written by the programmer, triggered by the addition (‘+’) or
deletion (‘-’) of beliefs or goals (the “mental attitudes” of
AgentSpeak agents).

Multi-Agent Programming Languages, Platforms and Applications 12 / 1

Jason Language

AgentSpeak Plan

Head: formed from a triggering event (specifying the events for which
that plan is relevant).

Context: Conjunction of belief literals.
Applicable: The conjunction of literals must be a logical
consequence of that agent’s current beliefs.

Body: Sequence of basic actions or (sub)goals.
Basic actions: Atomic operations the agent can perform so as
to change the environment (atomic formulæ, action symbols
rather than predicate symbols).

Multi-Agent Programming Languages, Platforms and Applications 13 / 1

Jason Language

skill(plasticBomb).
skill(bioBomb).

˜skill(nuclearBomb).

safetyArea(field1).

@p1
+bomb(Terminal, Gate, BombType) : skill(BombType)

<- !go(Terminal, Gate);
disarm(BombType).

@p2
+bomb(Terminal, Gate, BombType) : ˜skill(BombType)

<- !moveSafeArea(Terminal, Gate, BombType).

Multi-Agent Programming Languages, Platforms and Applications 14 / 1

Jason Language

@p3
+bomb(Terminal, Gate, BombType) : not skill(BombType) &

not ˜skill(BombType)
<- .broadcast(tell, alter).

@p4
+!moveSafeArea(T,G,Bomb) : true

<- ?safeArea(Place);
!discoverFreeCPH(FreeCPH);
.send(FreeCPH, achieve,

carryToSafePlace(T,G,Place,Bomb)).
...

Multi-Agent Programming Languages, Platforms and Applications 15 / 1

Jason Language

Specifications and Syntactical Aspects

AgentSpeak syntax accepted by Jason
<Atom> is an identifer beginning with lowercase letter or ‘.’.

<VAR> (i.e., a variable) is an identifier beginning with an uppercase
letter.

<NUMBER> is any integer or floating-point number.

<STRING> is any string enclosed in double quote characters as usual.

Multi-Agent Programming Languages, Platforms and Applications 16 / 1

Jason Language

Main differences to the original AgentSpeak(L)

Whereever an atomic formulæ was allowed in the original, here a literal
is used instead.

Either an atomic formulæ: p(t1,. . .,tn), n ≥ 0, or ˜p(t1,. . .,tn), where
‘˜’ denotes strong negation.

Default negation is used in the context of plans, and is denoted by ‘not’
preceding a literal.

The context is therefore a conjunction of default literals.

Terms now can be variables, lists (with Prolog syntax), as well as integer
or floating point numbers, and strings (enclosed in double quotes as
usual).

Any atomic formulæ can be treated as a term, and (bound) variables can
be treated as literals

Infix relational operators, as in Prolog, are allowed in plan contexts.

Multi-Agent Programming Languages, Platforms and Applications 17 / 1

Jason Language

Atomic formulæ can have “annotations”

List of terms enclosed in square brackets immediately following the
formula.

Within the belief base to register the source information. A term
source(s) is used in the annotations for that purpose.

s can be an agent’s name or two special atoms, percept and self.

Initial beliefs are assumed to be internal beliefs (i.e., as if they had a
[source(self)] annotation), unless the belief has any explicit
annotation given by the user.

Plans also have labels. A plan label can now be any atomic formula,
including annotations but have a predicate symbol of arity 0, as in aLabel
or anotherLabel[chanceSuccess(0.7), expectedPayoff(0.9)].

Multi-Agent Programming Languages, Platforms and Applications 18 / 1

Jason Language

Events

If action fails or there is no applicable plan for a subgoal in the plan being
executed to handle an internal event with a goal addition +!g, then the
whole failed plan is removed from the top of the intention and an internal
event for -!g associated with that same intention is generated.

If the programmer provided a plan that has a triggering event matching
-!g and is applicable, such plan will be pushed on top of the intention, so
the programmer can specify in the body of such plan how that particular
failure is to be handled.

If no such plan is available, the whole intention is discarded and a
warning is printed out to the console.

Multi-Agent Programming Languages, Platforms and Applications 19 / 1

Jason Language

Example 1.2

For an agent that persist on a goal !g for as long as there are applicable
plans for +!g, suffices it to include a plan -!g : true <- !g. in the
plan library.

The body can be empty.

A goal is only removed from the body of a plan when the intended means
chosen for that goal finishes successfully

It is also simple to specify a plan which, under specific condition, chooses
to drop the intention altogether (by means of a standard internal action
mentioned below).

Multi-Agent Programming Languages, Platforms and Applications 20 / 1

Jason Language

Internal actions

Can be used both in the context and body of plans.

Any action symbol starting with ‘.’, or having a ‘.’ anywhere, denotes an
internal action.

These are user-defined actions and run internally by the agent.

Called “internal” to make a clear distinction with actions that appear in the
body of a plan and which denote the actions an agent can perform in
order to change the shared environment (in the usual jargon of the area,
by means of its “effectors”).

In Jason, internal actions are coded in Java.

Multi-Agent Programming Languages, Platforms and Applications 21 / 1

Jason Language

agent → beliefs plans
beliefs → (literal ".")*

N.B.: a semantic error is generated
if the literal was not ground.

plans → (plan)+
plan → ["@" atomic_formula]

triggering_event ":" context "<-" body "."
literal → atomic_formula

| "˜" atomic_formula
| <VAR>

Multi-Agent Programming Languages, Platforms and Applications 22 / 1

Jason Language

triggering_event → "+" literal
| "-" literal
| "+" " !" literal
| "-" " !" literal
| "+" " ?" literal
| "-" " ?" literal

default_literal → literal
| "not" literal
| "not" "(" literal ")"
| term ("<"|"<="|">"|">="|"=="|"\\=="|"=") term
| literal ("=="|"\\=="|"=") literal

Multi-Agent Programming Languages, Platforms and Applications 23 / 1

Jason Language

context → "true"
| default_literal ("&" default_literal)*

body → "true"
| body_formula (";" body_formula)*

body_formula → literal
| " !" literal
| " ?" literal
| "+" literal
| "-" literal

atomic_formula → <ATOM>["("list_of_terms")"]
["["list_of_terms"]"]

list_of_terms → term ("," term)*

Multi-Agent Programming Languages, Platforms and Applications 24 / 1

Jason Language

term → atomic_formula
| list
| <VAR>
| <NUMBER>
| <STRING>

list → "["
[term (("," term)*

| "|" (list | <VAR>)
)

] "]"

Figure 1: BNF of the AgentSpeak Extension Interpreted by Jason.

Multi-Agent Programming Languages, Platforms and Applications 25 / 1

Jason Language

Semantics and Verification

Important characteristics of Jason:

It implements operational semantics of an extension of AgentSpeak

Having formal semantics also allowed us to give precise definitions for
practical notions of beliefs, desires, and intentions in relation to
running AgentSpeak agents, which in turn underlies the work on formal
verification of AgentSpeak programs.

The formal semantics, using structural operational semantics.

Multi-Agent Programming Languages, Platforms and Applications 26 / 1

Jason Language

Informal Semantics

Besides the belief base and the plan library, the AgentSpeak interpreter also
manages:

A set of events;

A set of intentions.

Its functioning requires three selection functions.

Multi-Agent Programming Languages, Platforms and Applications 27 / 1

Jason Language

Event selection

The event selection function (SE) selects a single event from the set
of events.

Another selection function (SO) selects an “option” (i.e., an applicable
plan) from a set of applicable plans.

a third selection function (SI) selects one particular intention from the
set of intentions.

The selection functions are supposed to be agent-specific, in the sense
that they should make selections based on an agent’s characteristics.

Multi-Agent Programming Languages, Platforms and Applications 28 / 1

Jason Language

Intentions are particular courses of actions to which an agent has
committed in order to handle certain events. Each intention is a stack of
partially instantiated plans.
Events, which may start off the execution of plans that have relevant
triggering events, can be:

External (originating from perception);
Internal (generated from the agent’s own execution of a plan).

Multi-Agent Programming Languages, Platforms and Applications 29 / 1

Jason Language

Belief
Base

SE

SI

Internal
Events

Relevant
Plans

Applicable
Plans

External
Events

Update
Intention

Means
Intended

Plan
Library

Events

Intentions

BRF

Unify
Context

Execute
Intention

Event
Unify

Perception

Action

Selected
Event

Beliefs

Intention

Events

Beliefs

Beliefs

Beliefs

SO

AgentSpeak(L) Agent

Intentions

Selected

Plans

...New
New

Intention
New

Subplan
Push

65

21

3

74

Multi-Agent Programming Languages, Platforms and Applications 30 / 1

Jason Language

Interpretation Cycle of an AgentSpeak Program

Sets (of beliefs, events, plans, and intentions) are represented as
rectangles.

Diamonds represent selection (of one element from a set).

Circles represent some of the processing involved in the interpretation of
AgentSpeak programs.

At every interpretation cycle the interpreter updates a list of events
(generated from perception or from the execution of intentions).

It is assumed that beliefs are updated from perception and whenever
there are changes in the agent’s beliefs, this implies the insertion of an
event in the set of events.

This belief revision function is not part of the AgentSpeak interpreter, but
rather a necessary component of the agent architecture.

Multi-Agent Programming Languages, Platforms and Applications 31 / 1

Jason Language

After SE has selected an event, the interpreter has to unify that event with
triggering events in the heads of plans.

This generates the set of all relevant plans for that event.

By checking whether the context part of the plans in that set follows from
the agent’s beliefs, the set of applicable plans is determined.
Then SO chooses a single applicable plan from that set, which becomes
the intended means for handling that event, and either:

Pushes that plan on the top of an existing intention (if the event was an
internal one);
Or creates a new intention in the set of intentions (if the event was
external).

Multi-Agent Programming Languages, Platforms and Applications 32 / 1

Jason Language

All that remains to be done at this stage is to select a single intention to
be executed in that cycle.

The SI function selects one of the agent’s intentions.

On the top of that intention there is a plan, and the formula in the
beginning of its body is taken for execution.
This implies that either:

A basic action is performed by the agent on its environment;
An internal event is generated (achievement goal);
Or a test goal is performed.

Multi-Agent Programming Languages, Platforms and Applications 33 / 1

Jason Language

If the intention is to perform a basic action or a test goal, the set of
intentions needs to be updated.

In the case of a test goal, the belief base will be searched for a belief
atom that unifies with the atomic formula in the test goal.

If that search succeeds, further variable instantiation will occur in the
partially instantiated plan which contained that test goal.

Multi-Agent Programming Languages, Platforms and Applications 34 / 1

Jason Language

In the case where a basic action is selected, the necessary updating of
the set of intentions is simply to remove that action from the intention.

When all formulæ in the body of a plan have been removed, the whole
plan is removed from the intention, and so is the achievement goal that
generated it.

This ends a cycle of execution, and everything is repeated all over again,
initially checking the state of the environment after agents have acted
upon it, then generating the relevant events, and so forth.

Multi-Agent Programming Languages, Platforms and Applications 35 / 1

Jason Language

Formal Semantics

The operational semantics is given by a set of rules that define a transition
relation between configurations 〈ag,C,M,T ,s〉.

Agent program ag

An agent program ag is, as defined above, a set of beliefs and a set of plans.

Multi-Agent Programming Languages, Platforms and Applications 36 / 1

Jason Language

Agent’s circumstance C

An agent’s circumstance C is a tuple 〈I,E ,A〉 where:

I is a set of intentions {i, i ′, . . .}. Each intention i is a stack of partially
instantiated plans.

E is a set of events {(te, i),(te′, i ′), . . .}. Each event is a pair (te, i),
where te is a triggering event and i is an intention (a stack of plans in
case of an internal event or > representing an external event).

A is a set of actions to be performed in the environment.

Multi-Agent Programming Languages, Platforms and Applications 37 / 1

Jason Language

M

M is a tuple 〈In,Out,SI〉 whose components register the following aspects of
communicating agents:

In is the mail inbox. Elements of this set have the form 〈mid , id , ilf ,cnt〉,
where:

mid is a message identifier;
id identifies the sender of the message;
ilf the illocutionary force of the message;
cnt its content.

Out is the mail outbox. Same format as above, except that now id refers
to the agent to which the message is to be sent.

SI is used to keep track of intentions that were suspended due to the
processing of communication messages.

Multi-Agent Programming Languages, Platforms and Applications 38 / 1

Jason Language

T

T is the tuple 〈R,Ap, ι,ε,ρ〉, used to keep temporary information that is
required in subsequent stages within a single reasoning cycle; its components
are:

R for the set of relevant plans (for the event being handled).

Ap for the set of applicable plans (the relevant plans whose context are
true).

ι, ε, and ρ keep record of a particular intention, event and applicable plan
(respectively) being considered along the execution of an agent.

Multi-Agent Programming Languages, Platforms and Applications 39 / 1

Jason Language

Current step s

The current step s within an agent’s reasoning cycle is symbolically annotated
by s ∈ {ProcMsg,SelEv,RelPl,
ApplPl,SelAppl,AddIM,SelInt,ExecInt,ClrInt}, which stand for:

1 Processing a message from the agent’s mail inbox;
2 Selecting an event from the set of events;
3 Retrieving all relevant plans;
4 Checking which of those are applicable;
5 Particular applicable plan (the intended means);
6 Selecting one;
7 Adding the new intended means to the set of intentions;
8 Selecting an intention;
9 Executing the select intention;
10 Clearing an intention or intended means that may have finished in the

previous step.

Multi-Agent Programming Languages, Platforms and Applications 40 / 1

Jason Language

In order to keep the semantic rules clear, we adopt the following notations:

If C is an AgentSpeak agent circumstance, we write CE to make
reference to the component E of C. Similarly for all the other components
of a configuration.

We write Tι = _ (the underline symbol) to indicate that there is no
intention being considered in the agent’s execution. Similarly for Tρ and
Tε.

We write i[p] to denote an intention i that has plan p on its top.

In the general case, an agent’s initial configuration is
〈ag,C,M,T ,ProcMsg〉, where ag is as given by the agent program, and
all components of C, M, and T are empty.

Multi-Agent Programming Languages, Platforms and Applications 41 / 1

Jason Language

Updating the Set of Intentions

Tε = 〈te,T〉 Tρ = (p,θ)

〈ag,C,M,T ,AddIM〉 −→ 〈ag,C′,M,T ,SelInt〉

where: C′I = CI ∪{ [pθ] }

(EXTEV)

Tε = 〈te, i〉 Tρ = (p,θ)

〈ag,C,M,T ,AddIM〉 −→ 〈ag,C′,M,T ,SelInt〉

where: C′I = CI ∪{ (i[p])θ }

(INTEV)

Rule EXTEV says that if the event ε is external (which is indicated by T in
the intention associated to ε) a new intention is created and its single plan
is the plan p annotated in the ρ component.

If the event is internal, rule INTEV says that the plan in ρ should be put on
top of the intention associated with the event.

Multi-Agent Programming Languages, Platforms and Applications 42 / 1

Jason Language

Intention Selection

CI 6= {} SI (CI) = i

〈ag,C,M,T ,SelInt〉 −→ 〈ag,C,M,T ′,ExecInt〉

where: T ′ι = i

(INTSEL1)

CI = {}
〈ag,C,M,T ,SelInt〉 −→ 〈ag,C,M,T ,ProcMsg〉

(INTSEL2)

Rule INTSEL1 uses an agent-specific function (SI) that selects an
intention (i.e., a stack of plans) for processing.

Rule INTSEL2 takes care of the situation where the set of intentions is
empty (in which case, the reasoning cycle is simply restarted).

Multi-Agent Programming Languages, Platforms and Applications 43 / 1

Jason Language

Executing a Plan Body

Achievement Goals:

Tι = i[head ← !at;h]

〈ag,C,M,T ,ExecInt〉 −→ 〈ag,C′,M,T ,ProcMsg〉

where: C′E = CE ∪{〈+!at, i[head ← h]〉}
C′I = CI \{Tι}

(ACHIEVE)

The plan being executed is always the one on top of the intention that has
been previously selected.

All the rules in this group discard the intention ι; another intention can
then be eventually selected.

This rule registers a new internal event in the set of events E .

The intention that generated the internal event is removed from the set of
intentions CI .

Multi-Agent Programming Languages, Platforms and Applications 44 / 1

Jason Language

Executing a Plan Body

Updating Beliefs:

Tι = i[head ←+b;h]

〈ag,C,M,T ,ExecInt〉 −→ 〈ag′,C′,M,T ,s〉

where: ag′bs = agbs +b[source(self)]
C′E = CE ∪{〈+b[source(self)],T〉}
C′I = (CI \{Tι})∪{i[head ← h]}

s =

{
ClrInt if h =>
ProcMsg otherwise

(ADDBEL)

Rule ADDBEL adds a new event to the set of events E .

Analogous rule DELBEL.

Multi-Agent Programming Languages, Platforms and Applications 45 / 1

Jason Language

Verification
Jason is amenable to formal verification.
For AgentSpeak developed:

Model checking techniques.

Statespace reduction techniques.

Multi-Agent Programming Languages, Platforms and Applications 46 / 1

Jason Language

Software Engineering Issues

Accordance to the Prometheus methodology.

More readable than JACK and Jadex.

Internal actions - high level representation ot the agent’s reasoning
 Far more elegant than with other agent programming languages
(JACK, Jadex)

Multi-Agent Programming Languages, Platforms and Applications 47 / 1

Jason Language

Other Features of the Language
Communication in AgentSpeak

Inspired by KQML perfomatives.

s Agent that sends the message.

r Agent that receives the message.

tell, untell can be used pro-actively or reactively.

Multi-Agent Programming Languages, Platforms and Applications 48 / 1

Jason Language

tell: s intends r to believe (that s believes) the sentence in the
message’s content to be true;

untell: s intends r not to believe (that s believes) the sentence in the
message’s content to be true;

achieve: s requests that r try to achieve a state of the world where the
message content is true;

unachieve: s requests that r try to drop the intention of achieving a state of
the world where the message content is true;

Multi-Agent Programming Languages, Platforms and Applications 49 / 1

Jason Language

tellHow: s informs r of a plan;

untellHow: s requests that r disregard a certain plan (i.e., delete that plan
from its plan library);

askIf: s wants to know if the content of the message is true for r ;

askAll: s wants all of r ’s answers to a question;

askHow: s wants all of r ’s plans for a triggering event.

Multi-Agent Programming Languages, Platforms and Applications 50 / 1

Jason Language

A Mechanism for receiving and sending messages asynchronously is
used.

Messages are stored in mail box and one of them is processed by the
agent at the beginning of a reasoning cycle.

The particular message is determined by a selection function.

"Given" function defines a set of socially acceptable messages.
(e.g. avoid mail-attacks, define trustfulness)

Multi-Agent Programming Languages, Platforms and Applications 51 / 1

Jason Language

Example 1.3 (Customisation the power relation in Jason)

A CPH903 robot only does what an MDS79 robot asks.

package cph;
import jason.asSemantics.Agent;

public class CPHAgent extends Agent {

public boolean socAcc(Message m) {
if (m.getSender().startsWith("mds") &&

m.getIlForce().equals("achieve")) {
return true;

} else {
return false;

}
}

}

Multi-Agent Programming Languages, Platforms and Applications 52 / 1

Jason Language

Annotations

We annotate for each belief what is its source.

The annotation mechanism provides a very elegant notation.

It has advantages in terms of expressive power and readability.

It allows the use of such explicit information in an agent’s reasoning.

Belief sources can be annotated so as to identify which was the agent
that sent the informations,

as well as denote internal beliefs or percepts.

Multi-Agent Programming Languages, Platforms and Applications 53 / 1

Jason Language

Other Features of the Language
Cooperation in AgentSpeak

Coo-BDI (Cooperative BDI) extends traditional BDI agent-oriented
programming languages in many respects:

The introduction of cooperation among agents for the retrieval of
external plans for a given triggering event.

The extension of plans with access specifiers.

The extension of intentions to take into account the external plan
retrieval mechanism.

The modification of the interpreter to cope with all these issues.

Multi-Agent Programming Languages, Platforms and Applications 54 / 1

Jason Language

The cooperation strategy of an agent Ag includes

the set of agents with which it is expected to cooperate,

the plan retrieval policy,

the plan acquisition policy.

The cooperation strategy may evolve during time, allowing greater
flexibility and autonomy to the agents.

trusted(Te,TrustedAgentSet), where Te is a (not necessarily ground)
triggering event and TrustedAgentSet is the set of agents that Ag will
contact in order to obtain plans relevant for Te.

Multi-Agent Programming Languages, Platforms and Applications 55 / 1

Jason Language

retrievalPolicy(Te,Retrieval), where Retrieval may assume the
values always and noLocal, meaning that relevant plans for the trigger
Te must be retrieved from other agents in any case, or only when no local
relevant plans are available, respectively.

acquisitionPolicy(Te,Acquisition), where Acquisition may assume the
values discard, add and replace meaning that, when a relevant plan
for Te is retrieved from a trusted agent, it must be used and discarded, or
added to the plan library, or used to update the plan library by replacing
all the plans triggered by Te.

Multi-Agent Programming Languages, Platforms and Applications 56 / 1

Jason Language

Plans

In this extension plans also have

a source which determines the first owner of the plan

an access specifier which determines the set of agents with which the
plan can be shared.

The source may assume two values:

self (the agent possesses the plan)

Ag (the agent was originally from Ag).

The access specifier may assume three values:

private (the plan cannot be shared),

public (the plan can be shared with any agent) and

only(TrustedAgentSet) (the plan can be shared only with the agents
contained in TrustedAgentSet).

Multi-Agent Programming Languages, Platforms and Applications 57 / 1

Jason Platform

Main Features of the JasonPlatform
Configuring Multi-Agent Systems

Multi-Agent Programming Languages, Platforms and Applications 58 / 1

Jason Platform

The BNF grammar in Figure ?? gives the syntax that can be used in the
configuration file:

<NUMBER> is used for integer numbers;

<ASID> are AgentSpeak identifiers, which must start with a lowercase
letter;

<ID> is any identifier (as usual);

<PATH> is as required for defining file pathnames as usual in ordinary
operating systems;

<ID> used after the keyword MAS is the name of the society;

architecture is used to specify which of the two overall agent
architectures available with Jason’s distribution will be used;

environment needs to be referenced (Name of Java class for the
environment);

agents is used for defining the set of agents that will take part in the
multi-agent system.

Multi-Agent Programming Languages, Platforms and Applications 59 / 1

Jason Platform

mas → "MAS" <ID> "{"
["architecture" ":" <ID>]

environment
agents

"}"
environment → "environment" ":" <ID> ["at" <ID>]

agents → "agents" ":" (agent)+

Multi-Agent Programming Languages, Platforms and Applications 60 / 1

Jason Platform

agent → <ASID>
[filename]

[options]

["agentArchClass" <ID>]

["agentClass" <ID>]

["#" <NUMBER>]

["at" <ID>]

";"
filename → [<PATH>] <ID>

options → "[" option ("," option)* "]"

Multi-Agent Programming Languages, Platforms and Applications 61 / 1

Jason Platform

option → "events" "=" ("discard" | "requeue" | "retrieve")

| "intBels" "=" ("sameFocus" | "newFocus")

| "verbose" "=" <NUMBER>

Figure 2: BNF of the Language for Configuring Multi-Agent Systems.

Multi-Agent Programming Languages, Platforms and Applications 62 / 1

Jason Platform

Settings available for the AgentSpeak interpreter:

events: Options are either discard, requeue, or retrieve;

intBels: Options are either sameFocus or newFocus;

verbose: A number between 0 and 6 should be specified. The higher the
number, the more information about that agent is printed out in
the console where the system was run.

Multi-Agent Programming Languages, Platforms and Applications 63 / 1

Jason Platform

Creating Environments I

public class HeathrowEnv extends Environment {
Map agsLocation = new HashMap();
public List getPercepts(String agName) {

if (... unattended luggage has been found ...) {
// all agents will perceive the fact that
// there is unattendedLuggage
getPercepts().add(Term.parse("unattendedLuggage"));

}
if (agName.startsWith("mds")) {

// mds robots will also perceive their location
List customPerception = new ArrayList();
customPerception.addAll(getPercepts());
customPerception.add(agsLocation.get(agName));
return customPerception;

} else {
return getPercepts();

Multi-Agent Programming Languages, Platforms and Applications 64 / 1

Jason Platform

Creating Environments II

}
}
public boolean executeAction(String ag, Term action) {

if (action.hasFunctor("disarm")) {
... the code that implements the disarm action
... on the environment goes here

} else if (action.hasFunctor("move")) {
... the code for changing the agents’ location and
... updating the agsLocation map goes here

}
return true;

}
}

Multi-Agent Programming Languages, Platforms and Applications 65 / 1

Jason Platform

Customising Agents

Multi-Agent Programming Languages, Platforms and Applications 66 / 1

Jason Platform

Example 1.4 (Customised selectEvent)

The MDS79 robots must give priority to events related to unattended luggage
over any other type of event. A customised MDS79 agent class:

public class MDSAgent extends Agent {
public Event selectEvent(List evList) {
Iterator i = evList.iterator();
while (i.hasNext()) {

Event e = (Event)i.next();
if (e.getTrigger().getFunctor().equals(

"unattendedLuggage")) {
i.remove();
return e;

}
}
return super.selectEvent(evList);

}

Multi-Agent Programming Languages, Platforms and Applications 67 / 1

Jason Platform

Example 1.5 (Act method)

Under no circumstances a CPH903 robot is allowed to disarm a bomb.
Override the act method in the CPH903’s customised AgArch class and
ensure that the selected action is not disarm before allowing it to be executed
in the environment:

public class CPHAgArch extends CentralisedAgArch {
public void act() {

// get the current action to be performed
Term action = fTS.getC().getAction().getActionTerm();

if (\relax !action.getFunctor().equals("disarm")) {
// ask the environment to execute the action
fEnv.executeAction(getName(), action));
...

}
}

Multi-Agent Programming Languages, Platforms and Applications 68 / 1

Jason Platform

Defining New Internal Actions

Example 1.6
package mds;
import ...
public class calculateMyBid implements InternalAction {
public boolean execute(TransitionSystem ts, Unifier un,

Term[] args) throws Exception {
int bid = ... a complex formula ...;
... plus complex algorithm and calculations

for adjusting the agent’s bid ...

un.unifies(args[0], Term.parse(""+bid));
return true;

}
}

Multi-Agent Programming Languages, Platforms and Applications 69 / 1

Jason Platform

Example of AgentSpeak Plans for an Airport Security Robot

free. // I’m not currently handling unattended luggage

+unattendedLuggage(Terminal,Gate) : true
<- !negotiate.

@pn1
+!negotiate : not free

<- .broadcast(tell, bid(0)).

Multi-Agent Programming Languages, Platforms and Applications 70 / 1

Jason Platform

@pn2
+!negotiate : free

<- .myName(I); // Jason internal action
+winner(I); // belief I am the negotiation winner
+bidsCount(1);
mds.calculateMyBid(Bid); // user internal action
+myBid(Bid);
.broadcast(tell, bid(Bid)).

@pb1 // for a bid better than mine
+bid(B)[source(Sender)] :

myBid(MyBid) & MyBid < B &
.myName(I) & winner(I)

<- -winner(I);
+winner(Sender).

Multi-Agent Programming Languages, Platforms and Applications 71 / 1

Jason Platform

@pb2 // for other bids (and I’m still the winner)
+bid(B) : .myName(I) & winner(I)

<- !addBidCounter;
!endNegotiation.

@pend1 // all bids was received
+!endNegotiation : bidsCount(N) & numberOfMDS(M) & N >= M

<- -free; // I’m no longer free
!checkUnattendedLuggage.

@pend2 // void plan for endNegotiation not to fail
+!endNegotiation : true <- true.
...

Figure 3: Example of AgentSpeak Plans for an Airport Security Robot.

Multi-Agent Programming Languages, Platforms and Applications 72 / 1

Jason Platform

Available Tools and Documentation

Jason is distributed with an IDE which provides a GUI as well as AgentSpeak
code. Through the IDE, it is also possible to control the execution of a MAS,
and to distribute agents over a network in a very simple way. There are three
execution modes:

1 Asynchronous (default)
2 Synchronous
3 Debugging

Jason’s distribution comes with documentation which is also available online at
http://jason.sourceforge.net/Jason.pdf.

Multi-Agent Programming Languages, Platforms and Applications 73 / 1

http://jason.sourceforge.net/Jason.pdf

Jason Platform

Figure 4: Jason’s Mind Inspector.

Multi-Agent Programming Languages, Platforms and Applications 74 / 1

Jason Platform

Standards Compliance, Interoperability, and Portability

As Jason is implemented in Java, there is no issue with portability.

Components of the platform can be easily changed by the user.

Multi-Agent Programming Languages, Platforms and Applications 75 / 1

Jason Summary

Agent-Oriented Programming Language

Functionality

Q: Does the language support various agent concepts such as, mental
attitudes, deliberation, adaptation, social abilities, and reactive as well as
cognitive-based behaviour?

A: Jason is based on a BDI logic-programming language and therefore fully
supports all these concepts; it does not as yet support agent
organisations, but there is ongoing work to support that in the future.

Multi-Agent Programming Languages, Platforms and Applications 76 / 1

Jason Summary

Communication
Q: Does the language provide high-level (i.e., speech-act based) primitives

for communication (as well as general addressing mechanism such as
broadcast and multi-cast)?

A: Speech-act based communication is available in Jason, based on KQML
performatives and some extra ones that are used for exchanging plans
(rather than beliefs).

Multi-Agent Programming Languages, Platforms and Applications 77 / 1

Jason Summary

Underlying Computational Model

Q: Does the language support the design of mobile agents, and if so, which
kind of mobility (weak and/or strong)?

A: SACI supports strong mobility, but we have not as yet provided mobility
within Jason; however, given that this is already available through SACI, it
is straightforward to provide a standard internal action allowing
AgentSpeak programmers to use mobility (this should be available in
Jason’s next release).

Multi-Agent Programming Languages, Platforms and Applications 78 / 1

Jason Summary

Simplicity

Q: How easy it is to use and understand the language?

A: The core of Jason is an AgentSpeak interpreter, which is, in our opinion,
the most simple and elegant, yet quite expressive, agent-oriented
programming language that appears in the literature.

Multi-Agent Programming Languages, Platforms and Applications 79 / 1

Jason Summary

Preciseness
Q: Does the language have clear and precise semantics? How has it been

formalised?

A: There is formal semantics for AgentSpeak with the main extensions
available in Jason; the semantics was given using Plotkin’s structural
approach to operational semantics.

Multi-Agent Programming Languages, Platforms and Applications 80 / 1

Jason Summary

Expressiveness

Q: Is the language suitable for the implementation of a variety of
agent-oriented programs and applications or is it purpose-specific?

A: Jason should be suitable for any application for which BDI agents are
suitable (varied applications of such agents have appeared in the
literature).

Multi-Agent Programming Languages, Platforms and Applications 81 / 1

Jason Summary

Extensiveness
Q: Does the language allow the definition of new language components from

the basic constructs in a systematic way?

A: The “internal action” construct allows for some form of extensibility, and
there are various customisation mechanisms available in Jason.

Multi-Agent Programming Languages, Platforms and Applications 82 / 1

Jason Summary

Verification
Q: Does your approach provide a clear path for the (formal) verification of

programs written in this language?

A: Model checking techniques that apply directly on (a restricted version of)
AgentSpeak are being developed by Bordini, Fisher, Wisser, and
Wooldridge. To our knowledge, this is the only agent programming
language for which work on model checking techniques has been
published.

Multi-Agent Programming Languages, Platforms and Applications 83 / 1

Jason Summary

Software Engineering Principles

Q: Have Software Engineering and Programming Language principles, such
as abstraction, inheritance, modularity, overloading, information hiding,
error handling, generic programming, etc., been considered or adopted
within design of this language?

A: Very little has been considered in this area as yet; however,
methodologies suitable for BDI-like agents, such as Prometheus (by
Padgham and Winikoff), should be suitable for implementation with
Jason.

Multi-Agent Programming Languages, Platforms and Applications 84 / 1

Jason Summary

Language Integration

Q: Does your approach deal with the possibility of integrating the language
with existing (well-known) programming language (e.g., Java)?

A: The same “internal action” construct mentioned above allows for a
high-level approach to integration with Java (the agent code itself remains
a clear logical description of the agent’s reasoning, as Java or legacy
code is simply referenced in the high-level internal actions).

Multi-Agent Programming Languages, Platforms and Applications 85 / 1

Jason Summary

Language Integration (continued)

Q: Can the language be interfaced with other programming languages, or
does it allow the invocation of methods/programs built using other
(classical) programming languages?

A: This can be achieved by the use of JNI (Java Native Interface) and the
internal action mechanism mentioned above.

Multi-Agent Programming Languages, Platforms and Applications 86 / 1

Jason Summary

Platform

Deployment and Portability

Q: Does the platform provide material, such as documentation, tutorials or
training of any kind, installation and deployment guidelines, to help users
in deploying their systems?

A: Jason has sufficient documentation, and further tutorials are under
preparation; when agents are not situated in some real-world
environment, deployment in a networked system is trivial with Jason
(through the use of SACI).

Multi-Agent Programming Languages, Platforms and Applications 87 / 1

Jason Summary

Deployment and Portability (continued)

Q: Does the platform require a specific computing environment (computer
architecture, operating system, libraries, etc.) to be used / deployed?

A: No, it runs on any platform for which Java is available.

Multi-Agent Programming Languages, Platforms and Applications 88 / 1

Jason Summary

Standards Compliance

Q: To what extent does the platform adhere to the standards (FIPA, MASIF,
etc.) with respects to: general architecture, naming service, white- and
yellow-page services, mobility services, agent-life cycle management,
etc.?

A: Jason provides these services through SACI, which is KQML compliant;
however, the distribution infrastructure can be customised, so a different
infrastructure (e.g., one that is FIPA compliant) can be used if necessary.

Multi-Agent Programming Languages, Platforms and Applications 89 / 1

Jason Summary

Platform Extensibility

Q: Can the platform be extended with additional functionality, for example
through Open Source collaboration?

A: Jason is available Open Source and in most extensions attempted so far
it has proven very easy to extend (because of the customisation
mechanisms, this often means that not change in the interpreter itself is
required); there are a number of extensions planned for the near future.

Multi-Agent Programming Languages, Platforms and Applications 90 / 1

Jason Summary

Available Tools
Q: What tools are provided by the platform for the management, monitoring,

logging and debugging of applications?

A: Jason has a debugging mode in which the system can be run step by
step and a “mind inspector” which allows the user to check the mental
attitudes of agents running across a network.

Multi-Agent Programming Languages, Platforms and Applications 91 / 1

Jason Summary

Available Tools (continued)

Q: What documentation for on-line help, and manuals for the platform’s
installation, use, and maintenance are available?

A: There is documentation which is partly a tutorial on AgentSpeak and
partly a manual for using the platform; improvements on this
documentation and further tutorials are expected.

Multi-Agent Programming Languages, Platforms and Applications 92 / 1

Jason Summary

Available Tools (continued)

Q: Are there tools for administration, management, and configuration of the
platform? Is an IDE provided?

A: Jason comes with an IDE which is very simple to use.

Multi-Agent Programming Languages, Platforms and Applications 93 / 1

Jason Summary

Tool Integration

Q: In existing applications, what tools (e.g., JESS, web services, JSP) have
been integrated or are known to work well with applications running on
this platform ?

A: Applications developed with Jason have not made use of integrated tools,
but in principle any tool that integrates satisfactorily with Java should
integrate with Jason as well.

Multi-Agent Programming Languages, Platforms and Applications 94 / 1

Jason Summary

Technical Interoperability

Q: Is an application aimed at running on this platform tied to a specific
programming language, specific architectures (e.g., .NET, J2EE), or are
there special operating system requirements?

A: Applications require a Java Virtual Machine to run, but there are no
operating system requirements.

Multi-Agent Programming Languages, Platforms and Applications 95 / 1

Jason Summary

Performance Issues
Q: What number of agents can be expected to run efficiently within a single

instance of the platform, what scale of number of messages can be
handled by the platform, etc.?

A: Jason has changed significantly in the last year, and we have not yet
updated such statistics, but we plan to include such figures in the manual
in future releases.

Multi-Agent Programming Languages, Platforms and Applications 96 / 1

Jason Summary

Performance Issues (continued)

Q: What is the current state of the platform (simple prototype, available as a
commercial product, stable Open Source distribution, etc.)?

A: We have recently released version 0.6 (open source, as usual); although
there are stable versions, various significant changes have been made
from each version to the next (Jason is very much work on progress).

Multi-Agent Programming Languages, Platforms and Applications 97 / 1

Jason Summary

Multi-Agent Systems Features

Q: Does the platform support open multi-agent systems and heterogeneous
agents?

A: Again through the use of SACI, open multi-agent systems are easily
supported; although heterogeneity is in principle possible, various
features (e.g., plan exchange) still consider that the all agents are
developed in AgentSpeak.

Multi-Agent Programming Languages, Platforms and Applications 98 / 1

Jason Summary

Multi-Agent Systems Features (continued)

Q: Does the platform provide centralised or distributed control, and
hierarchical structure of agents?

A: Both centralised and distributed execution is available; social structures
are still not currently supported, but this is ongoing work.

Multi-Agent Programming Languages, Platforms and Applications 99 / 1

Jason Summary

Multi-Agent Systems Features (continued)

Q: Does the platform offer libraries for programming multi-agent systems
(libraries of interaction protocols, agent or group templates, reusable
agent or organisation components, etc.)?

A: This is not as yet available, but certainly planned for the future.

Multi-Agent Programming Languages, Platforms and Applications 100 / 1

Jason Summary

Applications Supported by the Language and Platform

Typical Examples

Q: What types of application have already been developed with this platform
(toy problems, real-world applications, industrial applications)? What are
the most prominent examples?

A: So far, apart from academic coursework, Jason has only been used for
social simulation and autonomous characters for computer animation.

Multi-Agent Programming Languages, Platforms and Applications 101 / 1

Jason Summary

Targeted Domains

Q: Is any particular domain of application (e.g., simulation, resource
allocation, mobile computation) targeted by your approach?

A: BDI agents are suitable for a variety of domains; we are particularly
interested in Semantic Web and Grid-based applications; specifically, we
plan to develop Grid-based social simulations in the near future.

Multi-Agent Programming Languages, Platforms and Applications 102 / 1

Jason References

References I

Davide Ancona, Viviana Mascardi, Jomi F. Hübner, and Rafael H. Bordini.
Coo-AgentSpeak: Cooperation in AgentSpeak through plan exchange.
In Nicholas R. Jennings, Carles Sierra, Liz Sonenberg, and Milind Tambe,
editors, Proceedings of the Third International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS-2004), New York,
NY, 19–23 July, pages 698–705, New York, NY, 2004. ACM Press.

Rafael H. Bordini, Michael Fisher, Carmen Pardavila, and Michael
Wooldridge.
Model checking AgentSpeak.
In Jeffrey S. Rosenschein, Tuomas Sandholm, Michael Wooldridge, and
Makoto Yokoo, editors, Proceedings of the Second International Joint
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS-2003), Melbourne, Australia, 14–18 July, pages 409–416, New
York, NY, 2003. ACM Press.

Multi-Agent Programming Languages, Platforms and Applications 103 / 1

Jason References

References II

Rafael H. Bordini, Michael Fisher, Willem Visser, and Michael Wooldridge.
Model checking rational agents.
IEEE Intelligent Systems, 19(5):46–52, September/October 2004.

Rafael H. Bordini, Jomi F. Hübner, et al.
Jason: A Java-based agentSpeak interpreter used with saci for
multi-agent distribution over the net, manual, version 0.6 edition, Feb
2005.
http://jason.sourceforge.net/.

Rafael H. Bordini, Fabio Y. Okuyama, Denise de Oliveira, Guilherme
Drehmer, and Romulo C. Krafta.
The MAS-SOC approach to multi-agent based simulation.
In Gabriela Lindemann, Daniel Moldt, and Mario Paolucci, editors,
Proceedings of the First International Workshop on Regulated
Agent-Based Social Systems: Theories and Applications (RASTA’02), 16
July, 2002, Bologna, Italy (held with AAMAS02) — Revised Selected and

Multi-Agent Programming Languages, Platforms and Applications 104 / 1

Jason References

References III

Invited Papers, number 2934 in Lecture Notes in Artificial Intelligence,
pages 70–91, Berlin, 2004. Springer-Verlag.

Rafael H. Bordini, Willem Visser, Michael Fisher, Carmen Pardavila, and
Michael Wooldridge.
Model checking multi-agent programs with CASP.
In Warren A. Hunt Jr. and Fabio Somenzi, editors, Proceedgins of the
Fifteenth Conference on Computer-Aided Verification (CAV-2003),
Boulder, CO, 8–12 July, number 2725 in Lecture Notes in Computer
Science, pages 110–113, Berlin, 2003. Springer-Verlag.
Tool description.

Multi-Agent Programming Languages, Platforms and Applications 105 / 1

Jason References

References IV

Rodrigo Machado and Rafael H. Bordini.
Running AgentSpeak(L) agents on SIM_AGENT.
In John-Jules Meyer and Milind Tambe, editors, Intelligent Agents VIII –
Proceedings of the Eighth International Workshop on Agent Theories,
Architectures, and Languages (ATAL-2001), August 1–3, 2001, Seattle,
WA, number 2333 in Lecture Notes in Artificial Intelligence, pages
158–174, Berlin, 2002. Springer-Verlag.

Álvaro F. Moreira, Renata Vieira, and Rafael H. Bordini.
Extending the operational semantics of a BDI agent-oriented
programming language for introducing speech-act based communication.
In João Leite, Andrea Omicini, Leon Sterling, and Paolo Torroni, editors,
Declarative Agent Languages and Technologies, Proceedings of the First
International Workshop (DALT-03), held with AAMAS-03, 15 July, 2003,
Melbourne, Australia (Revised Selected and Invited Papers), number 2990

Multi-Agent Programming Languages, Platforms and Applications 106 / 1

Jason References

References V

in Lecture Notes in Artificial Intelligence, pages 135–154, Berlin, 2004.
Springer-Verlag.

Anand S. Rao.
AgentSpeak(L): BDI agents speak out in a logical computable language.
In Walter Van de Velde and John Perram, editors, Proceedings of the
Seventh Workshop on Modelling Autonomous Agents in a Multi-Agent
World (MAAMAW’96), 22–25 January, Eindhoven, The Netherlands,
number 1038 in Lecture Notes in Artificial Intelligence, pages 42–55,
London, 1996. Springer-Verlag.

Anand S. Rao and Michael P. Georgeff.
Decision procedures for BDI logics.
Journal of Logic and Computation, 8(3):293–343, 1998.

Multi-Agent Programming Languages, Platforms and Applications 107 / 1

Jason References

References VI

Jorge A. Torres, Luciana P. Nedel, and Rafael H. Bordini.
Autonomous agents with multiple foci of attention in virtual environments.
In Proceedings of 17th International Conference on Computer Animation
and Social Agents (CASA 2004), Geneva, Switzerland, 7–9 July, pages
189–196, 2004.

Multi-Agent Programming Languages, Platforms and Applications 108 / 1

3APL

Abstract
This chapter presents 3APL, which is a multi-agent programming language,
and its corresponding development platform. The 3APL language is motivated
by cognitive agent architectures and provides programming constructs to
implement individual agents directly in terms of beliefs, goals, plans, actions,
and practical reasoning rules. The syntax and semantics of the 3APL
programming language is explained. Various features of the language and
platform and some software engineering issues are discussed.

Multi-Agent Programming Languages, Platforms and Applications 110 / 1

3APL

Keywords

Multi-Agent Programming Language, Cognitive Agents, Multi-Agent Systems

Authors
Mehdi Dastani, M. Birna van Riemsdijk, and John-Jules Ch. Meyer

Multi-Agent Programming Languages, Platforms and Applications 111 / 1

3APL Motivation

Agents are often described using logic.
Concepts that are commonly incorporated:

Knowledge;
Beliefs;
Desires;
Intentions;
Commitments;
Goals;
Plans.

Using an arbitrary programming language it will be difficult to verify
whether it satisfies its specification.

; 3APL (“triple-a-p-l") to support the practical development of
intelligent agents.

Multi-Agent Programming Languages, Platforms and Applications 112 / 1

3APL Motivation

3APL
Basic building blocks:

Beliefs;
Plans;
Rules for revising plans.

Extensions

Declarative goals (“goal”) describe the state an agent wants to reach
and can be used to program pro-active behavior.

Communication to allow describing multi-agent 3APL systems.

Multi-Agent Programming Languages, Platforms and Applications 113 / 1

3APL Motivation

Issues
Given these mental attitudes, issues arise:

which plan should be executed at a certain point;

which goal(s) should be pursued;

which (type of) rule should be applied;

etc.

The choices made affect the operation of the agent and it is thus an important
point to consider.
; Meta-language on top of basic 3APL.

Multi-Agent Programming Languages, Platforms and Applications 114 / 1

3APL Language

Implementation of a multi-agent system

In general:

One single-agent programming language to implement individual agents;

One multi-agent programming language to implement multi-agent
aspects.

Multi-Agent Programming Languages, Platforms and Applications 115 / 1

3APL Language

Implementation of a multi-agent system I

In 3APL:

A 3APL multi-agent system consists of a set of concurrently executed
3APL agents that can interact with each other either directly through
communication or indirectly through the shared environment;

To implement a 3APL multi-agent system, the 3APL platform has been
built to support the design, implementation, and execution of a set of
3APL agents that share an external environment;

All organization and coordination issues should be implemented
implicitly through the implementations of individual 3APL agents.

Multi-Agent Programming Languages, Platforms and Applications 116 / 1

3APL Language

Implementation of a multi-agent system II

Individual 3APL agents can be implemented by the 3APL programming
language;

Shared environment can be implemented in the Java programming
language (Java class);

Its methods correspond with the actions that agents can perform in the
environment;

Agents can interact with each other through direct communication.

Multi-Agent Programming Languages, Platforms and Applications 117 / 1

3APL Language

3APL programming language

Mental attitudes (data structures);
Beliefs;
Goals;
Plans;
Actions (mental, internal, communication);
Reasoning rules.

Deliberation process (programming instructions).
Selection and execution of actions and plans (for modifying an agent’s
belief base or the shared environment);
Selection and application of reasoning rules (for shifting goal and plan
bases).

The basic deliberation constructs can be composed by sequential
composition, if-then-else and while constructs. ; Language is expressive
enough to implement important aspects of subsumption architectures.

Multi-Agent Programming Languages, Platforms and Applications 118 / 1

3APL Language

A B

Goal Planning
 Rule Base

Plan Revision
 Rule BaseAction Base

Plan
Base

Goal
Base

Belief
Base

Deliberation
 Process

Template 1
Organisation

Template 1
Agent

Library

Agent1

A M S

P
I

A

G U I

Communication

V
N
E

USER

NETWORK

Figure 5: The architectures of 3APL platform (A) and individual 3APL agents (B)

Multi-Agent Programming Languages, Platforms and Applications 119 / 1

3APL Language

The 3APL platform consists of:

A number of agents;

A directory facilitator called agent management system (AMS);
A message transport system which delivers messages between agents;

A shared environment;
A plugin interface that allows agents to execute actions in the shared
environment.

Multi-Agent Programming Languages, Platforms and Applications 120 / 1

3APL Language

Function of the agent management system (AMS)

Register agents that are loaded and executed on the platform and it
answers a set of questions from agents about other agents that are
present on the platform.

These questions can be, for example, about the names of agents, their
functions, and the services they provide.

Multi-Agent Programming Languages, Platforms and Applications 121 / 1

3APL Language

Each individual 3APL agent consists of:

A belief base;

A goal base;

A plan base;

An action base for the specification of internal mental actions;

A base for goal planning rules (which can be applied to plan a goal)

A base for plan revision rules (which can be used to revise, adopt, and
drop plans).

Multi-Agent Programming Languages, Platforms and Applications 122 / 1

3APL Language

Specifications and Syntactical Aspects
EBNF grammar of the language

We use:

〈atom〉 to denote an atomic formula the terms of which can include
Prolog-like list representations of the form [a,b,[3,f]], [X|T], and
[a,[4,d]|T], etc.;

〈ground_atom〉 to denote a ground atomic formula, which is an atomic
formula that contains no variables. The terms of ground atomic formulae
can include Prolog-like list representations such as [a,b,c],
[e,[9,d,g],3];

〈Atom〉 to denote atomic formulae where the predicate letter starts with a
capital letter;

〈ident〉 to denote a string;

〈var〉 to denote a variable.

Multi-Agent Programming Languages, Platforms and Applications 123 / 1

3APL Language

Specifications and Syntactical Aspects
EBNF specification for individual agents I

〈Program〉 ::= "Program" 〈ident〉
("Load" 〈ident〉)?
"Capabilities :" (〈capabilities〉)?
"BeliefBase :" (〈beliefs〉)?
"GoalBase :" (〈goals〉)?
"PlanBase :" (〈plans〉)?
"PG−rules :" (〈p_rules〉)?
"PR−rules :" (〈r_rules〉)?

Multi-Agent Programming Languages, Platforms and Applications 124 / 1

3APL Language

Specifications and Syntactical Aspects
EBNF specification for individual agents II

〈capabilities〉 ::= 〈capability〉 ("," 〈capability〉)*
〈capability〉 ::= "{" 〈query〉 "}" 〈Atom〉 "{" 〈literals〉 "}"
〈beliefs〉 ::= (〈belief 〉)*
〈belief 〉 ::= 〈ground_atom〉 "." |

〈atom〉 ":−" 〈literals〉"."
〈goals〉 ::= 〈goal〉 ("," 〈goal〉)*
〈goal〉 ::= 〈ground_atom〉 ("and" 〈ground_atom〉)*
〈plans〉 ::= 〈plan〉 ("," 〈plan〉)*
〈plan〉 ::= 〈basicaction〉 | 〈composedplan〉

Multi-Agent Programming Languages, Platforms and Applications 125 / 1

3APL Language

Specifications and Syntactical Aspects
EBNF specification for individual agents III

〈basicaction〉 ::= "ε" | 〈Atom〉 |
"Send("〈iv〉,〈iv〉,〈atom〉")" |
"Java("〈ident〉,〈atom〉,〈var〉")" |
〈wff 〉"?" | 〈atom〉

〈composedplan〉 ::= "if" 〈wff 〉 "then" 〈plan〉
("else" 〈plan〉)? |
"while" 〈query〉 "do" 〈plan〉 |
〈plan〉 ";" 〈plan〉

Multi-Agent Programming Languages, Platforms and Applications 126 / 1

3APL Language

Specifications and Syntactical Aspects
EBNF specification for individual agents IV

〈p_rules〉 ::= 〈p_rule〉 ("," 〈p_rule〉)*
〈p_rule〉 ::= 〈atom〉 "<−" 〈query〉 "|" 〈plan〉
〈p_rule〉 ::= "<−" 〈query〉 "|" 〈plan〉
〈r_rules〉 ::= 〈r_rule〉 ("," 〈r_rule〉)*
〈r_rule〉 ::= 〈plan〉 "<−" 〈query〉 "|" 〈plan〉
〈literals〉 ::= 〈literal〉 ("," 〈literal〉)*
〈literal〉 ::= 〈atom〉 | "not("〈atom〉")"
〈wff 〉 ::= 〈literal〉 | 〈wff 〉 "and" 〈wff 〉 |

〈wff 〉 "or" 〈wff 〉
〈query〉 ::= 〈wff 〉 | "true"
〈iv〉 ::= 〈ident〉 | 〈var〉

Multi-Agent Programming Languages, Platforms and Applications 127 / 1

3APL Language

Beliefs and goals

The beliefs of a 3APL agent describe the situation the agent is in.

