

Abstraction for Model Checking Modular Interpreted Systems over ATL <u>Michael Köster</u> and Peter Lohmann

Computational Intelligence Group, Clausthal University of Technology Oberseminar 24.02.2011

Michael Köster · CIG, Clausthal University of Technology

Oberseminar 24.02.2011 1/30

Outline

- 1 Motivation
- 2 Modular Interpreted System
- 3 Specification Logic: ATL
- 4 Abstraction for MIS
- 5 The Model Checking Algorithm
- 6 Conclusion

1 Motivation

Motivation

Michael Köster · CIG, Clausthal University of Technology

Oberseminar 24.02.2011 3/30

Local Communities

Nowadays Social Networks:

- exchange of information,
- groups of interests, and
- explicit use of a computer or smart phone.

Local Communities: social networks + real social networks

- exchange of information works automatically,
- spontaneous and dynamic groups of interests, and
- implicit use of a smart phone.

Local Communities

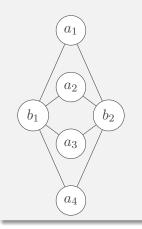
Nowadays Social Networks:

- exchange of information,
- groups of interests, and
- explicit use of a computer or smart phone.

Local Communities: social networks + real social networks

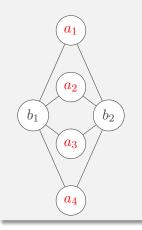
- exchange of information works automatically,
- spontaneous and dynamic groups of interests, and
- implicit use of a smart phone.

Example 1 (Communicating Agents)



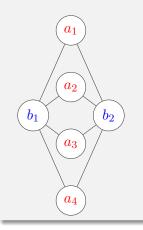
- Agents of team B are not allowed to send a message back.
- If an agent b_j has received a message from a_i then it has to send it to some agent a_k in the following round, k > i.

Example 1 (Communicating Agents)



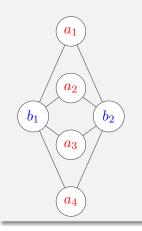
- Agents of team B are not allowed to send a message back.
- If an agent b_j has received a message from a_i then it has to send it to some agent a_k in the following round, k > i.

Example 1 (Communicating Agents)



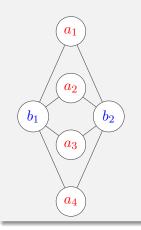
- Agents of team B are not allowed to send a message back.
- If an agent b_j has received a message from a_i then it has to send it to some agent a_k in the following round, k > i.

Example 1 (Communicating Agents)



- Agents of team B are not allowed to send a message back.
- If an agent b_j has received a message from a_i then it has to send it to some agent a_k in the following round, k > i.

Example 1 (Communicating Agents)



- Agents of team B are not allowed to send a message back.
- If an agent b_j has received a message from a_i then it has to send it to some agent a_k in the following round, k > i.

- formalize such a system?
- deal with big systems?
- formulate minimal properties (fairness, liveness, safety)?
- ensure that the minimal properties hold?

- formalize such a system?
 Modular Interpreted System (MIS)
- deal with big systems?
- formulate minimal properties (fairness, liveness, safety)?
- ensure that the minimal properties hold?

- formalize such a system?
 Modular Interpreted System (MIS)
- deal with big systems? Abstraction for MIS
- formulate minimal properties (fairness, liveness, safety)?
- ensure that the minimal properties hold?

- formalize such a system?
 Modular Interpreted System (MIS)
- deal with big systems? Abstraction for MIS
- formulate minimal properties (fairness, liveness, safety)?
 Alternating-Time Temporal Logic (ATL