Beliefs are implemented by the belief base, which contains information
the agent believes about the world.

The goals of the agent denote the situation the agent wants to realize,
which is implemented by an agent’s goal base.

The belief base is implemented by a Prolog program consisting of Prolog
facts and rules.

The initial belief base of a 3APL agent is preceded by the keyword
"BeliefBase :".

Note that the syntax of Prolog is in accordance with the specification of
〈beliefs〉 as given above.

Multi-Agent Programming Languages, Platforms and Applications 128 / 1

3APL Language

Example 2.1 (Initial belief base of a 3APL agent)

Blocks a and b are on the floor, block c is on block a, and that a block is clear if
there is no block placed on top of it.
BeliefBase:
on(a,fl).
on(b,fl).
on(c,a).
clear(Y) :- not(on(X,Y)).

The specification of beliefs allows the use of negation in the body of the rules.
The not in these rules stands for negation-as-failure.

Multi-Agent Programming Languages, Platforms and Applications 129 / 1

3APL Language

The goal base of a 3APL agent is a set of goals, each of which is
implemented by a conjunction of ground Prolog atoms.

The initial goal base of a 3APL agent is preceded by the keyword
"GoalBase :".

Example 2.2 (Initial goal base of a 3APL agent)

The agent has two goals. The first goal is to have block a on block b and block
b on block c, and the second goal is to have block d on the floor.
GoalBase:
on(a,b) and on(b,c) , on(d,fl)

Two goals and the single goal on(a,b) and on(b,c) and on(d,fl) differ!

Multi-Agent Programming Languages, Platforms and Applications 130 / 1

3APL Language

Specifications and Syntactical Aspects
Source from a formula

It is useful to be able to check whether a formula follows from:

The belief base;

The goal base.

Useful for:

Test actions;

Application of reasoning rules;

Performing mental actions.

Multi-Agent Programming Languages, Platforms and Applications 131 / 1

3APL Language

Belief and goal query expressions

For these purposes, we use the so-called belief and goal query expressions
(i.e. 〈query〉) which are:

Either the special atomic formulae true;

Or a well-formed formula (i.e. 〈wff 〉) constructed from atoms and logical
connectors.

The keywords and, or, and not are used as logical connectives.

Multi-Agent Programming Languages, Platforms and Applications 132 / 1

3APL Language

Example 2.3

(on(X,b) and on(b,Y)) or not(on(b,fl)) can be a belief query
expression which is derivable from the belief base if:

Either on(X,b) and on(b,Y) is derivable from the belief base;

or on(b,fl) is not derivable.

(Because of Prolog the or and and operators are not commutative.)

Multi-Agent Programming Languages, Platforms and Applications 133 / 1

3APL Language

Specifications and Syntactical Aspects
Basic Actions

In order to reach its goals, a 3APL agent adopts plans.

A plan is built from basic actions that can be composed through co-called
program operators.

Five basic actions + neutral action (denoted by ε)

Basic Actions
Various kinds of basic actions:

Mental actions;

Communication actions;

External actions;

Test actions;

Abstract plans.

Multi-Agent Programming Languages, Platforms and Applications 134 / 1

3APL Language

Mental actions

A mental action:

Can update the belief base of agents, if successfully executed;

Has the form of an atomic formula
(predicate name (i.e. 〈Atom〉) + list of terms);
Consists of

Effects (post-condition)
Conditions (pre-conditon)

Multi-Agent Programming Languages, Platforms and Applications 135 / 1

3APL Language

Capabilities

The pre- and post-conditions of mental actions are specified through
so-called capabilities which consist of three parts:

The mental action itself (i.e. 〈Atom〉);
A pre-condition which is a belief query expression (i.e. 〈query〉);
A post-condition which is a list of literals (i.e. 〈literals〉).

An agent can execute a mental action if the pre-condition of the
corresponding capability holds.

The effect of the execution of a mental action is then a change in the
agent’s belief base such that the post-condition of the corresponding
capability holds.

Multi-Agent Programming Languages, Platforms and Applications 136 / 1

3APL Language

In order to realize this effect, a function is defined in the interpreter that:

Adds the positive literals to the belief base;

Retracts the atoms of the negative literals from the belief base.

In the implementation of 3APL, the specification of capabilities is preceded by
the keyword "Capabilities :"

Multi-Agent Programming Languages, Platforms and Applications 137 / 1

3APL Language

Example 2.4 (Mental action)

The following is an example of a capability that defines the effect of the mental
Move action.
Capabilities:

{on(X,Y)} Move(X,Y,Z) {not(on(X,Y)) , on(X,Z)}

Action Move(X,Y,Z) moves a block X from block Y to block Z.

If this Move(X,Y,Z) action is executed, the variables X, Y and Z will be
instantiated with a value.
Assume for example that X = a, Y = b and Z = c

The action can then be executed in case on(a,b) is derivable from the
belief base, i.e., if block a is on b.
The result should be that not(on(a,b)) and on(a,c) are derivable from
the belief base.
This is implemented by removing fact on(a,b) and adding on(a,c).

Multi-Agent Programming Languages, Platforms and Applications 138 / 1

3APL Language

Send action

A send action can be used to pass a message to another agent.
A message contains:

The name of the receiver of the message;
The speech act or performative (e.g. inform, request, etc.);
The content.

The send action is like an atomic formula which has Send as the
predicate name and has three arguments:

1 Identifier or variable (i.e. 〈iv〉).
Name of the receiving agent;

2 Identifier or variable (i.e. 〈iv〉).
Performative of the message;

3 Atomic formula (i.e. 〈atom〉).
Content of the message.

Multi-Agent Programming Languages, Platforms and Applications 139 / 1

3APL Language

Example 2.5 (Send action)

An example of a send action is Send(ag2, inform, on(a,b)), which
specifies that agent ag1 informs agent ag2 that block a is on block b.

Multi-Agent Programming Languages, Platforms and Applications 140 / 1

3APL Language

If an agent sends a message Send(Receiver, Performative, Content)
to another agent:

The belief base of the sender is updated with the formula
sent(Receiver, Performative, Content);

The belief base of the receiver is updated with the formula
received(Sender, Performative, Content).

Agents can receive a message in their belief base at each moment in time.
Note that unlike the mental actions, the send actions can always be
executed.

Multi-Agent Programming Languages, Platforms and Applications 141 / 1

3APL Language

External actions

The external actions are means to change the external environment in
which the agents operate.

The effects of external actions are assumed to be determined by the
environment and might not be known to the agents.

The agent thus decides to perform an external action and the external
environment determines the effect of this action.

The agent can come to know the effects of an external action by
performing a sense action.

This sense action can be defined as an external action in an agent’s plan,
or it could be a pre-defined operation that is part of the sense-reason-act
loop of the agent’s deliberation cycle.

Multi-Agent Programming Languages, Platforms and Applications 142 / 1

3APL Language

External actions are performed by 3APL agents with respect to an
environment which is assumed to be implemented as a Java class.

In particular, the actions that can be performed in this environment are
determined by the methods of the Java class (i.e., the methods specify
the effect of those actions in that environment).

The state of the environment is represented by the instance variables of
the class.

Multi-Agent Programming Languages, Platforms and Applications 143 / 1

3APL Language

The external actions that can be performed by 3APL agents have the
form Java(Classname, Method, List) where:

Classname is the name of the Java class that implements the environment;
Method is the action to be performed in the environment;
List is a list of returned values.

The parameter Method corresponds with a parameterized method of the
Java class Classname.

List is a list of values returned by Method.

The method can be implemented to return the result of the action in the
list, or the list could for example be empty.

In that case, an explicit sense action would have to be executed to obtain
the result of the action.

Multi-Agent Programming Languages, Platforms and Applications 144 / 1

3APL Language

Example 2.6 (External action)

An example of an external action is
Java(BlockWorld, east(), L)
where the external action east() is performed in the environment
BlockWorld.

The effect of this action is that the position of the agent in the block world
environment is shifted one slot to the east.

Multi-Agent Programming Languages, Platforms and Applications 145 / 1

3APL Language

Test action

A test action checks whether a well-formed formula (i.e. 〈wff 〉) is
derivable from the belief base.

Such an action, which consists of a well-formed formula followed by a
question mark, will be blocked if the formula is not derivable from the
belief base.

Note that the derivation relation is implemented by the Prolog reasoning
engine.
If the arguments of a test action are variables and the well-formed formula is
derivable from the belief base, then the effect of the test action is a substitution
that assigns terms to the variables.
The assignment is useful for retrieving information from the belief base and
passing it to other actions for further manipulation.

Multi-Agent Programming Languages, Platforms and Applications 146 / 1

3APL Language

Example 2.7 (Test action)

An example of a test action is (on(a,X) and on(X,c))? which will be
successfully executed if the agent believes that there is a block X placed
on top of block c such that block a is placed on top of it.

The result of a successful execution is a substitution such as {X/b}
which indicates that the relevant block is block b.

Multi-Agent Programming Languages, Platforms and Applications 147 / 1

3APL Language

Abstract plan

An abstract plan, which is represented as an atomic formula (i.e.
〈atom〉), is an abstract representation of a plan which can be instantiated
with a (more concrete) plan during execution.

An abstract plan cannot be executed directly and should be rewritten into
another plan, possibly (and even probably) containing executable basic
actions, through application of reasoning rules.

The application of rules to abstract plans involves a unification of abstract
plans with the head of rules through which values can be passed to the
instantiated plan.

Multi-Agent Programming Languages, Platforms and Applications 148 / 1

3APL Language

Specifications and Syntactical Aspects
Plans

Basic actions can be composed to build plans through so-called program
operators.

Plans
There are three 3APL program operators:

The sequential operator (denoted by ;);

The iteration operator (denoted by a while-do construct);

The conditional choice operator (denoted by an if-then-else
construct).

Multi-Agent Programming Languages, Platforms and Applications 149 / 1

3APL Language

Definition 2.8 (Plans)

If β is a well-formed formula, β′ is a query expression (i.e. a well-formed
formula or true), and Actions is the set of basic actions as defined above,
then the set of plans, denoted by Plans is defined as follows:

Actions ⊆ Plans

if π,π′ ∈ Plans, then if β then π else π′ ∈ Plans

if π ∈ Plans, then while β′ do π ∈ Plans

if π,π′ ∈ Plans, then π;π′ ∈ Plans

We use ε to denote the empty plan and we identify ε;π with π.

Multi-Agent Programming Languages, Platforms and Applications 150 / 1

3APL Language

The plan base of a 3APL agent consists of a set of plans.

In 3APL the specification of the initial plan base of an agent is preceded
by the keyword "PlanBase :" and consists of a number of plans
separated by a comma.

Example 2.9 (Initial plan base)

The initial plan base of a 3APL agent:
PlanBase:
while (on(X,fl) and not(on(V,X)) do {

(on(Y,Z) and not(Z==fl))?;
Move(X,fl,Y)

}

This plan base consists of one plan which will find all free blocks (blocks with
no block on top) that are placed on the floor and move them to an existing
block which itself is not placed on the floor.

Multi-Agent Programming Languages, Platforms and Applications 151 / 1

3APL Language

Specifications and Syntactical Aspects
Reasoning Rules

In order to reason with goals and plans, 3APL has two types of rules:

Goal planning rules;
Plan revision rules.

These rules are conditionalized by beliefs.

Multi-Agent Programming Languages, Platforms and Applications 152 / 1

3APL Language

Definition 2.10 (Goal planning rules (PG) and the set of plan revision rules
(PR))

Let β be a query expression, κ be an atomic formula, and π,πh,πb be plans.
The set of goal planning rules (PG) and the set of plan revision rules (PR) are
then defined as follows:

κ← β | π, ← β | π ∈ PG
πh← β | πb ∈ PR.

Multi-Agent Programming Languages, Platforms and Applications 153 / 1

3APL Language

Goal planning rules

The goal planning rules are used to generate plans to achieve goals.

In the first goal planning rule, the belief condition β indicates when the
plan π could be generated to achieve the specified goal κ.

The second goal planning rules can be used to model reactive behavior
by omitting the head of the rule.

This special kind of goal planning rule states that under the belief
condition β, a plan can be adopted.

The specification of the set of goal planning rules is preceded by the
keyword "PG−rules :".

Multi-Agent Programming Languages, Platforms and Applications 154 / 1

3APL Language

Example 2.11 (goal planning rule)

The specification of a goal planning rule of a 3APL agent:
PG-rules:
on(X,Z) ← on(X,Y) | Move(X,Y,Z)
This rule states that if the agent wants to have block X on block Z, but it
believes that X is on block Y, then it plans to move X from Y onto Z.

Multi-Agent Programming Languages, Platforms and Applications 155 / 1

3APL Language

Plan revision rules

The plan revision rules are used to revise plans from the plan base. The
specification of the set of plan revision rules is preceded by the keyword
"PR−rules :".

Example 2.12 (Plan revision rules)

The specification of a plan revision rule of a 3APL agent:
PR-rules:
Move(X,Y,Z) ← not(clear(X)) |

on(U,X)?;Move(U,X,fl);Move(X,Y,Z)
This plan revision rule informally means that if the agent plans to move block X
from block Y onto block Z, but it cannot move X because (it believes that) there
is a block on X, then the agent should revise its plan by finding out which block
(U) is on X, moving U onto the floor, and finally moving X from Y onto Z.

Multi-Agent Programming Languages, Platforms and Applications 156 / 1

3APL Language

Plan revision rules (Continued)

A plan revision rule πh← β | πb can be applied to a plan π, if πh can be
matched to a prefix of π, i.e., if π is of the form πh;π

′.

Example 2.13

A plan Move(a,b,c);Move(b,fl,a) can be revised into a plan
Move(a,b,fl);Move(b,fl,a) by applying the plan revision rule
Move(a,b,c)← true | Move(a,b,fl).
Note that a plan revision rule could be used to drop (part of) a plan if its body
πb is the empty plan ε.

Multi-Agent Programming Languages, Platforms and Applications 157 / 1

3APL Language

Specifications and Syntactical Aspects
Deliberation Cycle

The beliefs, goals, plans and reasoning rules form the mental attitudes or
data structures of 3APL agents.

These data structures can be modified by deliberation operations such as
applying a rule or executing a plan.

These deliberation operations constitute the deliberation process of
individual agents.

The deliberation process or program can be viewed as the interpreter, as
it determines which deliberation operations should be performed in which
order.

Multi-Agent Programming Languages, Platforms and Applications 158 / 1

3APL Language

yes

no

Rule
selected?

Rule
selected?

Rules
found?

Rules
applied

or
plans

executed?

Start

Find PGrules
matching goals

Select PGrules
matching beliefs

Apply
PGrule

Apply
PRrule

Select PRrules
matching beliefs

Find PRrules
matching plans

Select
plan

Execute
plan

Plan
selected?

Rules
found?

Sleep
until a

message
arrives

yes

yes yes

yes

no no

no no

no
yes

Applying Goal Planning Rules

Applying Plan Revision Rules

Executing Plans

Figure 6: A cyclic interpreter (deliberation cycle) for the 3APL agents.

Multi-Agent Programming Languages, Platforms and Applications 159 / 1

3APL Language

Specifications and Syntactical Aspects
3APL Platform

The 3APL platform provides a user interface that allows 3APL agents to
be programmed, loaded, and executed.

During execution there are various facilities in the interface such as the
sniffer, which allows monitoring the exchanges of messages between
agents, and specific windows, which allow monitoring the changes of all
mental attitudes of individual agents.

There are various icons in the interface that allow monitoring the
execution of agents, either step by step or continuously.

The only part of the platform architecture that is programmable to this
date is the shared environment.

Multi-Agent Programming Languages, Platforms and Applications 160 / 1

3APL Language

Semantics and Verification

Definition 2.14 (Individual 3APL agent)

An 3APL agent is a tuple 〈ι,σ0,γ0,Cap,Π0,PG,PR,ξ〉 where:

ι is the agent identifier;

σ0 is the initial belief base;

γ0 is the initial goal base;

Cap is the capability base;

Π0 ⊆ Plans×{true} is the initial plan base;

PG is a set of goal planning rules;

PR is a set of plan revision rules;

ξ is the environment the agent shares with other agents; which is
represented by a set of ground atoms.

Multi-Agent Programming Languages, Platforms and Applications 161 / 1

3APL Language

Definition 2.15 ((ground) substitution, binding, domain, free variables)

A substitution θ is a finite set of the form {x1/t1, . . . ,xn/tn}, where
xi ∈ Var and ti ∈ Term and ∀i 6= j : xi 6= xj .

θ is called a ground substitution if all ti are ground terms.

Each element xi/ti is then called a binding for xi .

The set of variables {x1, . . . ,xn} is the domain of θ and will be denoted by
dom(θ).

The application of a substitution θ to a syntactic expression e is denoted
as eθ.

It refers to the expression resulting from simultaneously replacing all
occurrences of variable x in e for which x/t ∈ θ by t .

Multi-Agent Programming Languages, Platforms and Applications 162 / 1

3APL Language

Definition 2.16 (Configuration)

A configuration of an individual 3APL agent is a tuple 〈ι,σ,γ,Π,θ,ξ〉,
where:

ι is an agent identifier;

σ is the belief base of the agent;

γ is the goal base of the agent;

Π is the plan base of the agent;

θ is a ground substitution that binds domain variables to domain terms;

and ξ is the environment it interacts with, where ξ is a set of ground
atoms.

The goal base in a configuration is such that for any goal φ ∈ γ it holds that φ is
not entailed by the agent’s beliefs.

Multi-Agent Programming Languages, Platforms and Applications 163 / 1

3APL Language

Definition 2.17 (Configuration (continued))

A configuration of a 3APL multi-agent system is a tuple 〈A1, . . . ,An,ξ〉
where:

Ai for 1≤ i ≤ n is the configuration of individual agent i ;

and ξ is the shared environment.

This shared environment is the same as the environment of each individual
agent.

Multi-Agent Programming Languages, Platforms and Applications 164 / 1

3APL Language

The rationale behind the condition on the goal base is the following:

The beliefs of an agent describe the state the agent is in and the goals
describe the state the agent wants to realize;

If an agent believes φ is the case, it cannot have the goal to achieve φ,
because the state of affairs φ is already realized;

This is thus an implementation of achievement goals, as opposed to
maintenance goals.

Multi-Agent Programming Languages, Platforms and Applications 165 / 1

3APL Language

Semantics and Verification
Transition system

We define first a derivation rule for transitions between multi-agent
configurations.

This derivation rule, which captures the parallel execution of the set of
individual agents, forms the only transition at the multi-agent level.

Multi-Agent Programming Languages, Platforms and Applications 166 / 1

3APL Language

Definition 2.18 (multi-agent execution)

Let A1, . . . ,Ai , . . . ,An,A ′i be agent configurations;

let ξ and ξ′ be specifications of the environment;

let Ai = 〈σ,γ,Π,θ,ξ〉;
let A ′i = 〈σ′,γ′,Π′,θ′,ξ′〉.

Then the derivation rule for multi-agent configurations is defined as:

Ai → A ′i
〈{A1, . . . ,Ai , . . . ,An},ξ〉 → 〈{A1, . . . ,A ′i , . . . ,An},ξ′〉

This derivation rule states that a transition between multi-agent configurations
can be defined in terms of a transition between single-agent configurations.
This amounts to an interleaved execution of the agents in the system.

Multi-Agent Programming Languages, Platforms and Applications 167 / 1

3APL Language

We now define transition rules that can derive transitions transforming
single-agent configurations.

These derivation rules specify the semantics of the execution of plans
and the application of reasoning rules.

The first derivation rule specifies the execution of the plan base of a 3APL
agent.

The plan base of the agent is a set of plan-goal pairs.

This set can be executed by executing one of the constituent plans.

The execution of a plan can change the agent’s configuration.

Multi-Agent Programming Languages, Platforms and Applications 168 / 1

3APL Language

Definition 2.19 (plan base execution)

Let

Π = {(π1,κ1), . . . ,(πi ,κi), . . . ,(πn,κn)} and
Π′ = {(π1,κ1), . . . ,(π

′
i ,κi), . . . ,(πn,κn)} be plan bases;

θ,θ′ be ground substitutions;

ξ,ξ′ be environment specifications.

Then, the derivation rule for the execution of a set of plans is specified in terms
of the execution of individual plans as:

〈ι,σ,γ,{(πi ,κi)},θ,ξ〉 → 〈ι,σ′,γ′,{(π′i ,κi)},θ′,ξ′〉
〈ι,σ,γ,Π,θ,ξ〉 → 〈ι,σ′,γ′,Π′,θ′,ξ′〉

Multi-Agent Programming Languages, Platforms and Applications 169 / 1

3APL Language

An external action Java(Classname, α(t1, . . . , tn), x) has two
functionalities:

Based on the input terms and the state of the environment, it generates a
term (output of the action) and assigns it to variable x .
Actions are assumed to have effects on the environment.

We assume:
For each external action with a method name α a function Fα which maps
terms t1, . . . , tn and the environment ξ to a term which will be assigned to
variable x .
A function Gα which maps terms t1, . . . , tn and the environment ξ to a new
environment ξ′.

An agent can execute an external action only if the goal associated to the
action is still a goal of the agent.

Multi-Agent Programming Languages, Platforms and Applications 170 / 1

3APL Language

Definition 2.20 (external action execution)

Let t, t1, . . . , tn be terms, x be a variable, let ξ,ξ′ be agent environments, α be
the method name of an external action, and assume functions Fα and Gα as
explained above. The execution of an external action is then defined as
follows:

γ |= κ

〈ι,σ,γ,(Java(Classname,α(t1, . . . , tn),x),κ),θ,ξ〉 → 〈ι,σ,γ,(ε,κ),θ′,ξ′〉

where θ′ = θ∪{x/t} with t = Fα(t1, . . . , tn,ξ), and ξ′ = Gα(t1, . . . , tn,ξ).

Note that the execution of an external action thus influences only the
substitution and the environment component of the configuration.

Multi-Agent Programming Languages, Platforms and Applications 171 / 1

3APL Language

The next type of basic action is the communication action Send(r ,p,φ).

We assume that each agent can receive a message at any moment in
time.

We use then a synchronization mechanism for sending and receiving
messages.

This synchronization mechanism takes care of simultaneously taking a
message from the sending agent and putting it in the belief base of the
receiving agent.

How these messages are then handled by the receiving agent is done in
a completely asynchronous fashion.

Multi-Agent Programming Languages, Platforms and Applications 172 / 1

3APL Language

The semantics of a Send(r ,p,φ) action affects both sending and
receiving agents.

The communication action Send(r ,p,φ) is removed from the plan base of
the sending agent and the formula sent(r ,p,φ) is added to its belief base.

The formula received(s,p,φ) is added to the belief base of the receiving
agent, where s is the name of the sending agent.

This information about incoming and outgoing messages can respectively
be used by the receiving and sending agents for their future deliberations.

In order to be able to identify the sending agent when defining the
addition of a fact of the form received(s,p,φ) to the belief base of the
receiver, we add the name of the sending agent to messages.

Multi-Agent Programming Languages, Platforms and Applications 173 / 1

3APL Language

Definition 2.21 (communication action execution)

Let 〈s, r ,p,ϕ〉 be the format of the message that is sent and received by the
agents, where:

s is the name of the sending agent;

r is the name of the receiving agent;

p is the communication performative;

φ is the message content.

The following three transition rules specify the semantics for sending and
receiving messages between agents, and their synchronization, respectively.

Multi-Agent Programming Languages, Platforms and Applications 174 / 1

3APL Language

Definition 2.22 (communication action execution (continued))

The transition rule for the sending agent:

γ |= κ

〈s,σ,γ,(Send(r ,p,φ),κ),θ,ξ〉 <s,r ,p,φ>!−→ 〈s,σ′,γ,(ε,κ),θ,ξ〉

where σ′ = σ∪{sent(r ,p,φ)}.

Multi-Agent Programming Languages, Platforms and Applications 175 / 1

3APL Language

Definition 2.23 (communication action execution (continued))

The transition rule for the receiving agent:

〈r ,σ,γ,Π,θ,ξ〉 <s,r ,p,φ>?−→ 〈r ,σ′,γ,Π,θ,ξ〉

where σ′ = σ∪{received(s,p,φ)}.

The transition rule guarantees that each agent can receive the messages that
are directed to the agent at any moment in time.

Multi-Agent Programming Languages, Platforms and Applications 176 / 1

3APL Language

Definition 2.24 (communication action execution (continued))

The transition rule for synchronization:

〈Ai ,ξ〉
ϕ?−→ 〈A ′i ,ξ〉 , 〈Aj ,ξ〉

ϕ!−→ 〈A ′j ,ξ〉
〈{A1, . . . ,Ai , . . . ,Aj , . . . ,An},ξ〉 → 〈{A1, . . . ,A ′i , . . . ,A ′j , . . . ,An},ξ〉

Multi-Agent Programming Languages, Platforms and Applications 177 / 1

3APL Language

Next, we specify the derivation rule for the execution of the test action.

A test action can bind the free variables that occur in the test formula for
which no bindings have been computed yet.

Multi-Agent Programming Languages, Platforms and Applications 178 / 1

3APL Language

Definition 2.25 (test execution)

Let β be a well-formed formula and let τ be a ground substitution.

σ |= βθτ & γ |= κ

〈ι,σ,γ,{(β?,κ)},θ,ξ〉 → 〈ι,σ,γ,{(ε,κ)},θτ,ξ〉

The entailment relation |= in the condition σ |= βθτ is implemented by the
Prolog inference engine.

When posing query β, substitution θ is first applied to β.

The substitution τ is the substitution returned by Prolog and should bind
the variables of βθ.

The entailment relation |= in γ |= κ is implemented in a similar fashion.

The derivation rules for the execution of composite plans are defined in a
standard way.

Multi-Agent Programming Languages, Platforms and Applications 179 / 1

3APL Language

A goal planning rule κ← β | π specifies that the goal κ can be
achieved by plan π if β is derivable from the agent’s beliefs.

A goal planning rule only affects the plan base of the agent.

Definition 2.26 (goal planning rule application)

Let κ← β | π be a goal planning rule. Let also τ1,τ2 be ground substitutions.

γ |= κτ1 & σ |= βτ1τ2

〈ι,σ,γ,Π,θ,ξ〉 → 〈ι,σ,γ,Π∪{(πτ1τ2,κτ1)},θ,ξ〉

Multi-Agent Programming Languages, Platforms and Applications 180 / 1

3APL Language

Note that the goal κτ1 that should be achieved by the plan πτ1τ2 is
associated with it.

It is only this rule that associates goals with plans.

The goal base of the agent does not change because the plan πτ1τ2 is
not executed yet; the goals of agents may change only after execution of
plans: goals are removed if believed to be achieved.

We do not add substitutions τ1,τ2 to θ since these substitutions should
only influence the new plan π.

Multi-Agent Programming Languages, Platforms and Applications 181 / 1

3APL Language

The transition rule for the goal planning rule that defines reactive behavior, i.e.
the goal planning rule in which the head is omitted, is a modification of the
above transition rule.

Definition 2.27 (reactive goal planning rule application)

Let← β | π be a reactive goal planning rule and let also τ be a ground
substitution.

σ |= βτ

〈ι,σ,γ,Π,θ,ξ〉 → 〈ι,σ,γ,Π∪{(πτ,true)},θ,ξ〉

Note that the goal associated to the generated plan is set to true, which means
that the plan is not generated to achieve a specific goal.

Multi-Agent Programming Languages, Platforms and Applications 182 / 1

3APL Language

Semantics and Verification
Semantics of a 3APL agent

The semantics of an individual 3APL agent as well as the semantics of a
3APL multi-agent system is derived directly from the transition relation→.

The meaning of individual agents and multi-agent systems consists of a
set of so called computation runs.

Multi-Agent Programming Languages, Platforms and Applications 183 / 1

3APL Language

Definition 2.28 (computation run)

Given a transition system, a computation run CR(s0) is a finite or infinite
sequence s0, . . . ,sn or s0, . . . where si are configurations, and ∀i>0 : si−1→ si

is a transition in the transition system.

We can now use the concept of a computation run to define the semantics of
individual 3APL agents and the semantics of 3APL multi-agent systems.

Multi-Agent Programming Languages, Platforms and Applications 184 / 1

3APL Language

Definition 2.29 (semantics of 3APL multi-agent systems)

The semantics of a 3APL multi-agent system 〈A1, . . . ,An,ξ〉 is the set of
computation runs CR(〈A1, . . . ,An,ξ〉) of the transition system for 3APL
multi-agent systems.

Note that the computation runs of a 3APL multi-agent system consist of
multi-agent transitions which can be derived by means of two multi-agent
transition rules. The first is defined in definition ?? and the second is the
synchronization rule specified in definition ??.

Multi-Agent Programming Languages, Platforms and Applications 185 / 1

3APL Language

Semantics and Verification
3APL Verification

In progress...

Multi-Agent Programming Languages, Platforms and Applications 186 / 1

3APL Language

Software Engineering Issues
Separation of concerns

Development methodologies for multi-agent systems differ from each
other in many respects.

Some of them focus on inter-agent aspects;
while others also provide support for the design of internal components of
an agent, such as mental attitudes and the deliberation process.

Finally, some methodologies explicitly deal with the environment, while
others do not.

The tools to develop and implement multi-agent systems should therefore
support each of these issues separately.

Multi-Agent Programming Languages, Platforms and Applications 187 / 1

3APL Language

Software Engineering Issues
Separation of concerns I

The 3APL programming language supports:
The implementation of inter-agent issues by providing the communication
action Send;
The 3APL platform manages the transportation of the communicated
messages.

The platform provides information about existing agents to other agents
through the AMS.

The information provided by the AMS to agents is required for agents’
interactions.

The environment can be implemented directly and explicitly through
external programs accessible to the agents through API’s.

Multi-Agent Programming Languages, Platforms and Applications 188 / 1

3APL Language

Software Engineering Issues
Separation of concerns II

The 3APL programming language respects the separation of concerns
related to the distinction between an agent’s data structures and an
agent’s operations.
The data structures are:

mental attitudes such as beliefs, goals, and plans;
operations concern manipulation of the mental attitudes such as updating
of beliefs, plans and goals, and execution of plans.

This distinction is made explicit by introducing two levels of programming:
At the data level one can specify the mental attitudes of the agents;
and at the operation level one can implement the deliberation process of
the agent.

Multi-Agent Programming Languages, Platforms and Applications 189 / 1

3APL Language

Software Engineering Issues
Modularity

The implementation of an agent is modular (seven different modules):

The capability base of the agent which implements the mental actions
that an agent can perform to update its beliefs;
The belief base of the agent which contains information the agent
believes about the world as well as information that is internal to the
agent.

The first kind of initial beliefs constitutes the background knowledge which
can be used by different agents;
The second kind of initial beliefs is specific to agents and cannot be used
by other agents.

Multi-Agent Programming Languages, Platforms and Applications 190 / 1

3APL Language

Software Engineering Issues
Modularity I

The goal base that denotes the situation the agent wants to realize;

The plan base of the agent which contains the plans that the agent
intends to perform;

The goal planning rule base that contains the rules that can be used to
generate a plan for the possible goals of an agent;

The plan revision rule base that contains rules to revise existing agent’s
plans;

The deliberation module that allows the implementation of an agent’s
deliberation process.

Multi-Agent Programming Languages, Platforms and Applications 191 / 1

3APL Language

Software Engineering Issues
Abstraction

The abstraction mechanisms are related to external actions and abstract
plans.

The external actions allow users to use external programs through their
corresponding API’s without having any access to the internal data and
operations of the programs.

The 2. abstraction mechanism is related to abstract plans which allow
users to abstract over certain parts of plans.

The abstract plans can be instantiated with a plan through the application
of plan revision rules.

Note: An abstract plan should be introduced, not only because it occurs
in different plans, but also because its specific instantiation depends on
the conditions known only at run time

Multi-Agent Programming Languages, Platforms and Applications 192 / 1

3APL Language

Example 2.30

Going to work can be considered an abstract plan since its specific
instantiations such as going to work by bus, by taxi, by train, or by own
car depend on the conditions that hold when the plan is to be executed.

If the agent does not have enough money, then it may consider going by
bus or train, otherwise it may consider using a taxi.

Multi-Agent Programming Languages, Platforms and Applications 193 / 1

3APL Language

The introduction of abstract plans in 3APL implies the introduction of plan
revision rules.

In implementing 3APL agents, the programmers tend to conceive abstract
plans as a kind of procedure calls and the plan revision rules as the
corresponding procedure.

It is important to note that this is not the optimal and principal use of
abstract plans and their corresponding plan revision rules.

Multi-Agent Programming Languages, Platforms and Applications 194 / 1

3APL Language

Software Engineering Issues
Reusability

The 3APL platform allows reusing multi-agent systems by providing a
library of templates for individual agents and templates for multi-agent
systems.

Using the templates for individual agents, the 3APL programmer can use
generic agents that have certain initial mental attitudes.

The templates for multi-agent systems, also known as projects, allow the
3APL programmers to use a set of generic agents that, in addition to their
initial mental attitudes, follow a specified interaction protocol.

Such a template can include an environment with which the agents are
supposed to interact.

Multi-Agent Programming Languages, Platforms and Applications 195 / 1

3APL Language

Example 2.31

An example of a multi-agent template is a template for an auction:

In order to implement such an auction, a 3APL programmer can load
such a multi-agent template and implement both the details of the agents,
such as their specific initial mental attitudes, as well as the details of their
environment.

Multi-Agent Programming Languages, Platforms and Applications 196 / 1

3APL Language

Language integration

The 3APL programming language together with its platform allows the
integration of Prolog and Java.

The Prolog programs can be integrated since they can be loaded in 3APL
and used as background knowledge.
Given a loaded Prolog program, the agent can pose queries in three
different contexts:

as the pre-condition of mental actions;
as test actions in plans;
as the guard of the reasoning rules.

Multi-Agent Programming Languages, Platforms and Applications 197 / 1

3APL Language

The Prolog programs can thus be used to control the execution of mental
actions, the execution of plans, and the application of reasoning rules.

Note that the queries may yield substitutions that can bind other variables
used in the post-conditions of the mental actions, in the rest of plans that
follow a test action, and in the bodies of reasoning rules.

Multi-Agent Programming Languages, Platforms and Applications 198 / 1

3APL Language

The 3APL programming language allows Java programs to be used
through external actions.

The external actions can be used to call methods of Java classes.

Using the arguments of these methods, it is possible to pass data from
3APL to Java and vice versa.

In this way, data can be passed from Java to the plans of the agent to the
Prolog part (belief base) of the agent and vice versa.

Note that the integration of Java is also used to implement the multi-agent
environment with which the agents interact.

Multi-Agent Programming Languages, Platforms and Applications 199 / 1

3APL Platform

Available tools and documentation

The 3APL platform is an experimental tool, designed to support the
development, implementation, and execution of 3APL agents.

Detailed information:
http://www.cs.uu.nl/3apl/download/java/userguide.pdf

Tutorial and training material:
http://www.cs.uu.nl/3apl

The implementation documentation of the platform:
http://www.cs.uu.nl/3apl/docs/aplp-refman/index.html

Multi-Agent Programming Languages, Platforms and Applications 200 / 1

3APL Platform

Figure 7: Graphical user interface of the 3APL platform.

Multi-Agent Programming Languages, Platforms and Applications 201 / 1

3APL Platform

Standards compliance, interoperability and portability

The 3APL platform has been tested on Windows 98, Windows NT and
Windows XP, as well as on Linux, Unix (Solaris) and Mac OS X.

3APL is written in Java 2 SDK 1.4, and makes use of the Prolog engine of
JIProlog, which is also implemented in Java.

The downloadable 3APL package consists of a .jar file that contains all
the .class files needed, as well as examples of 3APL programs.

The platform provides distributed control such that the agents can be
executed concurrently.

Multi-Agent Programming Languages, Platforms and Applications 202 / 1

3APL Platform

Standards compliance, interoperability and portability I

The platform also provides the possibility to build a library of agents,
multi-agent systems and agent templates.

The templates can be loaded and extended to build multi-agent systems.

Based on the templates it is possible to have interaction protocols in the
platform’s library, since the protocols can be defined in terms of a set of
agent templates in which only the actions prescribed by the protocols are
specified.

Multi-Agent Programming Languages, Platforms and Applications 203 / 1

3APL Applications

The applications that can be developed using the 3APL platform and the
3APL programming language are those that are best understood in terms
of cognitive and social concepts like beliefs, goals, plans, actions, norms,
organizational structures, resources and services that are part of the
multi-agent environment.

We have already implemented a number of toy problem applications such
as block world logistics, Axelrod’s tournament, English Auction, and
Contract Net protocols.

Also, 3APL is already applied to implement the high-level control of
mobile robots.

Multi-Agent Programming Languages, Platforms and Applications 204 / 1

3APL Applications

In this project, external actions of 3APL were defined and connected to
some simple sensory and motor actions of the mobile robot.

In this way, a programmer can implement a 3APL program that senses
the position of the robot it is controlling and determine how to reach a
goal position in a rectangular environment, a model of which is accessible
to the 3APL program.

Currently, 3APL is also being applied to control the behavior of SONY
AIBO robots and to implement small device mobile applications.

Multi-Agent Programming Languages, Platforms and Applications 205 / 1

3APL Summary

Agent-Oriented Programming Language

Functionality

Q: Does the language support various agent concepts such as, mental
attitudes, deliberation, adaptation, social abilities, and reactive as well as
cognitive-based behaviour?

A: The language supports the implementation of mental attitudes (beliefs,
goals, plans, and reasoning rules), the implementation of a deliberation
cycle, and reactive as well as deliberative behavior.

Multi-Agent Programming Languages, Platforms and Applications 206 / 1

3APL Summary

Communication
Q: Does the language provide high-level (i.e., speech-act based) primitives

for communication (as well as general addressing mechanism such as
broadcast and multi-cast)?

A: The language provides a speech-act based programming construct (the
Send operator) for communication.

Multi-Agent Programming Languages, Platforms and Applications 207 / 1

3APL Summary

Underlying Computational Model

Q: Does the language support the design of mobile agents, and if so, which
kind of mobility (weak and/or strong)?

A: The language does not support the design of mobile agents.

Multi-Agent Programming Languages, Platforms and Applications 208 / 1

3APL Summary

Simplicity

Q: How easy it is to use and understand the language?

A: The general ideas of the language can be understood relatively easily,
especially for someone familiar with the idea of cognitive agents, as a
limited number of language constructs is available. The details of the
formal semantics will take some more time to comprehend.

Multi-Agent Programming Languages, Platforms and Applications 209 / 1

3APL Summary

Preciseness
Q: Does the language have clear and precise semantics? How has it been

formalised?

A: The language has a clear and formal semantics, for the most part defined
by means of a transition system.

Multi-Agent Programming Languages, Platforms and Applications 210 / 1

3APL Summary

Expressiveness

Q: Is the language suitable for the implementation of a variety of
agent-oriented programs and applications or is it purpose-specific?

A: The applications that can be developed using the 3APL platform and the
3APL programming language are those that are best understood in terms
of cognitive and social concepts like beliefs, goals, plans, actions, norms,
organizational structures, resources and services that are part of the
multi-agent environment.

Multi-Agent Programming Languages, Platforms and Applications 211 / 1

3APL Summary

Extensiveness
Q: Does the language allow the definition of new language components from

the basic constructs in a systematic way?

A: The mental and external actions enable two forms of extensibility. Also,
the possibility to program the deliberation process in Java allows the
programmer to define new language components.

Multi-Agent Programming Languages, Platforms and Applications 212 / 1

3APL Summary

Verification
Q: Does your approach provide a clear path for the (formal) verification of

programs written in this language?

A: The formal semantics of the language provides the basis for the formal
verification of 3APL programs, both for theorem proving and
model-checking approaches.

Multi-Agent Programming Languages, Platforms and Applications 213 / 1

3APL Summary

Software Engineering Principles

Q: Have Software Engineering and Programming Language principles, such
as abstraction, inheritance, modularity, overloading, information hiding,
error handling, generic programming, etc., been considered or adopted
within design of this language?

A: Limited forms of abstraction, modularity and reusability are supported.
Also, since the deliberation cycle and the shared environment are
programmable as separate modules, the principle of separation of
concern is respected.

Multi-Agent Programming Languages, Platforms and Applications 214 / 1

3APL Summary

Language Integration

Q: Does your approach deal with the possibility of integrating the language
with existing (well-known) programming language (e.g., Java)?

A: The 3APL platform and interpreter are programmed in Java. By means of
external actions, Java can be called from the 3APL program. Further, a
Java implementation of Prolog is used to implement the belief base of
agents.

Multi-Agent Programming Languages, Platforms and Applications 215 / 1

3APL Summary

Language Integration (continued)

Q: Can the language be interfaced with other programming languages, or
does it allow the invocation of methods/programs built using other
(classical) programming languages?

A: -

Multi-Agent Programming Languages, Platforms and Applications 216 / 1

3APL Summary

Platform

Deployment and Portability

Q: Does the platform provide material, such as documentation, tutorials or
training of any kind, installation and deployment guidelines, to help users
in deploying their systems?

A: There is a user guide that explains the use of the 3APL platform and the
3APL programming language through examples that are also available
with the distribution. This user guide is under constant development.

Multi-Agent Programming Languages, Platforms and Applications 217 / 1

3APL Summary

Deployment and Portability (continued)

Q: Does the platform require a specific computing environment (computer
architecture, operating system, libraries, etc.) to be used / deployed?

A: The 3APL platform can be run on Windows, Linux and Unix (Solaris)
machines on which Java 2 SDK 1.4 is installed.

Multi-Agent Programming Languages, Platforms and Applications 218 / 1

3APL Summary

Standards Compliance

Q: To what extent does the platform adhere to the standards (FIPA, MASIF,
etc.) with respects to: general architecture, naming service, white- and
yellow-page services, mobility services, agent-life cycle management,
etc.?

A: The 3APL platform supports limited naming and yellow page services.

Multi-Agent Programming Languages, Platforms and Applications 219 / 1

3APL Summary

Platform Extensibility

Q: Can the platform be extended with additional functionality, for example
through Open Source collaboration?

A: The 3APL platform is not open source yet, but the source is available on
request.

Multi-Agent Programming Languages, Platforms and Applications 220 / 1

3APL Summary

Available Tools
Q: What tools are provided by the platform for the management, monitoring,

logging and debugging of applications?

A: The platform provides a simple editor to write and modify individual agent
programs. It also provide different execution modes such as single and
multi-agent systems, either in a step-by-step or continuous fashion.
Finally, it provides debugging tools such as different windows to observe
the internal state of individual agents and a sniffer tool that visualizes the
communication between agents.

Multi-Agent Programming Languages, Platforms and Applications 221 / 1

3APL Summary

Available Tools (continued)

Q: What documentation for on-line help, and manuals for the platform’s
installation, use, and maintenance are available?

A: The only available documentation is the user guide. An online tutorial will
be available soon.

Multi-Agent Programming Languages, Platforms and Applications 222 / 1

3APL Summary

Available Tools (continued)

Q: Are there tools for administration, management, and configuration of the
platform? Is an IDE provided?

A: The 3APL platform provides a simple form of an IDE.

Multi-Agent Programming Languages, Platforms and Applications 223 / 1

3APL Summary

Tool Integration

Q: In existing applications, what tools (e.g., JESS, web services, JSP) have
been integrated or are known to work well with applications running on
this platform ?

A: Since the 3APL platform is written in Java, any tools that can be
integrated with Java can be integrated with the 3APL platform as well.

Multi-Agent Programming Languages, Platforms and Applications 224 / 1

3APL Summary

Technical Interoperability

Q: Is an application aimed at running on this platform tied to a specific
programming language, specific architectures (e.g., .NET, J2EE), or are
there special operating system requirements?

A: The applications run on the 3APL platform should be programmed in
terms of individual agents that are programmed in the 3APL language.

Multi-Agent Programming Languages, Platforms and Applications 225 / 1

3APL Summary

Performance Issues
Q: What number of agents can be expected to run efficiently within a single

instance of the platform, what scale of number of messages can be
handled by the platform, etc.?

A: Applications with a maximum of 5 agents can be run efficiently within a
single instance of the platform.

Multi-Agent Programming Languages, Platforms and Applications 226 / 1

3APL Summary

Performance Issues (continued)

Q: What is the current state of the platform (simple prototype, available as a
commercial product, stable Open Source distribution, etc.)?

A: The 3APL platform is an advanced prototype platform.

Multi-Agent Programming Languages, Platforms and Applications 227 / 1

3APL Summary

Multi-Agent Systems Features

Q: Does the platform support open multi-agent systems and heterogeneous
agents?

A: The current platform does not support open and heterogeneous
multi-agent systems.

Multi-Agent Programming Languages, Platforms and Applications 228 / 1

3APL Summary

Multi-Agent Systems Features (continued)

Q: Does the platform provide centralised or distributed control, and
hierarchical structure of agents?

A: The platform provides only distributed control of agents.

Multi-Agent Programming Languages, Platforms and Applications 229 / 1

3APL Summary

Multi-Agent Systems Features (continued)

Q: Does the platform offer libraries for programming multi-agent systems
(libraries of interaction protocols, agent or group templates, reusable
agent or organisation components, etc.)?

A: The 3APL platform does not offer libraries yet.

Multi-Agent Programming Languages, Platforms and Applications 230 / 1

3APL Summary

Applications Supported by the Language and Platform

Typical Examples

Q: What types of application have already been developed with this platform
(toy problems, real-world applications, industrial applications)? What are
the most prominent examples?

A: Typical implemented examples are auctions, applications using
Contract-Net protocols, cooperative systems, Axelrod’s tournament and
simple logistic applications.

Multi-Agent Programming Languages, Platforms and Applications 231 / 1

3APL Summary

Targeted Domains

Q: Is any particular domain of application (e.g., simulation, resource
allocation, mobile computation) targeted by your approach?

A: Resource allocation, social simulation and all kinds of applications that
can be described by BDI agents are target applications.

Multi-Agent Programming Languages, Platforms and Applications 232 / 1

3APL References

References I

R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge.
Model checking AgentSpeak.
In Proceedings of the second international joint conference on
autonomous agents and multiagent systems (AAMAS’03), pages
409–416, Melbourne, 2003.

M. Dastani, F. de Boer, F. Dignum, and J.-J. Meyer.
Programming agent deliberation: An approach illustrated using the 3APL
language.
In Proceedings of The Second Conference on Autonomous Agents and
Multi-agent Systems (AAMAS’03), pages 97–104, Melbourne, 2003.

K. Hindriks, F. de Boer, W. van der Hoek, and J.-J. Ch. Meyer.
Agent programming in 3APL.
Int. J. of Autonomous Agents and Multi-Agent Systems, 2(4):357–401,
1999.

Multi-Agent Programming Languages, Platforms and Applications 233 / 1

3APL References

References II

A. S. Rao and M. Georgeff.
BDI Agents: from theory to practice.
In Proceedings of the First International Conference on Multi-Agent
Systems (ICMAS-95), pages 312–319, San Francisco, CA, June 1995.

J. Thangarajah, L. Padgham, and M. Winikoff.
Detecting and avoiding interference between goals in intelligent agents.
In Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI 2003), 2003.

J. Thangarajah, M. Winikoff, L. Padgham, and K. Fischer.
Avoiding resource conflicts in intelligent agents.
In F. van Harmelen, editor, Proceedings of the 15th European Conference
on Artifical Intelligence 2002 (ECAI 2002), Lyon, France, 2002.

Multi-Agent Programming Languages, Platforms and Applications 234 / 1

3APL References

References III

M. B. van Riemsdijk, F. S. de Boer, and J.-J. Ch Meyer.
Dynamic logic for plan revision in intelligent agents.
In Joao A. Leite and Paolo Torroni, editors, Proceedings of the fifth
international workshop on computational logic in multi-agent systems
(CLIMA’04), pages 196–211, 2004.

M. B. van Riemsdijk, W. van der Hoek, and J.-J. Ch. Meyer.
Agent programming in Dribble: from beliefs to goals using plans.
In Proceedings of the second international joint conference on
autonomous agents and multiagent systems (AAMAS’03), pages
393–400, Melbourne, 2003.

Multi-Agent Programming Languages, Platforms and Applications 235 / 1

3APL References

References IV

M. Birna van Riemsdijk, J.-J. Ch Meyer, and F. S. de Boer.
Semantics of plan revision in intelligent agents.
In Charles Rattray, Savitri Maharaj, and Carron Shankland, editors,
Proceedings of the 10th International Conference on Algebraic
Methodology And Software Technology (AMAST04), volume 3116 of
LNCS, pages 426–442. Springer-Verlag, 2004.

F. Zambonelli, N. R. Jennings, and M. Wooldridge.
Developing multiagent systems: The Gaia methodology.
ACM Transactions on Software Engineering and Methodology (TOSEM),
12(3):317–370, 2003.

Multi-Agent Programming Languages, Platforms and Applications 236 / 1

CLAIM and SyMPA

Abstract
The multi-agent systems (MAS) paradigm is one of the most important and
promising approaches to occur in computer science during the 90s. However,
for an effective use of the agent technology in real life applications, specific
programming languages are required. CLAIM is a high-level agent-oriented
programming language that combines cognitive aspects such as knowledge,
goals and capabilities and computational elements such as communication,
mobility and concurrence in order to reduce the gap between the design and
the implementation phase.

Multi-Agent Programming Languages, Platforms and Applications 238 / 1

CLAIM and SyMPA

Abstract (continued)

CLAIM has an operational semantics that is a first step towards the verification
of the built MAS. The language is supported by a distributed platform called
SyMPA, implemented in Java, compliant with the specifications of the MASIF
standard from the OMG, that offers all the necessary mechanisms for a secure
execution of a distributed MAS. CLAIM and SyMPA have been used for
developing several applications that proved the expressiveness of the
language and the robustness of the platform.

Multi-Agent Programming Languages, Platforms and Applications 239 / 1

CLAIM and SyMPA

Keywords

Agent-oriented programming, mobile agents, ambient calculus.

Authors
Amal El Fallah Seghrouchni and Alexandru Suna

Multi-Agent Programming Languages, Platforms and Applications 240 / 1

CLAIM and SyMPA Motivation

The emergence of autonomous agents and multi-agent technology is one
of the most exciting and important events to occur in computer science
during the 1990s.

The design of declarative languages and tools which can effectively
support MAS programming and allow implementing the key concepts of
MAS remained at an embryonic stage.

The potential of MAS technology for large-scale, cross-functional
deployment of general purpose in industrial setting has been hampered
by insufficient progress on infrastructure, architecture, security and
scalability issues.

Multi-Agent Programming Languages, Platforms and Applications 241 / 1

CLAIM and SyMPA Motivation

The mobile agents technology tries to improve the systems’
performances since it provides powerful programming constructs for
designing distributed and mobile applications.

It becomes easy to design active entities that move over the network
and perform tasks on hosts (target sites or computers).

Multi-Agent Programming Languages, Platforms and Applications 242 / 1

CLAIM and SyMPA Motivation

The main focus remains on the development of mobile objects and
processes.

The mobile agents are mainly implemented using object-oriented
frameworks

The mobile agents provide a collection of extensible classes modelling
simple concepts of agent that are specified rather at the implementation
level.

Multi-Agent Programming Languages, Platforms and Applications 243 / 1

CLAIM and SyMPA Motivation

Programming environment - 3 main objectives

1. Propose an agent oriented programming language that:
Helps to reduce the gap between design and implementation phases;
Allows representation of cognitive skills (knowledge, beliefs, goals,
planning, decision making and reasoning);
Meets the requirements of mobile computation in order to support the
geographic distribution of complex systems and of their computation over
the net;
allows the dynamic adaptability and reconfiguring of the MAS. Agents are
able to

Reconfigure themselves autonomously;
Acquire new knowledge and capabilities;
Dynamically adapt their structure (changes in environment and demands of
target applications).

Multi-Agent Programming Languages, Platforms and Applications 244 / 1

CLAIM and SyMPA Motivation

Programming environment - 3 main objectives I

2. Make possible the verification of MAS.

3. Provide a distributed platform that supports the proposed language and
the deployment and secure execution of mobile MAS.

Multi-Agent Programming Languages, Platforms and Applications 245 / 1

CLAIM and SyMPA Motivation

System

CLAIM (Computational Language for Autonomous, Intelligent and Mobile
agents)

Intelligence;
Autonomy;
Communication primitives;
Cognitive skills.

SyMPA (SYstem Multi-Platform of Agents)

Multi-Agent Programming Languages, Platforms and Applications 246 / 1

CLAIM and SyMPA Language

CLAIM is a high-level declarative language allowing to design intelligent and
mobile agents.

Multi-Agent Programming Languages, Platforms and Applications 247 / 1

CLAIM and SyMPA Language

Specifications and Syntactical Aspects

A MAS in CLAIM is a set of hierarchies of agents distributed over a
network.
The notion of hierarchy can be seen as a membership relation:

“an agent is sub-agent of another agent” means that he is contained in the
higher-level agent.

Multi-Agent Programming Languages, Platforms and Applications 248 / 1

CLAIM and SyMPA Language

CLAIM agent

A CLAIM agent:

Is a node in a hierarchy;

Is an autonomous, intelligent and mobile entity that can be seen as a
bounded place where the computation happens;

has a parent, a list of local processes and a list of sub-agents;

has intelligent components (knowledge, capabilities, goals) that allow a
reactive or proactive behavior.

Multi-Agent Programming Languages, Platforms and Applications 249 / 1

CLAIM and SyMPA Language

Agents and classes of agent

In CLAIM, agents and classes of agent can be defined using:

defineAgent agentName {
authority=null; | agentName ;
parent=null; | agentName ;
knowledge=null; | { (knowledge;)+}
goals=null; | { (goal;)+}
messages=null; | { (queueMessage;)+}
capabilities=null; | { (capability;)+}
processes=null; | { (process |)* process }
agents=null; | { (agentName;)+}

}

defineAgentClass className ((arg,)*) {...}

Multi-Agent Programming Languages, Platforms and Applications 250 / 1

CLAIM and SyMPA Language

New agent

An new agent can be instantiated from an already defined class using the
primitive:

newAgent name:className ((arg,)*)

Multi-Agent Programming Languages, Platforms and Applications 251 / 1

CLAIM and SyMPA Language

Variables (denoted by ?x) can be used to replace agents’ names,
messages, goals, etc.

Two types of variables:

Global (for a class);
Local (to a capability).

The agents’ components allow representing the agents’ mental state,
communication and mobility.

Most of the components are null in the definition (e.g. parent, messages,
etc.) but will evolve during the agent’s execution.

Multi-Agent Programming Languages, Platforms and Applications 252 / 1

CLAIM and SyMPA Language

An agent is uniquely identified in the MAS by his name and he belongs to an
authority.

Authority

The authority component is instantiated at the agent’s creation and is
composed of the authority and the name of the agent that has created the
current agent.

This component is necessary for security reasons (e.g. for
authentication).

Multi-Agent Programming Languages, Platforms and Applications 253 / 1

CLAIM and SyMPA Language

The agents in CLAIM are hierarchically represented.

Parent
So an agent’s parent is represented by the name of the agent that currently
contains him.

When an agent is created, his parent and his authority indicate the same
agent;

After the migration, his parent will change, but his authority will always be
the same.

Multi-Agent Programming Languages, Platforms and Applications 254 / 1

CLAIM and SyMPA Language

Knowledge

The knowledge component contains information about other agents (about
capabilities or classes) or about the world (divers propositions).
This knowledge base is a set of elements of knowledge type, defined as
follows:

knowledge ::= agentName(capabilityName,message,effect)
| agentName:className
| proposition

Note: The knowledge about other agents has a standard format, containing
the name, his class or capability.

Multi-Agent Programming Languages, Platforms and Applications 255 / 1

CLAIM and SyMPA Language

Knowledge (continued)

The user can define his own ontology of information about the world,
represented as propositions containing a name and a list of arguments.

proposition = name(arg1,arg2, ...,argn)

Propositions can also be used for denoting goals or messages.

Multi-Agent Programming Languages, Platforms and Applications 256 / 1

CLAIM and SyMPA Language

Goals

The current goals of an agent are represented as user-defined
propositions, in accordance with the current application.

The agent will try to achieve his goals using his capabilities or services
offered by other agents.

Multi-Agent Programming Languages, Platforms and Applications 257 / 1

CLAIM and SyMPA Language

The CLAIM agents communicate asynchronously using messages.

Messages

Every agent has a queue for storing the received messages.
FIFO policy;

A message from the queue contains the sender of the message and the
arrived message:

queueMessage ::= agentName > message

Multi-Agent Programming Languages, Platforms and Applications 258 / 1

CLAIM and SyMPA Language

Messages (continued)

An agent can send messages to an agent (unicast), (multicast), (broadcast),
using the primitive: send(receiver,message), where the receiver can be:

this Himself;

parent The agent’s current parent;

authority The agent’s authority (the agent that created the current agent);

agentName The specified agent;

all All running agents;

?Ag:className All the agents that have been instantiated from the specified
class of agents.

Multi-Agent Programming Languages, Platforms and Applications 259 / 1

CLAIM and SyMPA Language

Messages (continued)

In CLAIM there are three types of messages:

1. Propositions, defined by the designer to suit the current application and
used to activate capabilities;

2. The messages concerning the knowledge, used by agents to exchange
information about their knowledge and capabilities.

tell(knowledge);
askAllCapabilities();
askIfCapability(capabilityName);
achieveCapability(capabilityName);
askEffect(effect);
doneEffect(effect).

Multi-Agent Programming Languages, Platforms and Applications 260 / 1

CLAIM and SyMPA Language

Messages (continued)

In CLAIM there are three types of messages:
3. The mobility messages are used by the system during the mobility

operations, for asking, granting or not granting mobility permissions:
They are represented at the semantical level by co-actions;
In the ambient calculus, the only condition for the mobility operations is a
structure condition;
The mobility messages is for an advanced security and control.

Multi-Agent Programming Languages, Platforms and Applications 261 / 1

CLAIM and SyMPA Language

Capabilities

A capability has a message of activation, a condition, the process to
execute in case of activation and a set of possible effects:

capability ::= capabilityName {
message=null; | message;
condition=null; | condition;
do { process }
effects=null; | { (effect;)+ }

}

The capabilities are the main elements of an agent and dictate his
behavior.

They represent the actions an agent can do in order to achieve his goals
or that he can offer to other agents.

Multi-Agent Programming Languages, Platforms and Applications 262 / 1

CLAIM and SyMPA Language

To execute a capability, the agent must receive the activation message
and verify the condition.

If the message is null , the capability is executed whenever the condition
is verified.

If the condition is null , the capability is executed when the message is
received.

Multi-Agent Programming Languages, Platforms and Applications 263 / 1

CLAIM and SyMPA Language

A condition can be a Java function that returns a boolean, an achieved effect,
a condition about agent’s knowledge or sub-agents, or a logical formula:

condition ::= Java(objectName.function(args))
| agentName.effect
| hasKnowledge(knowledge)
| hasAgent(agentName)
| not(condition)
| and(condition,(condition)+)
| or(condition,(condition)+)

Multi-Agent Programming Languages, Platforms and Applications 264 / 1

CLAIM and SyMPA Language

Processes
An agent concurrently executes several processes:

Sequence of processes;

An instruction;

A variable’s instantiation;

A method implemented in other programming language;

The invocation of a known Web Service;

The creation of a new agent or the removal on an existing one;

A mobility operation or a message transmission.

Multi-Agent Programming Languages, Platforms and Applications 265 / 1

CLAIM and SyMPA Language

Processes (Continued)

process ::= process.process
| instruction
| ?x = (value | Java(obj.method(args)))
| Java(obj.method(args))
| WebService(address,method(args))
| newAgent agentName:className((arg,)*)
| kill (agentName)
| open (agentName)
| acid
| in (mobilityArgument,agentName)
| out (mobilityArgument,agentName)
| move (mobilityArgument,agentName)
| send (receiver,message)

Multi-Agent Programming Languages, Platforms and Applications 266 / 1

CLAIM and SyMPA Language

Definition 3.1
forAllKnowledge(knowledge) { process }
Execute the process for all agent’s knowledge that satisfy a criteria.
(e.g. all agent’s knowledge about a certain agent).

forAllAgents(agentName)] { process }
Execute the process for all the agent’s sub-agents that satisfy a criteria.
(e.g. all the agent’s sub-agents that belong to a certain class).

Multi-Agent Programming Languages, Platforms and Applications 267 / 1

CLAIM and SyMPA Language

The mobility primitives have the same utilization as in the ambient
calculus but they have been adapted to intelligent agents.

An agent can open the borders of one of his sub-agents (open) or can
open his own borders (acid).

In both cases, the parent of the open agent inherits knowledge,
capabilities, processes and sub-agents from the open agent.

An agent can enter an agent form the same level in the hierarchy, i.e.
having the same parent (in), can exit the current parent (out) or can
migrate into another agent (move).

With respect to the hierarchical representation of agents, these
operations allow flexible reconfiguring of MAS and dynamic gathering of
capabilities and knowledge.

Multi-Agent Programming Languages, Platforms and Applications 268 / 1

CLAIM and SyMPA Language

An important problem is the migration’s granularity, and the question is "who
can migrate?".

Mobility argument

We specify this using the mobility argument that allows the migration of the
agent himself, of a clone of the agent or of a process:

mobilityArgument = this | clone | process

The agent component represents the agent’s current sub-agents.

Multi-Agent Programming Languages, Platforms and Applications 269 / 1

CLAIM and SyMPA Language

The CLAIM language offers to the agents’ designer the possibility to define two
types of behavior for the agents:

Reactive behavior (or forward reasoning)

Get a message from the queue (the first or using a selection heuristic);

Find the capabilities that have this message of activation and replace the
variables in the body of the capability;

Verify the conditions of the chosen capabilities;

Execute the process of the verified capabilities;
Several capabilities can be concurrently activated.

Multi-Agent Programming Languages, Platforms and Applications 270 / 1

CLAIM and SyMPA Language

Pro-active behavior (or backward reasoning)

Get a goal from the list of goals (the first or using a selection heuristic);

Find the capabilities that allow to achieve this goal;
Verify the conditions of the chosen capabilities:

If the condition is an agent’s effect, add this effect in his list of goals;
If the condition is other agent’s effect, request the execution of the
corresponding capability.

Execute the process of the verified capabilities.

Multi-Agent Programming Languages, Platforms and Applications 271 / 1

CLAIM and SyMPA Language

Semantics and Verification

Definition 3.2
A MAS in CLAIM is a set of connected hierarchies of agents.

At the semantical level, a MAS is a set Π of running agents.

α,β,π, ... are agents’ names.

a1,a2, ... are agents (with all the components) belonging to Π.

The goals, the messages, the capabilities’ effects and the pieces of
information about the world are propositions containing a name and a list
(possibly empty) of arguments, denoted by: ρ = n(t1, t2, ..., tm).

The other notations will be explained as they are introduced.

Multi-Agent Programming Languages, Platforms and Applications 272 / 1

CLAIM and SyMPA Language

Definition 3.3 (Program)

A program is: Π = a1 ‖ a2 ‖ ... ‖ an,n ≥ 0.
The notation ‖ represents concurrent agents inside the MAS, running on the
same computer or on different connected computers.

Multi-Agent Programming Languages, Platforms and Applications 273 / 1

CLAIM and SyMPA Language

Definition 3.4 (Agent)

An agent is : ai = 〈α,π,K ,G,G′,M,C,P,S,E〉 , where:

α is the agent’s name;

π is the name of the agent’s current parent;

K is the knowledge base.
K = {k1,k2, ...,kn},ki = ρi | αi(ni ,mi ,Ei) | αi : cli
G is the agent’s set of current goals (not treated yet);

G′ is the agent’s set of currently processing goals;

M is the messages queue containing a set of pairs representing the
sender and the message.
The received messages are treated sequentially:
M =� | α1{m1}.α2{m2}.... ;

Multi-Agent Programming Languages, Platforms and Applications 274 / 1

CLAIM and SyMPA Language

Definition 3.5 (Agent (continued))

An agent is: ai = 〈α,π,K ,G,G′,M,C,P,S,E〉 , where:
C is the agent’s list of capabilities. A capability

Has a name (ni);
Triggers a process (pi) according to a message (mi).

if a (optional) pre-condition (Ωi) is verified. A capability may have eventual
effects (post-conditions) (Ei): ci = 〈ni ,mi ,Ωi ,pi ,Ei〉 ∈ C

A condition can be a Java method that returns a boolean, an effect, a
condition about the agent’s knowledge, sub-agents or effects, or a logical
formula.
We defined a function V : (Ω,Π)→{true, false},
that evaluates the boolean value of a CLAIM agent condition in the
context of a running MAS.

Multi-Agent Programming Languages, Platforms and Applications 275 / 1

CLAIM and SyMPA Language

Definition 3.6 (Agent (continued))

An agent is: ai = 〈α,π,K ,G,G′,M,C,P,S,E〉 , where:

P is the list of the agent’ concurrent running processes
(the notation | represents concurrent processes inside an agent):

P ::= pi | pj | ... | pk

S is the set of names of the agent’s sub-agents;

E is the list of achieved goals or effects.

Multi-Agent Programming Languages, Platforms and Applications 276 / 1

CLAIM and SyMPA Language

Definition 3.7 (Agent (continued))

pi ::= � | pj .pk | send(α,m) |
newAgent〈α,�,K ,G,�,�,C,P,�,�〉 |
kill(β) |
in(β) | in(α) |
out(β) | out(α) |
move(β) |
open(β) | open(α) |
acid | acid(β) |
addEffect(ei) |
?x = value |
forAllKnowkedge(k){pj} |
forAllAgents(αi){pj}

Multi-Agent Programming Languages, Platforms and Applications 277 / 1

CLAIM and SyMPA Language

Semantics and Verification
Additional notations

Propositions are important notions in our language.

A proposition has a name and contains a set of arguments:
ρ = n(t1, t2, ..., tm).

They are used to represent goals, messages, information about the world
and effects.

The propositions may contain variables (denoted by ?x) as arguments.

We say that a proposition is instantiated if it contains no variables (all
the arguments are instantiated).

Multi-Agent Programming Languages, Platforms and Applications 278 / 1

CLAIM and SyMPA Language

Definition 3.8

A proposition ρ = n(t1, t2, ..., tm) is equal with another proposition
ρ′ = n′(t ′1, t

′
2, ..., t

′
o) (notation ρ = ρ′) if ρ and ρ′ are instantiated and n = n′,

m = o and ∀i ∈ {1, ...,m}, ti = t ′i .

Definition 3.9

A proposition ρ belongs to a set Λ (e.g. G,E) of propositions (notation ρ ∈ Λ)
if ∃ρ′ ∈ Λ and ρ = ρ′.

Multi-Agent Programming Languages, Platforms and Applications 279 / 1

CLAIM and SyMPA Language

Definition 3.10

A proposition ρ = n(t1, t2, ..., tm) corresponds to another proposition
ρ′ = n′(t ′1, t

′
2, ..., t

′
o) (notation ρ∼= ρ′) if ρ′ is instantiated and n = n′, m = o and

∀i ∈ {1, ...,m}, ti = t ′i or ti is a variable.

Definition 3.11

A proposition ρ has a correspondent in a set Λ (e.g. G,E) of propositions
(notation ρ∼∈ Λ) if ∃ρ′ ∈ Λ and ρ∼= ρ′.

These definitions also apply to all types of knowledge, with slight differences
and with the same notations.

Multi-Agent Programming Languages, Platforms and Applications 280 / 1

CLAIM and SyMPA Language

Semantics and Verification
Conditions

The function V (as seen before, V : conditions→{true, false}) evaluates the
boolean value of a capability condition in the context of a running MAS. We will
use the notation V (Ω).

Multi-Agent Programming Languages, Platforms and Applications 281 / 1

CLAIM and SyMPA Language

V (null) = true

V (Java(Obj.func)) =

{
true if Java returns true
false else

V (this.ek) =

{
true if ek ∼∈ E
false else

V (β.ek) =

true if ∃aj = 〈β, ...,Ej〉 ∈ Π

and ek ∼∈ Ej

false else

V (hasKnowkedge(k)) =

{
true if k ∼∈ K
false else

V (hasAgent(β)) =

{
true if β ∈ S
false else

V (not(Ω)) = ¬(V (Ω))
V (and(Ω1,Ω2, ...,Ωm)) = V (Ω1)∧V (Ω2)∧ ...∧V (Ωm)
V (or(Ω1,Ω2, ...,Ωm)) = V (Ω1)∨V (Ω2)∨ ...∨V (Ωm)

Multi-Agent Programming Languages, Platforms and Applications 282 / 1

CLAIM and SyMPA Language

Semantics and Verification
Reduction rules

Recap: A program contains a set of concurrent running agents:
Π = a1 ‖ a2 ‖ ...an, where ‖ represents concurrent running agents in the MAS.

For representing the semantics of CLAIM programs we choose an
operational approach consisting in a transition relation→ between states
of a program.

Different notation:
Giving a set of reduction rules, from an initial state of a program,
verifying certain conditions, to another stable state, after the execution
of actions by agents in the program: Π

Π′ (instead of Π→ Π′).

Multi-Agent Programming Languages, Platforms and Applications 283 / 1

CLAIM and SyMPA Language

For readability reasons we omit the unchanged components of agents.

All the actions are considered to be atomic.
At each step of an agent’s execution:

Either a message is treated via a capability;
Or a running process is executed or a goal is processed.

Multi-Agent Programming Languages, Platforms and Applications 284 / 1

CLAIM and SyMPA Language

Semantics and Verification
Terminal configuration

Definition 3.12 (Program Termination)

A CLAIM program is in a terminal configuration (denoted by Πt) if it contains
no agents (i.e. Πt =�) or if all its agents are in terminal configurations (see
next definition).

Definition 3.13 (Agent Termination)

A CLAIM agent is in a terminal configuration if he has no message or goal
to treat and no running process.

Multi-Agent Programming Languages, Platforms and Applications 285 / 1

CLAIM and SyMPA Language

Example 3.14

ai = 〈α,π,K ,�,�,�,C,�,S,E〉

Even if an agent can still receive messages that activate capabilities, we call
this kind of configuration a terminal configuration.

Multi-Agent Programming Languages, Platforms and Applications 286 / 1

CLAIM and SyMPA Language

Semantics and Verification
Message transmission

Using the send primitive and the language’s possibilities, an agent can send a
message to:

Himself;

Another agent;

All the agents belonging to a class (multicast);

All the agents in the MAS.

Multi-Agent Programming Languages, Platforms and Applications 287 / 1

CLAIM and SyMPA Language

The message is added at the end of the messages queue M:

Rule ?? (send)

〈α,send(β,m)〉 ‖ 〈β,M〉 → 〈α,�〉 ‖ 〈β,M.α{m}〉 (1)

Multi-Agent Programming Languages, Platforms and Applications 288 / 1

CLAIM and SyMPA Language

Semantics and Verification
Message processing

The arrived messages are processed sequentially, following a FIFO
policy.

Own messages or several pre-defined messages (e.g. tell,
askIfCapability, askAllCapabilities, achieveCapability, askEffect,
doneEffect) for exchanging information about capabilities, effects and
knowledge base.

These messages have a pre-defined treatment.

Multi-Agent Programming Languages, Platforms and Applications 289 / 1

CLAIM and SyMPA Language

By default, the information is added in the knowledge base.

Nevertheless, the agent’s designer can write a capability having this
message of activation, for treating it someway else (e.g. verifying the trust
level of the sender).

Rule ?? (tell)

The tell message, used by an agent to send a piece of information to another
agent:

〈β,K ,α{tell(k)}〉 → 〈β,K ∪{k},�〉 (2)

Multi-Agent Programming Languages, Platforms and Applications 290 / 1

CLAIM and SyMPA Language

If the triggering message of a capability arrives and its condition is
verified, the associated processes are executed and the effects are
updated (rule ??).

When a message arrives, the variables in the condition, process or
effects are replaced with the corresponding values sent in the message.

If the capability’s message mi has a list of variables-attributes instantiated
with real values in the received message,

and if Ωi ,pi and ei ∈ Ei contains as attributes some of the variables xk

from mi ,

then Ω′i ,p
′
i and e′i ∈ Ei will have the variables replaced with the

corresponding values from the received message.

Multi-Agent Programming Languages, Platforms and Applications 291 / 1

CLAIM and SyMPA Language

Rule ?? (cap)

〈β,α{m},C,�〉, and ∃〈ni ,mi ,Ωi ,pi ,Ei〉 ∈ C,mi
∼= m and V (Ω′i) = true

〈β,�,C,p′i .addEffect(e′1)....addEffect(e′j)〉, e′1...e
′
j ∈ E ′i

(3)

If there are several capabilities activated by a message, the rule above is
applied concurrently for each of these capabilities.
A message that does not have a corresponding capability or whose
condition is not verified is simply removed from the queue, without any
change in the agent’s state.

Multi-Agent Programming Languages, Platforms and Applications 292 / 1

CLAIM and SyMPA Language

Semantics and Verification
Capabilities without messages

The CLAIM language gives the possibility to the agents to have
capabilities that are not started by a received message, but only by a
condition (e.g. concerning the internal state, a certain moment in time,
etc.).

If a capability does not have a message, it is executed whenever the
condition is verified (rule ??).

Rule ?? (cond)

〈β,C,�〉, and ∃〈ni ,�,Ωi ,pi ,Ei〉 ∈ C,V (Ωi) = true
〈β,C,pi .addEffect(e1)....addEffect(ej)〉, e1...ej ∈ Ei

(4)

Multi-Agent Programming Languages, Platforms and Applications 293 / 1

CLAIM and SyMPA Language

Semantics and Verification
Agents’ creation and removal

When an agent is created using the newAgent operation, his components are
instantiated from an already defined class:

Rule ?? (new)

〈α,newAgent〈β,�,K ,G,�,�,C,P,�,�〉,�〉
〈α,�,{β}〉 ‖ 〈β,α,K ,G,�,�,C,P,�,�〉

(5)

An agent can completely remove one of his sub-agents:

Rule ?? (kill)

〈α,π,kill(β),Sα〉 ‖ 〈β,α〉,where β ∈ Sα

〈α,π,�,Sα−{β}〉
(6)

Multi-Agent Programming Languages, Platforms and Applications 294 / 1

CLAIM and SyMPA Language

Semantics and Verification
Mobility operations

The mobility primitives are inspired from the ambient calculus.

Using in, an agent can enter another agent from the same level in the
hierarchy (rule ?? and Figure ??)

Using out , an agent can exit his parent (rule ?? and Figure ??).

Unlike the ambient calculus, where there is no control, we added an
asking/granting permission mechanism, represented in term of
co-actions.

By default, a CLAIM agent will receive these permissions, unless another
agent is explicitly programmed to refuse to give them.

Multi-Agent Programming Languages, Platforms and Applications 295 / 1

CLAIM and SyMPA Language

Rule ?? (in)

〈π,Sπ〉 ‖ 〈α,π, in(β)〉 ‖ 〈β,π, in(α),Sβ〉,α,β ∈ Sπ

〈π,Sπ−{α}〉 ‖ 〈α,β,�〉 ‖ 〈β,π,�,Sβ∪{α}〉
(7)

Rule ?? (out)

〈π,Sπ〉 ‖ 〈α,β,out(β)〉 ‖ 〈β,π,out(α),Sβ〉,β ∈ Sπ,α ∈ Sβ

〈π,Sπ∪{α}〉 ‖ 〈α,π,�〉 ‖ 〈β,π,�,Sβ−{α}〉
(8)

In both cases, if the structural condition is not verified or if the agent does not
receive the permission (i.e. the other does not have the correspondent
co-action), the mobility process waits until the operation is possible.

Multi-Agent Programming Languages, Platforms and Applications 296 / 1

CLAIM and SyMPA Language

Figure 8: The enter operation

Multi-Agent Programming Languages, Platforms and Applications 297 / 1

CLAIM and SyMPA Language

Figure 9: The exit operation

Multi-Agent Programming Languages, Platforms and Applications 298 / 1

CLAIM and SyMPA Language

The move mobility operation is a direct migration to another agent,
without verifying a structure condition (rule ?? and Figure ??).

Nevertheless, the operation is subject to the in and out permissions.

Rule ?? (move)

〈π,out(α),Sπ〉 ‖ 〈α,π,move(β),Sα〉 ‖ 〈β, in(α),Sβ〉,α ∈ Sπ

〈π,�,Sπ−{α}〉 ‖ 〈α,β,�,Sα〉 ‖ 〈β,�,Sβ∪{α}〉
(9)

Multi-Agent Programming Languages, Platforms and Applications 299 / 1

CLAIM and SyMPA Language

Figure 10: The move operation

Multi-Agent Programming Languages, Platforms and Applications 300 / 1

CLAIM and SyMPA Language

The open and acid actions are used:
For opening one of the sub-agents (rule ?? and Figure ??);
For opening his own boundaries (rule ?? and Figure ??).

Not only the running processes and the sub-agents of the open agent,
but also his knowledge base and capabilities, become components of
his parent.

An agent can dynamically gather new knowledge and capabilities and
can adapt himself to the requirements of an application.

These operations are controlled by co-actions and allow a dynamic
reconfiguration of a MAS.

Multi-Agent Programming Languages, Platforms and Applications 301 / 1

CLAIM and SyMPA Language

Rule ?? (open)

〈α,Kα,Cα,P | open(β),Sα〉 ‖ 〈β,α,Kβ,Cβ,Q | open(α),Sβ〉 ‖ aβ

where β ∈ Sα,aβ = 〈γβ,β〉,∀γβ ∈ Sβ

〈α,Kα∪Kβ,Cα∪Cβ,P | Q,Sα∪Sβ〉 ‖ aβ, where aβ = 〈γβ,α〉,∀γβ ∈ Sβ

(10)

Multi-Agent Programming Languages, Platforms and Applications 302 / 1

CLAIM and SyMPA Language

Figure 11: The open operation

Multi-Agent Programming Languages, Platforms and Applications 303 / 1

CLAIM and SyMPA Language

Rule ?? (acid)

〈α,Kα,Cα,P | acid(β),Sα〉 ‖ 〈β,α,Kβ,Cβ,Q | acid ,Sβ〉 ‖ aβ

where β ∈ Sα,aβ = 〈γβ,β〉,∀γβ ∈ Sβ

〈α,Kα∪Kβ,Cα∪Cβ,P | Q,Sα∪Sβ〉 ‖ aβ, where aβ = 〈γβ,α〉,∀γβ ∈ Sβ

(11)

Multi-Agent Programming Languages, Platforms and Applications 304 / 1

CLAIM and SyMPA Language

Figure 12: The acid operation

All these mobility operations are considered atomics at the semantical level
and are executed in one step.

Multi-Agent Programming Languages, Platforms and Applications 305 / 1

CLAIM and SyMPA Language

Semantics and Verification
Instructions

There are two instructions in CLAIM:
1 forAllKnowledge allows to sequentially execute a process for all the

elements in the knowledge base verifying a criterion (rule ??).
2 forAllAgents allows to execute a process for all the sub-agents verifying a

certain criterion (e.g. all sub-agents - rule ??, or all sub-agents belonging
to a specific class - rule ??).

Multi-Agent Programming Languages, Platforms and Applications 306 / 1

CLAIM and SyMPA Language

Rule ?? (forAllKnowledge)

〈α,K , forAllKnowledge(k){pi}〉
〈α,K ,pi{k1/k}....pi{kj/k}〉,∀ki ∈ K ,1≤ i ≤ j,k ∼= ki

(12)

The notation pi{xi/x} symbolizes the substitution of all the occurrences of x
with xi (or of the variables in x with corresponding values from xi) in p.

Multi-Agent Programming Languages, Platforms and Applications 307 / 1

CLAIM and SyMPA Language

Rule ?? (forAllAgents)

〈α,K , forAllAgents(?x){pi},S〉
〈α,K ,pi{γ1/γ}....pi{γn/γ},S〉,∀γi ∈ S,1≤ i ≤ n

(13)

Rule ?? (forAllAgents belongs to the class)

〈α,K , forAllAgents(?x : cl){pi},S〉,Scl ⊆ S,∀γi ∈ Scl ,γi : cl,γi bc cl
〈α,K ,pi{γ1/γ}....pi{γj/γ},S〉,∀γi ∈ Scl ,1≤ i ≤ j

(14)

bc : belongs to the class.

Multi-Agent Programming Languages, Platforms and Applications 308 / 1

CLAIM and SyMPA Language

Semantics and Verification
Updating effects

The effects are added in the effect list after the successful execution of
the capability’s process.

If the achieved effects correspond to goals, they will be removed from
the lists of not treated and processing goals.

Rule ?? (effect)

〈α,G,G′,addEffect(ei),E〉
〈α,G−{ei},G′−{ei},�,E ∪{ei}〉

(15)

Multi-Agent Programming Languages, Platforms and Applications 309 / 1

CLAIM and SyMPA Language

Semantics and Verification
The goal-driven behavior

Beside the reactive behavior an agent has a proactive behavior,
accomplished using the capabilities’ effects.

When a capability has an effect corresponding to one of his goals, the
agent will try to execute the capability.

If its condition is true, the corresponding process is executed (p′i ,Ω
′
i and

e′1...e
′
j have the variables replaced with values from g):

Rule ?? (goal1)

〈α,{g},�,C,�〉,∃〈si ,mi ,Ωi ,pi ,Ei〉 ∈ C,∃ei ∈ Ei ,ei
∼= g,V (Ω′i) = true

〈α,�,{g},C,p′i .addEffect(e′1)....addEffect(e′j)〉,e′1...e′j ∈ Ei
(16)

Multi-Agent Programming Languages, Platforms and Applications 310 / 1

CLAIM and SyMPA Language

If the condition allowing to achieve the goal contains an agent’ effect not
achieved yet, the agent will try first to achieve this effect, by adding it in
his goals list.

In the same time, the first goal is moved from the current goals list to the
processing goals:

Rule ?? (goal2)

〈α,{g},�,C〉,∃〈si ,mi ,Ωi ,pi ,Ei〉 ∈ C,∃ei ∈ Ei ,ei
∼= g,

V (Ωi) = false,Ωi contains this.ei

〈α,{e′i},{g},C〉
(17)

Multi-Agent Programming Languages, Platforms and Applications 311 / 1

CLAIM and SyMPA Language

If the condition allowing to achieve the goal contains an effect of another
agent, the effect is requested to the other agent using a specific
message, askEffect :

Rule ?? (askEffect)

〈α,{g},�,C,�〉,∃〈si ,mi ,Ωi ,pi ,Ei〉 ∈ C,∃ei ∈ Ei ,ei
∼= g,

V (Ωi) = false,Ωi contains β.ei

〈α,�,{g},C,send(β,askEffect(e′i))〉
(18)

Multi-Agent Programming Languages, Platforms and Applications 312 / 1

CLAIM and SyMPA Language

When an agent receives an askEffect message, if he does not have a
capability with this message, he will add the demanded effect to his list of
goals:

Rule ?? (message askEffect)

〈β,�,α{askEffect(ei)}〉 → 〈β,{α.ei},�〉 (19)

Multi-Agent Programming Languages, Platforms and Applications 313 / 1

CLAIM and SyMPA Language

The treatment of this new goal, resulting from another agent’s demand, is
done in the same way as his own goals.

The only difference is that after the successful achievement of this
external goal, a doneEffect message is sent to the agent that requested it:

Rule ?? (doneEffect)

〈β,G,G′,addEffect(ei),E〉, and ∃α.ei ∈ G or ∃α.ei ∈ G′

〈β,G−{ei},G′−{ei},send(α,doneEffect(ei)),E ∪{ei}〉
(20)

The treatment of a doneEffect message consists in removing the effect from
the goals lists and adding it in the effect list, similar with the addEffect
process.

Multi-Agent Programming Languages, Platforms and Applications 314 / 1

CLAIM and SyMPA Language

Semantics and Verification
Variable instantiation

The language allows to instantiate variables that will be used in the following
processes in the current sequence:

Rule ?? (variable)

〈α,x = v .pi〉 → 〈α,pi{v/x}〉 (21)

Multi-Agent Programming Languages, Platforms and Applications 315 / 1

CLAIM and SyMPA Language

Semantics and Verification
Sequence

If an agent can evolve from a state containing a process pi into another
state containing the process p′i , then the agent containing pi followed (in
sequence) by another process q is able to evolve into p′i followed by q:

Rule ?? (sequence)

if 〈α,pi〉 → 〈α,p′i 〉 then 〈α,pi .q〉 → 〈α,p′i .q〉 (22)

Multi-Agent Programming Languages, Platforms and Applications 316 / 1

CLAIM and SyMPA Language

Semantics and Verification
Java and Web Services

As seen in the previous section, the programming language offers additional
features, for:

Calling Java methods;

Or for invoking Web Services;

that cannot change the components of an agent and we do not treat them at
the semantical level.

Multi-Agent Programming Languages, Platforms and Applications 317 / 1

CLAIM and SyMPA Language

Semantics and Verification
Verification of programs: A discussion

The operational semantics is just a first necessary step towards the
formal verification of multi-agent programs written in CLAIM.

The formal definition of an agent is more complex than the other
formalisms treating mobile processes and the verification become much
more complicated.

We are currently studying aspects as programs’ correctness and
verification.

A CLAIM program is distributed and concurrent, containing agent
communicating asynchronously and that do not share common variables.

Multi-Agent Programming Languages, Platforms and Applications 318 / 1

CLAIM and SyMPA Language

Determinism
A program is determinist if for any given state, there is exactly one
next possible computational state.

CLAIM programs are implicitly non-deterministic, because starting
from a state, a program can evolve in several different states (see below).

The next configuration is a valid CLAIM program:

〈τ,Sτ∪{π}〉 ‖ 〈π,out(β).pk ,Sπ∪{α,β}〉 ‖
〈α,π, in(β).pi〉 ‖ 〈β,π,out(π).pl | in(α).pj ,Sβ〉

This configuration can evolve (with equal probabilities) in two different
configurations.

Multi-Agent Programming Languages, Platforms and Applications 319 / 1

CLAIM and SyMPA Language

If α executes in:

〈τ,Sτ∪{π}〉 ‖ 〈π,out(β).pk ,Sπ∪{β}〉 ‖
〈α,β,pi〉 ‖ 〈β,π,out(π).pl | pj ,Sβ∪{α}〉

or, if out is executed by β:

〈τ,Sτ∪{π,β}〉 ‖ 〈π,pk ,Sπ∪{α}〉 ‖
〈α,π, in(β).pi〉 ‖ 〈β,τ,pl | in(α).pj ,Sβ〉

In the first case, β will still be capable of executing out(π);

In the second case, α no longer can enter β, because he is not at the
same level in the hierarchy anymore.

This kind of program will evolve in a stable state (one of the two in our
example), in concordance with the reduction rules.

Multi-Agent Programming Languages, Platforms and Applications 320 / 1

CLAIM and SyMPA Language

Deadlock

A configuration of a program is called deadlock if the configuration is
non-terminal and there is no possible successor configuration (using a
reduction rule).

In CLAIM an agent may try infinitely to execute an in operation, for
entering an agent that is not in his neighborhood, and consequently the
next processes are blocked.

However, we are not considering this as being a deadlock configuration,
because the destination agent may be sometimes in the future in the
neighborhood thus verifying the structural condition and unblocking the
execution.

Multi-Agent Programming Languages, Platforms and Applications 321 / 1

CLAIM and SyMPA Language

Correctness
A program is correct if it satisfies the intended input-output relation.

To prove the correctness of CLAIM programs in syntax-directed manner,
we are using a proof system.

A proof system is a finite set of axiom schemas and proof rules.

An axiom is a correctness formula representing the intended next states
of a program starting from initial states.

A correctness formula is true with respect to the operational semantics
reduction rules.

Our current work tackles the soundness and the completeness of the
proof system.

Multi-Agent Programming Languages, Platforms and Applications 322 / 1

CLAIM and SyMPA Language

Structural congruence

As a first step towards the verification of MAS built using CLAIM, we
studied the structural congruence of programs.

We defined a CLAIM program as a set of running agents.
Two programs are equivalent if they exhibit an identical behavior for an
external observer.

Following this reasoning, two programs are equivalent if they have
equivalent running agents.
That is, the same agents, with the same name, parent, knowledge base,
goals, messages, capabilities and with equivalent running processes.
The equivalence between programs is reduced at equivalence between
processes inside agents.

Multi-Agent Programming Languages, Platforms and Applications 323 / 1

CLAIM and SyMPA Language

Structural congruence (continued)

Processes are grouped into equivalence classes using the structural
congruence relation ≡.

p ≡ p p | q ≡ q | p
p ≡ q⇒ q ≡ p (p | q) | r ≡ p | (q | r)
p ≡ q,q ≡ r ⇒ p ≡ r p ≡ q⇒ p | r ≡ q | r
p | 0≡ p p ≡ q⇒ p.r ≡ q.r
p.0≡ p p ≡ q⇒ r .p ≡ r .q

Multi-Agent Programming Languages, Platforms and Applications 324 / 1

CLAIM and SyMPA Language

Software Engineering Issues

The language includes the notion of class of agents.

Generic classes can be defined and instantiated later.

In this version of the language there is no inheritance as in object-oriented
programming, but we intend to offer the possibility to define classes of
agents that are sub-classes (specializations) of other classes.

Nevertheless, at the agent level, CLAIM offers two primitives, open and
acid , allowing an agent to gather sub-agents, processes, knowledge and
capabilities from an open sub-agent, thus allowing a dynamic
reconfiguring and adaptability of a MAS.

We also developed several libraries of classes of agents for different
domains, that can be parameterized and used by designers.

Multi-Agent Programming Languages, Platforms and Applications 325 / 1

CLAIM and SyMPA Language

The CLAIM agents can invoke Java methods or Web Services for
computational purposes.

In the future, we intend to give the agents the possibility to invoke
methods or programs implemented in other programming languages.

Multi-Agent Programming Languages, Platforms and Applications 326 / 1

CLAIM and SyMPA Language

Other features of the language

The lack of formalisms to deal with both intelligent and mobile agents was
one of our main motivations in developing CLAIM.

The agents’ mobility is a central aspect in our framework.

We can easily model agents’ reasoning, but our target applications must
take advantage of both mobility and cognitive skills.

There is a strong mobility at the agents’ processes level and a week
mobility for the invoked Java methods.

Multi-Agent Programming Languages, Platforms and Applications 327 / 1

CLAIM and SyMPA Language

Concerning the extensibility of the language, the main constructs of
CLAIM (e.g. agents’ creation, mobility and communication primitives) are
fixed.

Nevertheless, the language offers the possibility to the agents’ designer
to develop his own ontology for representing knowledge or goals and for
creating his own messages, with a specific treatment (represented by
capabilities), to suit the current application.

Multi-Agent Programming Languages, Platforms and Applications 328 / 1

CLAIM and SyMPA Platform

Available tools and documentation

Figure 13: SyMPA’s Architecture

Multi-Agent Programming Languages, Platforms and Applications 329 / 1

CLAIM and SyMPA Platform

Figure 14: SyMPA’s features

Multi-Agent Programming Languages, Platforms and Applications 330 / 1

CLAIM and SyMPA Platform

Figure 15: Agents’ interfaces

Multi-Agent Programming Languages, Platforms and Applications 331 / 1

CLAIM and SyMPA Platform

Available tools and documentation
Mobility

The local migration takes place inside a hierarchy.

The remote migration is the migration between hierarchies, using the
move primitive.

Multi-Agent Programming Languages, Platforms and Applications 332 / 1

CLAIM and SyMPA Platform

The remote mobility in SyMPA can be considered at two levels:
1

There is a strong migration at the language level.
The agent’s language-specific processes are resumed from their
interruption point.
An agent can be at any moment saved in a format similar to the definition,
containing the current state.
This representation is sent through the network to the destination agent
system.

2

At the Java level, we use its mobility facilities, so there is a weak migration.
A Java method that has begun before the migration will be reinvoked after
the arrival at the destination.

Multi-Agent Programming Languages, Platforms and Applications 333 / 1

CLAIM and SyMPA Platform

Available tools and documentation
Security

The mobile agents are programs running in a distributed and insecure
environment (e.g. the Internet). For the agent systems’ protection, we are
using:

Agents’ authentication;

Encryption during the migration and during the execution on a agent
system (when the agent is stored on the disk);

Fault-tolerance mechanisms.

Multi-Agent Programming Languages, Platforms and Applications 334 / 1

CLAIM and SyMPA Platform

Standards compliance, interoperability and portability

The SyMPA platform is implemented in Java.

The SyMPA environment is an ensemble of packages for the Java
Virtual Machine.

A few configuring operations are needed and the CLAIM language
supported by the platform is ready to be used to implement MAS
applications.

Installed and tested the platform on Windows, Unix-based or Macintosh
systems.

Compliant with the specifications of the MASIF standard from the OMG.

Multi-Agent Programming Languages, Platforms and Applications 335 / 1

CLAIM and SyMPA Platform

Other features of the platform

Concerning the reached performances, we could deploy up to 30 agents
on one computer.

In our current applications we used the interfaces to monitor the agents’
execution, behavior, communication and migration.

Until now we developed application using agents deployed on up to 10
connected computers.

There is a central system with management functions in our environment.

Multi-Agent Programming Languages, Platforms and Applications 336 / 1

CLAIM and SyMPA Platform

In the first phases, the central system had some problems with treating a
great number of messages, but after adding fault-tolerance techniques
and optimizations, the communications proceeded in a satisfying manner.

We are studying the possibility to introduce different management
solutions (e.g. distributed, non-centralized) that the developer can choose
in function of the current application’s requirements.

The code reutilization is another of our priorities.

The notion of class in central in our framework.

Our long term goal is to have different already defined classes of agents
for different types of applications that can be only parameterized and
easily used by the designers.

Multi-Agent Programming Languages, Platforms and Applications 337 / 1

CLAIM and SyMPA Applications

Translations

In the first phase of development, applications from other agent-oriented
programming languages, such as:

Airline reservations from AGENT-0;

Bolts Make Scenario from AgentSpeak;

were translated.

FIPA protocols were also programmed using CLAIM.

There is no mobility in these applications, but the agents’ reasoning and
communication were easily translated.

Multi-Agent Programming Languages, Platforms and Applications 338 / 1

CLAIM and SyMPA Applications

Research of information

One of the first applications implemented was the research of information
on a network using mobile agents.

Receiving requests from users, these agents migrate to all the available
connected sites searching for pieces of information corresponding to a
request.

Multi-Agent Programming Languages, Platforms and Applications 339 / 1

CLAIM and SyMPA Applications

Electronic commerce

A more complex application, that justified the hierarchical representation
of agents, was an e-commerce application, where there are several
electronic markets distributed on a network.

Each e-market has various departments (represented as sub-agents of a
market), for different types of products.

The markets can move with all the sub-departments to other sites in order
to find clients and the clients can move to different markets searching for
products.

Multi-Agent Programming Languages, Platforms and Applications 340 / 1

CLAIM and SyMPA Applications

Load balancing

An application focused on the computational aspects was implemented
next.

Thus, CLAIM and SyMPA served for programming an application of load
balancing and resource sharing.

The connected computers’ characteristics are gathered by mobile agents
and the computers are classified using different criterions.

The users’ tasks are executed on computers satisfying some
requirements and can dynamically migrate during the execution in order
to finish the execution in the fastest way possible.

Multi-Agent Programming Languages, Platforms and Applications 341 / 1

CLAIM and SyMPA Applications

E-libraries network

The next step was to combine the intelligent features of the agents with
the results of the load balancing application in an application containing a
network of distributed cooperative digital libraries.

The libraries have sections and are used by customers searching for
various documents.

The libraries manage the subscribers, the documents and have
information about other libraries, as the goal is to satisfy the customers,
even if this means to direct them towards other libraries.

A library can also distribute one or several sections to another site when
there are too many clients on the local computer, using results from the
load-balancing application.

Multi-Agent Programming Languages, Platforms and Applications 342 / 1

CLAIM and SyMPA Applications

Veracruz coffee market

Another complex application developed using CLAIM was the modelling
of the coffee market in Veracruz, Mexico.

Using our framework, all the involved actors were designed, proposing an
agent-based application able to deal with the different types of transaction
negotiations and covering the entire value chain of coffee.

Multi-Agent Programming Languages, Platforms and Applications 343 / 1

CLAIM and SyMPA Applications

A Case Study

In order to illustrate the language’s specifications, we present here an
application inspired from strategy games, such as Age of Empires:

There is a village of people in a prehistoric era, trying to survive by
gathering resources.

There are sites of resources distributed on several computers of a
network.

Each site can contain three types of resources: wood, stone and food.

Multi-Agent Programming Languages, Platforms and Applications 344 / 1

CLAIM and SyMPA Applications

The population is represented by a Creator agent that can create Seeker
agents and resource gatherer agents for each type of resource
(resources are consumed when creating new agents): WoodCutter,
Miner and Hunter.

Each type of agent has capabilities for gathering only his corresponding
resource.

The goal is to gather all the resources.

We implemented several strategies, in order to observe the agents’
behavior in different situations.

Multi-Agent Programming Languages, Platforms and Applications 345 / 1

CLAIM and SyMPA Applications

Figure 16: Application’s schema

Multi-Agent Programming Languages, Platforms and Applications 346 / 1

CLAIM and SyMPA Applications

The Creator agent:

Creates (using newAgent) a Seeker agent;

Finds out the list of the existing sites;

Tells to the Seeker to migrate to each of them (using move).

When the Seeker arrives on a site:

He “counts” the available resources;

He asks (using send) specialized agents from the Creator, who will
create (using newAgent) one specialized agent for each type of
resource, agents that migrate to the specific resource agents on the site.

Multi-Agent Programming Languages, Platforms and Applications 347 / 1

CLAIM and SyMPA Applications

After gathering the resources, they return to the village, give the
resources to the Creator and wait for other calls.

Meanwhile, the Seeker moves to other sites, searches for resources and
asks for specialized agents.

If there is no specialized agent available at the Creator when a new ask
for help arrives, a new specialized agent is created.

Multi-Agent Programming Languages, Platforms and Applications 348 / 1

CLAIM and SyMPA Applications

defineAgentClass Creator(?w,?s,?f) {
authority=null; parent=null;
knowledge={wood(?w);stone(?s);food(?f);}
goals=null; messages=null;
capabilities {
findSites {

capability for sending to all the existing Site agents a message for asking their names; the Site agents which answer to
this messages are added in the Creator ’ knowledge base

message=findSites();
condition=null;
do{send(?agS:Site(),askSiteName()).Java(AOE.wait(30)).send(this,initSearch())}
effects=null;
}
createSeeker {

capability for creating a Seeker (if there are sufficient resources), for telling him the names of the known sites and for
requesting his departure

message=initSearch();
condition=Java(AOE.hasResources(this,0,0));
do{?n=Java(AOE.baptise(this,0)).newAgent ?n:Seeker().

forAllKnowledge(site(?ags)){send(?n,tell(site(?ags)))}.send(?n,seek())}
effects=null;
} ...

the class has several other capabilities for creating specialized agents when the Seeker arrives on a site and requests
help and for updating the resources when these agents return.

}
processes={send(this,findSites())}
agents=null;

}

Multi-Agent Programming Languages, Platforms and Applications 349 / 1

CLAIM and SyMPA Applications

defineAgentClass Seeker() {
authority=null; parent=null; knowledge=null; goals=null; messages=null;
capabilities {
seek {

capability for migrating to a not visited site and for asking the amount of available resources
message=seek();

condition=null;
do{?d=Java(AOE.findDestination(this)).move(this,?d)

.send(?d,needResources(?d))}
effects=null;
} ...

he requests next specialized agents and continues the search migrating to other sites.
}

processes=null; agent=null;

}

Multi-Agent Programming Languages, Platforms and Applications 350 / 1

CLAIM and SyMPA Summary

Agent-Oriented Programming Language

Functionality

Q: Does the language support various agent concepts such as, mental
attitudes, deliberation, adaptation, social abilities, and reactive as well as
cognitive-based behaviour?

A: The CLAIM language is suitable to design stationary or mobile intelligent
agents, having a powerful mental state containing knowledge, goals and
capabilities, allowing an autonomous, reactive or goal-oriented behavior.

Multi-Agent Programming Languages, Platforms and Applications 351 / 1

CLAIM and SyMPA Summary

Communication
Q: Does the language provide high-level (i.e., speech-act based) primitives

for communication (as well as general addressing mechanism such as
broadcast and multi-cast)?

A: CLAIM supports unicast, multicast or broadcast communication between
agents. It offers a set of predefined messages inspired from the
speech-acts theory but also leaves the possibility to the designer to
define his own messages.

Multi-Agent Programming Languages, Platforms and Applications 352 / 1

CLAIM and SyMPA Summary

Underlying Computational Model

Q: Does the language support the design of mobile agents, and if so, which
kind of mobility (weak and/or strong)?

A: The CLAIM language offers support for the agents’ migration as a main
feature. The CLAIM agents are both intelligent and mobile. There is a
strong mobility at the agents’ processes level and a week mobility for the
invoked Java methods.

Multi-Agent Programming Languages, Platforms and Applications 353 / 1

CLAIM and SyMPA Summary

Simplicity

Q: How easy it is to use and understand the language?

A: The facility in developing several simple or complex applications proved
that CLAIM is easy to use.

Multi-Agent Programming Languages, Platforms and Applications 354 / 1

CLAIM and SyMPA Summary

Preciseness
Q: Does the language have clear and precise semantics? How has it been

formalised?

A: CLAIM has a formal operational semantics consisting in a set of reduction
rules between states of programs.

Multi-Agent Programming Languages, Platforms and Applications 355 / 1

CLAIM and SyMPA Summary

Expressiveness

Q: Is the language suitable for the implementation of a variety of
agent-oriented programs and applications or is it purpose-specific?

A: The variety of implemented applications proved the expressiveness of
CLAIM.

Multi-Agent Programming Languages, Platforms and Applications 356 / 1

CLAIM and SyMPA Summary

Extensiveness
Q: Does the language allow the definition of new language components from

the basic constructs in a systematic way?

A: The language offers to the developer the possibility to define his own
ontology for agents’ knowledge and his own messages and goals for
agents.

Multi-Agent Programming Languages, Platforms and Applications 357 / 1

CLAIM and SyMPA Summary

Verification
Q: Does your approach provide a clear path for the (formal) verification of

programs written in this language?

A: The language’s operational semantics is a first important step towards the
programs’ verifications. Our current work tackles this aspect.

Multi-Agent Programming Languages, Platforms and Applications 358 / 1

CLAIM and SyMPA Summary

Software Engineering Principles

Q: Have Software Engineering and Programming Language principles, such
as abstraction, inheritance, modularity, overloading, information hiding,
error handling, generic programming, etc., been considered or adopted
within design of this language?

A: The notion of generic class is central in CLAIM.

Multi-Agent Programming Languages, Platforms and Applications 359 / 1

CLAIM and SyMPA Summary

Language Integration

Q: Does your approach deal with the possibility of integrating the language
with existing (well-known) programming language (e.g., Java)?

A: The agents in CLAIM can invoke Java methods or Web Services for
computational purposes. We intend to give the agents the possibility to
invoke methods implemented in other programming languages.

Multi-Agent Programming Languages, Platforms and Applications 360 / 1

CLAIM and SyMPA Summary

Language Integration (continued)

Q: Can the language be interfaced with other programming languages, or
does it allow the invocation of methods/programs built using other
(classical) programming languages?

A: -

Multi-Agent Programming Languages, Platforms and Applications 361 / 1

CLAIM and SyMPA Summary

Platform

Deployment and Portability

Q: Does the platform provide material, such as documentation, tutorials or
training of any kind, installation and deployment guidelines, to help users
in deploying their systems?

A: The platform contains installation and deployment guidelines. The
documentation is represented by several published articles, concerning
the language as well as the platform. A tutorial and a documentation of
the API will be soon available.

Multi-Agent Programming Languages, Platforms and Applications 362 / 1

CLAIM and SyMPA Summary

Deployment and Portability (continued)

Q: Does the platform require a specific computing environment (computer
architecture, operating system, libraries, etc.) to be used / deployed?

A: The platform is implemented in Java, is portable and can be installed on
every computer supporting Java Virtual Machine. So the platform is
platform-independent. We have already tested it on Windows, Unix-based
and Macintosh systems.

Multi-Agent Programming Languages, Platforms and Applications 363 / 1

CLAIM and SyMPA Summary

Standards Compliance

Q: To what extent does the platform adhere to the standards (FIPA, MASIF,
etc.) with respects to: general architecture, naming service, white- and
yellow-page services, mobility services, agent-life cycle management,
etc.?

A: SyMPA is compliant with the specifications of the MASIF standard from
the OMG.

Multi-Agent Programming Languages, Platforms and Applications 364 / 1

CLAIM and SyMPA Summary

Platform Extensibility

Q: Can the platform be extended with additional functionality, for example
through Open Source collaboration?

A: The platform is extensible.

Multi-Agent Programming Languages, Platforms and Applications 365 / 1

CLAIM and SyMPA Summary

Available Tools
Q: What tools are provided by the platform for the management, monitoring,

logging and debugging of applications?

A: The platform offers management and monitoring functions at the central
system and at the agent system level. For every running agent there is a
graphical interface for visualizing the agent’s behavior, communication
and migration. Momentary, there are no debugging tools.

Multi-Agent Programming Languages, Platforms and Applications 366 / 1

CLAIM and SyMPA Summary

Available Tools (continued)

Q: What documentation for on-line help, and manuals for the platform’s
installation, use, and maintenance are available?

A: -

Multi-Agent Programming Languages, Platforms and Applications 367 / 1

CLAIM and SyMPA Summary

Available Tools (continued)

Q: Are there tools for administration, management, and configuration of the
platform? Is an IDE provided?

A: Each agent system offers an editor for defining agents and classes of
agents, a compiler for verifying the definitions’ syntax and an execution
engine for deploying agents.

Multi-Agent Programming Languages, Platforms and Applications 368 / 1

CLAIM and SyMPA Summary

Tool Integration

Q: In existing applications, what tools (e.g., JESS, web services, JSP) have
been integrated or are known to work well with applications running on
this platform ?

A: The CLAIM agents can invoke Web Services. There is also an extension
of SyMPA allowing to heterogeneous agents to interact using the Web
Services features.

Multi-Agent Programming Languages, Platforms and Applications 369 / 1

CLAIM and SyMPA Summary

Technical Interoperability

Q: Is an application aimed at running on this platform tied to a specific
programming language, specific architectures (e.g., .NET, J2EE), or are
there special operating system requirements?

A: There are no specific operating system requirements. Being implemented
in Java, the platform only requires the JRE.

Multi-Agent Programming Languages, Platforms and Applications 370 / 1

CLAIM and SyMPA Summary

Performance Issues
Q: What number of agents can be expected to run efficiently within a single

instance of the platform, what scale of number of messages can be
handled by the platform, etc.?

A: Until now, we performed tests with up to 30 communicating and mobile
agents on a computer (including their graphical interfaces) and we
deployed the platform on 10 connected computers. We intend to test the
platform on a larger-scale environment.

Multi-Agent Programming Languages, Platforms and Applications 371 / 1

CLAIM and SyMPA Summary

Performance Issues (continued)

Q: What is the current state of the platform (simple prototype, available as a
commercial product, stable Open Source distribution, etc.)?

A: The platform is a prototype that served for developing several complex
applications by different people.

Multi-Agent Programming Languages, Platforms and Applications 372 / 1

CLAIM and SyMPA Summary

Multi-Agent Systems Features

Q: Does the platform support open multi-agent systems and heterogeneous
agents?

A: The platform supports open multi-agent systems. Agents are dynamically
created and removed. Without any add-on, the platform supports only
CLAIM agents. Nevertheless, we developed an interoperability
environment that allows to heterogenous agents to interact using a Web
Services based approach.

Multi-Agent Programming Languages, Platforms and Applications 373 / 1

CLAIM and SyMPA Summary

Multi-Agent Systems Features (continued)

Q: Does the platform provide centralised or distributed control, and
hierarchical structure of agents?

A: The agents in CLAIM are hierarchically represented. An agent has a
parent and can have several sub-agents. In this version there is a
centralized management but different management solutions will be
available in the future.

Multi-Agent Programming Languages, Platforms and Applications 374 / 1

CLAIM and SyMPA Summary

Multi-Agent Systems Features (continued)

Q: Does the platform offer libraries for programming multi-agent systems
(libraries of interaction protocols, agent or group templates, reusable
agent or organisation components, etc.)?

A: Classes of agents can be defined in CLAIM that can be parameterized
and reused later.

Multi-Agent Programming Languages, Platforms and Applications 375 / 1

CLAIM and SyMPA Summary

Applications Supported by the Language and Platform

Typical Examples

Q: What types of application have already been developed with this platform (toy
problems, real-world applications, industrial applications)? What are the most
prominent examples?

A: Our agent-oriented environment has already been used to develop several
applications. One can easily design applications focused on the reasoning
abilities of an agent, but the main purpose of CLAIM is to develop distributed
applications that takes advantage of the agents’ mobility and adaptability
allowed by the language’s features. The most prominent applications were
those of electronic commerce and distributed libraries.

Multi-Agent Programming Languages, Platforms and Applications 376 / 1

CLAIM and SyMPA Summary

Targeted Domains

Q: Is any particular domain of application (e.g., simulation, resource
allocation, mobile computation) targeted by your approach?

A: CLAIM can be used to develop a wide area of agent-based applications.

Multi-Agent Programming Languages, Platforms and Applications 377 / 1

CLAIM and SyMPA References

References I

K.A. Apt and Olderog E.-R.
Verification of Sequential and Concurent Programs.
Springer Verlag, 1991.

L. Cardelli and A.D. Gordon.
Mobile ambients.
Foundations of Software Science and Computational Structures, LNAI,
1378:140–155, 1998.

A. El Fallah Seghrouchni, S. Haddad, T. Melitti, and A. Suna.
Interopérabilité des systèmes multi-agents à l’aide des services web (in
french).
In Proceedings of JFSMA’04, Paris, 2004.

Multi-Agent Programming Languages, Platforms and Applications 378 / 1

CLAIM and SyMPA References

References II

A. El Fallah Seghrouchni and A. Suna.
Claim: A computational language for autonomous, intelligent and mobile
agents.
Proceedings of ProMAS’03 Workshop of AAMAS, LNAI, 3067:90–110,
2003.

Oliver Enseling.
Build your own languages with JavaCC.
World Wide Web page.

M.S. Greenberg, J.C. Buyington, and D.G. Harper.
Mobile agents and security.
IEEE Comunications Magazine, 36(7):76–85, 1998.

G. Klein, A. Suna, and A. El Fallah Seghrouchni.
A methodology for building mobile multi-agent systems.
In Proceedings of SYNACS’04, Timisoara, Romania, 2004.

Multi-Agent Programming Languages, Platforms and Applications 379 / 1

CLAIM and SyMPA References

References III

F. Levi and D. Sangiori.
Controlling interference in ambients.
In Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 352–364. 2000.

D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman,
K. Kosaka, D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran,
and J. White.
MASIF, the OMG mobile agent system interoperability facility.
In Proceedings of Mobile Agents, pages 50–67. 1998.

A. Suna and A. El Fallah Seghrouchni.
A mobile agents platform: architecture, mobility and security elements.
In Proceedings of ProMAS’04 Workshop of AAMAS, New-York, 2004.

Multi-Agent Programming Languages, Platforms and Applications 380 / 1

CLAIM and SyMPA References

References IV

A. Suna, C. Lemaitre, and A. El Fallah Seghrouchni.
E-commerce using an agent oriented approach.
In Proceedings of the Iberagents Workshop, Puebla, Mexico, 2004.

Multi-Agent Programming Languages, Platforms and Applications 381 / 1

IMPACT

Abstract
The IMPACT project (http://www.cs.umd.edu/projects/impact) aims at
developing a powerful multi-agent system platform, which (1) is able to deal
with heterogenous and distributed data, (2) can be realized on top of
arbitrary legacy code, (3) is built on a clear foundational basis, and (4)
scales up for realistic applications. We will describe its main features and
several extensions of the language that have been investigated (and partially
implemented).

Multi-Agent Programming Languages, Platforms and Applications 383 / 1

http://www.cs.umd.edu/projects/impact

IMPACT

Keywords

formal methods, heterogeneity, legacy code, annotated logic programming,
reasoning with time, uncertainty and beliefs

Authors
Jürgen Dix, Yingqian Zhang

Multi-Agent Programming Languages, Platforms and Applications 384 / 1

IMPACT Motivation

Main features of IMPACT

Idea of agentisation.

Clear semantics for agents.

Identify classes of programs that can be efficiently implemented.

Multi-Agent Programming Languages, Platforms and Applications 385 / 1

IMPACT Motivation

General remarks

Body of software code

SSSaaa =def (TTTTTTTTT SSSaaa ,FFFFFFFFF SSSaaa ,CCCCCCCCCSSSaaa).

FFFFFFFFF SSSaaa Set of predefined functions which make access to the data objects.

TTTTTTTTT SSSaaa Data objects managed by the agent available to external processes.

CCCCCCCCCSSSaaa Composition operators to build new datatypes from the given ones.

aaa Agent.

Multi-Agent Programming Languages, Platforms and Applications 386 / 1

IMPACT Motivation

A Single agentagentagent

Legacy Data

State OOO

Update

PPP conc
ααααααααα

Actions

Set of
Status

SemSemSem
Agent Program

IN

OUT
Messages

Messages

Code Calls

Atoms

agagag :functfunctfunct(((a1, ...,an)))

to execute

Actions

Multi-Agent Programming Languages, Platforms and Applications 387 / 1

IMPACT Motivation

Agent properties

Each IMPACT agent has certain actions ααααααααα available.

Agent act in their environment according to their agent program PPP
A well defined semantics SemSemSem determining which of the actions the
agent should execute.

IMPACT agents are built on top of arbitrary software code
SSSaaa =def (TTTTTTTTT SSSaaa ,FFFFFFFFF SSSaaa ,CCCCCCCCCSSSaaa) (Legacy Data).

A methodology for transforming arbitrary software (legacy code) into an
agent has been developed.

And a special agent cycle.

Multi-Agent Programming Languages, Platforms and Applications 388 / 1

IMPACT Motivation

Each agent continually undergoes the following cycle:
1 Get messages sent by other agents. This changes the state OOO of the

agent.
2 Determine (based on its program PPP , its semantics SemSemSem and its state OOO)

for each action ααααααααα its status (permitted, obliged, forbidden, . . .). The
agent ends up with a set of status atoms.

3 Based on a notion of concurrency conc, determine the actions that
can be executed and update the state accordingly.

Multi-Agent Programming Languages, Platforms and Applications 389 / 1

IMPACT Motivation

General architecture

1 Agents communicate with other agents through the network (send/receive
messages, ask server to find out about services that other agents offer).

2 In many applications a statisticsstatisticsstatistics agent is needed (It keeps track of
distances between two given points and the authorized range or capacity
of certain vehicles)
 This information can be stored in several databases.

3 Another example is the suppliersuppliersupplier agent. It determines through its
databases which vehicles are accessible at a given location.

Multi-Agent Programming Languages, Platforms and Applications 390 / 1

IMPACT Motivation

�����
�����
�����
�����

�����
�����
�����
�����

agentagentagent

agentagentagent
agentagentagent

agentagentagent

agentagentagent

IMPACT Server

IMPACT Server

IMPACT Server

Network

(backbone)

IMPACT Architecture

shopshopshop

Multi-Agent Programming Languages, Platforms and Applications 391 / 1

IMPACT Motivation

Definition 4.1 (State of an Agent,OOOSSS(t))

At any given point t in time, the state of an agent, denoted OOOSSS(t), is the set of
all data objects that are currently stored in the relations the agent
handles—the types of these objects must be in the base set of types in TTTTTTTTT SSS .

Example 4.2 (State)

The state of the statisticsstatisticsstatistics agent consists of all tuples stored in the databases
it handles. The state of the suppliersuppliersupplier agent is the set of all tuples describing
which vehicles are accessible at a given location.

Multi-Agent Programming Languages, Platforms and Applications 392 / 1

IMPACT Motivation

Message box

There is a special datastructure, the message box, part of each agent. This
message box is just one of those types. Thus a state change already occurs
when a message is received.

Multi-Agent Programming Languages, Platforms and Applications 393 / 1

IMPACT Language

Example 4.3 (Rescue Scenario I, temporal reasoning)

Consider a simplistic rescue operation where a natural calamity (e.g., a flood)
has stranded many people. Rescuing these people requires close coordination
between helicopters and ground vehicles. For the sake of this example, we
assume the existence of:

1 A helihelihelicopter agent that conducts aerial reconnaissance and supports
aerial rescues;

2 A set gv1,gv2,gv3gv1,gv2,gv3gv1,gv2,gv3 of ground vehicles that move along the ground to
appropriate locations—such vehicles may include ambulances as well as
earth moving vehicles.

3 An immobile command centre agent comccomccomc that coordinates between the
helicopter and the ground vehicles.

Back

Multi-Agent Programming Languages, Platforms and Applications 394 / 1

IMPACT Language

Example 4.4 (Rescue Scenario I, temporal reasoning (continued))

Here is a typical statement that should be expressible in an agent language.

If the maximal time previously taken to ship some equipment E from
location A to location B is T1, and if equipment E is required to be at
location B at time T , then ship E sometime between time
T −T1−10 and T −T1.

Multi-Agent Programming Languages, Platforms and Applications 395 / 1

IMPACT Language

Example 4.5 (Rescue Scenario II, agentising a planner)

The planner SHOP is a stand-alone system.

It uses hierarchical task networks.

It requires that all data is stored locally and given in a particular format
(atomic facts in Lisp notation).

Such planning systems usually support only one kind of reasoning:
symbolic or numeric, but not both.

Question
How can such a planning system be agentised in IMPACT as a planning agent
A-SHOP?

Back

Multi-Agent Programming Languages, Platforms and Applications 396 / 1

IMPACT Language

Example 4.6 (Rescue Scenario II, agentising a planner (continued))

Typical test domain: Transportation planning problem for a rescue
mission.

Computing plans involves performing a rescue mission where a task force
is grouped and transported between an initial location (the assembly
point) and the NEO site (where the evacuees are located).

After the troops arrived at the NEO site, evacuees are re-located to a
safe haven.

Multi-Agent Programming Languages, Platforms and Applications 397 / 1

IMPACT Language

Example 4.7 (Rescue Scenario II, agentising a planner (continued))

The planning task involves:
1 selecting possible pre-defined routes, consisting of four or more

segments each;
2 choosing a transportation mode for each segment;
3 determining conditions such as whether communication exists with

State Department personnel and the type of evacuee registration
process.

Multi-Agent Programming Languages, Platforms and Applications 398 / 1

IMPACT Language

Example 4.8 (Rescue Scenario II, agentising a planner (continued))

Here we have four different IMPACT information sources available:

Transport Authority: Maintains information about the transportation
assets available at different locations.

Weather Authority: Maintains information about the weather conditions
at the different locations.

Airport Authority: Maintains information about availability and conditions
of airports at different locations.

Math Agent: mathmathmath evaluates arithmetic expressions. Typical
evaluations include to subtract a certain number of assets use for an
operation and update time delays.

 Agentising given legacy code cannot be done automatically.

Multi-Agent Programming Languages, Platforms and Applications 399 / 1

IMPACT Language

Specifications and Syntactical Aspects

Definition 4.9 (Software Code)

We may characterise the code on top of which an agent aaa is built as a triple
SSSaaa =def (TTTTTTTTT SSSaaa ,FFFFFFFFF SSSaaa ,CCCCCCCCCSSSaaa) where:

1 TTTTTTTTT SSSaaa is the set of all data types managed by SSS ,
2 FFFFFFFFF SSSaaa is the set of predefined (API) functions over TTTTTTTTT SSSaaa through which

external processes may access aaa’s data
3 CCCCCCCCCSSSaaa is a set of type composition operations. A type composition operator

is a partial n-ary function c which takes as input types τ1, . . . ,τn and
yields as output a type c(τ1, . . . ,τn).

Each agent also has a message box having a well defined set of associated
code calls that can be invoked by external programs.

Multi-Agent Programming Languages, Platforms and Applications 400 / 1

IMPACT Language

Example 4.10 (Rescue Scenario I)

Consider the rescue mission described earlier. The heliheliheli agent may have the
following data types and code calls.

Data Types: speed ,bearing of type int, location of type point (record
containing x ,y ,z fields), nextdest of type string, and inventory—a
relation having schema (Item,Qty,Unit).
Functions:

heliheliheli : locationlocationlocation((())): which returns the (x ,y ,z) coordinates of the current
position of the helicopter.
heliheliheli : inventoryinventoryinventory(((Item))): returns a pair of the form 〈Qty,Unit〉. For example,
heliheliheli : inventoryinventoryinventory(((blood))) may return 〈25, litres〉 specifying that the helicopter
currently has 25 units of blood available.

Multi-Agent Programming Languages, Platforms and Applications 401 / 1

IMPACT Language

An agent’s state change because it took an action or because it received a
message. another agent bbb cannot directly change aaa’s state.

Example 4.11 (Rescue Scenario I: State)

For instance, at a given instant of time, the state of the heliheliheli agent may consist
of location = 〈45,50,9000〉, and inventory containing the tuples:
〈fuel,125,gallons〉, 〈blood ,25, litres〉, 〈bandages,50,−〉, 〈cotton,20, lbs〉.

Multi-Agent Programming Languages, Platforms and Applications 402 / 1

IMPACT Language

Queries and/or conditions may be evaluated w.r.t. an agent state using the
notion of a code call atom and a code call condition (CCC) defined below.

Definition 4.12 (Code Call (CC)/Code Call Atom)

If SSS is the name of a software package, f is a function defined in this package,
and (d1, . . . ,dn) is a tuple of arguments of the input type of f , then the term
SSSSSSSSS :fff(((d1, . . . ,dn))) is called a code call (denoted by CC).
If cc is a code call, and X is either a variable symbol, or an object of the output
type of cc, then in(((((((((X,cc))))))))) is called a code call atom.

If X is a variable over type τ and τ is a record structure with field f , then X.f is a
variable ranging over objects of the type of field f .

Multi-Agent Programming Languages, Platforms and Applications 403 / 1

IMPACT Language

Definition 4.13 (Code Call Condition (CCC))
1 Every code call atom is a code call condition.
2 If s,t are either variables or objects, then s = t is a code call condition.
3 If s,t are either integers/real valued objects, or are variables over the

integers/reals, then s < t,s > t,s≥ t,s≤ t are code call conditions.
4 If χ1,χ2 are code call conditions, then χ1 &χ2 is a code call condition.

Multi-Agent Programming Languages, Platforms and Applications 404 / 1

IMPACT Language

Example 4.14

in(((((((((X,heliheliheli : inventoryinventoryinventory(((fuel))))))))))))&X.Qty < 50 is a code call condition that is
satisfied whenever the helicopter has less than 50 gallons of fuel left.
The code call condition

in(((((((((FinanceRec,relrelrel :selectselectselect(((finRel,date, ”=”, ”Nov. 99”)))))))))))) &
FinanceRec.sales≥ 10K &
in(((((((((C,excelexcelexcel :chartchartchart(((excFile,FinanceRec,day)))))))))))) &
in(((((((((Slide,pptpptppt : includeincludeinclude(((C, ”presnt.ppt”))))))))))))

is a complex condition that accesses and merges data across a relational
database, an Excel file, and a PowerPoint file.

Multi-Agent Programming Languages, Platforms and Applications 405 / 1

IMPACT Language

in(((((((((Slide,pptpptppt : includeincludeinclude(((C, ”presnt.ppt”))))))))))))

FinancRec.sales ≥ 10K

in(((((((((FinanceRec,relrelrel :selectselectselect(((finRel,date, ”=”, ”Nov. 99”))))))))))))

in(((((((((C,excelexcelexcel :chartchartchart(((excFile,FinanceRec,day))))))))))))

Multi-Agent Programming Languages, Platforms and Applications 406 / 1

IMPACT Language

In the above example, it is very important that the first code call be evaluable.
If, for example, the constant finRel were a variable, then

relrelrel :selectselectselect(((finRel,date, ”=”, ”Nov. 99”)))

would not be evaluable, unless there were another condition instantiating this
variable.

Multi-Agent Programming Languages, Platforms and Applications 407 / 1

IMPACT Language

Actions in IMPACT

An Action is a partial function from states to states, implemented by a
body of code

The Agent reasons about actions via a set of preconditions and effects
defining the conditions an agent state must satisfy for the action
and the new state that results from such an execution.

We assume that the preconditions and effects associated with an action
correctly specify the behaviour of the code implementing the action. Note, that
in addition to changing the state of the agent, an action may change the state
of other agents’ msgboxes.

Multi-Agent Programming Languages, Platforms and Applications 408 / 1

IMPACT Language

Example 4.15

Here is an example of a timed action drivedrivedrive() of the trucktrucktruck agent which may be
described via the following components:

Name: drivedrivedrive(From,To,Highway)

Schema: (String,String,String)

Pre: in(((((((((From,trucktrucktruck : locationlocationlocation((())))))))))))

Dur: {T | in(((((((((X,mathmathmath :distancedistancedistance(((From,To))))))))))))
& in(((((((((T,mathmathmath :computecomputecompute(((60X70))))))))))))}

Tet: 1st arg : rel :{20}
2nd arg :{in(((((((((NewPosition,trucktrucktruck : locationlocationlocation(((Xnow))))))))))))}
3rd arg :{in(((((((((OldPosition,trucktrucktruck : locationlocationlocation(((Xnow−20))))))))))))}

Multi-Agent Programming Languages, Platforms and Applications 409 / 1

IMPACT Language

The Tet part says that the trucktrucktruck agent updates its location every 20 minutes
(assuming a time period is equal to 1 minute) during the expected time it takes
it to drive the distance between From to To at 70km per hour.

Multi-Agent Programming Languages, Platforms and Applications 410 / 1

IMPACT Language

Semantics and Verification

One main feature of IMPACT is the precise, formal semantics based on the
notion of agent programs.

These programs are from an abstract point of view, logic programs
(if-then-else rules).

The semantics of such programs has been investigated extensively in the last
three decades.

Multi-Agent Programming Languages, Platforms and Applications 411 / 1

IMPACT Language

Each agent has
1 a set of integrity constraints ICICIC—only states that satisfy these

constraints are considered to be valid or legal states
2 a notion of concurrency specifying how to combine a set of actions into a

single action
3 a set of action constraints that define the circumstances under which

certain actions may be concurrently executed
4 an agent program that determines what actions the agent can take /

cannot take / must take. Agent programs are defined in terms of status
atoms defined below.

Multi-Agent Programming Languages, Platforms and Applications 412 / 1

IMPACT Language

Definition 4.16 (Status Atom/Status Set)

If α(~t) is an action, and Op ∈ {P,F,W,Do ,O}, then Opα(~t) is called a status
atom.
If A is a status atom, then A,¬A are called status literals.
A status set is a finite set of ground status atoms.

Multi-Agent Programming Languages, Platforms and Applications 413 / 1

IMPACT Language

Intuitively:

Pα means α is permitted

Fα means α is forbidden

Oα means α is obligatory

Doα means α is to be done

Wα means that the obligation to perform α is waived

Note that these operators are not independent from each other.

For example, an action α cannot have the status F and O at the same
time. And Oα should always imply Doα.

These interrelations are taken into account by the semantics.

Multi-Agent Programming Languages, Platforms and Applications 414 / 1

IMPACT Language

Definition 4.17 (Agent Program)

An agent program PPP is a finite set of rules of the form A← χ&L1 & . . .&Ln,
where

χ is a code call condition (χ)

Li are status literals

A is a status atom.

Multi-Agent Programming Languages, Platforms and Applications 415 / 1

IMPACT Language

Definition 4.18 (Temporal Agent Rule/Program T P)

A temporal agent rule is an expression of the form
Opα : [tai1, tai2] ← ρ1 : ta1 & · · ·&ρn : tan, where Op ∈ {P,Do ,F,O,W},
and ρ1 : ta1, . . . ,ρn : tan are tascs

(A tasc (temporal action status conjunct) is, intuitively, a conjunction of
temporal status actions).

A temporal agent program (tap) is a finite set of temporal agent rules.

Intuitive Reading of Temporal Agent Rule
“If for all 1≤ i ≤ n, there exists a time point ti such that ρi is true at
time ti such that ti ∈ tai then Opα is true at some point t ≥ tnow

(i.e., now or in the future) such that tai1 ≤ t ≤ tai2”.

Multi-Agent Programming Languages, Platforms and Applications 416 / 1

IMPACT Language

How can taps be used to express the statement in the Rescue Scenario I?

We use two relational databases:

shipdata containing at least the attributes shiptime,orig,dest (and
perhaps other ones as well) which specifies data (such as shipping time)
associated with past shipments.

sched which has at least the attributes reqtime,place,item
specifying which items are required at what time by what places.

Rescue Scenario I

Multi-Agent Programming Languages, Platforms and Applications 417 / 1

IMPACT Language

Example 4.19

Doshipshipship(P,A,B) : [T−T1−10,T−T1] ←
(in(((((((((T1,dbdbdb :sqlsqlsql(((‘StimeFdataWorig = A&dest = B)))))))))))))&

in(((((((((T,dbdbdb :sqlsqlsql(((‘SreqtimeFplaceWitem = P′))))))))))))) : [Xnow,Xnow].

S: SELECT
F: FROM
W: WHERE

Multi-Agent Programming Languages, Platforms and Applications 418 / 1

IMPACT Language

Example 4.20

“If a prediction package expects a stock to rise K% after TK units of time
and K ≥ 25 then buy the stock at time (Xnow +TK −2).”

We assume a prediction package that given a stock uses some stock expertise
to predict the change in the value of the stock at future time points. This
function returns a set of pairs of the form (T ,C). Intuitively, this says that T
time units from now, the stock price will change by C percent (positive or
negative).

Multi-Agent Programming Languages, Platforms and Applications 419 / 1

IMPACT Language

Example 4.21

Finally, here is a tap using several rules and different status atoms.

1 Fdrivedrivedrive(was,bal,hw295) : [tnow,tnow +2]←
in(((((((((hw295,msgboxmsgboxmsgbox :gatherWarninggatherWarninggatherWarning(((comccomccomc)))))))))))) : [tnow−3,tnow]

2 Dofill_fuelfill_fuelfill_fuel() : [tnow,tnow]←
in(((((((((true,trucktrucktruck :tank_emptytank_emptytank_empty((()))))))))))) : [tnow−2,tnow]

3 Oorder_itemorder_itemorder_item(fa_bag) : [tnow,tnow +4]←
in(((((((((1,trucktrucktruck : inventoryinventoryinventory(((fa_bag))))))))))))[tnow−3,tnow]

4 Pdrivedrivedrive(was,bal,hw95) : [tnow,tnow]←
in(((((((((false,trucktrucktruck :tank_emptytank_emptytank_empty((()))))))))))) : [tnow,tnow] &
Fdrivedrivedrive(was,bal,hw295) : [tnow +1,tnow +2]

Multi-Agent Programming Languages, Platforms and Applications 420 / 1

IMPACT Language

Figure 17: AgentDE Program

Multi-Agent Programming Languages, Platforms and Applications 421 / 1

IMPACT Language

Figure ?? shows two rules (with Do ’s in the head) of the monitoringmonitoringmonitoring

agent in A-SHOP.

This approach is to base the semantics of agent programs on consistent
and closed status sets.

Consistent means that there are no inconsistencies (such as Fα and Pα

in the same set) and closed means that when Doα is in the set, then so
is Pα.

We have to take into account not only the rules of the program but also
the integrity constraints ICICIC . notion of a feasible status set.

The operator AppPPP ,OOOSSS (S) is similar to the immediate consequence
operator in logic programming: it computes all the consequences
obtainable from applying all agent rules once.

Multi-Agent Programming Languages, Platforms and Applications 422 / 1

IMPACT Language

Definition 4.22 (Feasible Status Set)

Let PPP be an agent program, and let OOOSSS be an agent state. Then, a status set S
is a feasible status set for PPP on OOOSSS , if the following conditions hold:

(S1) (closure under the program rules)
AppPPP ,OOOSSS (S)⊆ S;

(S2) (deontic/action consistency)
S is deontically and action consistent;

(S3) (deontic/action closure)
S is action closed and deontically closed;

(S4) (staten consistency)
OOO ′SSS |= ICICIC , where OOO ′SSS = apply(Do(S),OOOSSS) is the state which
results after taking all actions in Do(S) on the state OOOSSS .

Multi-Agent Programming Languages, Platforms and Applications 423 / 1

IMPACT Language

The last condition ensures that the successor state (when all doable
actions are executed) still satisfies the integrity constraints ICICIC .

The semantics of agent programs is then defined by rational status sets.

Multi-Agent Programming Languages, Platforms and Applications 424 / 1

IMPACT Language

Definition 4.23 (Groundedness; Rational Status Set)

A status set S is grounded, if there exists no status set S′ $ S such that S′

satisfies conditions (S1)–(S3) of a feasible status set.
A status set S is a rational status set if S is a feasible status set and S is
grounded.

Given an agent program, our semantics computes all rational status
sets of this program.

In the case of positive agent programs it can be shown that there always
exists exactly one rational status set. Rational status sets are natural
generalisations of stable models (or answer sets) in logic programming.

Multi-Agent Programming Languages, Platforms and Applications 425 / 1

IMPACT Language

Figure 18: AgentDE Summary Table

Multi-Agent Programming Languages, Platforms and Applications 426 / 1

IMPACT Language

Other features of the language

Complexity: special emphasis is put on identifying classes of programs that
can be efficiently implemented. The class of regular agents
(based on a special class of agent programs) ensures that its
complexity modulo the underlying legacy code is only
polynomial.

Legacy code: existing legacy code can be turned into an IMPACT agent
(agentisation). This is illustrated with A-SHOP, which is an
agentised version of SHOP, a well-known planning system.

Multi-Agent Programming Languages, Platforms and Applications 427 / 1

IMPACT Language

Complexity Issues

Remember the condition of safeness to ensure evaluability of a code call.
Remember also that an evaluable CCdoes not need to terminate.

Example 4.24

Consider the code call

in(((((((((X,mathmathmath :geqgeqgeq(((25))))))))))))&
in(((((((((Y,mathmathmath :squaresquaresquare(((X))))))))))))&Y≤ 2000,

which constitutes all numbers that are less than 2000 and that are squares of
an integer greater than or equal to 25.

Multi-Agent Programming Languages, Platforms and Applications 428 / 1

IMPACT Language

there are only finitely many ground substitutions that cause this code call
condition to be true.

call condition is safe.

its evaluation may never terminate.

 In general, we must impose some restrictions on code call conditions to
ensure that they are finitely evaluable.
 This is precisely what the condition of strong safeness does for the
code-call conditions.
Intuitively: By requiring that the code call condition is safe, we are ensuring
that it is executable and by requiring that it is strongly safe, we are ensuring
that it will only return finitely many answers.
Deciding wether an arbitrary code call execution terminates is undecidable
Finiteness Table

Multi-Agent Programming Languages, Platforms and Applications 429 / 1

IMPACT Language

Figure 19: AgentDE Finiteness Table

Multi-Agent Programming Languages, Platforms and Applications 430 / 1

IMPACT Language

Information stored in finiteness table

Used in the purely syntactic notion of strong safeness

It is a compile-time check, an extension of the well-known (syntactic)
safety condition in databases.

Multi-Agent Programming Languages, Platforms and Applications 431 / 1

IMPACT Language

Agentisation

Rescue Scenario II illustrate how to turn a planner into an planning agent
within a multi-agent environment.
SHOP:

HTN planner (based on the concepts of tasks, operators and methods).

Methods are used to decompose a nonprimitive task and form the heart
of HTN planning.

Multi-Agent Programming Languages, Platforms and Applications 432 / 1

IMPACT Language

Comparison between IMPACT ’s actions and SHOP’s methods:

IMPACT actions←→ fully instantiated methods (HTN)
Rescue Scenario II

SHOP’s methods and operators are based on STRIPS

First step is to modify the atoms in SHOP’s preconditions and effects, so
that SHOP’s preconditions will be evaluated by IMPACT ’s code call
mechanism and the effects will change the state of the IMPACT agents.

This is a fundamental change in the representation of SHOP.

Replacing SHOP’s methods and operators with agentised methods and
operators.

Multi-Agent Programming Languages, Platforms and Applications 433 / 1

IMPACT Language

Definition 4.25 (Rescue II, Agentised Operator)

An agentised operator is an expression of the form (AgentOp h χadd χdel),
where h (the head) is a primitive task and χadd and χdel are lists of code calls
(called the add- and delete-lists).
The set of variables in the tasks in χadd and χdel is a subset of the set of
variables in h.

Lemma 4.26 (Rescue II, Evaluating Agentised Operators)

Let (AgentOp h χadd χdel) be an agentised operator.
If the add and delete-lists χadd and χdel are strongly safe wrt. the variables in
h, the problem of applying the agentised operator to OOO can be algorithmically
solved.

Multi-Agent Programming Languages, Platforms and Applications 434 / 1

IMPACT Language

In SHOP, preconditions were logical atoms, and SHOP would infer
these preconditions from its current state of the world using Horn-clause
inference.

In contrast, the preconditions in an agentised method are IMPACT’s
code call conditions rather than logical atoms.

Also A-SHOP (the agentised version of SHOP) does not use Horn-clause
inference to establish these preconditions but instead simply invokes
those code calls, which are calls to other agents.

This opens the way to use arbitrary reasoning mechanisms and data
distributed over the net.

Multi-Agent Programming Languages, Platforms and Applications 435 / 1

IMPACT Language

Theorem 4.27 (Rescue Scenario II, Sound- and Completeness)

Let OOO be a state and D be a collection of agentised methods and operators.
If all the preconditions in the agentised methods and add- and delete-lists in
the agentised operators are strongly safe wrt. the respective variables in the
heads, then A-SHOP is sound and complete.

Multi-Agent Programming Languages, Platforms and Applications 436 / 1

IMPACT Language

Head:
AirTransport(LocFrom,LocTo,Cargo,CargoWeight)

Preconditions:
in(((((((((CargoPL,suppliersuppliersupplier :cargoPlanecargoPlanecargoPlane(((LocFrom))))))))))))&
in(((((((((Dist,statisticsstatisticsstatistics :distancedistancedistance(((LocFrom,locTo))))))))))))&
in(((((((((DCargoPL,statisticsstatisticsstatistics :authorRangeauthorRangeauthorRange(((CargoPL))))))))))))&
Dist≤ DCargoPL&
in(((((((((CCargoPL,statisticsstatisticsstatistics :authorCapacityauthorCapacityauthorCapacity(((CargoPL))))))))))))&
CargoWeight≤ CCargoPL&

Subtasks:
load(Cargo,LocFrom)
fly(Cargo,LocFrom,LocTo)
unload(Cargo,LocTo)

Figure 20: Agentised method for a logistics problem.

Multi-Agent Programming Languages, Platforms and Applications 437 / 1

IMPACT Platform

Features of the platform

Agent Development Environment

Agent developers can easily build and test agents within the IMPACT Agent
Development Environment (AgentDE). As described earlier, the core parts of
an IMPACT agent are:

1 a set of data type API function calls manipulated by the agent;
2 a set of actions that the agent may take;
3 a set of integrity constraints ICICIC on the agent state and action constraints

ACACAC ;
4 an agent program PPP specifying the behaviour of the agent;
5 a notion of concurrency conc.

Multi-Agent Programming Languages, Platforms and Applications 438 / 1

IMPACT Platform

AgentDE :

Network accessible, easy-to-use graphical user interface (for parameters,
compiling, testing).

Contains libraries of data types, API functions, actions, notions of
concurrency.

Each data type must be explicitly defined via the AgentDE .

The agent manipulates its data types via API function calls (defined within
the AgentDE).

The developer needs to specify a set of actions that the agent can
execute via AgentDE .

Multi-Agent Programming Languages, Platforms and Applications 439 / 1

IMPACT Platform

Figure 21: Actions for monitormonitormonitor (Reuse actions)

Multi-Agent Programming Languages, Platforms and Applications 440 / 1

IMPACT Platform

Figure 22: Actions in AgentDE

Multi-Agent Programming Languages, Platforms and Applications 441 / 1

IMPACT Platform

Figure 23: AgentDE Status Set Screen

Multi-Agent Programming Languages, Platforms and Applications 442 / 1

IMPACT Platform

Figure 24: AgentDE Connect Library Screen

Multi-Agent Programming Languages, Platforms and Applications 443 / 1

IMPACT Platform

Figure 25: Agent Roost

Multi-Agent Programming Languages, Platforms and Applications 444 / 1

IMPACT Platform

IMPACT Connection
The IMPACT connection library allows IMPACT agents to access third party
platforms.

Multi-Agent Programming Languages, Platforms and Applications 445 / 1

IMPACT Platform

IMPACT Server
The IMPACT Server provides various services that are required by a group of
agents as a whole. It supports the following services:

Registration Services The developer can register the services provided by
the agent and also specify who can use those services.

Yellow Pages Services IMPACT agents can find the desired services by
other agents via the Yellow Pages Server.

Type Services Agent developers can specify the datatypes they use as well
as the relationship between the newly created datatypes and
other existing types within the IMPACT Type Server.

Multi-Agent Programming Languages, Platforms and Applications 446 / 1

IMPACT Platform

IMPACT Server (continued)

The IMPACT Server provides various services that are required by a group of
agents as a whole. It supports the following services:

Thesaurus Server This server receives requests when new agent services
are being registered and when the IMPACT Yellow Pages
Server is looking for agents providing a service.

Ontology Services The IMPACT server is able to provide ontology services.
An agent can reformulate its query in terms the other agent can
understand.

Multi-Agent Programming Languages, Platforms and Applications 447 / 1

IMPACT Platform

Agent Roost

An agent roost is a location where a set of deployed agents resides
(Figure ?? shows the five agents in A-SHOP: the screen depicts the moment
when the codecallconditionscodecallconditionscodecallconditions agent is active and sends a message to the
monitoringmonitoringmonitoring agent). An agent roost serves as a duty officer since it manages
all messages for this set of agents.

Agent Log

The agent log allows an agent developer to maintain a record of agent
communication and agent actions. The log supports log queries by content or
time, and action browse, playback of video, text and image message objects.

Multi-Agent Programming Languages, Platforms and Applications 448 / 1

IMPACT Platform

Available tools and documentation

A tutorial about IMPACT can be found at
http://www.cs.umd.edu/projects/impact. In particular, there is an
IMPACT software library user documentation, which is available at
http://www.cs.umd.edu/projects/impact/Docs, and includes:

1 Implementation overview.
2 Introduction of agent instantiation life cycle.
3 Agent definition syntax.
4 Sample agent development.
5 Selected user and developer code API JavaDocs.

Multi-Agent Programming Languages, Platforms and Applications 449 / 1

http://www.cs.umd.edu/projects/impact
http://www.cs.umd.edu/projects/impact/Docs

IMPACT Platform

Standards compliance, interoperability and portability

The implementation code consists of three main components:

The IMPACT AgentDE (containing a series of compilers, written in
Java, which render an agent instantiation from a given agent definition
(text))

The IMPACT Yellow-pages server, written in Java and C, provides
agent directory lookup services necessary for agent construction and
run-time communication;

The IMPACT Roost, written in Java, provides a run-time environment
for IMPACT agents to work, sleep, or travel the network.

Multi-Agent Programming Languages, Platforms and Applications 450 / 1

IMPACT Applications

The IMPACT project has built applications in the following areas:

1. US Army Logistics Integration Agency’s “Virtual Operations Centre”
involves the integration of a wide variety of distributed, heterogeneous
databases, together with diverse alert, analysis and visualisation
requirements.

2. US Army Research Laboratory’s “Combat Information Processor” project
where IMPACT is used to provide yellow pages matchmaking services,
and is also providing alert mechanisms for multiple users with diverse
battlefield monitoring requirements.

3. Aerospace applications where IMPACT technology has led to the
development of a multi-agent solution to the “Controlled Flight into
Terrain” problem which is the single largest cause of human fatalities in
aircraft crashes (Washington Post, Feb. 7, 1998).

Multi-Agent Programming Languages, Platforms and Applications 451 / 1

IMPACT Applications

4. US Army STRICOM’s JANUS project where IMPACT technology is used
to analyse massive amounts of simulation data.

5. Coordinated route and flight planning applications over free terrain.

New applications in the banking and finance sector are under consideration. In
addition, IMPACT has been used for student projects in academia, including
University of Maryland, Technical University of Vienna, The University of
Manchester, and Clausthal Institute of Technology.

Multi-Agent Programming Languages, Platforms and Applications 452 / 1

IMPACT Summary

Agent-Oriented Programming Language

Functionality

Q: Does the language support various agent concepts such as, mental
attitudes, deliberation, adaptation, social abilities, and reactive as well as
cognitive-based behaviour?

A: Yes, our language supports reasoning with beliefs, time, probabilities
and various other concepts (not all of them are yet implemented).
Deliberation is realised through computing (feasible) status sets and is
related to computing stable models.

Multi-Agent Programming Languages, Platforms and Applications 453 / 1

IMPACT Summary

Communication
Q: Does the language provide high-level (i.e., speech-act based) primitives

for communication (as well as general addressing mechanism such as
broadcast and multi-cast)?

A: Yes, speech-act primitives are available, although only very basic
message passing capabilities are realised in the base language.

Multi-Agent Programming Languages, Platforms and Applications 454 / 1

IMPACT Summary

Underlying Computational Model

Q: Does the language support the design of mobile agents, and if so, which
kind of mobility (weak and/or strong)?

A: Yes, IMPACT supports weak mobility.

Multi-Agent Programming Languages, Platforms and Applications 455 / 1

IMPACT Summary

Simplicity

Q: How easy it is to use and understand the language?

A: We have run several classroom labs with students. They did not have to
go through the technical semantics, but were given several examples and
learned by analogy. They were able to implement a non-trivial application
involving 6 agents (each of them developed independently) and
successfully putting them together (Gofish post office).

Multi-Agent Programming Languages, Platforms and Applications 456 / 1

IMPACT Summary

Preciseness
Q: Does the language have clear and precise semantics? How has it been

formalised?

A: Yes, the semantics is clearly defined and uses technical machinery
developed in the last three decades in logic programming.

Multi-Agent Programming Languages, Platforms and Applications 457 / 1

IMPACT Summary

Expressiveness

Q: Is the language suitable for the implementation of a variety of
agent-oriented programs and applications or is it purpose-specific?

A: The language is suitable for arbitrary agent applications. It is not specific
for a restricted class of applications.

Multi-Agent Programming Languages, Platforms and Applications 458 / 1

IMPACT Summary

Extensiveness
Q: Does the language allow the definition of new language components from

the basic constructs in a systematic way?

A: Yes, the language allows not only the definition of macros of basic
constructs, but also the introduction of completely new features. This is
due to annotations of programs, an area which has been well
investigated in the last two decades.

Multi-Agent Programming Languages, Platforms and Applications 459 / 1

IMPACT Summary

Verification
Q: Does your approach provide a clear path for the (formal) verification of

programs written in this language?

A: Yes, as our semantics is based on rigourous formal methods and first
attempts to verify IMPACT agents are on their way.

Multi-Agent Programming Languages, Platforms and Applications 460 / 1

IMPACT Summary

Software Engineering Principles

Q: Have Software Engineering and Programming Language principles, such
as abstraction, inheritance, modularity, overloading, information hiding,
error handling, generic programming, etc., been considered or adopted
within design of this language?

A: no answer.

Multi-Agent Programming Languages, Platforms and Applications 461 / 1

IMPACT Summary

Language Integration

Q: Does your approach deal with the possibility of integrating the language
with existing (well-known) programming language (e.g., Java)?

A: The Code Call Condition mechanism provides a way to integrate any
software program written in any programming languages.

Multi-Agent Programming Languages, Platforms and Applications 462 / 1

IMPACT Summary

Language Integration (continued)

Q: Can the language be interfaced with other programming languages, or
does it allow the invocation of methods/programs built using other
(classical) programming languages?

A: This can be achieved by the IMPACT implementation and the Code Call
Condition mechanism.

Multi-Agent Programming Languages, Platforms and Applications 463 / 1

IMPACT Summary

Platform

Deployment and Portability

Q: Does the platform provide material, such as documentation, tutorials or
training of any kind, installation and deployment guidelines, to help users
in deploying their systems?

A: The IMPACT project homepage
(http://www.cs.umd.edu/projects/impact/) provides extensive
documentations to help users develop and deploy systems.

Multi-Agent Programming Languages, Platforms and Applications 464 / 1

http://www.cs.umd.edu/projects/impact/

IMPACT Summary

Deployment and Portability (continued)

Q: Does the platform require a specific computing environment (computer
architecture, operating system, libraries, etc.) to be used / deployed?

A: No, it runs on any platform where Java is available.

Multi-Agent Programming Languages, Platforms and Applications 465 / 1

IMPACT Summary

Standards Compliance

Q: To what extent does the platform adhere to the standards (FIPA, MASIF,
etc.) with respects to: general architecture, naming service, white- and
yellow-page services, mobility services, agent-life cycle management,
etc.?

A: While IMPACT is not FIPA compliant, it should not be too difficult to
achieve this. We concentrated on extending our framework and not on
compliance to certain standards.

Multi-Agent Programming Languages, Platforms and Applications 466 / 1

IMPACT Summary

Platform Extensibility

Q: Can the platform be extended with additional functionality, for example
through Open Source collaboration?

A: IMPACT can be easily extended by new functionalities. Although it is not
open source yet, any collaboration is welcome.

Multi-Agent Programming Languages, Platforms and Applications 467 / 1

IMPACT Summary

Available Tools
Q: What tools are provided by the platform for the management, monitoring,

logging and debugging of applications?

A: It is provided by IMPACT AgentDE , IMPACT Server, Agent Roost, and
Agent Log.

Multi-Agent Programming Languages, Platforms and Applications 468 / 1

IMPACT Summary

Available Tools (continued)

Q: What documentation for on-line help, and manuals for the platform’s
installation, use, and maintenance are available?

A: The software user documentation is available at
http://www.cs.umd.edu/projects/impact/Docs.

Multi-Agent Programming Languages, Platforms and Applications 469 / 1

http://www.cs.umd.edu/projects/impact/Docs

IMPACT Summary

Available Tools (continued)

Q: Are there tools for administration, management, and configuration of the
platform? Is an IDE provided?

A: IMPACT provides a network accessible, easy-to-use IDE.

Multi-Agent Programming Languages, Platforms and Applications 470 / 1

IMPACT Summary

Tool Integration

Q: In existing applications, what tools (e.g., JESS, web services, JSP) have
been integrated or are known to work well with applications running on
this platform ?

A: We have shown that the IMPACT project has built a lot of applications
integrating many tools.

Multi-Agent Programming Languages, Platforms and Applications 471 / 1

IMPACT Summary

Technical Interoperability

Q: Is an application aimed at running on this platform tied to a specific
programming language, specific architectures (e.g., .NET, J2EE), or are
there special operating system requirements?

A: Applications require loading Java runtime library on the target platform,
but no specific operating system is required.

Multi-Agent Programming Languages, Platforms and Applications 472 / 1

IMPACT Summary

Performance Issues
Q: What number of agents can be expected to run efficiently within a single

instance of the platform, what scale of number of messages can be
handled by the platform, etc.?

A: We have not undertaken such statistics yet. In our experiments there
were around 10-15 agents with quite a number of messages sent among
them.

Multi-Agent Programming Languages, Platforms and Applications 473 / 1

IMPACT Summary

Performance Issues (continued)

Q: What is the current state of the platform (simple prototype, available as a
commercial product, stable Open Source distribution, etc.)?

A: The current version is stable and available for academic purposes only. It
is licensed by the University of Maryland.

Multi-Agent Programming Languages, Platforms and Applications 474 / 1

IMPACT Summary

Multi-Agent Systems Features

Q: Does the platform support open multi-agent systems and heterogeneous
agents?

A: Yes, IMPACT supports open multi-agent systems and heterogeneous
agents.

Multi-Agent Programming Languages, Platforms and Applications 475 / 1

IMPACT Summary

Multi-Agent Systems Features (continued)

Q: Does the platform provide centralised or distributed control, and
hierarchical structure of agents?

A: IMPACT provides both centralised and distributed control. The
hierarchical structuring of agents has not yet been supported within
IMPACT .

Multi-Agent Programming Languages, Platforms and Applications 476 / 1

IMPACT Summary

Multi-Agent Systems Features (continued)

Q: Does the platform offer libraries for programming multi-agent systems
(libraries of interaction protocols, agent or group templates, reusable
agent or organisation components, etc.)?

A: Yes, they are provided in IMPACT AgentDE during the development and
deployment of agents.

Multi-Agent Programming Languages, Platforms and Applications 477 / 1

IMPACT Summary

Applications Supported by the Language and Platform

Typical Examples

Q: What types of application have already been developed with this platform
(toy problems, real-world applications, industrial applications)? What are
the most prominent examples?

A: Besides smaller classroom examples (6 agents developed by 4-7
students) several real applications such as Aerospace applications, US
Army Logistics Integration Agency’s “Virtual Operations Centre”, and US
Army STRICOM’s JANUS project where IMPACT technology is used to
analyse massive amounts of simulation data.

Multi-Agent Programming Languages, Platforms and Applications 478 / 1

IMPACT Summary

Targeted Domains

Q: Is any particular domain of application (e.g., simulation, resource
allocation, mobile computation) targeted by your approach?

A: There is no specific targeted domain for IMPACT . It is a general system
dealing with heterogenous, distributed information sources and
available legacy code.

Multi-Agent Programming Languages, Platforms and Applications 479 / 1

IMPACT References

References I

Jürgen Dix, Thomas Eiter, Michael Fink, Axel Polleres, and Yingqian
Zhang.
Monitoring Agents using Declarative Planning.
Fundamenta Informaticae, 57(2–4):345–370, 2003.

Jürgen Dix, Sarit Kraus, and V.S. Subrahmanian.
Temporal agent reasoning.
Artificial Intelligence, 127(1):87–135, 2001.

Jürgen Dix, Sarit Kraus, and V.S. Subrahmanian.
Heterogenous temporal probabilistic agents.
ACM Transactions of Computational Intelligence, 7(1):151–198, 2006.

Multi-Agent Programming Languages, Platforms and Applications 480 / 1

IMPACT References

References II

Jürgen Dix, Hector Munoz-Avila, Dana Nau, and Lingling Zhang.
Planning in a multi-agent environment: Theory and practice.
In C. Castelfranchi and W. L. Johnson, editors, Proceedings of the First
International Joint Conference on Autonomous Agents and Multi-Agent
Systems, pages 944–945. New York: ACM Press, July 2002.

Jürgen Dix, Hector Munoz-Avila, Dana Nau, and Lingling Zhang.
IMPACTing SHOP: Putting an AI planner into a Multi-Agent Environment.
Annals of Mathematics and AI, 37(4):381–407, 2003.

Jürgen Dix, Mirco Nanni, and V. S. Subrahmanian.
Probabilistic agent reasoning.
ACM Transactions of Computational Logic, 1(2):201–245, 2000.

Jürgen Dix, Fatma Öczan, and V.S. Subrahmanian.
Improving performance of heavily loaded agents.
Annals of Math and AI, 41(2-4):339–395, 2004.

Multi-Agent Programming Languages, Platforms and Applications 481 / 1

IMPACT References

References III

Jürgen Dix, V.S. Subrahmanian, and George Pick.
Meta Agent Programs.
Journal of Logic Programming, 46(1-2):1–60, 2000.

T. Eiter and V.S. Subrahmanian.
Heterogeneous Active Agents, II: Algorithms and Complexity.
Artificial Intelligence, 108(1-2):257–307, 1999.

T. Eiter, V.S. Subrahmanian, and T.J. Rogers.
Heterogeneous Active Agents, III: Polynomially Implementable Agents.
Artificial Intelligence, 117(1):107–167, 2000.

Thomas Eiter, V.S. Subrahmanian, and Georg Pick.
Heterogeneous Active Agents, I: Semantics.
Artificial Intelligence, 108(1-2):179–255, 1999.

Multi-Agent Programming Languages, Platforms and Applications 482 / 1

IMPACT References

References IV

H. Muñoz-Avila, D.W. Aha, D.S. Nau, R. Weber, L. Breslow, and F. Yaman.
SiN: Integrating case-based reasoning with task decomposition.
In IJCAI-2001, August 2001.

V.S. Subrahmanian, Piero Bonatti, Jürgen Dix, Thomas Eiter, Sarit Kraus,
Fatma Özcan, and Robert Ross.
Heterogenous Active Agents.
MIT-Press, 2000.

Multi-Agent Programming Languages, Platforms and Applications 483 / 1

JADE

Abstract

JADE (Java Agent Development Framework) is a software environment to
build agent systems for the management of networked information resources in
compliance with the FIPA specifications for interoperable multi-agent systems.
JADE provides a middleware for the development and execution of
agent-based applications which can seamless work and interoperate both in
wired and wireless environment. Moreover, JADE supports the development
of multi-agent systems through the predefined programmable and extensible
agent model and a set of management and testing tools. Currently, JADE is
one of the most used and promising agent development framework; in fact, it
has a large user group, involving more than two thousands active members, it
has been used to realize real systems in different application sectors, and its
future development is guided by a governing board involving some important
industrial companies.

Multi-Agent Programming Languages, Platforms and Applications 485 / 1

JADE

Keywords

Agent development framework, FIPA compliant agent platform, Middleware for
heterogeneous networks, Java

Authors
Fabio Bellifemine, Federico Bergenti, Giovanni Caire and Agostino Poggi

Multi-Agent Programming Languages, Platforms and Applications 486 / 1

JADE Motivation

Agents are considered one of the most promising information
technologies to realize distributed interoperable systems.

Agent-based technologies could not keep their promises and become
wide-spread, until there were no suitable standards to support agent
interoperability and adequate environments for the development of agent
systems.

Different groups of researchers started working towards the definition of
standards for agent technologies and the realization of development
environments for multi-agent systems.

Multi-Agent Programming Languages, Platforms and Applications 487 / 1

JADE Motivation

FIPA specifications and the JADE software framework may be
considered two of most interesting results in these two fields.

FIPA specifications define the reference model of an agent platform and a
set of services that should be provided to realize truly interoperable
multi-agent systems.

JADE (Java Agent Development framework) is a software
environment to build agent systems for the management of networked
information resources in compliance with the FIPA specifications.

Multi-Agent Programming Languages, Platforms and Applications 488 / 1

JADE Platform

The JADE framework is based on a middleware that facilitates the
development of distributed multi-agent applications based on a
peer-to-peer communication architecture.

The intelligence, the initiative, the information, the resources and
the control can be fully distributed on mobile terminals as well as on
hosts in the fixed network.

The environment can evolve dynamically with agents that appear and
disappear in the system according to the needs and the requirements of
the context.

Communication between agents, regardless of whether they are running
in the wireless or wireline network, is completely symmetric with each
agent is able to play both the initiator and the responder role.

Multi-Agent Programming Languages, Platforms and Applications 489 / 1

JADE Platform

Main principles

JADE is based of the following main principles:
1. Interoperability

JADE is compliant with FIPA specifications.
As a consequence a JADE agent can interoperate with other peers not
running on the JADE run-time.

2. Uniformity and portability
JADE provides applications with a homogeneous set of APIs that are
independent from the underlying network and Java version.
The JADE run-time provides the same APIs both for the J2EE, J2SE and
J2ME environment.
In theory, developers could decide the Java run-time environment at
deploy-time.

Multi-Agent Programming Languages, Platforms and Applications 490 / 1

JADE Platform

Main principles

JADE is based of the following main principles:
3. Ease of use

The complexity of the middleware is hidden behind a simple and intuitive
set of APIs.

4. Pay-as-you-go philosophy
Programmers do not need to use all the features provided by the
middleware.
Features that are not used do not require programmers to know anything
about them, neither add any computational overhead.

Multi-Agent Programming Languages, Platforms and Applications 491 / 1

JADE Platform

JADE includes both the libraries of Java classes required to develop
application agents and the run-time environment that provides the basic
services.

Each instance of the JADE run-time is called container (since it
“contains” agents).

The set of all containers is called platform and provides a
homogeneous layer that hides completely from agents the complexity and
the diversity of the underlying tires.

Multi-Agent Programming Languages, Platforms and Applications 492 / 1

JADE Platform

Figure 26: The JADE architecture.

Multi-Agent Programming Languages, Platforms and Applications 493 / 1

JADE Platform

Compatibility

JADE framework is compatible with Java J2ME CLDC/MIDP1.0
environment and it has already been tested on the fields over the GPRS
network with different mobile terminals.

The JADE run-time memory footprint in a MIDP1.0 environment is
around 100 KB, but can be further reduced until 23 KB using the
ROMizing technique.

The limited memory footprint allows installing JADE on mostly all cell
phones provided that they are Java-enabled.

JADE has already been integrated into complex architectures such as
.NET or J2EE.

Multi-Agent Programming Languages, Platforms and Applications 494 / 1

JADE Platform

Properties

JADE provides the basic services necessary to distributed peer-to-peer
applications in the fixed and mobile environment.

JADE allows each agent to dynamically discover other agents and to
communicate with them according to the peer-to-peer paradigm.

Each agent is identified by a unique name and provides a set of services.

It can register and modify its services and/or search for agents providing
new services, control its life cycle and, most of all, communicate with all
other peers.

Multi-Agent Programming Languages, Platforms and Applications 495 / 1

JADE Platform

Communication

Agents communicate by exchanging asynchronous messages.

In order to communicate, an agent just sends a message to a destination.

Agents are identified by a name

There is no temporal dependency between communicating agents.

The sender and the receiver could not be available at the same time.

The receiver may not even exist or could not be directly known by the
sender that can specify, e.g., “all agents interested in football” as a
destination.

Multi-Agent Programming Languages, Platforms and Applications 496 / 1

JADE Platform

Security

Despite this type of communication, security is preserved, since JADE
provides proper mechanisms to authenticate and verify “rights”
assigned to agents.

An application can verify the identity of the sender of a message and
prevent actions that it is not allowed to perform.

All messages exchanged between agents are carried out within an
envelope including only the information required by the transport layer.

This allows, among others, to encrypt the content of a message
separately.

Multi-Agent Programming Languages, Platforms and Applications 497 / 1

JADE Platform

Skeleton

This development framework provides a set of skeletons of typical
interaction patterns associated with specific tasks such as negotiations,
auctions and task delegation.

By using these skeletons programmers can get rid of the burden of
dealing with synchronization issues, timeouts, error conditions.

Multi-Agent Programming Languages, Platforms and Applications 498 / 1

JADE Platform

Conversion

To facilitate the creation and handling of messages content, JADE
provides a rich support for automatically converting back and forth
between a string formats including XML and RDF and Java objects.

This support is integrated with existing ontology creation tools allowing
programmers to graphically create their ontology and then work with Java
objects to handle message contents conformant to it.

Multi-Agent Programming Languages, Platforms and Applications 499 / 1

JADE Platform

Parallel tasks

To increase scalability or to meet the constraints of environments with
limited resources, JADE provides the opportunity of executing multiple
parallel tasks within the same Java thread.

Several elementary tasks may then be combined to form more complex
tasks structured as concurrent Finite States Machines.

Multi-Agent Programming Languages, Platforms and Applications 500 / 1

JADE Platform

Code and execution-state mobility

In the J2SE and Personal Java environments, JADE supports code and
execution-state mobility.

That is an agent can stop running on a host, migrate on a different remote
host and restart its execution there from the very point it was interrupted.

This functionality allows for example to distribute computational load at
runtime by moving agents on less loaded machines without any impact
on the application.

Multi-Agent Programming Languages, Platforms and Applications 501 / 1

JADE Platform

Naming service, yellow pages service

The platform also includes a naming service (ensuring each agent has a
unique name) and a yellow pages service that can be distributed across
multiple hosts.

Federation graphs can be created to support the definition of agent
services domains.

Multi-Agent Programming Languages, Platforms and Applications 502 / 1

JADE Platform

LEAP

A module called LEAP allows optimising all communication mechanisms
when dealing with devices with limited resources and connected through
wireless networks.
A JADE container is “split”, as depicted in figure ??, into a:

Front-end, actually running on the mobile terminal;
A back-end, running in the fixed network.

A proper architectural element, called mediator, must be already active.

It is in charge of instantiating and holding the back-ends.

To face work-load problems it is possible to deploy several mediators..

Each front-end is linked to its corresponding back-end.

Multi-Agent Programming Languages, Platforms and Applications 503 / 1

JADE Platform

Figure 27: JADE architecture in the wireless environment.

Multi-Agent Programming Languages, Platforms and Applications 504 / 1

JADE Platform

Advantages

The described approach has a number of advantages:

Part of the functionality of a container are delegated to the back-end, thus
making the front-end extremely lightweight in terms of required memory
and processing power.

The back-end masks the actual IP address assigned to the wireless
device to other containers.

The front-end is able to detect a loss of connection with the back-end and
to re-establish it as soon as possible.

Both the front-end and the back-end use a store-and-forward mechanism
to buffer messages, that cannot be transmitted due to a temporary
disconnection, and then deliver as soon as the connection is
re-established.

Several information that containers exchange are handled only by the
back-end.

Multi-Agent Programming Languages, Platforms and Applications 505 / 1

JADE Platform

Available tools and documentation

JADE offers a set of documents (manuals and tutorials) and code
examples to help users to install and use it; they are all available from the
official JADE Web site.

JADE provides a rich suite of graphical tools supporting both the
debugging, management and monitoring phases of the application life
cycle. (figure ?? shows their graphical interfaces).

Multi-Agent Programming Languages, Platforms and Applications 506 / 1

JADE Platform

It is possible to:

Emulate remote conversations, “sniff” messages exchanged by agents,
monitor tasks executed by a specific agent and view its life cycle;

Control agents running in the system, start, suspend and terminate
agents even on remote hosts, inspect and modify the services published
in the yellow pages and generate suitable logs.

All these tools are implemented as agents themselves. They require no
special support to perform their tasks and they simply rely on JADE AMS
(Agent Management System).

Multi-Agent Programming Languages, Platforms and Applications 507 / 1

JADE Platform

Remote Management Agent (RMA)

The general management console for a JADE agent platform is called
RMA (Remote Management Agent).
The RMA acquires information about the platform and executes the GUI
commands to modify the status of the platform through the AMS.

It asks the AMS to be notified about changes of state of platform agents.

It transmits to the AMS the requests for creation, deletion, suspension
and restart received by the user.

The Directory Facilitator agent also has a GUI of its own, with which the
DF can be administered, adding or removing agents and configuring their
advertised services.

Multi-Agent Programming Languages, Platforms and Applications 508 / 1

JADE Platform

Figure 28: Graphical interfaces of JADE tools.

Multi-Agent Programming Languages, Platforms and Applications 509 / 1

JADE Platform

Graphical tools

The graphical tools with which JADE users can debug their agents are:

The Dummy Agent;
The Sniffer Agent;
The Introspector Agent;
The Log Manager Agent.

Multi-Agent Programming Languages, Platforms and Applications 510 / 1

JADE Platform

Dummy Agent

The Dummy Agent is a simple, yet very useful, tool for inspecting
message exchanges among agents.

The Dummy Agent facilitates validation of an agent message exchange
pattern before its integration into a multi-agent system and facilitates
interactive testing agents.

The graphic interface provides support to edit, compose and send ACL
messages to agents, to receive and view messages from agents, and,
eventually, to save/load messages to/from disk.

Multi-Agent Programming Languages, Platforms and Applications 511 / 1

JADE Platform

Sniffer Agent

The Sniffer Agent makes it possible to track messages exchanged in a
JADE agent platform.

When the user decides to sniff a single agent or a group of agents, every
message directed to or coming from that agent or group of agents is
tracked and displayed in the sniffer window, using a notation similar to
UML Sequence Diagrams.

Every ACL message can be examined by the user, that can also save and
load every message track for later analysis.

Multi-Agent Programming Languages, Platforms and Applications 512 / 1

JADE Platform

Introspector Agent

The Introspector Agent is a very powerful tool that allows to debug and
introspect a running agent through the following functionalities:

Monitor and control the agent life-cycle;

Inspect all its exchanged messages, both the queue of sent and received
messages;

Monitor the queue of behaviours, including the possibility of executing a
behaviour step-by-step, in a similar way to a code debugger.

Multi-Agent Programming Languages, Platforms and Applications 513 / 1

JADE Platform

Log Manager Agent

The Log Manager Agent tracks and stores events happening during the
life of multi-agent systems.

Multi-Agent Programming Languages, Platforms and Applications 514 / 1

JADE Platform

Add-ons

Different "add-ons" to the JADE framework are provided by both the
JADE team and other JADE users.
Tools and software libraries have been developed and made available for
the management of:

The persistence of agents;
The security of systems;
The exchange of messages and the management of ontologies.

Add-ons are also available for the integration of JADE with other
technologies, such as Servlets, JSP, Applets, the JESS rule engine, and
the Protege ontology tool.

Multi-Agent Programming Languages, Platforms and Applications 515 / 1

JADE Platform

Standards compliance, interoperability and portability

JADE is available on all the Java versions from J2EE to J2ME.

JADE facilities the porting of applications among different Java versions.

JADE participated to the bake-off organized by FIPA.

JADE allows:

The bi-directional communication between agents acting on different
wired and wireless networks;

To build agent systems in compliance with FIPA specifications;

The interoperability with agents acting on different agent platforms with
the constraint that they must be FIPA-compliant.

Multi-Agent Programming Languages, Platforms and Applications 516 / 1

JADE Platform

Other features of the platform

The whole JADE source code is distributed under the Lesser GNU
Public License LGPL.

TILAB, as project initiator, holds the exclusive right to re-release JADE
under different or additional license terms.

The different releases of the JADE software are stable and used in
different research and application projects in different part of world.

Different agent development platforms derive from JADE (JADEX,
BlueJADE).

Multi-Agent Programming Languages, Platforms and Applications 517 / 1

JADE Platform

A JADE system is based on a set of agent platforms each of them
composed of a set of agent containers deployed on an heterogeneous
network.

Message exchanges between agents is managed efficiently using
different techniques for intra- and inter-container communication.

a JADE system may contain thousands of agents exchanging a huge
amount of messages.

Multi-Agent Programming Languages, Platforms and Applications 518 / 1

JADE Platform

A JADE system provides a centralized control.

Following the FIPA standard, each JADE platform is controlled by the
AMS.

JADE offers a fault tolerance mechanism that allows an agent platform
to survive the failure of its AMS.
Each agent platform may have different AMSs usually on different
containers:

One is active;
The others are in backup ready to replace it when it fails.

Multi-Agent Programming Languages, Platforms and Applications 519 / 1

JADE Platform

Realizing multi-agent systems with the platform

A JADE multi-agent application is composed of the FIPA standard
agents, provided by the JADE platform, and of a set of application
dependent agents realized by the application developer.

Agents are implemented through a Java class containing a set of inner
classes that realize the different behaviours of the agent.

Agent behaviours can be composed of other behaviours and can be
executed either a single time (one-shot behaviours) or different times
(cyclic behaviours).

Multi-Agent Programming Languages, Platforms and Applications 520 / 1

JADE Platform

Agent classes are based on a method:

setup, that performs the agent initialization;

takedown, that performs clean-up operations at the end of its execution.

Agent behaviours are based on a method:

action, that defines the operations to be performed when the behaviour is
in execution.

Cyclic behaviours may have another method:

done, that returns a Boolean value indicating whether or not this
behaviour has completed its iterative execution.

Multi-Agent Programming Languages, Platforms and Applications 521 / 1

JADE Platform

Code of an agent class

public class AgentClassName extends Agent {
... variables definition ...
protected void setup() {
... initialize the agent ...

}
protected void takeDown() {
... clean-up operations ...

}
private class RBehaviourClassName extends Behaviour {
... variables definition ...
public void action() {
... behaviour execution ...

}
// optional method for cyclic behaviours
public boolean done() {
... return true if execution is completed

}
}
... other behaviour inner classes ...

}

Multi-Agent Programming Languages, Platforms and Applications 522 / 1

JADE Platform

Example: Simple book trading multi-agent system

This system is based on some seller and buyer agents.

Each buyer agent receives the title of the book to buy as a command line
argument from its user and periodically requests all known seller agents
to provide an offer.

As soon as an offer is received, the buyer agent accepts it and issues a
purchase order.

If more than one seller agent provides an offer the buyer agent accepts
the best one (lowest price).

Having bought the target book the buyer agent terminates.

Each seller agent has a minimal GUI (insert new titles, associated price).

Seller agents continuously wait for requests from buyer agents.

Multi-Agent Programming Languages, Platforms and Applications 523 / 1

JADE Platform

When asked to provide an offer for a book, they check if the requested
book is in their catalogue, and in this case reply with the price; otherwise
they refuse.

When they receive a purchase order they serve it and remove the
requested book from their catalogue.

A buyer agent is implemented by the BookBuyerAgent class.

Given that a buyer agent has the only goal of buying books on the behalf
of its user, then it needs to realize a single behaviour implemented by the
RequestPerformer inner class.

This behaviour has to send a call for proposal (CFP) message to the
known seller agents, get back all the replies and, in case at least a reply
proposing a bid for the request is received, send a further message
accepting the proposal to the seller agent that made the best proposal
and, finally, get back the response.

Multi-Agent Programming Languages, Platforms and Applications 524 / 1

JADE Platform

A seller agent is implemented by the BookSellerAgent class.

This agent needs to wait for book requests from buyer agents and serves
them; these requests can be requests to provide an offer for a book or
purchase orders.
This is done through two different cyclic behaviours:

One dedicated to serve offer requests, implemented by the
OfferRequestsServer inner class;
The other dedicated to serve purchase orders, implemented by the
PurchaseOrdersServer inner class.

The seller agent needs to execute a one-shot behaviour updating the
catalogue of books available for sale whenever its user adds a new book
from the GUI.

This is done through a method, called updateCatalogue, that creates the
behaviour the agent needs and adds it to the list of running behaviours.

Multi-Agent Programming Languages, Platforms and Applications 525 / 1

JADE Platform

RequestPerformer

public void action() { // RequestPerformer
switch (step) {
case 0: // Send the cfp to all sellers
... CFP message construction ...
myAgent.send(cfp);
... message type reception setting ...
step = 1;
break;

case 1: // Receive all proposals/refusals
ACLMessage reply = myAgent.receive(mt);
if (reply \relax != null) { // Reply received
... update the best offer ...

}
}
repliesCnt++;
if (repliesCnt >= sellerAgents.length) {
// We received all replies
step = 2;
}
else { block(); }
break;

Multi-Agent Programming Languages, Platforms and Applications 526 / 1

JADE Platform

RequestPerformer (continued)

case 2: // Send the purchase order
... order message construction ...
myAgent.send(order);
... message type reception setting ...
step = 3;
break;

case 3: // Receive the purchase order reply
reply = myAgent.receive(mt);
if (reply \relax != null) { // Purchase order reply received
if (reply.getPerformative() == ACLMessage.INFORM) {
... inform the user about success and exit ...

}
else {
... print: requested book already sold ...

}
step = 4;
}
else { block(); }
break;

}
}

Multi-Agent Programming Languages, Platforms and Applications 527 / 1

JADE Platform

OfferRequestsServer

public void action() { // OfferRequestsServer
... message type reception setting ...
ACLMessage msg = myAgent.receive(mt);
if (msg \relax != null) { // CFP Message received. Process it
String title = msg.getContent();
ACLMessage reply = msg.createReply();
Integer price = (Integer) catalogue.get(title);
if (price \relax != null) {
// The requested book is available: reply with the price
reply.setPerformative(ACLMessage.PROPOSE);
reply.setContent(String.valueOf(price.intValue()));

}
else { // The requested book is not available
reply.setPerformative(ACLMessage.REFUSE);
reply.setContent("not-available");

}
myAgent.send(reply);
}
else { block(); }

}

Multi-Agent Programming Languages, Platforms and Applications 528 / 1

JADE Platform

PurchaseOrdersServer
public void action() { // PurchaseOrdersServer
... message type reception setting ...
ACLMessage msg = myAgent.receive(mt);
if (msg \relax != null) {
// ACCEPT_PROPOSAL Message received. Process it
String title = msg.getContent();
ACLMessage reply = msg.createReply();
Integer price = (Integer) catalogue.remove(title);
if (price \relax != null) {
reply.setPerformative(ACLMessage.INFORM);
... print: information about the sold book ...

}
else {
// The requested book has been already sold
reply.setPerformative(ACLMessage.FAILURE);
reply.setContent("not-available"); }
myAgent.send(reply);

}
else { block(); }

}

Multi-Agent Programming Languages, Platforms and Applications 529 / 1

JADE Applications

JADE is being used in a plethora of projects and applications, both from
the academic and the industrial communities.
JADE applications cover different domains:

Collaborative work support;
E-learning;
E-tourism;
Network management;
Entertainment;
Knowledge management;
Manufacturing and supply-chain management;
Simulation.

Multi-Agent Programming Languages, Platforms and Applications 530 / 1

JADE Applications

CoMMA

CoMMA (Corporate Memory Management through Agents) is a
FIPA compliant multi-agent system for the management of a corporate
memory, implemented by using JADE .

It is the result of an international project funded by the European
Commission.

The project started in January 2000 and ended in Jannuary 2002.

The CoMMA system was completely implemented and tested in
different companies to offer a helping service for enhancing the insertion
of new employees and as a support system for technology monitoring.

Multi-Agent Programming Languages, Platforms and Applications 531 / 1

JADE Applications

The innovative aspect of the system is the integration of several
emerging technologies.
These technologies are:

Agent technology;
Knowledge modelling;
XML technology;
Information retrieval techniques;
Machine learning techniques.

Multi-Agent Programming Languages, Platforms and Applications 532 / 1

JADE Applications

CoMMA developers decided to use agents:

For wrapping information repositories defining the corporate memory;

For the retrieval of information;

For enhancing scaling flexibility and extensibility of the corporate memory;

To adapt the system interface to the users.

Multi-Agent Programming Languages, Platforms and Applications 533 / 1

JADE Applications

The use of JADE increases system modularity and flexibility.

The separation between the software platform infrastructure managing
agent life-cycle, distribution and communication and the software
implementing agent tasks decouples modifications in these two parts.

The behaviour based agent model, that JADE offers, allows to separate
the software code realizing the different tasks of the agents.

The modification of a task or the introduction of new tasks usually do not
cause the modification of other parts of agent code.

Multi-Agent Programming Languages, Platforms and Applications 534 / 1

JADE Applications

The CoMMA system aims at helping users in the management of an
organization corporate memory and in particular at facilitating the
creation, dissemination, transmission and reuse of knowledge in an
organization.
The services offered by the CoMMA system are the result of three main
tasks:

Insertion of XML annotations of new or updated documents;
Search of existing documents;
Autonomous document delivery in a push fashion to provide her/him with
information about new interesting documents.

Multi-Agent Programming Languages, Platforms and Applications 535 / 1

JADE Applications

These tasks are performed through the cooperation among different kinds of
agents that can be divided in four sub-societies:

Document and annotation management;

Ontology (enterprise and user models) management;

User management;

Agent interconnection and matchmaking.

Multi-Agent Programming Languages, Platforms and Applications 536 / 1

JADE Applications

Figure 29: Schematic view of the CoMMA multi-agent system.

Multi-Agent Programming Languages, Platforms and Applications 537 / 1

JADE Applications

Agentcities

Agentcities is a network of FIPA compliant agent platforms that
constitute a distributed environment to demonstrate the potential of
autonomous agents.

It started on the second half of 2001 as a research project funded by the
European Commission.

One of the aims of the project is the development of a network
architecture to allow the integration of platforms based on different
technologies and models.

It provides white pages and yellow pages services to allow the
dynamic discovery of hosted agents and the services they offer.

Multi-Agent Programming Languages, Platforms and Applications 538 / 1

JADE Applications

An important outcome is the exploitation of the capability of agent-based
applications to adapt to rapidly evolving environments.

This is particularly appropriate to dynamic societies where agents act as
buyers and sellers negotiating their goods and services, and composing
simple services offered by different providers into new compound
services.

To allow the integration of different applications and technologies in open
environments, high level communication technologies are needed.

The project largely relies on semantic languages, ontologies and
protocols in compliance with the FIPA standards.

Multi-Agent Programming Languages, Platforms and Applications 539 / 1

JADE Applications

The Agentcities network grows around a backbone of 14 agent
platforms, mostly hosted in Europe.

These platforms are deployed as a testbed, hosting the services and the
prototype applications developed during the lifetime of the project.

The backbone is an important resource for other organizations, even
external to the project, that can connect their own agent-based services,
making the network really open and continuously evolving.

Multi-Agent Programming Languages, Platforms and Applications 540 / 1

JADE Applications

Currently, the Agentcities network counts 160 registered platforms.

The platforms are based on more than a dozen of heterogeneous
technologies, including Zeus, FIPA-OS, Opal.

More than 2/3 of them are based on JADE and its derived technologies,
as LEAP and BlueJADE.

Multi-Agent Programming Languages, Platforms and Applications 541 / 1

JADE Applications

The main rationale for using agents is their ability to adapt to rapidly
evolving environments and yet being able to achieve their goals.

In many cases, this can only be accomplished by collaborating with other
agents and leveraging on services provided by cooperating agents.

Multi-Agent Programming Languages, Platforms and Applications 542 / 1

JADE Applications

Figure 30: Event organizer scenario.

Multi-Agent Programming Languages, Platforms and Applications 543 / 1

JADE Applications

RAP

RAP (Remote Assistant for Programmers) is a multi-agent system
that integrates information and expert searching facilities for communities
of students and researchers working on related projects developed in
Java.

RAP associates a personal agent with each user, which helps her/him to
solve problems proposing information and answers, extracted from some
information repositories, and forwarding answers received by “experts”
recommended on the basis of their expertise on the topic.

A personal agent also maintains a profile of its user.

This profile contains information about the competences and experience
of its user and is built by using the answers sent to other users and the
code written by the user.

Multi-Agent Programming Languages, Platforms and Applications 544 / 1

JADE Applications

The RAP system is based on seven different kinds of agents:

Personal Agents;

Code Documentation Managers;

Answer Managers;

User Profile Managers;

Email Managers;

Starter Agents;

Directory Facilitators.

Multi-Agent Programming Languages, Platforms and Applications 545 / 1

JADE Applications

Figure 31: The RAP architecture.

Multi-Agent Programming Languages, Platforms and Applications 546 / 1

JADE Applications

A quite complete description of the behaviour of the system can be given
showing the scenario where:

A user asks information to its personal agent to solve a problem in its
code;

The personal agent finds one (or more) pieces of information that may
help her/him.

Multi-Agent Programming Languages, Platforms and Applications 547 / 1

JADE Applications

The description of this scenario can be divided in the following steps:

1) Select answer types.
2) Submit a query. The query is composed of two parts:

“Annotation”;
Textual contents.

3) Find answers. The reception of new answers from the system users is a
more complex activity and its description can be divided in four further
steps:
3.1) Find experts.
3.2) Receive expert rating.
3.3) Select experts.
3.4) Receive answers.

4) Rate answers.

Multi-Agent Programming Languages, Platforms and Applications 548 / 1

JADE Summary

Agent-Oriented Programming Language

Functionality

Q: Does the language support various agent concepts such as, mental
attitudes, deliberation, adaptation, social abilities, and reactive as well as
cognitive-based behaviour?

A: JADE provides a very general but primitive agent model offering both
reactive and social abilities. This model can serve as a useful basis to
implement more sophisticated agent architectures.

Multi-Agent Programming Languages, Platforms and Applications 549 / 1

JADE Summary

Communication
Q: Does the language provide high-level (i.e., speech-act based) primitives

for communication (as well as general addressing mechanism such as
broadcast and multi-cast)?

A: JADE provides high level communication through FIPA ACL messages.
Moreover, it uses different low level communication mechanisms to
improve performance.

Multi-Agent Programming Languages, Platforms and Applications 550 / 1

JADE Summary

Underlying Computational Model

Q: Does the language support the design of mobile agents, and if so, which
kind of mobility (weak and/or strong)?

A: JADE supports mobile agents through a sort of enhanced weak mobility
that allows an agent to move from a node to another node only when its
execution reaches a stable state.

Multi-Agent Programming Languages, Platforms and Applications 551 / 1

JADE Summary

Simplicity

Q: How easy it is to use and understand the language?

A: This criteria is not appropriate, because JADE does not offer an own
language, but software libraries that allow the development of multi-agent
systems through the use of Java.

Multi-Agent Programming Languages, Platforms and Applications 552 / 1

JADE Summary

Preciseness
Q: Does the language have clear and precise semantics? How has it been

formalised?

A: This criteria is not appropriate for the same reason expressed in
Simplicity.

Multi-Agent Programming Languages, Platforms and Applications 553 / 1

JADE Summary

Expressiveness

Q: Is the language suitable for the implementation of a variety of
agent-oriented programs and applications or is it purpose-specific?

A: JADE has been developed and used to realize systems for different
application domains.

Multi-Agent Programming Languages, Platforms and Applications 554 / 1

JADE Summary

Extensiveness
Q: Does the language allow the definition of new language components from

the basic constructs in a systematic way?

A: This criteria is not appropriate for the same reason expressed in
Simplicity.

Multi-Agent Programming Languages, Platforms and Applications 555 / 1

JADE Summary

Verification
Q: Does your approach provide a clear path for the (formal) verification of

programs written in this language?

A: The current implementation of JADE does not offer any support for the
formal verification of programs developed by using the JADE software
libraries.

Multi-Agent Programming Languages, Platforms and Applications 556 / 1

JADE Summary

Software Engineering Principles

Q: Have Software Engineering and Programming Language principles, such
as abstraction, inheritance, modularity, overloading, information hiding,
error handling, generic programming, etc., been considered or adopted
within design of this language?

A: JADE offers the same software engineering and programming language
principles offered by the programming language used to implement it (i.e.,
Java).

Multi-Agent Programming Languages, Platforms and Applications 557 / 1

JADE Summary

Language Integration

Q: Does your approach deal with the possibility of integrating the language
with existing (well-known) programming language (e.g., Java)?

A: JADE and the multi-agent systems developed with it are written by using
Java.

Multi-Agent Programming Languages, Platforms and Applications 558 / 1

JADE Summary

Language Integration (continued)

Q: Can the language be interfaced with other programming languages, or
does it allow the invocation of methods/programs built using other
(classical) programming languages?

A: The agents of a JADE multi-agent system can interact with software
written in other programming languages by using either special agent
wrappers (in the case of non-agentized software) or messages exchange
(in the case of other FIPA compliant agents).

Multi-Agent Programming Languages, Platforms and Applications 559 / 1

JADE Summary

Platform

Deployment and Portability

Q: Does the platform provide material, such as documentation, tutorials or
training of any kind, installation and deployment guidelines, to help users
in deploying their systems?

A: JADE provides a rich set of documents (manuals and tutorials) and code
examples to help the user to install and use it. They are all available from
the official JADE Web site (http://jade.tilab.com).

Multi-Agent Programming Languages, Platforms and Applications 560 / 1

JADE Summary

Deployment and Portability (continued)

Q: Does the platform require a specific computing environment (computer
architecture, operating system, libraries, etc.) to be used / deployed?

A: JADE is written in Java. Therefore JADE multi-agent systems may run
on the operating systems for which a Java virtual machine is available. In
particular, the JADE run-time can be compiled for different Java profiles
allowing the execution of JADE multi-agent systems on a wide class of
devices ranging from servers to cell phones.

Multi-Agent Programming Languages, Platforms and Applications 561 / 1

JADE Summary

Standards Compliance

Q: To what extent does the platform adhere to the standards (FIPA, MASIF,
etc.) with respects to: general architecture, naming service, white- and
yellow-page services, mobility services, agent-life cycle management,
etc.?

A: JADE is FIPA compliant.

Multi-Agent Programming Languages, Platforms and Applications 562 / 1

JADE Summary

Platform Extensibility

Q: Can the platform be extended with additional functionality, for example
through Open Source collaboration?

A: The whole JADE source code is distributed under the LGPL open
source licence. Therefore both the extension of the platform and its use in
commercial products are allowed.

Multi-Agent Programming Languages, Platforms and Applications 563 / 1

JADE Summary

Available Tools
Q: What tools are provided by the platform for the management, monitoring,

logging and debugging of applications?

A: JADE users can manage an agent platform through the Remote
Management Agent and debug their agents through the Dummy Agent,
the Sniffer Agent, the Introspector Agent and the Log Manager Agent. All
these agents interact with their users through a graphical user interface.

Multi-Agent Programming Languages, Platforms and Applications 564 / 1

JADE Summary

Available Tools (continued)

Q: What documentation for on-line help, and manuals for the platform’s
installation, use, and maintenance are available?

A: JADE provides a rich documentation to help the user to install and use it.

Multi-Agent Programming Languages, Platforms and Applications 565 / 1

JADE Summary

Available Tools (continued)

Q: Are there tools for administration, management, and configuration of the
platform? Is an IDE provided?

A: JADE users can manage an agent platform through the Remote
Management Agent interacting with it through a graphical user interface.

Multi-Agent Programming Languages, Platforms and Applications 566 / 1

JADE Summary

Tool Integration

Q: In existing applications, what tools (e.g., JESS, web services, JSP) have
been integrated or are known to work well with applications running on
this platform ?

A: JADE permits an easy integration of external software and it was done
with success allowing, for example, the integration of JADE with: rules
engines (JESS and DROOLS), Web technologies (servlets, JSP and
applets) and ontology management tools (Protege and Jena).

Multi-Agent Programming Languages, Platforms and Applications 567 / 1

JADE Summary

Technical Interoperability

Q: Is an application aimed at running on this platform tied to a specific
programming language, specific architectures (e.g., .NET, J2EE), or are
there special operating system requirements?

A: JADE multi-agent systems must be written using Java, the only
constraint for the operating system is the availability of a Java virtual
machine.

Multi-Agent Programming Languages, Platforms and Applications 568 / 1

JADE Summary

Performance Issues
Q: What number of agents can be expected to run efficiently within a single

instance of the platform, what scale of number of messages can be
handled by the platform, etc.?

A: Given its architecture and the different communication mechanisms used,
JADE multi-agent systems may contain thousands of agents exchanging
a huge amount of messages.

Multi-Agent Programming Languages, Platforms and Applications 569 / 1

JADE Summary

Performance Issues (continued)

Q: What is the current state of the platform (simple prototype, available as a
commercial product, stable Open Source distribution, etc.)?

A: The different releases of the JADE software (including the last one: 3.2)
are stable and used in different research and application projects in
different part of the world. JADE is distributed under the LGPL open
source licence.

Multi-Agent Programming Languages, Platforms and Applications 570 / 1

JADE Summary

Multi-Agent Systems Features

Q: Does the platform support open multi-agent systems and heterogeneous
agents?

A: JADE allows the realization of open systems through the dynamic
federation of agent platforms. Agents of such federations may be
heterogeneous with the only constraint of being FIPA compliant.

Multi-Agent Programming Languages, Platforms and Applications 571 / 1

JADE Summary

Multi-Agent Systems Features (continued)

Q: Does the platform provide centralised or distributed control, and
hierarchical structure of agents?

A: Following the FIPA standard, JADE multi-agent systems use a
centralized control: each agent platform is controlled by the AMS.
However, JADE offers a fault tolerance mechanism that allows an agent
platform to survive the failure of its AMS.

Multi-Agent Programming Languages, Platforms and Applications 572 / 1

JADE Summary

Multi-Agent Systems Features (continued)

Q: Does the platform offer libraries for programming multi-agent systems
(libraries of interaction protocols, agent or group templates, reusable
agent or organisation components, etc.)?

A: Given that JADE agent system are realized by using Java, all its
components are reusable. Moreover, the JADE framework and its
comunity of users made available different software libraries and
“add-ons” that may be useful to realize agent systems in different
application sectors.

Multi-Agent Programming Languages, Platforms and Applications 573 / 1

JADE Summary

Applications Supported by the Language and Platform

Typical Examples

Q: What types of application have already been developed with this platform
(toy problems, real-world applications, industrial applications)? What are
the most prominent examples?

A: JADE has been used to realize both real and industrial applications.

Multi-Agent Programming Languages, Platforms and Applications 574 / 1

JADE Summary

Targeted Domains

Q: Is any particular domain of application (e.g., simulation, resource
allocation, mobile computation) targeted by your approach?

A: JADE applications cover different domains: collaborative work support,
e-learning, e-tourism, network management, entertainment, knowledge
management, manufacturing and supply-chain management and
simulation.

Multi-Agent Programming Languages, Platforms and Applications 575 / 1

JADE References

References I

Fabio Bellifemine.
Special Issue on JADE.
EXP in Search of Innovation, 3(3), 2003.

Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa.
Developing multi-agent systems with a FIPA-compliant agent framework.
Software Practice and Experience, 31(2):103–128, 2001.

Michael Berger, Steffen Rusitschka, Dmitri Toropov, Michael Watzke, and
Marc Schlichte.
The Development of the Lightweight Extensible Agent Platform.
EXP in Search of Innovation, 3(3):32–41, 2003.

Multi-Agent Programming Languages, Platforms and Applications 576 / 1

JADE References

References II

Brendan Berney and Elaine Ferneley.
CASMIR - A Community of Software Agents Collaborating in Order to
Retrieve Multimedia Data.
In Proc. of the third annual conference on Autonomous Agents, pages
428–429, 1999.

Phil Buckle, Tom Moore, Steve Robertshaw, Alan Treadway, Sasu
Tarkoma, and Stefan Poslad.
Scalability in Multi-agent Systems: The FIPA-OS Perspective.
In Mark d’Inverno, Michael Luck, Michael Fisher, and Chris Preist, editors,
Proc. Foundations and Applications of Multi-Agent Systems, volume 2403
of Lecture Notes in Computer Science, pages 110–130. Springer, 2002.

Keith Decker and Katia P. Sycara.
Intelligent adaptive information agents.
Journal on Intellent Information Systems, 9(3):239–260, 1997.

Multi-Agent Programming Languages, Platforms and Applications 577 / 1

JADE References

References III

Fabien Gandon, Agostino Poggi, Giovanni Rimassa, and Paola Turci.
Multi-Agent Corporate Memory Management System.
Applied Artificial Intelligence, 16(9-10):699–720, 2002.

Marco Mari, Alessandro Negri, Agostino Poggi, and Paola Turci.
Agent-Based Remote Assistance for Software Programming Activities.
In Proc. AI*IA Workshop on Artificial Intelligence & E-Learning, Perugia,
Italy, 2004.

Hyacinth S. Nwana, Divine T. Ndumu, Lyndon C. Lee, and Jaron C. Collis.
ZEUS: A Toolkit for Building Distributed Multiagent Systems.
Applied Artificial Intelligence, 13(1-2):129–185, 1999.

Multi-Agent Programming Languages, Platforms and Applications 578 / 1

JADE References

References IV

Martin Purvis, Mariusz Nowostawski, and Stephen Cranefield.
A multi-level approach and infrastructure for agent-oriented software
development.
In Proc. of the first international joint conference on Autonomous agents
and multiagent systems, pages 88–89, Bologna, Italy, 2002.

Auguste Rabarijoana, Rose Dieng, and Olivier Corby.
Exploitation of XML for Corporate Knowledge Management.
In Dieter Fensel and Rudi Studer, editors, EKAW, volume 1621 of Lecture
Notes in Computer Science, pages 373–378. Springer, 1999.

Multi-Agent Programming Languages, Platforms and Applications 579 / 1

JADEX

Abstract

This chapter presents Jadex , a software framework for the creation of goal-oriented agents
following the belief-desire-intention (BDI) model. The Jadex project aims to make the development
of agent based systems as easy as possible without sacrificing the expressive power of the agent
paradigm. The objective is to build up a rational agent layer that sits on top of a middleware agent
infrastructure and allows for intelligent agent construction using sound software engineering
foundations. Fostering a smooth transition from traditional distributed systems to the development
of multi-agent systems, well established object-oriented concepts and technologies such as Java
and XML are employed wherever applicable. Moreover, the Jadex reasoning engine tries to
overcome traditional limitations of BDI systems by introducing explicit goals. This allows goal
deliberation mechanisms being realized and additionally facilitates application development by
making results from goal-oriented analysis and design easily transferable to the implementation
layer. The system is freely available under LGPL license and provides extensive documentation as
well as illustrative example applications.

Multi-Agent Programming Languages, Platforms and Applications 581 / 1

JADEX

Keywords

BDI agents, FIPA standard, object-oriented software engineering, explicit
goals.

Authors
Alexander Pokahr, Lars Braubach and Winfried Lamersdorf

Multi-Agent Programming Languages, Platforms and Applications 582 / 1

JADEX Motivation

A numerousness of different agent platforms is available for developing
multi-agent applications.

Most of these platforms are developed with a specific technological
focus such as the cognitive or infrastructural architecture.

Not all aspects of agent technology are covered equally well.
General applicability of an agent platform for a great variety of
domains demands that at least three categories of requirements are
considered:

Openness;
Middleware;
Reasoning.

Multi-Agent Programming Languages, Platforms and Applications 583 / 1

JADEX Motivation

The existing platforms can be classified into two almost distinct groups:
FIPA-compliant platforms mainly address openness and middleware
issues by realizing the FIPA communication respectively platform
standards;
Reasoning-centered platforms exist, that focus on the behaviour model
of a single agent.

This gap between middleware and reasoning-centered systems is
one main motivation for the realization of the Jadex BDI
(Belief-Desire-Intention) reasoning engine.

Multi-Agent Programming Languages, Platforms and Applications 584 / 1

JADEX Motivation

The design of the system is driven by two main factors:

The development of the reasoning engine is accompanied by an
ongoing effort of enhancing the BDI architecture in general.
The system addresses shortcomings of earlier BDI agent systems
(explicit representation of goals, goal deliberation mechanisms).

The system respects the current state of the art regarding mainstream
object-oriented software engineering.
Agent development is based on established techniques such as Java
and XML, and is further supported by software engineering aspects, such
as reusable modules and development tools.

Multi-Agent Programming Languages, Platforms and Applications 585 / 1

JADEX Architecture

BDI Models and Systems

The BDI model was initially conceived by Bratman as a theory of
human practical reasoning.

Its success is based on its simplicity reducing the explanation framework
for complex human behavior to the motivational stance.

In this model, causes for actions are only related to desires ignoring
other facets of cognition such as emotions.

Another strength of the BDI model is the consistent usage of folk
psychological notions that closely correspond to the way people
communicate about human behavior.

Multi-Agent Programming Languages, Platforms and Applications 586 / 1

JADEX Architecture

The BDI theory of Rao and Georgeff defines belief, desires, and
intentions as mental attitudes represented as possible world states.

The intentions of an agent are subsets of the beliefs and desires.
Beliefs are represented explicitly.

Desires are reduced to events that are handled by predefined plan
templates.

Intentions are represented implicitly by the runtime stack of plans to
be executed.

Multi-Agent Programming Languages, Platforms and Applications 587 / 1

JADEX Architecture

Work on BDI can be further subdivided into three categories:
1 General models for practical reasoning, based on BDI concepts;
2 Computational models based on the “Intelligent Resource-Bounded

Machine Architecture”;
3 The computational model employed in the PRS family of systems.

Multi-Agent Programming Languages, Platforms and Applications 588 / 1

JADEX Architecture

Concepts within Jadex

Figure 32: Jadex abstract architecture

Multi-Agent Programming Languages, Platforms and Applications 589 / 1

JADEX Architecture

Concepts within Jadex
Beliefs

One objective of the Jadex project is the adoption of a software
engineering perspective for describing agents.

In other BDI systems, beliefs are represented in some kind of first-order
predicate logic (e.g. Jasonor using relational models (e.g. JACK and
JAM).
In Jadex , an object-oriented representation of beliefs is employed,
where:

Arbitrary objects can be stored as named facts (called beliefs);
Or named sets of facts (called belief sets).

Operations against the beliefbase can be issued in a descriptive
set-oriented query language.

Multi-Agent Programming Languages, Platforms and Applications 590 / 1

JADEX Architecture

The beliefbase is not only a passive data store, but takes an active part
in the agent’s execution, by monitoring belief state conditions.

Changes of beliefs may therefore directly lead to actions such as events
being generated or goals being created or dropped.

Multi-Agent Programming Languages, Platforms and Applications 591 / 1

JADEX Architecture

Concepts within Jadex
Goals

Goals are a central concept in Jadex , following the general idea that
goals are concrete, momentary desires of an agent.

For any goal it has, an agent will more or less directly engage into
suitable actions, until it considers the goal as being reached,
unreachable, or not wanted any more.

In other PRS-like systems, goals are represented by a special kind of
event.

In these systems the current goals of an agent are only implicitly available
as the causes of currently executing plans.

Multi-Agent Programming Languages, Platforms and Applications 592 / 1

JADEX Architecture

In Jadex , goals are represented as explicit objects contained in a
goalbase.

Because goals are represented separately from plans, the system can
retain goals that are not currently associated to any plan.

Jadex does not require that all adopted goals are consistent to each
other, as long as only consistent subsets of those goals are pursued at
any time.
To distinguish between just adopted and actively pursued goals, a goal
lifecycle is introduced which consists of the goal states:

Option;
Active;
Suspended.

Multi-Agent Programming Languages, Platforms and Applications 593 / 1

JADEX Architecture

When a goal is adopted, it becomes an option that is added to the agent’s
goalbase, either as top-level goal, or when created from a plan as
subgoal of a plan’s root goal.

Application specific goal deliberation settings specify dependencies
between goals, and are used for managing the state transitions of all
adopted goals (i.e. deciding which goals are active and which are just
options).

Some goals may only be valid in specific contexts determined by the
agent’s beliefs.

When the context of a goal is invalid, it will be suspended until the context
is valid again.

Multi-Agent Programming Languages, Platforms and Applications 594 / 1

JADEX Architecture

Figure 33: Goal lifecycle

Multi-Agent Programming Languages, Platforms and Applications 595 / 1

JADEX Architecture

Jadex supports four types of goals:

Perform goal is directly related to the execution of actions.
The goal is considered to be reached, when some actions have
been executed, regardless of the outcome of these actions;

Achieve goal is a goal in the traditional sense, which defines a desired world
state without specifying how to reach it.
Agents may try several different alternative plans, to achieve a
goal of this type;

Query goal The desired state is not a state of the (outside) world, but an
internal state of the agent;

Maintain goals An agent keeps track of a desired state, and will continuously
execute appropriate plans to re-establish this maintained state
whenever needed.

Multi-Agent Programming Languages, Platforms and Applications 596 / 1

JADEX Architecture

Concepts within Jadex
Plans

Plans represent the behavioural elements of an agent and are composed
of a head and a body part.

The plan head specification is similar to other BDI systems and mainly
specifies the circumstances under which a plan may be selected.

In the plan head a context condition can be stated that must be true for
the plan to continue executing.

The plan body provides a predefined course of action, given in a
procedural language.

Multi-Agent Programming Languages, Platforms and Applications 597 / 1

JADEX Architecture

Concepts within Jadex
Capabilities

Capabilities represent a grouping mechanism for the elements of a BDI
agent, such as beliefs, goals, plans, and events.

Closely related elements can be put together into a reusable module,
which encapsulates a certain functionality.

The enclosing capability of an element represents its scope, and an
element only has access to elements of the same scope.

To connect different capabilities, flexible import / export mechanisms can
be used that define the external interface of the capability.

Multi-Agent Programming Languages, Platforms and Applications 598 / 1

JADEX Architecture

Execution Model

Figure 34: Jadex execution model
Multi-Agent Programming Languages, Platforms and Applications 599 / 1

JADEX Language

Figure 35: Jadex agent

Multi-Agent Programming Languages, Platforms and Applications 600 / 1

JADEX Language

Specifications and Syntactical Aspects

The Jadex BDI metamodel defined in XML Schema is very extensive. Two
design principles:

1. Support for strong typing and explicit representation of all kinds of
elements (beliefs, goals or events):

This requires users to write detailed ADFs, but in return allows for more
rigorous consistency checking of agent models;
At runtime certain kinds of failures can be discovered more easily, e.g. the
attempt of storing a fact value in an undefined belief can be immediately
reported.

Multi-Agent Programming Languages, Platforms and Applications 601 / 1

JADEX Language

2. Increasing the expressive power of the ADF for the following
purposes:

The arbitrary complex creation of objects (e.g. values within beliefs or
parameters);
The description of boolean conditions (e.g. when a certain goal should be
dropped);
The construction of queries (e.g. for retrieving values from the beliefbase).

Multi-Agent Programming Languages, Platforms and Applications 602 / 1

JADEX Language

An embedded expression language is used for specifying parts of the
agent model, not easily represented in XML.

Expressions are used throughout the XML ADF, whenever values have
to be obtained for certain elements at runtime, e.g. values of beliefs,
conditions of goals, etc.

Expressions should be side effect free, because they are often
evaluated internally by the system.

The expression language has been designed to fully comply with the
syntax of Java expressions (right hand side of assignments) extended
with a subset of OQL (object query language) instructions.

Multi-Agent Programming Languages, Platforms and Applications 603 / 1

JADEX Language

01: select_expression ::= "SELECT" ("ALL" | "ANY" | "IOTA")?
02: (
03: expression "FROM" ("$" identifier "IN" expression) ("," "$" identifier "IN" expression)*
04: | "$" identifier "FROM" expression
05:)
06: ("WHERE" expression)?
07: ("ORDER" "BY" expression ("ASC" | "DESC")?)?

Example: SELECT $block FROM $beliefbase.blocks WHERE $block.isClear()

Figure 36: OQL syntax in EBNF and query example

It allows for query statements being created in the well-known select-from-where form,
whereby:

It can be additionally specified if exactly one (iota);
The first satisfying (any);
Or all satisfying results are expected.

(Line 1)
In the from clause (lines 3–4) it is specified from which object set (line 4) or joined sets
(line 3) results are generated.
The identifiers define variables, which iterate over the object sets specified as arbitrary
expressions.
These iterated values are checked against the boolean where condition (line 6) and can
possibly be ordered (line 7).

Multi-Agent Programming Languages, Platforms and Applications 604 / 1

JADEX Language

Figure 37: Agent metamodel specification fragment (XML-schema)

Multi-Agent Programming Languages, Platforms and Applications 605 / 1

JADEX Language

Specifications and Syntactical Aspects
Beliefs

In Jadex , beliefs are represented in an object-oriented way allowing
arbitrary Java objects being stored as facts.

Like all elements of a capability, beliefs and belief sets can be supplied
with a name, a description text and an exported flag.

Exporting an element makes it accessible from the outer scope
(respectively a capability or an agent) and is turned off by default.

For beliefs and belief sets, the Java class for facts must be defined.

Multi-Agent Programming Languages, Platforms and Applications 606 / 1

JADEX Language

Besides the type-relevant information, initial fact data can also be
supplied for configuring an agent’s mental state at creation time.

The value of a fact has to be stated in the expression language and
can be declared as static or dynamic.

Re-calculation of such dynamic facts occurs on access and additionally
in fixed time intervals (using the update rate).

At runtime, beliefs and belief sets are accessible from within plans via
operations on the beliefbase and additionally by issuing OQL-like
queries.

Multi-Agent Programming Languages, Platforms and Applications 607 / 1

JADEX Language

Specifications and Syntactical Aspects
Goals

Four different goal types are distinguished (perform, achieve, maintain
and query).

All these goal types are based on the generic life cycle and hence
exhibit many common properties that are summarized in an abstract
base goal type.

Creation, drop and context conditions can be specified as boolean
expressions.

Customization of goal types can be further achieved by defining
named in-, out- and inout-parameters that are used to transfer
information between a goal’s originator and its processing plans.

Multi-Agent Programming Languages, Platforms and Applications 608 / 1

JADEX Language

Binding parameters can be used for generating one goal instance for
every possible binding.
The runtime processing of goals can be refined using the various
BDI-flags, which inter alia control:

If a goal is retried when a plan fails (retry);
If meta-level reasoning is used (mlreasoning);
If applicable plans are tried sequentially or in parallel (posttoall).

Multi-Agent Programming Languages, Platforms and Applications 609 / 1

JADEX Language

Figure 38: Goal metamodel specification (XML-schema)

Multi-Agent Programming Languages, Platforms and Applications 610 / 1

JADEX Language

Specifications and Syntactical Aspects
Plans

The declaration of plans in Jadex is very similar to other PRS-like
systems and requires the specification of the plan heads describing
the circumstances under which a plan is applicable in the ADF.

As plan trigger, internal events, messages, and goals, as well as a belief
state condition (for data driven plans) can be provided.

The pre- and context condition of a plan can be specified as boolean
expressions.

Multi-Agent Programming Languages, Platforms and Applications 611 / 1

JADEX Language

To facilitate goal achievement with plans, it is sometimes advantageous
to create several different parametrized plan instances of a plan type
and try them one after another until a plan succeeds.

For this purpose, binding parameters can be specified and used for
plan configuration.

The selection of which plan is executed in response to an occurring
trigger can be adjusted by setting a priority value.

As part of the initial mental state of an agent, it can be further declared
whether a plan is instantiated when the agent is created (using the
instant flag).

Multi-Agent Programming Languages, Platforms and Applications 612 / 1

JADEX Language

The plan body needs to be supplied as expression for the creation of
a suitable plan instance.
Two different types of plan bodies are supported, which both require a
Java class to be implemented:

1 Standard plan bodies;
2 Mobile plan bodies.

Multi-Agent Programming Languages, Platforms and Applications 613 / 1

JADEX Language

01: /** Plan skeleton for an application plan. */
02: public class SomePlan extends jadex.runtime.Plan {
03:
04: public void body() {
05: // Plan code.
06: }
07:
08: public void passed() {
09: // Optional cleanup code in case of a plan success.
10: }
11: public void failed() {
12: // Optional cleanup code in case of a plan failure.
13: }
14: public void aborted() {
15: // Optional cleanup code in case the plan is aborted.
16: }
17: }

Figure 39: Plan skeleton

Multi-Agent Programming Languages, Platforms and Applications 614 / 1

JADEX Language

Software Engineering Issues

The overall goal of the Jadex project is to provide a sophisticated
reasoning engine allowing to develop arbitrary complex intelligent
agents.

Therefore, while trying to be as easily useable as possible, the system
does not sacrifice expressiveness for simplicity.

Software engineering issues play an important role in the design of
the system.

A primary goal of the project is to facilitate a smooth transition from
mainstream object-oriented software development to an
agent-oriented approach.

This is achieved by resorting to established techniques wherever
possible.

Another advantage is that the developer can continue to operate in a
familiar environment.

Multi-Agent Programming Languages, Platforms and Applications 615 / 1

JADEX Language

The system provides advanced software engineering features, such as
reusability and consistency checking.

The capability concept allows encapsulating agent functionality into
a reusable module while maintaining the abstraction level of BDI
elements.

The explicit specification and strong typing of beliefs, goals, etc. facilitates
consistency checks of ADFs to detect errors (e.g. spelling mistakes) as
early as possible.

Multi-Agent Programming Languages, Platforms and Applications 616 / 1

JADEX Language

Example

Figure 40: Blocksworld scenario

Multi-Agent Programming Languages, Platforms and Applications 617 / 1

JADEX Language

Figure 41: Goal/plan tree

Multi-Agent Programming Languages, Platforms and Applications 618 / 1

JADEX Language

Example
ADF of the agent

01: <agent name="Blocksworld" package="jadex.examples.blocksworld">
02: <imports>
03: <import>java.awt.Color</import>
04: </imports>
05:
06: <beliefs>
07: <belief name="table" class="Table">
08: <fact>new Table()</fact>
09: </belief>
10: <beliefset name="blocks" class="Block">
11: <fact>new Block(new Color(240,16,16),$beliefbase.table)</fact>
12: <fact>new Block(new Color(16,16,240),$beliefbase.table.allBlocks[0])</fact>
13: <fact>new Block(new Color(240,240,16),$beliefbase.table.allBlocks[1])</fact>
14: ...
15: </beliefset>
16: </beliefs>
17:

Figure 42: Blocksworld agent model

Multi-Agent Programming Languages, Platforms and Applications 619 / 1

JADEX Language

18: <goals>
19: <achievegoal name="clear">
20: <parameter name="block" class="Block" />
21: <targetcondition>$goal.block.isClear()</targetcondition>
22: </achievegoal>
23: <achievegoal name="stack">
24: <parameter name="block" class="Block" />
25: <parameter name="target" class="Block" />
26: <targetcondition>$goal.block.lower==$goal.target</targetcondition>
27: </achievegoal>
28: <achievegoal name="configure">
29: <parameter name="configuration" class="Table" />
30: <targetcondition>
31: $beliefbase.table.configurationEquals($goal.configuration)
32: </targetcondition>
33: </achievegoal>
34: </goals>
35:

Figure 43: Blocksworld agent model

Multi-Agent Programming Languages, Platforms and Applications 620 / 1

JADEX Language

36: <plans>
37: <plan name="stack">
38: <body>new StackBlocksPlan($event.goal.block, $event.goal.target)</body>
39: <trigger><goal ref="stack"/></trigger>
40: </plan>
41: <plan name="configure">
42: <body>new ConfigureBlocksPlan($event.goal.configuration)</body>
43: <trigger><goal ref="configure"/></trigger>
44: </plan>
45: <plan name="clear">
46: <bindings>
47: <binding name="upper">
48: select $upper from $beliefbase.blocks where $upper.lower==$event.goal.block
49: </binding>
50: </bindings>
51: <body>new StackBlocksPlan($upper, $beliefbase.table)</body>
52: <trigger><goal ref="clear"/></trigger>
53: </plan>
54: </plans>
55: </agent>

Figure 44: Blocksworld agent model

Multi-Agent Programming Languages, Platforms and Applications 621 / 1

JADEX Language

Example
Java code for StackBlocksPlan

01: package jadex.examples.blocksworld;
02: import jadex.runtime.*;
03:
04: /** Plan to stack one block on top of another target block. */
05: public class StackBlocksPlan extends Plan {
06: protected Block block;
07: protected Block target;
08:
09: public StackBlocksPlan(Block block, Block target) {
10: this.block = block;
11: this.target = target;
12: }
13:

Figure 45: Java code for StackBlocksPlan

Multi-Agent Programming Languages, Platforms and Applications 622 / 1

JADEX Language

14: public void body() {
15: IGoal clear = createGoal("clear");
16: clear.getParameter("block").setValue(block);
17: dispatchSubgoalAndWait(clear);
18:
19: clear = createGoal("clear");
20: clear.getParameter("block").setValue(target);
21: dispatchSubgoalAndWait(clear);
22:
23: block.stackOn(target);
24: }
25: }

Figure 46: Java code for StackBlocksPlan

Multi-Agent Programming Languages, Platforms and Applications 623 / 1

JADEX Language

Example
Java code for ConfigureBlocksPlan

01: package jadex.examples.blocksworld;
02: import jadex.runtime.*;
03:
04: /** Plan to to establish a given configuration of blocks. */
05: public class ConfigureBlocksPlan extends Plan {
06: protected Table table;
07:
08: public ConfigureBlocksPlan(Table table) {
09: this.table = table;
10: }

Figure 47: Java code for ConfigureBlocksPlan

Multi-Agent Programming Languages, Platforms and Applications 624 / 1

JADEX Language

11:
12: public void body() {
13: Block[][] stacks = table.getStacks();
14: for(int i=0; i<stacks.length; i++) {
15: for(int j=0; j<stacks[i].length; j++) {
16: Block block=(Block)getBeliefbase().getBeliefSet("blocks").getFact(stacks[i][j]);
17: Block target=stacks[i][j].getLower()==table
18: ?(Table)getBeliefbase().getBelief("table").getFact()
19: :(Block)getBeliefbase().getBeliefSet("blocks").getFact(stacks[i][j].getLower());
20:
21: IGoal stack = createGoal("stack");
22: stack.getParameter("block").setValue(block);
23: stack.getParameter("target").setValue(target);
24: dispatchSubgoalAndWait(stack);
25: }
26: }
27: }
28: }

Figure 48: Java code for ConfigureBlocksPlan

Multi-Agent Programming Languages, Platforms and Applications 625 / 1

JADEX Platform

Figure 49: System realization

Multi-Agent Programming Languages, Platforms and Applications 626 / 1

JADEX Platform

Available tools and documentation

The system distribution contains complete documentation materials
for quick start and reference purposes.

An introductory tutorial made up of several exercises shows the usage
of basic system features in a step-by-step manner.

The distribution provides several example applications including their
commented source code.

A user guide provides a systematic overview of all features and also
serves as a reference manual.

Javadocs of the plan programming API and a reference to the
metamodel defined in XML Schema are provided.

Multi-Agent Programming Languages, Platforms and Applications 627 / 1

JADEX Platform

The available tools are covered in a separate guide.
There are publicly available online tools kindly hosted by
SourceForge.net, such as:

Web forums for discussion and support requests;
A database for bug-reports and feature requests;
A general mailing list with online archives.

Multi-Agent Programming Languages, Platforms and Applications 628 / 1

JADEX Platform

Figure 50: BDI introspector and logger screenshots

Multi-Agent Programming Languages, Platforms and Applications 629 / 1

JADEX Platform

All runtime tools provided by the JADE platform such as Sniffer and
Dummy agent can also be used with Jadex agents.

To enable a comfortable testing of the internals of Jadex agents
additional tool agents have been developed.

In Fig. ?? an example application (marsworld) is depicted together with
the logger and introspector tools in a typical debugging session.

Multi-Agent Programming Languages, Platforms and Applications 630 / 1

JADEX Platform

The BDI introspector (Fig.?? bottom left and right hand side) serves
two purposes:

It supports the visualization and modification of the internal BDI
concepts thus allowing inspection and reconfiguration of an agent at
runtime.
It simplifies debugging through a facility for the stepwise agent execution.

In the step mode, it is possible to observe and control each event
processing and plan execution step having detailed control over the
dispatcher and scheduler.

It can be easily figured out what plans are selected for a given event or
goal.

Multi-Agent Programming Languages, Platforms and Applications 631 / 1

JADEX Platform

With the help of the logger (see Fig.?? on the top right) the agent’s
outputs can be directed to a single point of responsibility at runtime.

In contrast to simple console outputs, the logger agent preserves
additional information about the output such as its time stamp and its
source (the agent and method).

Using these artifacts the logger agent offers facilities for filtering and
sorting messages by various criteria allowing a personalized view to be
created.

Multi-Agent Programming Languages, Platforms and Applications 632 / 1

JADEX Platform

A tracer tool for on-line visualization of agent execution based on
ideas from is provided.

It generates a unified view of multi-agent and internal agent
behaviour, relating message-based communication and internal agent
processes.

The Jadexdoc tool allows generating documentation of agent
applications similar to Javadoc.

In addition to these tools already included in the latest release, a tool for
multi-agent application deployment is currently in development.

Multi-Agent Programming Languages, Platforms and Applications 633 / 1

JADEX Platform

Standards compliance, interoperability and portability

One driving factor for the development of Jadex was the need for a
FIPA-compliant platform supporting advanced BDI reasoning
capabilities.

FIPA-compliance is achieved through the JADE platform, which
provides sophisticated implementations of all important FIPA
specifications.

The Jadex reasoning engine, realized on top of the JADE platform, in
itself only supports homogeneous (i.e. BDI) agents, but provides
interoperability with agents based on other models.

Multi-Agent Programming Languages, Platforms and Applications 634 / 1

JADEX Platform

Agents realized using the conventional JADE programming techniques
can be executed directly together with Jadex agents running on the same
platform.

Interoperability with other kinds of agents is straightforward as long as
those agents adhere to the FIPA standard.

Multi-Agent Programming Languages, Platforms and Applications 635 / 1

JADEX Platform

Figure 51: Platform integration

Multi-Agent Programming Languages, Platforms and Applications 636 / 1

JADEX Platform

The reasoning engine has been realized as a separate component,
intentionally limiting the dependencies to the underlying platform.

To use the reasoning engine on top of other platforms, an adapter has to
be realized.

This adapter has to implement a handful of methods used by the Jadex
engine (e.g. to send messages) and has to call the engine when it is
expected to do the reasoning.

Multi-Agent Programming Languages, Platforms and Applications 637 / 1

JADEX Platform

Therefore, although the current implementation is designed to be used
with JADE , the reasoning engine can be easily integrated with other
FIPA-compliant agent platforms such as CAPA or ADK, given that they
provide a similar interface for message handling.

It is also possible to use the system in conjunction with other middleware
environments such as J2EE or .NET, when FIPA-compliance is not
needed.

Currently, in addition to the JADE integration, we have developed
experimental adapters for the DIET agent platform and for running a set
of Jadex agents as a standalone Java application.

Multi-Agent Programming Languages, Platforms and Applications 638 / 1

JADEX Platform

The engine was realized in Java 1.4 and includes the third party
packages JBind for XML data binding and Apache Velocity for generating
the content of some tool dialogs.

To support mobile devices, a port of the engine is also available in a
reduced version based on J2ME / CDC.

Moreover, all kinds of tools and libraries with a Java API can easily be
used to provide additional features.

For example, in a larger project the Cayenne database mapping
framework was used to connect agents to a relational database.

Multi-Agent Programming Languages, Platforms and Applications 639 / 1

JADEX Applications

Jadex is a general-purpose development environment for creating
multi-agent system applications, allowing to build agents with reactive
(event-based) and deliberative (goal-driven) behaviour.

It is not bound to a specific target domain, but has been used to realize
applications in different domains such as simulation, scheduling, and
mobile computation.

Jadex originated in the MedPAge (“Medical Path Agents”) project, which
is part of the German priority research programme 1083 Intelligent
Agents in Real-World Business Applications funded by the Deutsche
Forschungsgemeinschaft (DFG).

In cooperation with the business management department of the
University of Mannheim, the project investigates the advantages of using
agent technology in the context of hospital logistics.

Multi-Agent Programming Languages, Platforms and Applications 640 / 1

JADEX Applications

In this project Jadex is used to realize a multi-agent application for
market-based negotiation of treatment schedules, as well as for the
simulation of a hospital model to test the negotiation mechanism.

In other contexts, Jadex was used to realize portable PDA-based
applications.

A personal mobile task planner was developed, to test the Jadex J2ME
port and to prove the usefulness of BDI agents on mobile devices.

Elsewhere, in the PITA (“Personal Intelligent Travel Assistant”) project at
the Delft University of Technology, Jadex was used to realize a prototype
of a mobile personal travel assistant application

Multi-Agent Programming Languages, Platforms and Applications 641 / 1

JADEX Applications

Besides building specific agent applications, Jadex has also been used
for teaching and research regarding agent oriented software development
in general.

Due to its simple language based on well-known technologies such as
Java and XML, and the extensive documentation material and illustrative
example applications, Jadex is well suited for teaching purposes.

It has been successfully applied in several courses at the University of
Hamburg, and is also evaluated by other institutes.

Regarding research in agent systems, the project is also designed as a
means for researchers to further investigate which mentalistic concepts
are appropriate in the design and implementation of agent systems.

Multi-Agent Programming Languages, Platforms and Applications 642 / 1

JADEX Applications

The combination of XML Schema with Java databinding techniques
allows the Jadex metamodel to be flexibly adapted and extended for
experimentation purposes.

While investigating different representations for beliefs, goals and plans,
the system has been applied to several well-known AI problem domains
(blocksworld, cleanerworld, mars robots, hunter-prey).

These applications are also included in the distribution.

Moreover, the Technical University of Karlsruhe has used Jadex to
implement an experimental system for representing norms in multi-agent
systems.

Multi-Agent Programming Languages, Platforms and Applications 643 / 1

JADEX Summary

Agent-Oriented Programming Language

Functionality

Q: Does the language support various agent concepts such as, mental
attitudes, deliberation, adaptation, social abilities, and reactive as well as
cognitive-based behaviour?

A: Reactive and deliberative behaviour is supported based on the BDI model
and the corresponding mental attitudes. In addition to the basic BDI
interpreter known from PRS systems, an explicit representation of goals
is provided.

Multi-Agent Programming Languages, Platforms and Applications 644 / 1

JADEX Summary

Communication
Q: Does the language provide high-level (i.e., speech-act based) primitives

for communication (as well as general addressing mechanism such as
broadcast and multi-cast)?

A: FIPA-compliant speech-act based communication is provided by the
underlying JADE platform.

Multi-Agent Programming Languages, Platforms and Applications 645 / 1

JADEX Summary

Underlying Computational Model

Q: Does the language support the design of mobile agents, and if so, which
kind of mobility (weak and/or strong)?

A: Weak mobility is provided by the underlying JADE platform. When
developing mobile agents, some features of the system (e.g.
thread-based plans) are not available.

Multi-Agent Programming Languages, Platforms and Applications 646 / 1

JADEX Summary

Simplicity

Q: How easy it is to use and understand the language?

A: The language is easy to learn, as it is based on well-known technologies
such as Java and XML. Experiments with students have shown that new
users are quickly able to develop their first agents.

Multi-Agent Programming Languages, Platforms and Applications 647 / 1

JADEX Summary

Preciseness
Q: Does the language have clear and precise semantics? How has it been

formalised?

A: No formal semantics is available.

Multi-Agent Programming Languages, Platforms and Applications 648 / 1

JADEX Summary

Expressiveness

Q: Is the language suitable for the implementation of a variety of
agent-oriented programs and applications or is it purpose-specific?

A: The language is very general and allows creating different kinds of agent
applications.

Multi-Agent Programming Languages, Platforms and Applications 649 / 1

JADEX Summary

Extensiveness
Q: Does the language allow the definition of new language components from

the basic constructs in a systematic way?

A: The system does not define a new language for programming agent
behaviour, but instead makes BDI-specific agent facilities available as
application program interface (API). Hence, the BDI feature set can be
easily extended.

Multi-Agent Programming Languages, Platforms and Applications 650 / 1

JADEX Summary

Verification
Q: Does your approach provide a clear path for the (formal) verification of

programs written in this language?

A: No path to formal verification is provided.

Multi-Agent Programming Languages, Platforms and Applications 651 / 1

JADEX Summary

Software Engineering Principles

Q: Have Software Engineering and Programming Language principles, such
as abstraction, inheritance, modularity, overloading, information hiding,
error handling, generic programming, etc., been considered or adopted
within design of this language?

A: The XML language enforces strong typing. The plan language inherits
the software engineering and programming language principles of Java.
In addition, reusability is supported by the definition of agent-modules
called capabilities.

Multi-Agent Programming Languages, Platforms and Applications 652 / 1

JADEX Summary

Language Integration

Q: Does your approach deal with the possibility of integrating the language
with existing (well-known) programming language (e.g., Java)?

A: Embedding the agent language into a general-purpose language is not
necessary, because the system cleanly separates the definition of an
agent’s structure and the definition of agent behaviour. The structure of
an agent is defined in a system specific XML dialect following a
BDI-metamodel, while the agent behavior is realized as plans coded
directly in the general-purpose programming language Java.

Multi-Agent Programming Languages, Platforms and Applications 653 / 1

JADEX Summary

Language Integration (continued)

Q: Can the language be interfaced with other programming languages, or
does it allow the invocation of methods/programs built using other
(classical) programming languages?

A: The default plan language is Java and therefore allows accessing any
other application code or third party library written in Java. In addition, it is
possible to define wrappers that allow executing plans written in other
(e.g. visual) languages.

Multi-Agent Programming Languages, Platforms and Applications 654 / 1

JADEX Summary

Platform

Deployment and Portability

Q: Does the platform provide material, such as documentation, tutorials or
training of any kind, installation and deployment guidelines, to help users
in deploying their systems?

A: The documentation includes an introductory tutorial, a user guide, which
also serves as a reference manual, and a guide to the available tools.
Javadocs of the plan programming API, and a reference to the
metamodel defined in XML Schema are provided, and the distribution
includes several example applications with source.

Multi-Agent Programming Languages, Platforms and Applications 655 / 1

JADEX Summary

Deployment and Portability (continued)

Q: Does the platform require a specific computing environment (computer
architecture, operating system, libraries, etc.) to be used / deployed?

A: The system is based on Java 1.4, and requires a host agent platform such
as JADE (which is currently supported best). The distribution includes
the third party packages JBind for XML databinding, Apache Velocity for
generating the content of some tool dialogs, and the TouchGraph
GraphLayout component for visualizing traces of agent execution.

Multi-Agent Programming Languages, Platforms and Applications 656 / 1

JADEX Summary

Standards Compliance

Q: To what extent does the platform adhere to the standards (FIPA, MASIF,
etc.) with respects to: general architecture, naming service, white- and
yellow-page services, mobility services, agent-life cycle management,
etc.?

A: The system complies with the FIPA-standards as implemented by JADE
.

Multi-Agent Programming Languages, Platforms and Applications 657 / 1

JADEX Summary

Platform Extensibility

Q: Can the platform be extended with additional functionality, for example
through Open Source collaboration?

A: The system is Open Source and carefully designed and documented to
allow easy and flexible extension of the provided functionality.

Multi-Agent Programming Languages, Platforms and Applications 658 / 1

JADEX Summary

Available Tools
Q: What tools are provided by the platform for the management, monitoring,

logging and debugging of applications?

A: In addition to the tools provided by the JADE platform such as Sniffer
and Dummy Agent, the system supplies an introspector tool to inspect an
agent at runtime, and to execute agents step-by-step. A logger agent
allows to collect, filter, and view logging outputs and a tracer agent
visualizes event traces produced by the different agents of a multi-agent
application. The Jadexdoc tool generates documentation for an agent
application.

Multi-Agent Programming Languages, Platforms and Applications 659 / 1

JADEX Summary

Available Tools (continued)

Q: What documentation for on-line help, and manuals for the platform’s
installation, use, and maintenance are available?

A: Apart from the documentation material included in the distribution (e.g.
user guide and tutorial), there are publicly available web forums for
discussion and support requests, a database for bug-reports and feature
requests, and a general mailing list with online archives.

Multi-Agent Programming Languages, Platforms and Applications 660 / 1

JADEX Summary

Available Tools (continued)

Q: Are there tools for administration, management, and configuration of the
platform? Is an IDE provided?

A: No additional tools (apart from those provided by JADE) are yet
available, but a tool for multi-agent system deployment is currently in
development.

Multi-Agent Programming Languages, Platforms and Applications 661 / 1

JADEX Summary

Tool Integration

Q: In existing applications, what tools (e.g., JESS, web services, JSP) have
been integrated or are known to work well with applications running on
this platform ?

A: All kinds of tools and libraries with a Java API can be used within Jadex .
For example, in a larger project the Cayenne database-mapping
framework was used to connect agents to a relational database.

Multi-Agent Programming Languages, Platforms and Applications 662 / 1

JADEX Summary

Technical Interoperability

Q: Is an application aimed at running on this platform tied to a specific
programming language, specific architectures (e.g., .NET, J2EE), or are
there special operating system requirements?

A: Although its current implementation is targeted to run on top of JADE ,
the reasoning engine provides a general integration mechanism, and is
designed to be used on top of any existing middleware. Therefore, it can
be easily ported to other FIPA-compliant agent platforms such as CAPA
or ADK and to other middleware environments such as J2EE or .NET.

Multi-Agent Programming Languages, Platforms and Applications 663 / 1

JADEX Summary

Performance Issues
Q: What number of agents can be expected to run efficiently within a single

instance of the platform, what scale of number of messages can be
handled by the platform, etc.?

A: The performance of the system regarding the number of agents and
messages is bounded by the performance of the underlying platform (e.g.
JADE). The computation cost induced by the reasoning engine highly
depends on the complexity of the agents.

Multi-Agent Programming Languages, Platforms and Applications 664 / 1

JADEX Summary

Performance Issues (continued)

Q: What is the current state of the platform (simple prototype, available as a
commercial product, stable Open Source distribution, etc.)?

A: The system is available as stable Open Source distribution and has
already been used in several 3rd party projects. Nevertheless, the set of
features is continuously evolving, and compatibility between releases is
not guaranteed.

Multi-Agent Programming Languages, Platforms and Applications 665 / 1

JADEX Summary

Multi-Agent Systems Features

Q: Does the platform support open multi-agent systems and heterogeneous
agents?

A: The system realizes a specific internal agent architecture, and therefore
itself does not address heterogeneity, but it is possible to run Jadex
agents on the same platform as other JADE agents. Openness is
supported in principle through FIPA-compliant communication, but not
especially facilitated by the design of the system.

Multi-Agent Programming Languages, Platforms and Applications 666 / 1

JADEX Summary

Multi-Agent Systems Features (continued)

Q: Does the platform provide centralised or distributed control, and
hierarchical structure of agents?

A: Jadex agents use the distributed or centralized control structures
provided by the underlying platform (e.g. JADE). A hierarchical
structure of agents is not supported, but agents can be decomposed into
hierarchically structured modules, which are similar to agents, but do not
have their own reasoning process.

Multi-Agent Programming Languages, Platforms and Applications 667 / 1

JADEX Summary

Multi-Agent Systems Features (continued)

Q: Does the platform offer libraries for programming multi-agent systems
(libraries of interaction protocols, agent or group templates, reusable
agent or organisation components, etc.)?

A: The system includes a ready-to-use module for communication with a
directory facilitator (DF) and for using simple FIPA interaction protocols
(e.g. request).

Multi-Agent Programming Languages, Platforms and Applications 668 / 1

JADEX Summary

Applications Supported by the Language and Platform

Typical Examples

Q: What types of application have already been developed with this platform
(toy problems, real-world applications, industrial applications)? What are
the most prominent examples?

A: The system has been used mainly in research projects and teaching
courses, e.g. to realize a multi-agent application for market-based
negotiation of patient treatment dates, as well as for the simulation of a
hospital model. The system has also been applied in mobile
environments and to some well-known AI problem domains such as
blocksworld and cleanerworld.

Multi-Agent Programming Languages, Platforms and Applications 669 / 1

JADEX Summary

Targeted Domains

Q: Is any particular domain of application (e.g., simulation, resource
allocation, mobile computation) targeted by your approach?

A: The system is general purpose and not bound to a particular application
domain.

Multi-Agent Programming Languages, Platforms and Applications 670 / 1

JADEX References

References I

M. Beelen.
Personal Intelligent Travelling Assistant: a distributed approach.
Master of science thesis, Knowledge Based Systems group, Delft
University of Technology, 2004.

L. Braubach, A. Pokahr, K.-H. Krempels, and W. Lamersdorf.
Deployment of Distributed Multi-Agent Systems.
In Fifth International Workshop on Engineering Societies in the Agents
World (ESAW 2004), 2004.

L. Braubach, A. Pokahr, W. Lamersdorf, K.-H. Krempels, and P.-O. Woelk.
A Generic Simulation Service for Distributed Multi-Agent Systems.
In From Agent Theory to Agent Implementation (AT2AI’04), 2004.

Multi-Agent Programming Languages, Platforms and Applications 671 / 1

JADEX References

References II

L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf.
Goal Representation for BDI Agent Systems.
In Proceedings of the Second Workshop on Programming Multiagent
Systems: Languages, frameworks, techniques, and tools (ProMAS04),
2004.

P. Busetta, N. Howden, R. Rönnquist, and A. Hodgson.
Structuring BDI Agents in Functional Clusters.
In N. R. Jennings and Y. Lespérance, editors, Intelligent Agents VI,
Proceedings of the 6th International Workshop, Agent Theories,
Architectures, and Languages (ATAL) ’99, pages 277–289. Springer, 2000.

Multi-Agent Programming Languages, Platforms and Applications 672 / 1

JADEX References

References III

M. Duvigneau, D. Moldt, and H. Rölke.
Concurrent Architecture for a Multi-agent Platform.
In F. Giunchiglia, J. Odell, and G. Weiß, editors, Agent-Oriented Software
Engineering III. Third International Workshop, AOSE 2002, Bologna, Italy,
July 2002. Revised Papers and Invited Contributions, pages 59–72.
Springer, 2003.

E. Norling.
Folk Psychology for Human Modelling: Extending the BDI Paradigm.
In Proceedings of in the Third International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), Ney York,
USA, July 2004.

Multi-Agent Programming Languages, Platforms and Applications 673 / 1

JADEX References

References IV

T. O. Paulussen, N. R. Jennings, K. S. Decker, and A. Heinzl.
Distributed Patient Scheduling in Hospitals.
In G. Gottlob and T. Walsh, editors, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI-03). Morgan
Kaufmann, 2003.

T. O. Paulussen, A Zöller, A. Heinzl, A. Pokahr, L. Braubach, and
W. Lamersdorf.
Dynamic Patient Scheduling in Hospitals.
In M. Bichler, C. Holtmann, S. Kirn, J. MÃ 1

4 ller, and C. Weinhardt, editors,
Coordination and Agent Technology in Value Networks. GITO, Berlin,
2004.

A. Pokahr, L. Braubach, and W. Lamersdorf.
Jadex: Implementing a BDI-Infrastructure for JADE Agents.
EXP – in search of innovation, 3(3):76–85, 2003.

Multi-Agent Programming Languages, Platforms and Applications 674 / 1

JACK

Abstract
Software agents offer a range of benefits to the development of complex
software systems. However, before these benefits can be realised by the
computing industry there is a need for an agent platform that can be accepted
by industry. In this paper we describe the JACK agent platform: a mature and
robust commercial product. We argue that JACK meets requirements such
as familiarity, scalability and integratibility which make it suitable for adoption
by industry. We also describe interesting features of JACK such as the use of
capabilities for structuring agents, and JACK ’s approach to teamwork which
allows hierarchical team structures.

Multi-Agent Programming Languages, Platforms and Applications 676 / 1

JACK

Keywords

Agent Oriented Programming Language, Belief-Desire-Intention, Agent
Platform.

Author
Michael Winikoff

Multi-Agent Programming Languages, Platforms and Applications 677 / 1

JACK Motivation

Software agents offer a range of potential benefits to the development
and deployment of complex software systems:

Increased flexibility and adaptability;
More natural models of complex “nearly decomposable” systems.

These benefits stem from the combination of features that are generally
considered to be associated with intelligent software agents:

Autonomous;
Proactive;
Reactive;
Social.

Multi-Agent Programming Languages, Platforms and Applications 678 / 1

JACK Motivation

Some argue that because agents are autonomous they reduce
coupling.

Some focus on the use of plans and goals in Belief-Desire-Intention
(BDI) agents (and similar platforms), arguing that the resulting number
of ways in which a goal can be achieved gives agents flexibility in
dealing with situations, and robustness in recovering from various types
of failure.

Others argue that aspects of agents (e.g., autonomy, flexibility) are
already being adopted by mainstream software engineering, and that
this is evidence that these aspects are useful to modern software
systems.

Multi-Agent Programming Languages, Platforms and Applications 679 / 1

JACK Motivation

In order for these benefits to be realisable by the computing industry, a
number of key technological pieces are required.

One of the key pieces is a methodology (including concepts, notations, a
process and techniques) that guides practitioners in designing agent
systems.
A number of methodologies have been developed:

Gaia;
Tropos;
Prometheus;
MaSE;
ROADMAP.

Multi-Agent Programming Languages, Platforms and Applications 680 / 1

JACK Motivation

A second key piece of technology is an agent platform which can be used to
create agent systems.
We believe that an agent platform needs to contain at least the following
components:

An agent-oriented programming language that allows agents to be
written directly using agent concepts (e.g., plans, goals, beliefs), rather
than encoded in non-agent-oriented languages.

A library or framework providing facilities for inter-agent
communication including facilities for transmitting and receiving
messages, and for locating agents (e.g., a name server).

Multi-Agent Programming Languages, Platforms and Applications 681 / 1

JACK Motivation

JACKTMIntelligent Agents (JACK) is an agent platform that includes
these components and more.
JACK includes:

An agent-oriented programming language;
A platform for executing agents with infrastructure such as message
marshalling and a name server;
Development tools including a design tool, a graphical plan editor and
a number of debugging views;
A number of additional functionalities such as the ability to construct
hierarchical teams of agents.

Multi-Agent Programming Languages, Platforms and Applications 682 / 1

JACK Motivation

We believe that to be acceptable to industry an agent platform must be:

Familiar;

Integratable;

Scalable;

Industrial Strength (Robust, Stable, Efficient);

Documented and Supported.

Additionally, it is important for the agent platform to provide development
tools and debugging tools.

Multi-Agent Programming Languages, Platforms and Applications 683 / 1

JACK Language

The JACK programming language extends Java in a number of ways,
both syntactic and semantic.

The JACK language is a superset of the Java programming
language, so all of Java’s libraries and facilities are easily accessible.

Multi-Agent Programming Languages, Platforms and Applications 684 / 1

JACK Language

Specifications and Syntactical Aspects

Syntactically, JACK extends Java in three ways:
1 JACK adds new top-level declaration types which are used to declare

agents, beliefsets, views, events, plans and capabilities.
2 Each of the top-level types is defined using various # declarations which

define the properties of the entity and relationships between entities.
3 Within plan bodies JACK defines a range of @ statements such as:

Posting an event (e.g., @post);
Waiting for a condition (@wait_for);
Some of the @ statements defined by JACK are listed in figure ??.

Multi-Agent Programming Languages, Platforms and Applications 685 / 1

JACK Language

@post, @subtask – simple event posting within an agent. @post is asynchronous,
whereas @subtask waits for the event processing to finish before continuing.
@send, @reply – inter-agent communication.
@achieve, @insist – post a (goal) event under certain conditions.
@achieve(condition,goal_event) checks whether the condition holds, and posts
the event if it doesn’t. @insist(condition,goal_event) is similar, but also checks
whether the condition holds after the processing triggered by the event has finished. If
not, the event is posted again.
@maintain – checks for condition while handling event.
@maintain(condition,event) will subtask the event, but will monitor the condition
while the event processing runs. If the condition becomes false the plans that handled
the event are aborted.
@sleep, @wait_for – do nothing for a certain amount of time (@sleep) or until a
certain condition is true (@wait_for).

Figure 52: Some statements provided by JACK

Multi-Agent Programming Languages, Platforms and Applications 686 / 1

JACK Language

public plan ProcessRequest extends Plan {
#handles event Request req;
#sends event Response resp;

context() {
req.isValid;

}

#reasoning method body() {
// Can contain Java code as well
// as JACK @-statements
...
@reply(req,resp.response(...));

}
}

Figure 53: A (very simple) Plan

Multi-Agent Programming Languages, Platforms and Applications 687 / 1

JACK Language

Figure ?? shows how these three syntactic extensions are used to define a
(very simple) plan called ProcessRequest:

which is triggered by a message (declared with the #handles
declaration);

and replies to it with a response.

Multi-Agent Programming Languages, Platforms and Applications 688 / 1

JACK Language

The top-level entities that JACK defines are:

Agent: Obvious basic entity for an agent-oriented programming
language! Specified by:

Events they handle and send;
Data (including beliefsets) they have;
Plans and capabilities they use.

Beliefset: A beliefset is effectively a (small) relational database that is
stored in memory, rather than on disk.

View: Views are “virtual” beliefsets that are computed from other
beliefsets.

Multi-Agent Programming Languages, Platforms and Applications 689 / 1

JACK Language

The top-level entities that JACK defines are:

Event: An event is an occurrence in time that represents some sort of
change that requires a response.

Plan: A plan is a “recipe” for dealing with a given event type. Plans
include

An indication of which event they handle;
A context condition which describes in which situations
the plan can be used;
A plan body.

Capability: A capability is a modularisation construct.

Multi-Agent Programming Languages, Platforms and Applications 690 / 1

JACK Language

1 Event posted.
2 Determine the set of relevant plans.
3 Determine the applicable plans.
4 Select an applicable plan and run it.
5 If plan fails, go to step 4 (select an applicable plan).

Figure 54: Event handling in BDI architectures

Multi-Agent Programming Languages, Platforms and Applications 691 / 1

JACK Language

The execution of a plan’s body is fairly straightforward: the statements in
the plan body are executed in sequence.

However, there is one key difference between executing Java code and
executing JACK code: each statement can fail, and if it does the rest of
the plan is not executed and failure handling is triggered instead.

When a plan fails the event that triggered it is considered to have not
been handled, and alternative plans for handling it are considered.

This process looks for another applicable plan to try.

If there is another applicable plan,it is tried.

If all applicable plans have failed the event cannot be handled.

If the event was posted from a plan that plan fails and its triggering event
is re-posted in an attempt to find an alternative applicable plan for it.

Multi-Agent Programming Languages, Platforms and Applications 692 / 1

JACK Language

This execution cycle of events triggering plans is common to a whole
family of BDI architectures.

However, there are some details of the cycle that are specific to JACK
and distinguish it from other platforms.

By default JACK re-computes the applicable set when considering
alternative plans due to failure.

This means that when a plan fails and alternatives are considered, the
applicability of these alternatives is evaluated in the current situation, not
the situation when the event was first posted.

Some other BDI architectures (such as JAM) do not re-compute the
applicable plan set, and thus select plans based on out-of-date
information when failure occurs.

Multi-Agent Programming Languages, Platforms and Applications 693 / 1

JACK Language

Another detail that is specific to JACK is that the context condition is
actually split into two parts: a context condition and a relevance
condition.

The relevance condition is a Boolean condition that is only evaluated once
(eagerly) and can only access the details of the event, not any other data.

The relevance condition is used to exclude plans based on the details of
the event (which do not change).

For example, if the event is a request for credit which specifies the
amount and there are separate plans depending on the amount
requested, the selection of plans can be done using a relevance condition
rather than a context condition.

Multi-Agent Programming Languages, Platforms and Applications 694 / 1

JACK Language

When there are multiple applicable plans that can be used, the question
arises of which one an agent should select (step 5 in figure ??).

JACK provides a number of mechanisms that allow the programmer to
specify how a plan should be selected.

One mechanism is that plans will (by default) be selected in the order in
which they are listed in the agent.

Another mechanism runs another plan (a “meta-plan”) to decide which
plan to select.

JACK actually provides a variety of event types which behave differently.

For example, message events do not trigger failure handling if their
handling plan fails.

Multi-Agent Programming Languages, Platforms and Applications 695 / 1

JACK Language

1 Event posted.
2 Find plans that #handle it.
3 Determine the set of relevant plans using relevant() method

(Relevant method can only access event, not beliefs).
4 Determine applicable plans using context().
5 Select a plan and run its body(). (meta-reasoning can be used to make

the selection).
6 If plan fails, go to step 4 (recompute applicable plan set).

Figure 55: Event handling in JACK

Multi-Agent Programming Languages, Platforms and Applications 696 / 1

JACK Language

Semantics and Verification

Although JACK is quite well documented, its semantics have not been
formally specified.

Since JACK is a superset of Java, formally defining JACK ’s
semantics would require a formal definition of Java’s semantics,
something that is still an active area of research.

The event-plan execution cycle which JACK shares with other BDI
platforms has been formalised in various ways by various researchers.

Multi-Agent Programming Languages, Platforms and Applications 697 / 1

JACK Language

Anand Rao’s work on AgentSpeak(L) aims to bridge the “BDI gap”
between theories and implementations by defining a language capturing
the essence of BDI platforms whilst having precisely defined semantics.
Although the formal semantics given by Rao is incomplete, the work has
inspired a number of implementations of the language such as:

AgentTalk, an implementation based on SIM_AGENT;
An implementation in Java that is designed to run on hand-held devices;
The Java-based Jason.

Multi-Agent Programming Languages, Platforms and Applications 698 / 1

JACK Language

Since Rao introduced AgentSpeak(L), a number of authors have
published complete formal semantics for the language.

The specification language Z (“Zed”) was used to formally specify the
essential execution cycle of AgentSpeak, and an operational semantics
for AgentSpeak was given by Bordini and Moreira.

However, neither of these formalisations included the failure handling
mechanism.

A precise operational semantics including failure handling was given by
Winikoff et al. for a language (called “CAN”) which is a superset of
AgentSpeak.

Multi-Agent Programming Languages, Platforms and Applications 699 / 1

JACK Language

Since JACK’s semantics has not been formalised, JACK programs cannot
be formally verified.

Verification of entire implemented systems is not currently realistic.

Research into model checking of agent programs is still quite young, and
is not yet applicable to large agent programs.

We believe that presently formal techniques are best applied to verifying
aspects of systems, such as key algorithms or interaction patterns.

Multi-Agent Programming Languages, Platforms and Applications 700 / 1

JACK Language

Software Engineering Issues

One of JACK’s strengths is its support for modern software
engineering practices.

In addition to the features provided by Java (objects, packages), JACK
adds a number of features that can be used to structure an agent
system.

One new feature is that a plan’s body can be broken down into a number
of separate reasoning methods, rather than being a single monolithic
block of JACK code.

This allows a single plan to be structured internally.

Another feature that was introduced by JACK (and subsequently adopted
by Jadex) is capabilities.

Multi-Agent Programming Languages, Platforms and Applications 701 / 1

JACK Language

A capability is the agent-oriented equivalent of a module,
corresponding to a coherent ability that an agent has.

Capabilities contain plans and beliefs, and specify which events they
handle and post.

Capabilities can also contain sub-capabilities which allow hierarchical
module structures to be specified as appropriate.

Multi-Agent Programming Languages, Platforms and Applications 702 / 1

JACK Language

Another Software Engineering practice is consistency checking.

JACK checks that the various declarations of which events are posted
and handled by which entities (agents, capabilities and plans) are
consistent.

The JACK agent programming language is, as an extension of Java,
strongly and statically typed, and the type checking done at compile-time
can catch a range of mistakes made by the programmer.

Multi-Agent Programming Languages, Platforms and Applications 703 / 1

JACK Language

Other features of the language

JACK’s support for teams is an optional extension which adds two new
concepts (teams and roles) and extends Plans to TeamPlans.

A team is an entity which, like an agent, can contain plans, capabilities,
data, etc.

Unlike agents, a team can also have sub-teams, enabling natural
modelling of hierarchical organisational structures.

A team is an active entity that can have beliefs and execute (team) plans;
it is not merely a collection of agents.

When the team extension is enabled, an individual agent is modelled
simply as a team that has no sub-teams!

For each team type, roles are used to specify the interface (in terms of
events received and sent) that must be fulfilled by its sub-teams.

Multi-Agent Programming Languages, Platforms and Applications 704 / 1

JACK Language

The team extension also extends Plans to TeamPlans by adding the
ability to delegate tasks to sub-teams, and to perform steps in parallel.

Team plans also differ from plans in that they have an establish()
reasoning method which assembles the sub-teams that will be involved in
the plan (the “task team”).

Each TeamPlan that is run by a team can have a different assignment of
sub-teams.

For example, given a team of soccer-playing robots, one TeamPlan may
require two attackers, whereas another TeamPlan may require both a
defender and a goal keeper.

Multi-Agent Programming Languages, Platforms and Applications 705 / 1

JACK Language

teamplan FeedBaby extends TeamPlan {
#handles event BabyHungry pfv;
#uses role Parent parents as p1;
#uses role Parent parents as p2;

//establish the task team.
#reasoning method establish() { ... }

body() {
@parallel(ParallelFSM.ALL,false,null) {

@team_achieve(p1, p1.prepareFood.pf());
@team_achieve(p2, p2.calmBaby.cb());

};
@team_achieve(p2,p2,feedBaby.fb());

} // body
} // FeedBaby team plan

Figure 56: A simple TeamPlan

Multi-Agent Programming Languages, Platforms and Applications 706 / 1

JACK Language

Another feature of JACK is an event type called InferenceGoal.

This behaviour is useful for performing certain types of reasoning such as
emulating rule firing in expert systems.

The JACK compiler is modular.

The JACK language can be extended using plugins.

Multi-Agent Programming Languages, Platforms and Applications 707 / 1

JACK Platform

Available tools and documentation

The areas that were seen as most desirable to be supported by third
party tools were:

“Integrated Development Environments;
Debugging tools;
Parsers/language tools”.

JACK addresses the first two areas by providing an integrated
development environment, and a range of debugging tools.

Multi-Agent Programming Languages, Platforms and Applications 708 / 1

JACK Platform

The JACK Development Environment (JDE) allows the developer to
create agents, events, plans, beliefsets etc. by dragging and dropping,
rather than typing # declarations.

The JACK skeleton code for the entities is automatically generated.

The JDE also provides a Graphical Plan Editor which allows the
bodies of plans to be specified using a graphical notation, rather than
textual code.

Multi-Agent Programming Languages, Platforms and Applications 709 / 1

JACK Platform

The JDE also includes a Design Tool which allows overview diagrams in
the style of Prometheus to be drawn.

This can be used to create the system’s structure by placing entities onto
the canvas and linking them together.

It can also be used to create an overview of an existing system by adding
entities to a canvas, in which case the links between entities are
automatically added.

The JDE maintains consistency between the design diagrams and the
underlying model, and therefore with the generated code.

Multi-Agent Programming Languages, Platforms and Applications 710 / 1

JACK Platform

Figure 57: The JACK Development Environment (JDE)

Multi-Agent Programming Languages, Platforms and Applications 711 / 1

JACK Platform

JACK provides a number of debugging tools:
1. The simplest is a textual trace of processing steps which is enabled from

the command line.
Can be configured to show various types of steps:

Changes to beliefsets;
Events being posted and processed;
Messages being sent and received;
Steps in plans.

Less useful for debugging distributed systems of agents.

Multi-Agent Programming Languages, Platforms and Applications 712 / 1

JACK Platform

JACK provides a number of debugging tools:
2. For debugging distributed agents interaction diagrams are more useful.

An interaction diagram graphically displays messages sent between
agents.
A single interaction diagram can collect and display messages from agents
across a distributed system.
Interaction diagrams depict the messages between agents.

Multi-Agent Programming Languages, Platforms and Applications 713 / 1

JACK Platform

JACK provides a number of debugging tools:
3. JACK provides graphical plan tracing, which traces the execution of

plans that have been specified using the Graphical Plan Editor.
When a plan begins executing its graph is shown, and as the plan executes
the currently executing node is highlighted.
The graph also shows the values of the plan’s variables and parameters.
The execution of the agent can be controlled:

It can be run as normal;
Single-stepped;
Stepped with a delay in between steps.

Multi-Agent Programming Languages, Platforms and Applications 714 / 1

JACK Platform

The newest version of JACK also provides an additional debugging tool:

A browser that allows the state of agents (including their beliefs and
active tasks) to be inspected.

Multi-Agent Programming Languages, Platforms and Applications 715 / 1

JACK Platform

All of these development, design and debugging tools – as well as the
JACK language, and other facilities such as JACK’s support for teamwork,
the Webbot interface to JSP, and JACOB (see next section) – have clear
and extensive documentation.

JACK’s documentation package also includes “practicals”: a tutorial
sequence introducing JACK.

Multi-Agent Programming Languages, Platforms and Applications 716 / 1

JACK Platform

Standards compliance, interoperability and portability

There are many approaches to communication and integration, such as
CORBA, HLA, Java RMI and FIPA.

JACK’s approach to communications is agnostic.

It is also possible to extend and/or replace JACK’s communications
infrastructure.

We begin by discussing JACK’s lightweight communications infrastructure
including a discussion of JACOB .

Multi-Agent Programming Languages, Platforms and Applications 717 / 1

JACK Platform

JACK’s lightweight communications mechanism supports sending
messages between agents.

These messages can contain Java objects which are serialised by the
sender and “reconstituted” by the recipient of the message.

JACK provides a number of mechanisms for serialising objects: Java’s
serialisation can be used, but this tends to produce large messages, and
only supports communication with other Java software.

Multi-Agent Programming Languages, Platforms and Applications 718 / 1

JACK Platform

Alternatively, JACOB provides more compact serialisations, and allows
objects to be “reconstituted” by Java or C++ programs.
JACOB provides a number of serialisation formats:

A plain ASCII format that is compact yet human readable;
A binary format which is more compact;
An XML format;
A JDBC format.

Multi-Agent Programming Languages, Platforms and Applications 719 / 1

JACK Platform

When the recipient of a message is in the same Java process as the
sender, then the message is addressed simply using the name of
recipient agent.
JACK supports flexible distribution of agent. It is possible:

To have multiple agents per Java process;
To have agents distributed in different Java processes;
Or to flexibly mix these.

This flexible distribution requires a slightly more sophisticated addressing
scheme than simply using agent names, and JACK introduces the
concept of a portal.
A portal can be thought of as a handle on a Java process, and sending a
message to an agent at another portal is done by addressing the agent
as agentname@portalname.

Each portal acts as a name server for other portals, i.e., each portal
keeps track of the addresses of other portals.

Multi-Agent Programming Languages, Platforms and Applications 720 / 1

JACK Platform

Other features of the platform

JACK is efficient. It allows:

Flexible distribution of agents, with multiple agents sharing a Java
process.

For many agents to run on a single machine, while still supporting
distributed agent systems across machines.

Multi-Agent Programming Languages, Platforms and Applications 721 / 1

JACK Platform

Benchmarking on an average PC running Linux shows that over 1000
agents can be created per second, and that 100,000 messages can be
sent per second (within the same Java process).

JACK is compact enough to be run on limited hardware.

It has been demonstrated on a Psion 5mx, and, for a recent
demonstration involving an Unmanned Aerial Vehicle, JACK was run on a
Hewlett-Packard iPAQ PDA.

Multi-Agent Programming Languages, Platforms and Applications 722 / 1

JACK Aplications

Application areas for JACK can be loosely categorised as:

Autonomous systems (Unmanned Air Vehicles, Holonic manufacturing).

Modelling human-like decision making.

Decision support applications (The Collection Plan Management
System (CPMS)).

Architectural “glue” (Weather alerting system developed for the
Australian Bureau of Meteorology).

Multi-Agent Programming Languages, Platforms and Applications 723 / 1

JACK Aplications

Many of JACK’s applications are military: Usually associated with logistics
(planning) and simulation, rather than with battlefield use.

One such application is the Collection Plan Management System
(CPMS), which assists human in planning the deployment of surveillance
and reconnaissance resources.
The system comprises a database with:

Information on the terrain;
Information on the available resources;
Information on the tasks to be carried out;
A visualisation module;
A planning system written in JACK.

The planning system presents a number of possible plans for assessment
by the human experts.

The JACK planner is structured as a collection of agents mirroring the
existing command and control (C2) structure.

Multi-Agent Programming Languages, Platforms and Applications 724 / 1

JACK Aplications

Another area where JACK has been used is as architectural “glue” to
connect together components of a system.

By structuring a system as a collection of agents, one obtains a system
that is more loosely coupled, and that is easier to modify and extend.

One example of this application of JACK is the alerting system developed
for the Australian Bureau of Meteorology.

Multi-Agent Programming Languages, Platforms and Applications 725 / 1

JACK Aplications

The system receives information from a range of sources including storm
predictions, current observations from automated weather stations,
predictions issued for the area around airports and information about
bush fires.

Various conditions, such as discrepancies between forecasts and
observations, are checked for and alerts are generated.

The system is structured as a multi-agent system where agents subscribe
to information providers.

Experiences with extending this system have been positive, for example
extending the system to deal with a new type of information source only
took a number of days.

Multi-Agent Programming Languages, Platforms and Applications 726 / 1

JACK Aplications

A basic property of agents is that they are autonomous, and so a natural
application area for JACK is developing software that operates
autonomously.

One example is the recent use of JACK on an Unmanned Aerial Vehicle
(UAV).

The role of JACK is not to control the vehicle directly, but rather to provide
higher-level decision-making about what to do next, e.g., where should
the UAV fly to?

JACK’s ability to deal with failure and to flexibly achieve goals is crucial in
providing the UAV with a decision making capability that allows it to be
independent and robust.

JACK’s support for teams can be used to allow multiple vehicles to
cooperate in achieving their goals; for example, one UAV might act as a
decoy allowing another UAV with a video camera to approach undetected.

Multi-Agent Programming Languages, Platforms and Applications 727 / 1

JACK Aplications

A feasibility demonstration of JACK onboard a UAV has been done.
http://www.agent-software.com/shared/resources/
pressReleases/Avatar-JACK-F040706USb.pdf

Finally, Holonic manufacturing is another application area where JACK
has been used to develop autonomous software.

In this case, the software controls a manufacturing cell.

The challenges in agent-based manufacturing are to support more
flexible manufacturing and to be robust.

Multi-Agent Programming Languages, Platforms and Applications 728 / 1

http://www.agent-software.com/shared/resources/pressReleases/Avatar-JACK-F040706USb.pdf
http://www.agent-software.com/shared/resources/pressReleases/Avatar-JACK-F040706USb.pdf

JACK Aplications

JACK: A Platform for Research

In addition to being aimed at industrial application development, JACK
has also been found to be suitable as a basis for research.
We describe this here for two reasons:

Because one the goals of JACK is to “enable further applied research”;
Because this research has, in some cases, involved extending JACK, and
so it shows that JACK can be easily extended.

One area of research concerns making BDI agents more intelligent, or at
the very least more rational.

One issue that is shared by BDI platforms is that although a BDI agent
may have multiple goals that are being pursued at a given time, no
reasoning is done about the interaction between the goals.

Multi-Agent Programming Languages, Platforms and Applications 729 / 1

JACK Aplications

JACK has also been extended with look-ahead planning by integrating
with JSHOP, an HTN (Hierarchical Task Network) planner written in Java.

Work by Poutakidis et al. has proposed and implemented on top of JACK
a debugger that automatically detects errors by monitoring messages
between agents and raising an alert if the messages do not conform to
the interaction protocol that is meant to be followed.

Multi-Agent Programming Languages, Platforms and Applications 730 / 1

JACK Summary

Agent-Oriented Programming Language

Functionality

Q: Does the language support various agent concepts such as, mental
attitudes, deliberation, adaptation, social abilities, and reactive as well as
cognitive-based behaviour?

A: The JACK language supports BDI style practical reasoning as well as
forward-directed inference reasoning, and allows for various agent
concepts such as mental attitudes, deliberation, adaptation, reactive and
proactive behaviour. There is a JACK extension towards a Cognitive
Architecture, for inclusion of cognitive parameters and variations to the
reasoning processes, and for modelling of cognitive influences by
behaviour moderators.

Multi-Agent Programming Languages, Platforms and Applications 731 / 1

JACK Summary

Communication
Q: Does the language provide high-level (i.e., speech-act based) primitives

for communication (as well as general addressing mechanism such as
broadcast and multi-cast)?

A: JACK provides high-level primitives for communication between agents.
Communication is peer-to-peer, and does not include broadcast or
multi-cast addressing.

Multi-Agent Programming Languages, Platforms and Applications 732 / 1

JACK Summary

Underlying Computational Model

Q: Does the language support the design of mobile agents, and if so, which
kind of mobility (weak and/or strong)?

A: JACK is not intended for mobile agents.

Multi-Agent Programming Languages, Platforms and Applications 733 / 1

JACK Summary

Simplicity

Q: How easy it is to use and understand the language?

A: JACK is an easy-to-use programming language in the BDI family, and
the tool suite includes graphical programming tools both for program
design and for decision logic.

Multi-Agent Programming Languages, Platforms and Applications 734 / 1

JACK Summary

Preciseness
Q: Does the language have clear and precise semantics? How has it been

formalised?

A: The JACK language has clear and precise (but not formal) semantics.

Multi-Agent Programming Languages, Platforms and Applications 735 / 1

JACK Summary

Expressiveness

Q: Is the language suitable for the implementation of a variety of
agent-oriented programs and applications or is it purpose-specific?

A: JACK is a full programming language well suited for a variety of agent
applications.

Multi-Agent Programming Languages, Platforms and Applications 736 / 1

JACK Summary

Extensiveness
Q: Does the language allow the definition of new language components from

the basic constructs in a systematic way?

A: JACK allows new program elements to be defined in a systematic way,
through compiler plugins.

Multi-Agent Programming Languages, Platforms and Applications 737 / 1

JACK Summary

Verification
Q: Does your approach provide a clear path for the (formal) verification of

programs written in this language?

A: This has not been investigated.

Multi-Agent Programming Languages, Platforms and Applications 738 / 1

JACK Summary

Software Engineering Principles

Q: Have Software Engineering and Programming Language principles, such
as abstraction, inheritance, modularity, overloading, information hiding,
error handling, generic programming, etc., been considered or adopted
within design of this language?

A: The JACK language is a full-flavoured programming language that
combines the logic oriented BDI style with the object-oriented Java style,
and it further includes programming elements providing increased
support for abstraction, modularisation, information hiding and generic
programming.

Multi-Agent Programming Languages, Platforms and Applications 739 / 1

JACK Summary

Language Integration

Q: Does your approach deal with the possibility of integrating the language
with existing (well-known) programming language (e.g., Java)?

A: JACK is fully integrated with Java, and it also includes integration
mechanisms for combining JACK agents with C++ programs.

Multi-Agent Programming Languages, Platforms and Applications 740 / 1

JACK Summary

Language Integration (continued)

Q: Can the language be interfaced with other programming languages, or
does it allow the invocation of methods/programs built using other
(classical) programming languages?

A: JACK is fully integrated with Java.

Multi-Agent Programming Languages, Platforms and Applications 741 / 1

JACK Summary

Platform

Deployment and Portability

Q: Does the platform provide material, such as documentation, tutorials or
training of any kind, installation and deployment guidelines, to help users
in deploying their systems?

A: JACK is well documented through a range of manuals and practicals,
and is easily installed via the downloadable installer.

Multi-Agent Programming Languages, Platforms and Applications 742 / 1

JACK Summary

Deployment and Portability (continued)

Q: Does the platform require a specific computing environment (computer
architecture, operating system, libraries, etc.) to be used / deployed?

A: JACK runs on all Java platforms from 1.1.3, and has been run on PDAs
(Psion 5mx and an HP iPAQ).

Multi-Agent Programming Languages, Platforms and Applications 743 / 1

JACK Summary

Standards Compliance

Q: To what extent does the platform adhere to the standards (FIPA, MASIF,
etc.) with respects to: general architecture, naming service, white- and
yellow-page services, mobility services, agent-life cycle management,
etc.?

A: The JACK platform is itself proprietary, but includes the standard
architectural elements, and there are FIPA wrapper extensions.

Multi-Agent Programming Languages, Platforms and Applications 744 / 1

JACK Summary

Platform Extensibility

Q: Can the platform be extended with additional functionality, for example
through Open Source collaboration?

A: JACK is built to be open, with a range of “hooks” at various levels to
simplify extensions. JACK is not open source.

Multi-Agent Programming Languages, Platforms and Applications 745 / 1

JACK Summary

Available Tools
Q: What tools are provided by the platform for the management, monitoring,

logging and debugging of applications?

A: JACK comes with several mechanisms for logging and debugging of
JACK agent execution.

Multi-Agent Programming Languages, Platforms and Applications 746 / 1

JACK Summary

Available Tools (continued)

Q: What documentation for on-line help, and manuals for the platform’s
installation, use, and maintenance are available?

A: The JACK package includes manuals in PDF and HTML format.

Multi-Agent Programming Languages, Platforms and Applications 747 / 1

JACK Summary

Available Tools (continued)

Q: Are there tools for administration, management, and configuration of the
platform? Is an IDE provided?

A: JACK includes a development tool.

Multi-Agent Programming Languages, Platforms and Applications 748 / 1

JACK Summary

Tool Integration

Q: In existing applications, what tools (e.g., JESS, web services, JSP) have
been integrated or are known to work well with applications running on
this platform ?

A: JACK is fully integrated with Java and all Java tools can be used.

Multi-Agent Programming Languages, Platforms and Applications 749 / 1

JACK Summary

Technical Interoperability

Q: Is an application aimed at running on this platform tied to a specific
programming language, specific architectures (e.g., .NET, J2EE), or are
there special operating system requirements?

A: JACK is not tied to any specific operation environment.

Multi-Agent Programming Languages, Platforms and Applications 750 / 1

JACK Summary

Performance Issues
Q: What number of agents can be expected to run efficiently within a single

instance of the platform, what scale of number of messages can be
handled by the platform, etc.?

A: A single process can host thousands of JACK agents.

Multi-Agent Programming Languages, Platforms and Applications 751 / 1

JACK Summary

Performance Issues (continued)

Q: What is the current state of the platform (simple prototype, available as a
commercial product, stable Open Source distribution, etc.)?

A: JACK is a fully supported commercial product.

Multi-Agent Programming Languages, Platforms and Applications 752 / 1

JACK Summary

Multi-Agent Systems Features

Q: Does the platform support open multi-agent systems and heterogeneous
agents?

A: JACK supports open multi-agent systems and heterogeneous agents.

Multi-Agent Programming Languages, Platforms and Applications 753 / 1

JACK Summary

Multi-Agent Systems Features (continued)

Q: Does the platform provide centralised or distributed control, and
hierarchical structure of agents?

A: JACK includes a language extension for team-oriented programming,
which simplifies coordinated activity and distributed control. The JACK
Teams model includes role declarations and hierarchical, dynamic teams.

Multi-Agent Programming Languages, Platforms and Applications 754 / 1

JACK Summary

Multi-Agent Systems Features (continued)

Q: Does the platform offer libraries for programming multi-agent systems
(libraries of interaction protocols, agent or group templates, reusable
agent or organisation components, etc.)?

A: JACK does not include any pre-programmed libraries of JACK code.

Multi-Agent Programming Languages, Platforms and Applications 755 / 1

JACK Summary

Applications Supported by the Language and Platform

Typical Examples

Q: What types of application have already been developed with this platform
(toy problems, real-world applications, industrial applications)? What are
the most prominent examples?

A: JACK is being used for several real-world, industrial applications.

Multi-Agent Programming Languages, Platforms and Applications 756 / 1

JACK Summary

Targeted Domains

Q: Is any particular domain of application (e.g., simulation, resource
allocation, mobile computation) targeted by your approach?

A: The BDI style programming is well suited to strategic robot control, as
used in manufacturing plants, autonomous vehicles, and simulation, as
well as business logic applications, including application of analytical
procedures, compliance processes, and situated decision making.

Multi-Agent Programming Languages, Platforms and Applications 757 / 1

JACK References

References I

Marcus J. Huber.
JAM: A BDI-theoretic mobile agent architecture.
In Proceedings of the Third International Conference on Autonomous
Agents (Agents’99), pages 236–243, 1999.

T. Juan, A. Pearce, and L. Sterling.
ROADMAP: Extending the Gaia methodology for complex open systems.
In Proceedings of the First International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2002), pages 3–10. ACM
Press, 2002.

Andrew Lucas, Peter Corke, Ralph Rönnquist, Pavan Sikka, Magnus
Ljungberg, and Nick Howden.
Teamed UAVs – A new approach with intelligent agents.
In AIAA Unmanned Unlimited, 2003.

Multi-Agent Programming Languages, Platforms and Applications 758 / 1

JACK References

References II

R. Machado and R.H. Bordini.
Running AgentSpeak(L) agents on SIM_AGENT.
In J.-J. Meyer and M. Tambe, editors, Intelligent Agents VIII - Proceedings
of the Eighth International Workshop on Agent Theories, Architectures,
and Languages (ATAL-2001). Springer-Verlag LNAI 2333, August 2001.

Emma Norling and Frank E. Ritter.
Embodying the JACK agent architecture.
In Markus Stumptner, Dan Corbett, and Mike Brooks, editors, AI2001:
Advances in Artificial Intelligence. 14th Australian Joint Conference on
Artificial Intelligence, pages 368–377. Springer LNAI 2256, December
2001.

Lin Padgham and Michael Winikoff.
Developing Intelligent Agent Systems: A Practical Guide.
John Wiley and Sons, 2004.
ISBN 0-470-86120-7.

Multi-Agent Programming Languages, Platforms and Applications 759 / 1

JACK References

References III

David Poutakidis, Lin Padgham, and Michael Winikoff.
Debugging multi-agent systems using design artifacts: The case of
interaction protocols.
In Proceedings of the First International Joint Conference on Autonomous
Agents and Multi Agent Systems (AAMAS’02), pages 960–967. ACM
Press, July 2002.

Talal Rahwan, Tarek Rahwan, Iyad Rahwan, and Ronald Ashri.
Agent-based support for mobile users using AgentSpeak(L).
In P. Giorgini, B. Henderson-Sellers, and M. Winikoff, editors,
Agent-Oriented Information Systems (AOIS 2003): Revised Selected
Papers, pages 45–60. Springer LNAI 3030, 2004.

Multi-Agent Programming Languages, Platforms and Applications 760 / 1

JACK References

References IV

John Thangarajah, Lin Padgham, and Michael Winikoff.
Detecting and avoiding interference between goals in intelligent agents.
In Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI 2003), 2003.

John Thangarajah, Michael Winikoff, Lin Padgham, and Klaus Fischer.
Avoiding resource conflicts in intelligent agents.
In F. van Harmelen, editor, Proceedings of the 15th European Conference
on Artificial Intelligence. IOS Press, 2002.

Steven Wilmott, Omer Rana, Karl-Heinz Krempels, Peter McBurney, and
Georg Weichart.
Networked agents: Towards large-scale deployment of agents in open
networked environments (NET AGENTS).
AgentLink News, 16:16–17, December 2004.
Available from http://www.agentlink.org/newsletter/.

Multi-Agent Programming Languages, Platforms and Applications 761 / 1

http://www.agentlink.org/newsletter/

JACK References

References V

Franco Zambonelli and Andrea Omicini.
Challenges and research directions in agent-oriented software
engineering.
Autonomous Agents and Multi-Agent Systems, 9(3):253–283, November
2004.

Multi-Agent Programming Languages, Platforms and Applications 762 / 1

DEFACTO

Abstract
Enabling effective interactions between agent teams and humans for disaster response is a
critical area of research, with encouraging progress in the past few years. However, previous
work suffers from two key limitations: (i) limited human situational awareness, reducing
human effectiveness in directing agent teams and (ii) the agent team’s rigid interaction
strategies that limit team performance. This paper presents a software prototype called
DEFACTO (Demonstrating Effective Flexible Agent Coordination of Teams through
Omnipresence). DEFACTO is based on a software proxy architecture and 3D visualization
system, which addresses the two limitations described above. First, the 3D visualization
interface enables human virtual omnipresence in the environment, improving human
situational awareness and ability to assist agents. Second, generalizing past work on
adjustable autonomy, the agent team chooses among a variety of “team-level” interaction
strategies, even excluding humans from the loop in extreme circumstances.

Multi-Agent Programming Languages, Platforms and Applications 764 / 1

DEFACTO

Keywords

Multiagent Systems, Adjustable Autonomy, Teamwork, Disaster Response.

Author
N. Schurr, J.Marecki, J.P. Lewis, M. Tambe, and P. Scerri

Multi-Agent Programming Languages, Platforms and Applications 765 / 1

DEFACTO Introduction

We envision future disaster response to be performed with a mixture of
humans performing high level decision-making, intelligent agents
coordinating the response and humans and robots performing key
physical tasks.

These heterogeneous teams of robots, agents, and people will
provide the safest and most effective means for quickly responding to a
disaster, such as a terrorist attack.

A key aspect of such a response will be agent-assisted vehicles
working together.

Multi-Agent Programming Languages, Platforms and Applications 766 / 1

DEFACTO Introduction

Specifically, agents will assist the vehicles in planning routes,
determining resources to use and even determining which fire to
fight.

Despite advances in agent technologies, human involvement will be
crucial.

Allowing humans to make critical decisions within a team of intelligent
agents or robots is prerequisite for allowing such teams to be used in
domains where they can cause physical, financial or psychological harm.
These critical decisions include:

Decisions for moral or political reasons;
Coordination decisions.

Multi-Agent Programming Languages, Platforms and Applications 767 / 1

DEFACTO Introduction

Human interaction with agent teams is critical in a large number of current
and future applications.

Current efforts emphasize humans collaboration with robot teams in
space explorations, humans teaming with robots and agents for disaster
rescue, as well as humans collaborating with multiple software agents for
training.

This paper focuses on the challenge of improving the effectiveness of
applications of human collaboration with agent teams.

Previous work has reported encouraging progress in this arena, e.g., via
proxy-based integration architectures, adjustable autonomy and
agent-human dialogue.

Multi-Agent Programming Languages, Platforms and Applications 768 / 1

DEFACTO Introduction

Despite this encouraging progress, previous work suffers from two key
limitations:

First, when interacting with agent teams acting remotely, human
effectiveness is hampered by interfaces that limit their ability to apply
decision-making skills in a fast and accurate manner.
Techniques that provide telepresence via video are helpful, but cannot
provide the global situation awareness.
Second, agent teams have been equipped with adjustable autonomy
(AA) but not the flexibility critical in such AA.

Multi-Agent Programming Languages, Platforms and Applications 769 / 1

DEFACTO Introduction

Indeed, the appropriate AA method varies from situation to situation.

In some cases the human user should make most of the decisions.

In other cases human involvement may need to be restricted.

Such flexible AA techniques have been developed in domains where
humans interact with individual agents, but whether they apply to
situations where humans interact with agent teams is unknown.

Multi-Agent Programming Languages, Platforms and Applications 770 / 1

DEFACTO Application Domain

DEFACTO (Demonstrating Effective Flexible Agent Coordination of
Teams through Omnipresence).

Software prototype system, DEFACTO , that enables agent-human
collaboration and addresses the issues of enhanced user interface and
flexible adjustable autonomy.

The user interface and proxy-based teamwork (called Machinetta) are
incorporated in DEFACTO .

Multi-Agent Programming Languages, Platforms and Applications 771 / 1

DEFACTO Application Domain

Figure 58: DEFACTO system applied to a disaster rescue.

Multi-Agent Programming Languages, Platforms and Applications 772 / 1

DEFACTO Application Domain

The Omni-Viewer is an advanced human interface for interacting with an
agent-assisted response effort.

The Omni-Viewer provides for both global and local views of an unfolding
situation, allowing a human decision-maker to precisely assess the
information required for a particular decision.

A team of completely distributed proxies, where each proxy encapsulates
advanced coordination reasoning based on the theory of teamwork,
controls and coordinates agents in a simulated environment.

Multi-Agent Programming Languages, Platforms and Applications 773 / 1

DEFACTO Application Domain

The use of the proxy-based team brings realistic coordination complexity
to the prototype and allows more realistic assessment of the interactions
between humans and agent-assisted response.

Currently, we have applied DEFACTO to a disaster rescue domain.

The incident commander of the disaster acts as the human user of
DEFACTO .

This disaster can either be “man made” (terrorism) or “natural”
(earthquake).

Multi-Agent Programming Languages, Platforms and Applications 774 / 1

DEFACTO Application Domain

We focus on two urban areas: a square block that is densely covered with
buildings (we use one from Kobe, Japan) and the University of Southern
California (USC) campus, which is more sparsely covered with buildings.

In our scenario, several buildings are initially on fire, and these fires
spread to adjacent buildings if they are not quickly contained.

The goal is to have a human interact with the team of fire engines in order
to save the most buildings.

While designed for real world situations, DEFACTO can also be used as
a training tool for incident commanders when hooked up to a simulated
disaster scenario.

Multi-Agent Programming Languages, Platforms and Applications 775 / 1

DEFACTO Application Domain

To provide flexible AA, we generalize the notion of strategies from
single-agent single-human context.

In our work, agents may flexibly choose among team strategies for
adjustable autonomy instead of only individual strategies; thus, depending
on the situation, the agent team has the flexibility to limit human
interaction, and may in extreme cases exclude humans from the loop.

Multi-Agent Programming Languages, Platforms and Applications 776 / 1

DEFACTO Application Domain

Finally, we present results from detailed experiments with DEFACTO in
Robocup Rescue domain, which reveal two major surprises.

First, contrary to previous results, human involvement is not always
beneficial to an agent team— despite their best efforts, humans may
sometimes end up hurting an agent team’s performance.

Second, increasing the number of agents in an agent-human team may
also degrade the team performance, even though increasing the number
of agents in a pure agent team under identical circumstances improves
team performance.

Fortunately, in both the surprising instances above, DEFACTO’s flexible
AA strategies alleviate such problematic situations.

Multi-Agent Programming Languages, Platforms and Applications 777 / 1

DEFACTO Application Domain

DEFACTO is currently instantiated as a prototype of a future disaster
response system.

DEFACTO has been repeatedly demonstrated to key police and fire
department personnel in Los Angeles area, with very positive feedback.

Multi-Agent Programming Languages, Platforms and Applications 778 / 1

DEFACTO Omni-Viewer

Figure 59: Omni-Viewer during a scenario: (a) Multiple fires start across the campus.

Multi-Agent Programming Languages, Platforms and Applications 779 / 1

DEFACTO Omni-Viewer

Figure 60: Omni-Viewer during a scenario: (b) The Incident Commander uses the
Navigation mode to quickly grasp the situation.

Multi-Agent Programming Languages, Platforms and Applications 780 / 1

DEFACTO Omni-Viewer

Figure 61: Omni-Viewer during a scenario: (c) Navigation mode shows a closer look
at one of the fires.

Multi-Agent Programming Languages, Platforms and Applications 781 / 1

DEFACTO Omni-Viewer

Figure 62: Omni-Viewer during a scenario: (d) Allocation mode is used to assign a fire
engine to the fire.

Multi-Agent Programming Languages, Platforms and Applications 782 / 1

DEFACTO Omni-Viewer

Figure 63: Omni-Viewer during a scenario: (e) The fire engine has arrived at the fire.

Multi-Agent Programming Languages, Platforms and Applications 783 / 1

DEFACTO Omni-Viewer

Figure 64: Omni-Viewer during a scenario: (f) The fire has been extinguished.

Multi-Agent Programming Languages, Platforms and Applications 784 / 1

DEFACTO Omni-Viewer

Our goal of allowing fluid human interaction with agents requires a
visualization system that provides the human with a global view of agent
activity as well as showing the local view of a particular agent when
needed.

We have developed an omnipresent viewer, or Omni-Viewer, which will
allow the human user diverse interaction with remote agent teams.

A global view is obtainable from a two-dimensional map.

A local perspective is best obtained from a 3D viewer.

Multi-Agent Programming Languages, Platforms and Applications 785 / 1

DEFACTO Omni-Viewer

The Omni-Viewer incorporates both a conventional map-like 2D view,
Allocation Mode (Figure d) and a detailed 3D viewer, Navigation Mode
(Figure a).

The Allocation mode shows the global overview as events are progressing
and provides a list of tasks that the agents have transfered to the human.

The Navigation mode shows the same dynamic world view, but allows for
more freedom to move to desired locations and views.

The user can drop to the virtual ground level, thereby obtaining the world
view (local perspective) of a particular agent.

At this level, the user can “walk” freely around the scene, observing the
local logistics involved as various entities are performing their duties.

This can be helpful in evaluating the physical ground circumstances and
altering the team’s behavior accordingly.

Multi-Agent Programming Languages, Platforms and Applications 786 / 1

DEFACTO Omni-Viewer

We assume that a high resolution 3D model has already been created
and the only data that is transfered during the disaster are important
changes to the world.

Generating this suitable 3D model environment for the Navigation mode
can require months or even years of manual modeling effort, as is
commonly seen in the development of commercial video-games.

To avoid this level of effort we make use of the work of You et. al. in rapid,
minimally assisted construction of polygonal models from LiDAR (Light
Detection and Ranging) data.

Given the raw LiDAR point data, we can automatically segment buildings
from ground and create the high resolution model that the Navigation
mode utilizes.

The construction of the USC campus and surrounding area required only
two days using this approach.

LiDAR is an effective way for any new geographic area to be easily
inserted into the Omni-Viewer.

Multi-Agent Programming Languages, Platforms and Applications 787 / 1

DEFACTO Omni-Viewer

We use the JME game engine to perform the actual rendering due to its
cross-platform capabilities.

JME is an extensible library built on LWJGL (Light Weight Java Game
Library), which interfaces with OpenGL and OpenAL.

This environment easily provides real-time rendering of the textured
campus environment on mid-range commodity PCs.

JME utilizes a scene graph to order the rendering of geometric entities.

It provides some important features such as OBJ format model loading
and also various assorted effects such as particle systems for fires.

Multi-Agent Programming Languages, Platforms and Applications 788 / 1

DEFACTO Omni-Viewer

Proxy-based teamwork

In disaster rescue domains robust multi agent teams are more likely to
perform better that centralized approaches.

DEFACTO is build on the state-of-the-art multi agent infrastructure
called Machinetta.

The modular structure of Machinetta main components and the fact that it
provides coordiantion algorithms rather than fixed multi-agent
infrastructure ensures its versatility which contributes to the reusability of
DEFACTO for different domains.

The robustness of Machinetta is achieved through decentralized role
allocation, communication and coordination algorithms which use the
concept of moving agents instead of fixed messages.

Multi-Agent Programming Languages, Platforms and Applications 789 / 1

DEFACTO Omni-Viewer

A key hypothesis in this work is that intelligent distributed agents will be a
key element of a future disaster response.

A critical role of these intelligent agents will be to manage coordination
between all members of the response team.

Specifically, we are using coordination algorithms inspired by theories of
teamwork to manage the distributed response.

Multi-Agent Programming Languages, Platforms and Applications 790 / 1

DEFACTO Omni-Viewer

The general coordination algorithms are encapsulated in proxies with
each proxy representing one team member in the team.

Machinetta Proxies, which extend the successful Teamcore proxies are
implemented in Java and are freely available on the web.

The concept of a reusable proxy differs from many other “multiagent
toolkits” in that it provides the coordination algorithms, e.g., algorithms
for allocating tasks, as opposed to the infrastructure, e.g., APIs for
reliable communication.

Multi-Agent Programming Languages, Platforms and Applications 791 / 1

DEFACTO Agents

Currently, DEFACTO is applied to a Robocup Rescue domain which
incorporates detailed disaster simulator as well as templates for three
types of agents:

Fire Engines;
Ambulances;
Police Cars.

At this stage of the system development we focus on Fire Engines and
simulate only the fire spread and building damage.

Agents in our simulation are Fire Engines taking on new Fight Fire
requests and reporting the status of buildings.

Multi-Agent Programming Languages, Platforms and Applications 792 / 1

DEFACTO Agents

Main aspects of these agents are:
1. Pro-activeness:

Each agent stores a list of plans it is able to perform and whenever plan
preconditions are met, roles associated with plans are immediatedy
triggered;
Agents pro-activness can be varied through adjustable autonomy
strategies resulting in the increased performance of the whole team.

2. Reactivness:
Each agent moves around the environment, scans it for emerging fires and
reports the status of the buildings on fire;
In case of an environment change agent’s first task is to comunicate the
news to other team members and consequently establish the basis for a
new Fight Fire plan.

Multi-Agent Programming Languages, Platforms and Applications 793 / 1

DEFACTO Agents

Main aspects of these agents are:
3. Mobility:

Agent movement affects its sensing of the environment and choice of
which fire to fight first;
Priority is given to the closest burning building;
Agents are sucseptible to road congestion generated in real time by the
traffic simulator.

4. Configurability:
Agents can have flexible level of intelligence depending on the contents of
their declarative configuration files which store agent beliefs, plans,
adjustable autonomy strategies etc.

5. Flexible architecture:
The modular structure of Machinetta Proxies allows them to be reused for
different domains with interchangable coordination algorithms.

Multi-Agent Programming Languages, Platforms and Applications 794 / 1

DEFACTO Agents

Adjustable Autonomy

In this paper, we focus on a key aspect of the proxy-based coordination:
Adjustable Autonomy.

Adjustable autonomy refers to an agent’s ability to dynamically change its
own autonomy, possibly to transfer control over a decision to a human.

Previous work on adjustable autonomy could be categorized as either
involving a single person interacting with a single agent or a single person
directly interacting with a team.

In the single-agent single-human category, the concept of flexible
transfer-of-control strategy has shown promise.

Multi-Agent Programming Languages, Platforms and Applications 795 / 1

DEFACTO Agents

A transfer-of-control strategy is a preplanned sequence of actions to
transfer control over a decision among multiple entities.

Example 8.1

For example, an AH1H2 strategy implies that an agent (A) attempts a decision
and if the agent fails in the decision then the control over the decision is
passed to a human H1, and then if H1 cannot reach a decision, then the
control is passed to H2.

Since previous work focused on single-agent single-human interaction,
strategies were individual agent strategies where only a single agent
acted at a time.

Multi-Agent Programming Languages, Platforms and Applications 796 / 1

DEFACTO Agents

An optimal transfer-of-control strategy optimally balances the risks of not
getting a high quality decision against the risk of costs incurred due to a
delay in getting that decision.

Flexibility in such strategies implies that an agent dynamically chooses
the one that is optimal, based on the situation, among multiple such
strategies (H1A, AH1, AH1A, etc.) rather than always rigidly choosing one
strategy.

The notion of flexible strategies has not been applied in the context of
humans interacting with agent-teams.

A key question is whether such flexible transfer of control strategies are
relevant in agent-teams, particularly in a large-scale application such as
ours.

Multi-Agent Programming Languages, Platforms and Applications 797 / 1

DEFACTO Agents

DEFACTO aims to answer this question by implementing
transfer-of-control strategies in the context of agent teams.

The strategies are not limited to individual agent strategies, but also
enables team-level strategies

Example 8.2

For example, rather than transferring control from a human to a single agent, a
team-level strategy could transfer control from a human to an agent-team.

Multi-Agent Programming Languages, Platforms and Applications 798 / 1

DEFACTO Agents

Each proxy is provided with all strategy options; the key is to select the
right strategy given the situation.

Example 8.3

An example of a team level strategy would combine AT Strategy and H Strategy
in order to make AT H Strategy.

The default team strategy, AT , keeps control over a decision with the agent team
for the entire duration of the decision.

The H strategy always immediately transfers control to the human.

AT H strategy is the conjunction of team level AT strategy with H strategy.

This strategy aims to significantly reduce the burden on the user by allowing the
decision to first pass through all agents before finally going to the user, if the
agent team fails to reach a decision.

Multi-Agent Programming Languages, Platforms and Applications 799 / 1

DEFACTO Multi-Agent System

The Machinetta software consists of five main modules, three are domain
independent and two are tailored for specific domains.

The three domain independent modules are for coordination reasoning,
maintaining local beliefs (state) and adjustable autonomy.

The domain specific modules are for communication between proxies and
communication between a proxy and a team member.

The modules interact with each other only via the local state with a
blackboard design and are designed to be “plug and play”.

Multi-Agent Programming Languages, Platforms and Applications 800 / 1

DEFACTO Multi-Agent System

The coordination reasoning is responsible for reasoning about
interactions with other proxies.

The adjustable autonomy algorithms reason about the interaction with the
team member, providing the possibility for the team member to make any
coordination decision instead of the proxy.

In practice, the overwhelming majority of coordination decisions are made
by the proxy, with only key decisions referred to team members.

Multi-Agent Programming Languages, Platforms and Applications 801 / 1

DEFACTO Multi-Agent System

Figure 65: Proxy Architecture

Multi-Agent Programming Languages, Platforms and Applications 802 / 1

DEFACTO Multi-Agent System

Machinetta Proxy components

Communication: Communication with other proxies;

Coordination: Reasoning about team plans and communication;

State: The working memory of the proxy;

Adjustable Autonomy: Reasoning about whether to act autonomously
or pass control to the team member;

RAP Interface: Communication with the team member.

Multi-Agent Programming Languages, Platforms and Applications 803 / 1

DEFACTO Multi-Agent System

Teams of proxies implement team oriented plans (TOPs) which describe
joint activities to be performed in terms of the individual roles to be
performed and any constraints between those roles.

Typically, TOPs are instantiated dynamically from TOP templates at
runtime when preconditions associated with the templates are filled.

Typically, a large team will be simultaneously executing many TOPs.

Example 8.4

For example, a disaster response team might be executing multiple fight fire
TOPs.

Such fight fire TOPs might specify a breakdown of fighting a fire into activities
such as checking for civilians, ensuring power and gas is turned off and spraying
water.

Multi-Agent Programming Languages, Platforms and Applications 804 / 1

DEFACTO Multi-Agent System

Constraints between these roles will specify interactions such as required
execution ordering and whether one role can be performed if another is
not currently being performed.

TOPs do not specify the coordination or communication required to
execute a plan, the proxy determines the coordination that should be
performed.

Multi-Agent Programming Languages, Platforms and Applications 805 / 1

DEFACTO Multi-Agent System

Organisation

The proxy based approach to coordination is completely distributed,
with each proxy working closely with the team member it represents in
the environment.

Coordination requires that joint intentions and mutual beliefs are
formed in a distributed manner before the team begins executing a
task.

Agents are only required to form joint intentions and mutual beliefs
with other team members with whom they are directly collaborating on a
sub-goal, rather than with the whole team.

This leads to the possibility of the team performing duplicate or conflicting
tasks.

Hence additional conflict resolution algorithms are required to remove
these conflicts.

Multi-Agent Programming Languages, Platforms and Applications 806 / 1

DEFACTO Multi-Agent System

Underlying the conflict resolution mechanism is a static, logical network
involving all the members of the team.

This network is referred to as the associates network.

Team members share critical information with their neighbors in the
associates network.

By ensuring that the associates network has a small worlds property,
there is very high probability that at least one agent will get to know of any
conflict and can initiate a resolution process.

Multi-Agent Programming Languages, Platforms and Applications 807 / 1

DEFACTO Multi-Agent System

Team members collaborating on a sub-plan form a sort of sub-team with
their neighbors in the associates network by virtue of their joint intention
and mutual beliefs.

The members of a sub-team, and indeed the sub-plans, can change over
time, resulting in an emergent organizational structure consisting of
dynamically changing, overlapping sub-teams.

No hierarchy or centralized control of any type is present in Machinetta.

Multi-Agent Programming Languages, Platforms and Applications 808 / 1

DEFACTO Multi-Agent System

The algorithms in Machinetta are designed to be very scalable, allowing
large teams to be deployed to achieve complex tasks.

There is no need for yellow pages type services, because team members
need only interact with neighbors in the network.

Provided new team members can integrate themselves successfully into
the network, maintaining the network’s small worlds property, Machinetta
can support dynamic addition of new team members.

Multi-Agent Programming Languages, Platforms and Applications 809 / 1

DEFACTO Multi-Agent System

Interaction

When developing large teams, protocol and software robustness is
critically important.

When hundreds of distributed team members asynchronously coordinate
to simultaneously achieve hundreds of sub-plans over a period of time,
any “bugs” in the interaction code will be inevitable found.

We developed a novel way of implementing interaction that is particularly
robust and relatively easy to debug.

We are exploring the use of mobile agents that transfer both coordination
state and a message as they move between proxies.

Multi-Agent Programming Languages, Platforms and Applications 810 / 1

DEFACTO Multi-Agent System

The use of mobile agents for coordination leads to high degrees of
robustness in at least two key ways:

1 It is easier to develop reliable means to know whether messages are “lost”,
since the agent itself can ensure its own movement around the team;

2 Coordination algorithms are simpler to implement because they are entirely
encapsulated within the code of a single mobile agent.

Management of interaction state and handling of coordination failures,
etc., is greatly simplified.

Multi-Agent Programming Languages, Platforms and Applications 811 / 1

DEFACTO Multi-Agent System

The use of mobile agents means that the proxies can be thought of as a
type of mobile agent platform.

The proxies are active in providing information to the mobile agents and
even, when the adjustable autonomy decides a human should make a
decision, making decisions on the mobile agents behalf.

It is possible to think of the coordination as being implemented by mobile
agents moving around a small worlds network of active mobile agent
platforms.

Multi-Agent Programming Languages, Platforms and Applications 812 / 1

DEFACTO Multi-Agent System

MAS Environment

Machinetta is designed to be both domain independant and to work with
highly heterogeneous teams.

It has been possible to demonstrate Machinetta in several simulation
environments.

Machinetta has been used for coordination of high fidelity simulations of
search and rescue robots.

The most stringent tests of Machinetta’s coordination capabilities will
come in late 2005 when it is used for an Air Force flight test involving
three simulated unmanned aerial vehicles (UAVs) and one real UAV.

Machinetta can effectively coordinate large numbers of UAVs to efficiently
execute a wide area search and destroy mission with sufficiently low
communication bandwidth to be feasible in a military domain.

Multi-Agent Programming Languages, Platforms and Applications 813 / 1

DEFACTO Multi-Agent System

The domains in which Machinetta have been used, though varied, share
some common traits.

The domains have typically allowed complex tasks to be broken down into
smaller subtasks with most of the required coordination being for specific
subtasks rather than across subtasks.

Machinetta has been required to deal with dynamics in all the domains in
which it have been used but explicit adversarial reasoning has not been
performed.

Multi-Agent Programming Languages, Platforms and Applications 814 / 1

DEFACTO Experiments

We have conducted experiments with the DEFACTO system connected
to the Robocup Rescue simulation environment.

All the simulation components were running on one desktop with two
AMD 1.8 GHz processors and 4GB of ram.

The following processes were simulated on the desktop:

All the Machinetta proxies and their communication server;
Robocup rescue kernel including traffic, blocade, fire and building collapse
simulators;
Allocation viewer.

Multi-Agent Programming Languages, Platforms and Applications 815 / 1

DEFACTO Experiments

Evaluation

Figure 66: Performance of subjects.

Multi-Agent Programming Languages, Platforms and Applications 816 / 1

DEFACTO Experiments

Figure 67: Performance of subjects.

Multi-Agent Programming Languages, Platforms and Applications 817 / 1

DEFACTO Experiments

Figure 68: Performance of subjects.

Multi-Agent Programming Languages, Platforms and Applications 818 / 1

DEFACTO Experiments

Human involvement with agent teams does not necessarily lead to
improvement in team performance.

Providing more agents at a human’s command does not necessarily
improve the agent team performance

No strategy dominates through all the experiments given varying
numbers of agents.

Complex team-level strategies are helpful in practice.

Multi-Agent Programming Languages, Platforms and Applications 819 / 1

DEFACTO Experiments

Strategy H AH AT H
of agents 4 6 10 4 6 10 4 6 10

Subject 1 91 92 154 118 128 132 104 83 64
Subject 2 138 129 180 146 144 72 109 120 38
Subject 3 117 132 152 133 136 97 116 58 57

Table 1: Total amount of allocations given.

Multi-Agent Programming Languages, Platforms and Applications 820 / 1

DEFACTO Experiments

Figure 69: AGH performance

Multi-Agent Programming Languages, Platforms and Applications 821 / 1

DEFACTO Experiments

Figure 70: H performance

Multi-Agent Programming Languages, Platforms and Applications 822 / 1

DEFACTO Experiments

Figure 71: Amount of agents per fire assigned by subjects 1.

Multi-Agent Programming Languages, Platforms and Applications 823 / 1

DEFACTO Experiments

Figure 72: Amount of agents per fire assigned by subjects 2.

Multi-Agent Programming Languages, Platforms and Applications 824 / 1

DEFACTO Experiments

Figure 73: Amount of agents per fire assigned by subjects 3.

Multi-Agent Programming Languages, Platforms and Applications 825 / 1

DEFACTO References

References I

James F. Allen.
The TRAINS project: A case study in building a conversational planning
agent.
Journal of Experimental and Theoretical AI (JETAI), 7:7–48, 1995.

Mark H. Burstein, Alice M. Mulvehill, and Stephen Deutsch.
An approach to mixed-initiative management of heterogeneous software
agent teams.
In HICSS, page 8055. IEEE Computer Society, 1999.

Jacob W. Crandall, Curtis W. Nielsen, and Michael A. Goodrich.
Towards predicting robot team performance.
In SMC, 2003.

R. Hill, J. Gratch, S. Marsella, J. Rickel, W. Swartout, and D. Traum.
Virtual humans in the mission rehearsal exercise system.
In KI Embodied Conversational Agents, 2003.

Multi-Agent Programming Languages, Platforms and Applications 826 / 1

DEFACTO References

References II

Hiroaki Kitano, Satoshi Tadokoro, Itsuki Noda, Hitoshi Matsubara,
Tomoichi Takahashi, Atsushi Shinjoh, and Susumu Shimada.
Robocup rescue: Search and rescue in large-scale disasters as a domain
for autonomous agents research.
In IEEE SMC, volume VI, pages 739–743, Tokyo, October 1999.

E. Liao, P. Scerri, and K. Sycara.
A framework for very large teams.
In AAMAS’04 Workshop on Coalitions and Teams, 2004.

D. V. Pynadath and M. Tambe.
Automated teamwork among heterogeneous software agents and
humans.
Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS),
7:71–100, 2003.

Multi-Agent Programming Languages, Platforms and Applications 827 / 1

DEFACTO References

References III

R. Ruddle, S. Payne, and D. Jones.
Navigating buildings in desktop virtual environments: Experimental
investigations using extended navigational experience.
J. Experimental Psychology - Applied, 3(2):143–159, 1997.

P. Scerri, E. Liao, Yang. Xu, M. Lewis, G. Lai, and K. Sycara.
Theory and Algorithms for Cooperative Systems, chapter Coordinating
very large groups of wide area search munitions.
World Scientific Publishing, 2004.

Ulrich Neumann Suya You, Jinhui Hu and Pamela Fox.
Urban site modeling from lidar.
In Proc. 2nd Int’l Workshop Computer Graphics and Geometric Modeling
(CGGM), pages 579–588, 2003.

Multi-Agent Programming Languages, Platforms and Applications 828 / 1

ARTIMIS

Abstract

ARTIMIS is an effective intelligent agent technology designed and developed by France
Telecom. It provides a generic framework to instantiate dialogue agents that are able to
engage in rich interactions with human users (with no restriction on the communication
media) as well as with other software agents. Several operational ARTIMISbased
applications have been developed, and commercial services have begun to be deployed.
ARTIMIS relies on the principle that a system’s ability to carry on a natural dialogue with a
human user must result from the system’s inherent intelligence. Consequently, an intelligent
dialogue system needs to be first conceived and designed as an intelligent system.
ARTIMIS provides a generic framework for the development of intelligent agents whose
behaviour is wholly driven by explicit cognitive principles, such as rationality, communication
and cooperation. ARTIMIS agents can also be components of multi-agent systems. In this
case, to interact with other agents, they use the FIPA ACL standard (Agent Communication
Language), whose formalism and semantics come from ARCOL, the ARTIMIS
Communication Language.

Multi-Agent Programming Languages, Platforms and Applications 830 / 1

ARTIMIS

Keywords

Rational agent technology, natural human-computer dialogue, multi-agent
context, inter-agent communication language, effective applications.

Author
David Sadek

Multi-Agent Programming Languages, Platforms and Applications 831 / 1

ARTIMIS Introduction

ARTIMIS is a rational agent technology designed and developed by
France Telecom.

It provides a generic framework to instantiate dialogue agents.

They are able to engage in rich interactions with human users as well
as with other software agents.

The foundational work underlying ARTIMIS technology handles
communication as a special case of intelligent behaviour:
An intelligent dialogue system has to be first an intelligent system.

Multi-Agent Programming Languages, Platforms and Applications 832 / 1

ARTIMIS Introduction

The necessity of machine intelligence obviously appears in contexts
that require, at the same time, a complex and user-friendly interaction
with a human being.

This is overtly illustrated in natural human-computer dialogue.

It is not anodyne that the Turing test requires a dialogue situation.

The capabilities underlying dialogue phenomenon (perception, reasoning,
learning, etc.) are required by other so-called intelligent behaviours,
namely behaviours that display problem solving capacities.

Multi-Agent Programming Languages, Platforms and Applications 833 / 1

ARTIMIS Introduction

The ability to engage into a dialogue relies on a common ground that
endows it with a non-primitive character.

Rational behaviour appears as the most consensual manifestation of
intelligence.

To behave rationally is to be driven by principles that select in an optimal
way the actions leading to futures compliant with a given set of
motivations and goals.

Multi-Agent Programming Languages, Platforms and Applications 834 / 1

ARTIMIS Introduction

The approach underlying ARTIMIS technology right away targets real
systems.

It has therefore the ambition to cover at the theoretical level the different
components of rational, communicative, and social behaviours of an
agent.

In an original way, it unifies under the same point of view the problem of
designing dialogue systems and that of designing intelligent artificial
agents.

This approach points out the paradigm of rational dialogue agent as the
one that has to ground the construction of intelligent systems.

It is intended to provide the robustness required from an intelligent
system, namely to adequately react to complex situations or incompletely
specified ones when the system is designed.

Multi-Agent Programming Languages, Platforms and Applications 835 / 1

ARTIMIS Application domain

ARTIMIS intelligent agent technology de facto strongly relates to
end-user applications.

When instantiated in a human-agent interaction context, ARTIMIS
allows for implementing interactive services that enable natural dialogue
with human users, whatever the communication media is.
The resulting dialogue agents display advanced functionalities:

Natural language;
Mixed-initiative interaction;
Request and response negotiation;
Cooperative reactions;
etc.

Multi-Agent Programming Languages, Platforms and Applications 836 / 1

ARTIMIS Application domain

ARTIMIS can also be used in multi-agent environments, namely
contexts involving several interacting software agents.

Along these lines, its use field is extended to mediation applications, in
which an ARTIMIS agent can manage, in a unified and cooperative way,
the relationship between a user and regular information sources.
The main offered functionalities are:

Identification of proposals that best fit the user’s request;
Construction of proposals possibly combining information coming from
different sources;
Suggestion of alternative solutions;
etc.

Multi-Agent Programming Languages, Platforms and Applications 837 / 1

ARTIMIS Application domain

Figure 74: ARTIMIS: a wide range of applications

Multi-Agent Programming Languages, Platforms and Applications 838 / 1

ARTIMIS Application domain

ARTIMIS range of potential applications is very wide.
It encompasses various application domains:

Personal or public assistants;
Information and transaction services;
Telecommunication services (hotlines, portals,. . .);
Directories (yellow pages, tourist guides,. . .);
Banking and financial services (stocks, account management,. . .);
E-commerce;
E-learning and education;
Intelligent interfaces for Internet search engines;
Games (intelligent communicating clones and avatars);
etc.

Multi-Agent Programming Languages, Platforms and Applications 839 / 1

ARTIMIS Autonomous agent

Formal rational interaction theory

The ARTIMIS approach of rational interaction is governed by two main ideas:

1 For an agent, engaging and following up a dialogue with a human
interlocutor or with another agent can be totally justified by rational
behaviour principles.
It is not necessary for an agent to have a structural dialogue model or a
communication protocol, since the instances of such a model or a
protocol are dynamically retrieved by rational behaviour.

2 A single formal theory can account for the different aspects of an agent’s
cognitive and communicative behaviour.

Multi-Agent Programming Languages, Platforms and Applications 840 / 1

ARTIMIS Autonomous agent

The ARTIMIS model is a formal theory of rational interaction
expressed in a homogeneous logical framework.

The basic concepts of this framework are mental attitudes and
actions.

The theory shows how advanced behaviours result from the application of
primitive principles and from their combination.

It is expressed within a unique formal model (a quantified modal logic,
with a well-defined semantics) and modularly constructed in different
components.

Multi-Agent Programming Languages, Platforms and Applications 841 / 1

ARTIMIS Autonomous agent

Basic formal concepts

The formal account is expressed in a first order modal language with
identity.

For the sake of brevity, only the aspects of the formalism used in this
chapter are introduced in the following.

Multi-Agent Programming Languages, Platforms and Applications 842 / 1

ARTIMIS Autonomous agent

Definition 9.1
Symbols ¬,∧,∨,⇒, and⇔ represent classical connectives of negation,
conjunction, disjunction, logical implication and equivalence.

∀ and ∃ are respectively the universal and existential quantifiers.

x , y , and z are symbols for individual variables.

a, a1, and a2 are variable schemata denoting action expressions.

p and p′ are taken to be closed formulae (denoting propositions), φ, ψ and
δ formula schemata, and i, j and h variable schemata denoting agents.

Notation |= φ means that formula φ is valid.

Multi-Agent Programming Languages, Platforms and Applications 843 / 1

ARTIMIS Autonomous agent

The concept of action (or event) and the basic mental attitudes of
belief, uncertainty and choice (or, to some extent, goal) are modelled.

Definition 9.2
The mental attitudes are respectively formalised by the modal operators:
Belief: B; Uncertainty: U; Choice: C

Example 9.3

Formulae as Bip,Uip and Cip can be respectively read:

“i (implicitly) believes (that) p”;

“i thinks that p is more likely than ¬p”;

“i desires that p currently holds”.

Multi-Agent Programming Languages, Platforms and Applications 844 / 1

ARTIMIS Autonomous agent

The logical rules that express their inherent properties and
relationships are formalised.

The resulting agents are fully introspective and have consistent
beliefs.

An agent’s uncertainties are not closed under logical consequence.

Multi-Agent Programming Languages, Platforms and Applications 845 / 1

ARTIMIS Autonomous agent

Definition 9.4 (Intention)

Intention is defined as a complex combination of belief and choice.

It is formalised by the modal operator I.

Formula as Iip can be read “i brings about p”.

The definition of intention entails that it necessarily generates a planning
process.

It also imposes that an agent cannot bring about a situation if the agent
believes that the situation already holds:

|= Iiφ⇒ Bi¬φ

Multi-Agent Programming Languages, Platforms and Applications 846 / 1

ARTIMIS Autonomous agent

Definition 9.5 (Complex action expressions)

As far as action is concerned, complex action expressions are recursively
built over the set of primitive actions (or events) using:

A sequence operator (a1;a2);

A nondeterministic choice operator (a1 | a2);

An iteration operator (a∗).

Multi-Agent Programming Languages, Platforms and Applications 847 / 1

ARTIMIS Autonomous agent

Definition 9.6 (Sequence)

A sequence can be formed with a single agent that may be the void event.

Definition 9.7 (Introspection action)

The introspection action, noted 〈i,φ?〉, is a particular event that can be
performed if and only if agent i explicitly believes φ.

It enables the agent to handle conditional steps within plans.

Multi-Agent Programming Languages, Platforms and Applications 848 / 1

ARTIMIS Autonomous agent

Definition 9.8 (Feasible, Done)

In order to reason about action, two modal operators are introduced, a being
an action expression and φ a formula:

Feasible(a,φ) means that a can take place and if it does, φ will be true
after that;

Done(a,φ) means that a has just taken place and φ was true before that.

Agent(i,a) means that i denotes the only agent of the events (or actions)
appearing in a.

Multi-Agent Programming Languages, Platforms and Applications 849 / 1

ARTIMIS Autonomous agent

Definition 9.9
The following abbreviations are used, True being the propositional constant
always true:

Feasible(a) ≡ Feasible(a,True)
Done(a) ≡ Done(a,True)
Bifiφ ≡ Biφ∨Bi¬φ

Brefiδ(x) ≡ (∃y)Bi(ιxδ(x) = y)
Uifiφ ≡ Uiφ∨Ui¬φ

Urefiδ(x) ≡ (∃y)Ui(ιxδ(x) = y)
ABn,i,jφ ≡ BiBjBi ...φ

Multi-Agent Programming Languages, Platforms and Applications 850 / 1

ARTIMIS Autonomous agent

Definition 9.10
In the forth and sixth abbreviations, ι is the operator for definite description,
defined as a term producer as follows:

φ(ιxδ(x)) ≡ ∃yφ(y)∧δ(y)∧∀z(δ(z)⇒ z = y)

Multi-Agent Programming Languages, Platforms and Applications 851 / 1

ARTIMIS Autonomous agent

ιxδ(x) is read “the (x which is) δ”.

Brefiδ(x) means that agent i (thinks that she/he/it) knows the (x which is)
δ.

Uifiφ means that either agent i is uncertain about φ or that he is uncertain
about ¬φ.

Urefiδ(x) has the same meaning as Brefiδ(x), except that agent i has an
uncertainty attitude with respect to δ(x) instead of a belief attitude.

In the last abbreviation, which introduces the concept of alternate
beliefs, n is a positive integer representing the number of B operators
alternating between i and j .

Multi-Agent Programming Languages, Platforms and Applications 852 / 1

ARTIMIS Autonomous agent

There is no restriction on the possibility of embedding mental attitude or
action operators.

Example 9.11

Formula UiBj IjDone(a,Bip) informally means that agent i believes that,
probably, agent j thinks that i has the intention that action a be done before
which i has to believe p.

Definition 9.12
A fundamental property of the proposed logic is that the modelled agents
are perfectly in agreement with their own mental attitudes. Formally, the
following property holds:

|= φ(i)⇔ Biφ

where φ(i) is a formula governed by a modal operator formalising a mental
attitude of agent i .

Multi-Agent Programming Languages, Platforms and Applications 853 / 1

ARTIMIS Autonomous agent

Rationality principles

The second component of the theory deals with the properties that
relate an agent’s intentions with the actions enabling it to achieve them.

It formally establishes the axioms that ground an agent’s rational
behaviour, namely the rationality principles.
These principles enable an agent to generate intentional action.

Multi-Agent Programming Languages, Platforms and Applications 854 / 1

ARTIMIS Autonomous agent

The components of an action model, in particular, of a communicative
act (CA) model that are involved in a planning process characterise:

The reason for which the action is selected;
The conditions that have to be satisfied for the action to be planned.

For a given action, the former is referred to as the rational effect (RE),
and the latter as the feasibility preconditions (FP), or the
qualifications of the action.

Multi-Agent Programming Languages, Platforms and Applications 855 / 1

ARTIMIS Autonomous agent

Two rationality principles relate an agent’s intention to its plans and
actions.

The planning process is driven by their alternate use.

Multi-Agent Programming Languages, Platforms and Applications 856 / 1

ARTIMIS Autonomous agent

Definition 9.13 (Rationality principles)

Formally, the two rationality principles are stated as follows:

1. |= Iip⇒ IiDone(a1 | ... | an)
where ak (k ranging form 1 to n) are all the actions such that:

1 agent i knows action ak ;
2 p is the rational effect of ak (i.e., the reason for which ak is planned);
3 ¬Ii¬Done(ak)

2. |= IiDone(a)⇒ BiFeasible(a)∨ IiBiFeasible(a)

Multi-Agent Programming Languages, Platforms and Applications 857 / 1

ARTIMIS Autonomous agent

1. The first principle gives an agent the capability of planning an act
whenever the agent intends to achieve its RE.
It states that an agent’s intention to achieve a given goal generates its
intention that be done one of the acts:

1 Known to the agent;
2 Whose RE corresponds to the agent’s goal;
3 That the agent has no reason for not doing them.

Multi-Agent Programming Languages, Platforms and Applications 858 / 1

ARTIMIS Autonomous agent

2. The second principle imposes on an agent, whenever it selects an action,
to seek the satisfiability of its FPs.
It states that an agent having the intention that some action be done,
adopts the intention that the action be feasible, unless it believes that it is
already feasible.

Note: The rationality principles specify a planning algorithm — with no need
for any external plan calculus mechanisms — that deductively generates
action plans, through the inference of causal chains of intentions.

Multi-Agent Programming Languages, Platforms and Applications 859 / 1

ARTIMIS Autonomous agent

Communicative act models

The third component of the theory underlying ARTIMIS gives a
fine-grained account of a set of primitive communicative acts, by
precisely determining the preconditions and effects that characterise
each one of them and endow it with its semantics.

Communicative acts are viewed as ordinary actions, handled by the
rationality principles in a regular way.

Multi-Agent Programming Languages, Platforms and Applications 860 / 1

ARTIMIS Autonomous agent

A model of rational action should specify the feasibility preconditions and
the rationale of the action.
The expression of such a model is, in general, complex for two main
reasons:

1 The set of action qualifications is potentially infinite.
2 The effect of an action on the world is strongly context-dependent and

cannot be formulated in general terms; furthermore, “summarising” what
an action should leave unchanged is a difficult problem.

Multi-Agent Programming Languages, Platforms and Applications 861 / 1

ARTIMIS Autonomous agent

A solution that goes round the problem of effect specification is directly
related to the expression of the rationality principles.

If it is not possible to specify the actual effects of an action, it is yet
possible to state what is expected from an action, that is, what are the
reasons for which the action has been selected.

This is exactly what is expressed by the first rationality principle.

This semantics for action effect, within the framework of a model of
rational behaviour, allows one to overcome the problem of effect
unpredictability.

Multi-Agent Programming Languages, Platforms and Applications 862 / 1

ARTIMIS Autonomous agent

The set of feasibility preconditions for a CA can be split into two
subsets:

1 The ability preconditions;
2 The context-relevance preconditions.

Multi-Agent Programming Languages, Platforms and Applications 863 / 1

ARTIMIS Autonomous agent

The ability preconditions characterise the intrinsic ability of an
agent to perform a given CA.

Example 9.14

To sincerely assert some proposition p, an agent has to believe that p.

The context-relevance preconditions characterise the relevance of the
act with respect to the context in which it is to be performed.

Example 9.15

An agent can be intrinsically able to make a promise while believing that the
promised action is not needed by the addressee.

Multi-Agent Programming Languages, Platforms and Applications 864 / 1

ARTIMIS Autonomous agent

Definition 9.16
The specification of an action’s feasibility preconditions and rational effect is
axiomatised within the logical theory through the two following properties:

Bi(Feasible(a)⇔ FP(a))
Bi(Done(a)⇒ RE(a))

Multi-Agent Programming Languages, Platforms and Applications 865 / 1

ARTIMIS Autonomous agent

Example 9.17

A simplified model of the communicative act of informing about the truth of a
proposition:

〈i, Inform(j,φ)〉
FP : Biφ∧¬BiBjφ

RE : Bjφ

This model is directly axiomatised within the logical theory through the
rationality principles and the following schema:

Bh(Feasible(〈i, Inform(j,φ)〉)⇔ Biφ∧¬BiBjφ)
Bh(Done(〈i, Inform(j,φ)〉)⇒ Bjφ)

Note: Actions are not handled as data structures by a planning process, but
have a logical semantics within the theory itself.

Multi-Agent Programming Languages, Platforms and Applications 866 / 1

ARTIMIS Autonomous agent

Belief reconstruction

The fourth component of the theory deals with the evolution of agent’s
beliefs, in particular as a consequence of observing communicative
actions.

It formalises the belief reconstruction process and mainly deals with the
converse process of CA planning, namely the CA consummation
process.

An agent comes to the conclusion that an action (or an event) it has just
observed has really occurred, only under certain admission conditions.

Multi-Agent Programming Languages, Platforms and Applications 867 / 1

ARTIMIS Autonomous agent

Definition 9.18
An agent considers that an action a realised by what it has just observed
has occurred, only if what the agent believed before the occurrence of a
is consistent with the fact that a was feasible;

Otherwise the agent rejects a or puts into question the admissibility of the
previous event(s) that make(s) a unfeasible.

Multi-Agent Programming Languages, Platforms and Applications 868 / 1

ARTIMIS Autonomous agent

Definition 9.19
After an observation,

whenever an agent admits an action (or an event) corresponding to
the observation, and only in this case,

it is necessarily committed to believe that its effects and persistent
qualifications hold.

Multi-Agent Programming Languages, Platforms and Applications 869 / 1

ARTIMIS Autonomous agent

Definition 9.20

As far as CAs are concerned, the agent has to come to believe that the
act’s performer has the intention (to make public her/his/its intention) to
achieve the rational effect of the act. This is captured by the following
property:

Bi(Done(a)∧Agent(j,a)⇒ IjBi IjRE(a))

The persistent FPs of a CA are those that do not refer to time (PFPs).

The following property holds:

Bi(Done(a)⇒ PFP(a))

Multi-Agent Programming Languages, Platforms and Applications 870 / 1

ARTIMIS Autonomous agent

Social context

The last component of the theory is relative to the properties enabling an
agent to evolve in a social environment, typically a multi-agent context.

It determines and formalises the basic principles of belief and
intention transfer, and those of cooperative behaviour, together with a
set of cognitive properties endowing an agent with the motivations to
harmoniously react to its environment solicitations.

A minimal cooperation is required for communication to be possible.

Multi-Agent Programming Languages, Platforms and Applications 871 / 1

ARTIMIS Autonomous agent

Example 9.21

Suppose that an agent i asks an agent j if proposition p is true.

If both agents respect the semantics of the communication language, j
knows that i intends to know if p is true.

But, without a minimal cooperation, j is in no way constrained to react to
i ’s request.

Multi-Agent Programming Languages, Platforms and Applications 872 / 1

ARTIMIS Autonomous agent

Minimal principle of cooperation (informal)

The minimal principle of cooperation states that agents must:

React when they are addressed;

Adopt the interlocutor’s intention whenever they recognise it, and if they
have no objection to adopt it.

In other words:

if an agent i believes that an agent j intends to achieve property p,
and that itself does not have an opposite intention, then i will adopt
the intention that j will (eventually) come to believe p.

Multi-Agent Programming Languages, Platforms and Applications 873 / 1

ARTIMIS Autonomous agent

Definition 9.22 (Minimal principle of cooperation)

The Minimal principle of cooperation formalised by the validity of the
following property:

Bi Ijφ∧¬Ii¬φ⇒ IiBjφ

In particular: If an agent i thinks that an agent j is expecting something
from it (and i has no objections for doing it), then i adopts the intention
that j will come to believe that i has done what was expected.

Thus, from j ’s point of view, agent i is cooperating.

Multi-Agent Programming Languages, Platforms and Applications 874 / 1

ARTIMIS Autonomous agent

The minimal principle of cooperation has a far range in application.

It may lead to cooperative behaviours that are much more complex than
merely answering questions.

Example 9.23

An agent forward a request to a competent agent if it cannot answer the
request by itself.

Multi-Agent Programming Languages, Platforms and Applications 875 / 1

ARTIMIS Autonomous agent

The previous property does not ensure that agent i really believes what it
will make j believe.

Sincerity is an integral part of cooperation commitments, yet still
optional in the specification of an agent in general.

Multi-Agent Programming Languages, Platforms and Applications 876 / 1

ARTIMIS Autonomous agent

Definition 9.24 (Sincerity)

In terms of mental attitudes, sincerity can be expressed as follows:

An agent i cannot have the intention that an agent j comes to believe
that a proposition p is true without itself believing p or without
having the intention to come to believe p.
This property translates into the validity of the following schema:

IiBjφ⇒ Biφ∨ IiBiφ

This property taken together with the previous one ensures that an agent
will act sincerely, and therefore will cooperate.
Whenever an agent i is aware of the objectives of an agent j , then, as far
as possible, i will help j to achieve them.

Multi-Agent Programming Languages, Platforms and Applications 877 / 1

ARTIMIS Autonomous agent

A corrective answer is produced with the intention of correcting a belief
that is considered wrong.

Such a belief is usually a presupposition inferred from the recognised
communicative act.

A corrective intention arises in an agent when its belief of a proposition,
about which it is competent is in contradiction with that of its interlocutor.

Definition 9.25 (Corrective intention)

Formally, this property is expressed by the validity of the following schema:

Bi(φ∧Bj¬φ∧Comp(i,φ))⇒ IiBjφ

where competence is defined as follows:

Comp(i,φ)≡ (Biφ⇒ φ)∧ (Bi¬φ⇒¬φ)

Multi-Agent Programming Languages, Platforms and Applications 878 / 1

ARTIMIS Architecture and implementation

Global functional architecture

Figure 75: ARTIMIS functional architecture
Multi-Agent Programming Languages, Platforms and Applications 879 / 1

ARTIMIS Architecture and implementation

Rational unit

The rational unit is the decision kernel of the agent.

It endows the agent with the capability to reason about knowledge and
action.

It performs cooperative rational reaction calculus producing motivated
plans of actions, such as plans of (or including) communicative acts.

The communication “protocols” are dynamic and flexible: there are
no pre-defined inter-agent dialogue patterns.

Multi-Agent Programming Languages, Platforms and Applications 880 / 1

ARTIMIS Architecture and implementation

By itself the rational unit is an intelligent communicating agent.

It can be used as a regular communicating agent in a multi-agent
infrastructure.

In the context of human-agent interaction, the user is viewed as a
particular agent; no assumption is made about the interlocutor’s type.

The rational unit requires natural language processing components
that bridge the gap between the human language and the internal
semantic knowledge representation in terms of communicative acts with
semantic contents expressed in a powerful language (a first-order modal
language): ARCOL.

Multi-Agent Programming Languages, Platforms and Applications 881 / 1

ARTIMIS Architecture and implementation

From the dialogue management point of view, the rational unit can be
viewed as a “dialogue manager”.

Using its generic reasoning capabilities, it calculates the system’s
reaction to the user’s requests and responses.

To produce its reactions, it may also require the Knowledge
Management component.

Multi-Agent Programming Languages, Platforms and Applications 882 / 1

ARTIMIS Architecture and implementation

The rational unit faithfully implements the kernel of the rational
interaction theory.

It is operated by an inference engine based on a “syntactic” approach
of deductive reasoning in first order modal logic.

The axiom schemata, of a very general scope, already pre-defined by
the interaction theory, are part of an ARTIMIS agent’s rational unit.

The “programmer” can define specialised schemata for a given
application.

The set of schemata drives the rational unit reasoning process and,
therefore, its reaction to its environment solicitations.

Multi-Agent Programming Languages, Platforms and Applications 883 / 1

ARTIMIS Architecture and implementation

Environment solicitations such as requests from the user or from other
software agents are conveyed to the rational unit as logical sentences of
the rational interaction theory.

The inference engine calculates the consequences of these
sentences.

In particular, it responses or requests for precision to send to the
interlocutor (a human user or a software agent), as well as
non-communicative actions.

Multi-Agent Programming Languages, Platforms and Applications 884 / 1

ARTIMIS Architecture and implementation

For a given formula, the inference engine looks up if there is any
behaviour principle that applies to this formula in order to deduce
logical consequences.

This procedure is then applied to the new derived consequences, until
ending all the possibilities: such a procedure is a so-called
saturation-based inference algorithm.

Among all the consequences, the inference engine selects those
referring to the actions (including communicative acts) to be performed by
the agent, which form the agent’s reactions.

Multi-Agent Programming Languages, Platforms and Applications 885 / 1

ARTIMIS Architecture and implementation

Example 9.26

Assume that after utterance analysis/interpretation the recognised
communicative act is that the user or another agent wants to inform
ARTIMIS that it wants to know if p.

On the basis of the rationality principles, the system infers the intention of
the user to know if p.

The cooperation principles allow the system to adopt the intention that the
user eventually comes to know if p.

The system adopts the intention of informing the user that p or informing
it that not p.

The system then selects the one of these two actions that is currently
feasible and transmits it to the natural language generator.

In the case of a negative answer, ARTIMIS will produce, as far as
possible, a suggestive response.

Multi-Agent Programming Languages, Platforms and Applications 886 / 1

ARTIMIS Architecture and implementation

Knowledge management unit

This component supplies two main functionalities:

Constraint restriction and relaxation calculus mechanisms.
Standard interfaces (ODBC, Oracle, XML, etc.) to external information
systems.

Multi-Agent Programming Languages, Platforms and Applications 887 / 1

ARTIMIS Architecture and implementation

The reasoning process carried out by the rational unit partially relies on
specific application data.

Example 9.27

If an ARTIMIS Agent is intended to provide a train schedule, it needs to have
data about the train stations, the connections between them and about
temporal notions.

Theses data are organised in a KL-One-like semantic network
implemented as a set of facts.

Multi-Agent Programming Languages, Platforms and Applications 888 / 1

ARTIMIS Architecture and implementation

The semantic network allows for expressing notions of class, sub-class,
and instances.

It also defines a notion of relation between classes, which applies to the
different class instances.

Example 9.28

For a Directory application the semantic network involves the following
classes:

People (whose instances are the set of people known in the directory);

Job (whose instances are the people jobs).

These two classes are related by the relation JobOf.

Example 9.29

To indicate that John is a lawyer, the semantic network involves the fact
JobOf(John, Lawyer).

Multi-Agent Programming Languages, Platforms and Applications 889 / 1

ARTIMIS Architecture and implementation

The rational unit can access the semantic network at any time of its
inference procedure when the derived consequences depend on the
nature of the data.

Example 9.30

In the Directory application, if the user asks for the job of John, the answer of
ARTIMIS will depend on its query to the semantic network.

Multi-Agent Programming Languages, Platforms and Applications 890 / 1

ARTIMIS Architecture and implementation

The semantic network also involves semantic proximity notions, which
are particularly useful to produce the cooperative reactions of an
ARTIMIS agent.

Example 9.31

Lawyer will be considered as semantically closer (according to a certain
metrics) to Attorney than to Medical Doctor.

This construction enables to achieve two symmetric operations:
Constraint relaxation;
Constraint restriction.

Multi-Agent Programming Languages, Platforms and Applications 891 / 1

ARTIMIS Architecture and implementation

Constraint relaxation consists in providing a close answer to what has
been requested when the “exact” response does not exist.

The rational unit has access to the database through a procedural
attachment engine that seeks satisfactory “approximate” solutions when
no “exact” solution to the user’s request is found.

This is implemented by “compiling” the semantic network into a
product metric space where the dimensions are the application relations.

A distance function d(a,b) is assigned to each dimension in order to
quantify the approximation made when relaxing a into b.

Constraint relaxation is viewed as the operation of finding the nearest
neighbours in the metric space.

Multi-Agent Programming Languages, Platforms and Applications 892 / 1

ARTIMIS Architecture and implementation

Example 9.32

If we ask the Directory application to provide the list of the product managers,
and it does not exist any, the inference procedure can trigger a constraint
relaxation process in order to suggest, for example, the list of project
managers.

Multi-Agent Programming Languages, Platforms and Applications 893 / 1

ARTIMIS Architecture and implementation

Conversely, the restriction process consists in finding a way to reduce a
too wide set of solutions, by introducing additional constraints when the
request is too “weak”.

According to the current context, the constraint to be instantiated (by the
user) could be, for example, the one corresponding to the dimension with
the longest diameter.

Multi-Agent Programming Languages, Platforms and Applications 894 / 1

ARTIMIS Architecture and implementation

Example 9.33

If there are fifty project managers in the Directory, restriction will provide the
most discriminating dimension (for example, the department they work for), in
order to pose a relevant question to better qualify the user’s request.

Multi-Agent Programming Languages, Platforms and Applications 895 / 1

ARTIMIS Architecture and implementation

Language processing unit

Input:
This component relies on semantic and linguistic models to
contextually interpret the user’s natural language utterances, possibly
combined with other communication media, and builds up a logical
representation directly usable by the rational unit.

Output:
This component achieves the converse function, that of generation, in
order to express in a “high level language” the system responses.

Multi-Agent Programming Languages, Platforms and Applications 896 / 1

ARTIMIS Architecture and implementation

Language understanding

The goal of the understanding process is to reconstruct, in a logical
form, the dialogue acts realised by the input utterances.

The utterance analysis is based on detecting “small” syntactic
structures that are going to activate one or more notions mainly coming
from the semantic network.

Multi-Agent Programming Languages, Platforms and Applications 897 / 1

ARTIMIS Architecture and implementation

The relation between the user’s input vocabulary and the semantic
network is done by means of a concept activation mechanism.

The concepts correspond to the semantic notions conveyed by the word
sequences of the vocabulary.
These activated notions partially depend on the application, but they also
represent more general concepts such as:

User’s intentions and beliefs;
Negation;
Existential and universal quantification;
Cardinalities;
etc.

Multi-Agent Programming Languages, Platforms and Applications 898 / 1

ARTIMIS Architecture and implementation

The interpretation module has at its disposal a set of activated
concepts.

It transforms them, through a semantic completion process, into a
well-formed logical sentence that represents the semantic content of
the dialogue act.

This process relies on the assumption of semantic connectivity of user’s
utterance, that is to say that the concepts mentioned by the user have
necessarily something to do with each others.

It assumes that the utterance corresponds to a path in the semantic
network.

The semantic completion process aims at connecting to each others
activated concepts through relations existing in the semantic network,
even by adding, if necessary, concepts that were not explicitly mentioned.

This process determines the understood notions in the utterance.

Multi-Agent Programming Languages, Platforms and Applications 899 / 1

ARTIMIS Architecture and implementation

The interpretation module has also to take into account the context of
the user’s utterance.

It disposes of the concepts previously evoked both by the user and the
ARTIMIS agent.

A part of theses concepts can be used by the completion process.

Multi-Agent Programming Languages, Platforms and Applications 900 / 1

ARTIMIS Architecture and implementation

The analysis method (semantic-island driven analysis) and the
semantic completion ensure certain robustness to the
analysis/interpretation process, particularly required in the context of
spontaneous speech.

The only part that depends on user’s language is the link between the
used vocabulary and the semantic network concepts.

The semantic data of the network represent language-independent
notions.

This makes particularly easy the application transfer from a (natural)
language to another one.

Multi-Agent Programming Languages, Platforms and Applications 901 / 1

ARTIMIS Architecture and implementation

Example 9.34 (Dialogue act)

Consider utterance:
“I’d like to know the phone number of a project manager in agent technology
located at Lannion”, recognised by the speech recognition system as “I’d like X
project manager agent technology X Lannion”), which in turn, activates the
concepts of user’s intention, project manager, and Lannion.
The inferred semantic complements are that the request deals with a
telephone number of an individual, whose position is project manager, on a
topic that is agent technology, and whose location is Lannion.

Multi-Agent Programming Languages, Platforms and Applications 902 / 1

ARTIMIS Architecture and implementation

Example 9.35 (Dialogue act (Formal))

Formally, this leads to the construction of the following dialogue act:

〈u, Inform(s, IuBrefuιx(phone−number(x)∧∃y individual(y)
∧position(y ,project−manager)∧ topic(y ,agent− technology)

∧location(y , lannion)∧phone−number(x ,y))〉

meaning that the user (u) informs the system (s) that he wants (Iu . . .) to know
(Brefu . . .) the telephone number of a project manager in agent technology at
Lannion.

Multi-Agent Programming Languages, Platforms and Applications 903 / 1

ARTIMIS Architecture and implementation

Language generation

The generation module achieves the converse task of the interpretation
one.

It must transcribe a sequence of communicative acts produced by the
rational unit into an output understandable by the user.

Multi-Agent Programming Languages, Platforms and Applications 904 / 1

ARTIMIS Architecture and implementation

The generation process proceeds in two phases:
1 Determine the surface acts, the utterances modes:

Declarative;
Imperative;
Interrogative.

and reference acts, the designation modes:
nominal groups,
pronouns,
proper nouns,
etc.

that achieve the dialogue act(s) to be sent to the user.
2 Find the best formulation of the acts specified in the first phase,

depending on the linguistic resources actually available and on the
current linguistic context.

Multi-Agent Programming Languages, Platforms and Applications 905 / 1

ARTIMIS Architecture and implementation

Example 9.36 (Language generation)

If the system wants to inform the user that there is a relation of type
“department” between “the agent technology project manager” and
“information technology”, it would send the following message to the
generator:

〈s, Inform(u,department(ιy(individual(y)
∧position(y ,project−manager)∧ topic(y ,agent− technology)

∧location(y , lannion), information− technology)〉

Multi-Agent Programming Languages, Platforms and Applications 906 / 1

ARTIMIS Architecture and implementation

Example 9.37 (Language generation (continued))

According to the dialogue context, the generator will produce a
declarative sentence with a proper noun and a nominal group, or a
positive answer with a pronoun and a proper noun, or an elliptic sentence
with a proper noun, etc.:

“The department of the project manager on agent technology located at
Lannion is information technology”.
“Yes, she/he belongs to the information technology department”.
“Information technology department”.
etc.

Multi-Agent Programming Languages, Platforms and Applications 907 / 1

ARTIMIS Architecture and implementation

Media processing layer

This component allows for input and output formatting according to the
targeted media.

It is possible to connect an ARTIMIS-based application to any interface
type, with almost no new code development.
ARTIMIS agents already have interfaces to handle:

VXML and SSML (for voice platforms);
HTML (to be operated behind an HTTP server);
ACL (to interoperate with other FIPA compliant agents);
XML;
and also the possibility of direct TCP/IP connection.

Example 9.38

In an end-user application over the telephone, in order to have a voice
interaction with an ARTIMIS agent, it is required to connect it to speech
recognition and synthesis systems.

Multi-Agent Programming Languages, Platforms and Applications 908 / 1

ARTIMIS Architecture and implementation

Some implementation features

ARTIMIS is based on an explicit first-order modal reasoning process.

Its communicative and cooperative behaviour is specified declaratively, in
terms of logical properties, which are implemented as such.

To change its behaviour only requires modifying this set of logical
properties.

No translation from logics to another language is needed.

Multi-Agent Programming Languages, Platforms and Applications 909 / 1

ARTIMIS Architecture and implementation

ARTIMIS technology is available on Solaris, Windows, and Linux
platforms.

A classical machine configuration (PC, 1 GHz, 256 MO Ram) is sufficient
to simultaneously run about 30 ARTIMIS agents in real time.

The ARTIMIS operational platform is compliant with Patrol-like
supervising software.

Multi-Agent Programming Languages, Platforms and Applications 910 / 1

ARTIMIS Agents in multi-agent systems

As constituents of ARTIMIS technology, communicative acts and
cooperation principles enable ARTIMIS agents to be naturally part of
multi-agent systems.

To interact with other agents, ARTIMIS uses the FIPA ACL (Agent
Communication Language) standard, and its associated content
language, SL (Semantic Language).

In fact, both of these languages come from ARCOL, the ARTIMIS
communication language.

Multi-Agent Programming Languages, Platforms and Applications 911 / 1

ARTIMIS Agents in multi-agent systems

ARCOL is a performative-based language, with a non-ambiguous,
fine-grained semantics.

An ARCOL message is specified as a CA type applied to a semantic
content.
The semantic contents of CAs may be of three different types:

Propositions;
Individuals;
Actions (including CAs).

ARCOLintroduces a set of primitive CAs and provides the formal
mechanisms that enable to build macro-acts and complex interaction
protocols.

Multi-Agent Programming Languages, Platforms and Applications 912 / 1

ARTIMIS Agents in multi-agent systems

Definition 9.39

Simplified models of ARCOL primitive acts:

〈i, INFORM(j,φ)〉
meaning: agent i informs agent j that proposition φ is true

FP : Biφ∧¬Bi(Bifjφ∨Uifjφ)
RE : Bjφ

〈i,REQUEST (j,a)〉
meaning: agent i requests agent j to perform action (e.g., CA) a

FP : FP(a)[i \ j]∧BiAgent(j,a)∧¬Bi IjDone(a)
RE : Done(a)

Multi-Agent Programming Languages, Platforms and Applications 913 / 1

ARTIMIS Agents in multi-agent systems

Definition 9.40

FP(a) being the feasibility preconditions of a, and FP(a)[i \ j] the part of the
FPs of a that are mental attitudes of i .

〈i,CONFIRM(j,φ)〉
meaning: agent i confirms to agent j that proposition φ is true

FP : Biφ∧BiUjφ

RE : Bjφ

〈i,DISCONFIRM(j,φ)〉
meaning: agent i disconfirms to agent j that proposition φ is true

FP : Bi¬φ∧Bi(Ujφ∨Bjφ)
RE : Bj¬φ

Multi-Agent Programming Languages, Platforms and Applications 914 / 1

ARTIMIS Agents in multi-agent systems

Macro-acts

Some macro-acts result from the planning of a nondeterministic
choice.

They are selected by an agent when it intends to achieve the rational
effect of one of the acts composing the choice, no matter which one it is.

To do that, one of the feasibility preconditions of the acts must be
satisfied, no matter which one it is.

Macro-acts cannot be achieved as such but are required to abstract.

Example 9.41

An Inform within the scope of a Request , to form a yn-question or a
wh-question.

Multi-Agent Programming Languages, Platforms and Applications 915 / 1

ARTIMIS Agents in multi-agent systems

Definition 9.42 (Macro-acts for Inform acts)

In the case of Inform acts, such macro-acts are defined as follows:

〈i, INFORMIF(j,φ)〉
≡ 〈i, INFORM(j,φ)〉 | 〈i, INFORM(j,¬φ)〉

meaning: agent i informs agent j that proposition φ is true or that it is
false

FP : Bifiφ∧¬Bi(Bifjφ∨Uifjφ)
RE : Bifjφ

Multi-Agent Programming Languages, Platforms and Applications 916 / 1

ARTIMIS Agents in multi-agent systems

Definition 9.43 (Macro-acts for Inform acts (continued))

In the case of Inform acts, such macro-acts are defined as follows:

〈i, INFORMREF(j, ιxδ(x))〉
≡ 〈i, INFORMREF(j, ιxδ(x) = r1)〉 | . . . |
〈i, INFORMREF(j, ιxδ(x) = rk)〉

meaning: agent i informs agent j of the value of the referent x denoted
by δ(x)

FP : Brefiδ(x))∧¬Bi(Brefjδ(x)∨Urefjδ(x))
RE : Brefjδ(x)

where ιxδ(x) is a definite description and rk identifying referring
expressions.

Multi-Agent Programming Languages, Platforms and Applications 917 / 1

ARTIMIS Agents in multi-agent systems

On this basis, using the rationality principles, a set of dialogue acts,
that are, in fact, inter-agent communicative plans are specified.

Example 9.44

The following model for a direct strict yes-no-question plan can be build up:

〈i,YN−QUESTION(j,φ)〉
FP : BiBifjφ∧¬Bifiφ∧¬Uifiφ∧Bi¬Bj(Bifiφ∨Uifiφ)
RE : Bifiφ

Such an act encapsulates the following two-act plan:

〈i,REQUEST (j,〈j, INFORMIF(i,φ)〉)〉;〈j, INFORMIF(i,φ)〉

Multi-Agent Programming Languages, Platforms and Applications 918 / 1

ARTIMIS Agents in multi-agent systems

Definition 9.45
Let us call:

SL the first-order modal language in which the rational interaction
theory underlying ARTIMIS is couched;

SCL the semantic content language of communicative acts.

If it is taken to be SL itself, SCL happens to be a very expressive
language but may turn out to be complex to use as such if an
ARTIMIS-like agent technology is not available to process it.

For “simpler” agents and for implementation reasons, the content
language may be taken to be a less-expressive formalism, e.g., a
subset of SL.

Multi-Agent Programming Languages, Platforms and Applications 919 / 1

ARTIMIS Agents in multi-agent systems

Definition 9.46

Suppose that one want to simplify SCL, for example by restricting it to a
first-order predicate logic language:

Let us call this simplified version SCL1.

ARCOL is accordingly restricted to a language ARCOL1.

We would like to enable the agents to communicate their mental
attitudes (beliefs, intentions, etc.).

Augment the set of ARCOL1’s communicative acts with complex acts
(typically, macro-acts) that intrinsically integrate in their semantics
relevant mental attitudes.

Multi-Agent Programming Languages, Platforms and Applications 920 / 1

ARTIMIS Agents in multi-agent systems

Example 9.47

The act of agent i informing agent j that it (i.e., i) has a given intention,
has the following semantics in ARCOL:

〈i, INFORM(j, Iip)〉:
FP : Iip∧¬Bi(Bifj Iip∨Uifj Iip)
ER : Bj Iip

This act can be defined in ARCOL1as follows:

〈i, INFORM-I(j,p′)〉:
FP : Iip′∧¬Bi(Bifj Iip′∨Uifj Iip′)
ER : Bj Iip′

This ARCOL1’s new act 〈i, INFORM-I(j,p′)〉 is only an abbreviated form
of 〈i, INFORM(j, Iip)〉 from ARCOL since propositions p and p′ are
expressed in SCLand SCL1, respectively.

Multi-Agent Programming Languages, Platforms and Applications 921 / 1

ARTIMIS Agents in multi-agent systems

The major downside is that it requires the definition of an additional
communicative act each time the semantic content cannot be
expressed in the first-order modal language.

Since agents are intended to express communicative acts that refer to
mental attitudes, the corresponding technology must enable the
manipulation of such notions.

If agents have these notions explicitly represented in their own kernels,
there is no a priori reason not to include them into the agent
communication language.

Multi-Agent Programming Languages, Platforms and Applications 922 / 1

ARTIMIS Applications

A natural human-computer dialogue agent

ARTIMIS has been demonstrated on several service prototypes
displaying a natural dialogue with a human user, and on different
interaction media and languages.
It has also been experimented in the context of different field trials in
various application domains:

Directories;
Tourist guides;
Banking and stock exchange;
Travel;
Internet portals;
etc.

Multi-Agent Programming Languages, Platforms and Applications 923 / 1

ARTIMIS Applications

ARTIMIS has been commercially deployed by France Telecom in a
FAQ-like application, namely the help of Wanadoo instant messaging
service, Le Messager.
This application, called Assistant Messager, consists in a conversational
buddy that assists the user in using the instant messaging.

ARTIMIS is able to manage an intelligent cooperative dialogue in
natural language.

Multi-Agent Programming Languages, Platforms and Applications 924 / 1

ARTIMIS Applications

Example 9.48 (Plan Resto : Paris restaurant guide)

The following example presents a sample spoken dialogue collected over the
telephone:

S: Welcome to PlanResto, Paris restaurant guide with direct connection.
The general user guide can be activated at any time by saying general
user guide. If you are not a regular user please say I am not a regular
user. May I help you?

U: I’m not a regular user.

S: PlanResto is a Paris restaurant guide. As with a human operator,
converse with it in a natural way. Do not hesitate to correct it in case of
misunderstanding. Feel free to interrupt it. Speak loud enough and
distinctly, with no pausing and no excessive articulating. Avoid noisy
surrounding. Can I help you formulating your request?

Multi-Agent Programming Languages, Platforms and Applications 925 / 1

ARTIMIS Applications

Example 9.49 (Plan Resto : Paris restaurant guide (continued))

U: I’d like a vegetarian restaurant close to the Picasso Museum.

S: There isn’t any vegetarian restaurant close to the Musée Picasso.
However, there are vegetarian restaurants close to the Musée
Cognacq-Jay, close to Filles du Calvaire and close to Hôtel Carnavelet.
Which suggestion are you interested in?

U: I’d like the last solution.

S: I found two vegetarian restaurants close to the Hôtel Carnavalet. The first
reference is the restaurant Le Loir dans la Théière. Do you want to have
more information, hear about the next restaurant or make a new request?

Multi-Agent Programming Languages, Platforms and Applications 926 / 1

ARTIMIS Applications

Example 9.50 (Plan Resto : Paris restaurant guide (continued))

U: What’s its address?

S: The restaurant Le Loir dans la Théière is located 3 rue des Rosiers. Do
you want more information, to be connected to this restaurant or make a
new request?

U: Finally, I would prefer a Canadian restaurant.

S: There isn’t any Canadian restaurant close to Hôtel Carnavalet. However,
there are Canadian restaurants close to the Cloître des Billettes. Does
this suggestion suit you?

U: Yes please.

Multi-Agent Programming Languages, Platforms and Applications 927 / 1

ARTIMIS Applications

Example 9.51 (Plan Resto : Paris restaurant guide (continued))

S: You want a Canadian restaurant close to the Cloître des Billettes. I’ve
found one called Equinox. Do you want more information, to be
connected with this restaurant or make another request?

U: Could you give me the phone number of this restaurant?

S: The phone number of Equinox restaurant is 01 42 71 92 41.

U: It’s OK. Goodbye.

S: Do you really want to leave Plan Resto?

U: Yes.

S: Thanks for calling Plan Resto. Goodbye for now!

Multi-Agent Programming Languages, Platforms and Applications 928 / 1

ARTIMIS Applications

ARTIMIS help buddy for the Wanadoo instant messaging:
L’Assistant Messager

Figure 76: Chat with a virtual contact: Wanadoo "Assistant Messager"

Multi-Agent Programming Languages, Platforms and Applications 929 / 1

ARTIMIS Applications

L’Assistant Messager

Example 9.52 (L’Assistant Messager)

Example translated from French.

S: Welcome Droopy! I hope you’re well. I’m L’Assistant-Messager. I’m here
to explain to you how to use Le-Messager-Wanadoo. You can converse
with me. I’ll try to help you. What can I do for you?

U: Hi, it’s the first time I am using Le-Messager. Could you tell me what is it
and what availability means?

S: Ok, so you want information about "instant messaging" and "availability". I
need more precisions. I can suggest some help:
1) to discover Le-Messager-Wanadoo 2) to know what an availability state
is Which suggestion are you interested in?

Multi-Agent Programming Languages, Platforms and Applications 930 / 1

ARTIMIS Applications

Example 9.53 (L’Assistant Messager (continued))

U: Give me 1.

S: Here is the answer I found:Le-Messager Wanadoo is an Internet real time
communication tool. The connection state of each subscriber is
memorised in a central server. Thus, at any time, it is possible to know if
your contacts are connected and available to communicate. To use it, you
need an email address and a password. The pseudo can only be created
on the Wanadoo portal. I can give you additional information, if this
answer is not sufficient for you. Do you want it?

U: No thank you, it’s ok for now.

[Later...]

Multi-Agent Programming Languages, Platforms and Applications 931 / 1

ARTIMIS Applications

Example 9.54 (L’Assistant Messager (continued))

S: So, you’re back! Do you realise that it’s more than 1 day that we haven’t
talked. Do you have any new question on Le-Messager-Wanadoo? I’m
always available to help you. What can I do for you?

U: Could you tell me how to delete a contact?

S: I’ve got the answer to your question: To take off a person from your
contacts, select your addressee list, then you have two ways to delete the
contact: - Using the contextual menu: right-click and choose "Delete". -
Using the menu "Contacts": choose entry "Contacts" then select entry
"Delete a contact or a file". What can I do for you now?

Multi-Agent Programming Languages, Platforms and Applications 932 / 1

ARTIMIS Applications

Example 9.55 (L’Assistant Messager (continued))

U: What’s your name?

S: My name is HelpWare, L’Assistant-Messager. I’m just here to give you
any information you need about Le-Messager-Wanadoo. What do you
want to know?

U: Do you know any joke?

S: I’ve 3 heads, 3 legs, 1 arm and 6 fingers, who am I? A liar!

U: Very funny, how old are you? :-)

S: Right now I am precisely 10 months, 25 days, 8 hours, 29 minutes and 40
seconds!

Multi-Agent Programming Languages, Platforms and Applications 933 / 1

ARTIMIS Applications

Example 9.56 (L’Assistant Messager (continued))

U: Are you a genius or a machine!?

S: A human or a machine, no matter what I am :-) I’m here to help you use
Le-Messager-Wanadoo. How can I help you?

U: It’s ok, thanks! See you.

S: If you don’t need me anymore, you can just close my dialogue window!

Multi-Agent Programming Languages, Platforms and Applications 934 / 1

ARTIMIS Applications

ARTIMIS as mediation agent

ARTIMISis virtually located between a human user and domain-specific
agents.

By interacting with such agents, it acquires from them pieces of
information that it aggregates and organises before delivering them as a
global solution to the user in a high level language and a user-friendly and
cooperative format.

ARTIMIShas played this role as a Travel Assistant, in particular in the
context of the Agentcities IST European.

It delivers to the user information on travelling between the main
European cities.

It gets such information by interacting with train and flight schedule
information agents.

Multi-Agent Programming Languages, Platforms and Applications 935 / 1

ARTIMIS Applications

ARTIMIS displays an added-value as a mediation agent on several aspects:

Offering a global trip by aggregating the different responses from the
information agents.

Suggesting the most interesting journey according to different criteria
(duration, earliest arrival, latest departure, etc.).

Suggesting alternative travels when the one targeted by the user does not
exist.

Interacting with the user in natural dialogue.

etc.

Multi-Agent Programming Languages, Platforms and Applications 936 / 1

ARTIMIS Applications

In the Travel Assistant application, ARTIMIS uses a FIPA-Query
standard protocol to interact with the domain-specific agents.

In this protocol, the first communicative act sent by ARTIMIS to the
information agents is a Query-ref or a Query-if.
Each addressee responds either by sending a Refuse, or by sending an
Inform conveying the information found out.

The mediation agent then organises the obtained information according
to the user’s request.

Multi-Agent Programming Languages, Platforms and Applications 937 / 1

ARTIMIS Applications

It is worth noting that although ARTIMIS can use a FIPA standard
protocol to interact with simpler agents.
It is also able to process “free-style” requests coming from the user or
from another agent, which do not fit a specific protocol.

Example 9.57

For instance, to identify flights according to some criteria, the interlocutor could
ask ARTIMIS for the sought information using a Query-ref act (“What are the
flights that are so and so?”), or an Inform act of the intention to know such
flights (“I want to know the flights that are so and so.”).

In the second case, the semantic content of the act expresses an intention
of the interlocutor.
ARTIMIS handles such a content and, on the basis of its cooperation
principles comes to the same behaviour as for a regular Query-ref.

Multi-Agent Programming Languages, Platforms and Applications 938 / 1

ARTIMIS Applications

Example 9.58 (Travel Assistant)

S: Welcome on ARTIMIS-Voyage. How can I help you?

U: I’d like to go to Nice on tomorrow.

S: A trip to Nice on Friday, April 1st, 2005. What’s your departure city?

U: I’d like to leave from Brest in the afternoon and arrive before 6pm.

S: A trip from Brest to Nice on Friday, April 1st, 2005, leaving after 12am and
arriving before 6pm. How do you want to travel, by train or by plane?

U: I don’t care.

S: A trip by train or by plane from Brest to Nice on Friday, April 1st, 2005
leaving after 12am and arriving before 6pm. Do you want to wait for the
response, to receive it by email, or to be called back?

Multi-Agent Programming Languages, Platforms and Applications 939 / 1

ARTIMIS Applications

Example 9.59 (Travel Assistant (continued))

U: I am waiting.

S: Thank you for waiting. I am going to consult the travel sites.

[...]

There is a flight leaving from Brest on Friday, April 1st, 2005 at 2:15pm
and arriving at Nice at 5:35pm. Would you like the details of this journey,
the alternative solutions, or any other information?

U: Give me the details.

S: There are two steps. First step: departure from Brest by plane on Friday,
April 1st, 2005 at 2:15pm; arrival at Paris Orly-West at 3:30pm. Second
step: departure from Paris Orly-West by plane at 4:10pm; arrival at Nice
at 5:35pm. Would you like the alternative solutions?

Multi-Agent Programming Languages, Platforms and Applications 940 / 1

ARTIMIS Applications

Example 9.60 (Travel Assistant (continued))

U: Yes, the alternatives please.

S: The quickest trip by plane is: departure from Brest on Friday, April 1st,
2005 at 5:40pm, arrival at Nice at 8:50pm. Would you like to know the
steps of this journey?

U: And by train?

S: I don’t know any trip by train from Brest to Nice on Friday, April 1st, 2005
leaving after 12pm and arriving before 6pm. However, there is a train
departing from Brest on Friday the 1st of April 2005 at 8:49am, and
arriving at Nice at 10:51pm. Would you like to know the steps of this
journey or an alternative solution?

U: I’d like to have the details.

Multi-Agent Programming Languages, Platforms and Applications 941 / 1

ARTIMIS Applications

Example 9.61 (Travel Assistant (continued))

S: There are 3 steps. First step: Departure from Brest by train on Friday,
April 1st, 2005 at 8:49am; arrival at Paris Montparnasse at 1:30pm.
Second step: departure from Paris Gare de Lyon by train at 2:21pm;
arrival at Toulon at 7:34pm. Third step: departure from Toulon at 9:11pm;
arrival at Nice on at 10:51pm. Would you like any other information?

U: No, thank you.

S: Do you really want to leave ARTIMIS-Voyage?

U: Yes please.

S: Thanks for calling ARTIMIS-Voyage. Goodbye for now!

Multi-Agent Programming Languages, Platforms and Applications 942 / 1

ARTIMIS References

References I

P. Bretier and Sadek D.
A rational agent as the kernel of a cooperative spoken dialogue system:
Implementing a logical theory of interaction.
In Proceedings of the ECAI’96 workshop on Agent Theories,
Architectures, and Languages (ATAL), Budapest, Hungary, 1996.
In Intentions in Communication. MIT press, 1990.

Sadek D.
Communication theory = rationality principles + communicative act
models.
In Proceedings of the AAAI’94 Workshop on Planning for Interagent
Communication, Seatle, WA, 1994.

Multi-Agent Programming Languages, Platforms and Applications 943 / 1

ARTIMIS References

References II

Sadek D., A. Ferrieux, A. Cozannet, P. Bretier, F. Panaget, and J. Simonin.
Effective human-computer cooperative spoken dialogue: The ags
demonstrator.
In Proceedings of ICSLP’96, Philadelphia, 1996.

G.W. Garson.
Quantification in modal logic.
In Handbook of philosophical logic, Volume II: Extensions of classical
Logic, pages 249–307. D. Reidel Publishing Company, 1984.

J.Y. Halpern and Moses Y.
A guide to the modal logics of knowledge and belief: a preliminary draft.
In Proceedings of the IJCAI’85, Los Angeles, CA, 1985.

Doyle J.
Rationality and its role in reasoning.
In Proceedings of AAAI’90, Boston, MA, 1990.

Multi-Agent Programming Languages, Platforms and Applications 944 / 1

ARTIMIS References

References III

K. Konolige.
A First-Order Formalisation of Knowledge and Action.
Hayes, 1982.

S Russel.
Rationality and intelligence.
In Proceedings of IJCAI’95, Montreal, 1995.

D. Sadek.
Dialogs acts are rational plans, 2000.

D. Sadek and H Brouchoud.
Intelligent agents.
In Networks: Internet, telephony, multimedia - Convergences and
complementarities. De Boeck University, 2002.

Multi-Agent Programming Languages, Platforms and Applications 945 / 1

ARTIMIS References

References IV

Martinez T., Bretier P., and Louis V.
Artimis : assistant de voyage et médiateur intelligent dans un système
multi-agent.
In Proceedings of JFSMA’03, Tunisia, 2003.

Multi-Agent Programming Languages, Platforms and Applications 946 / 1

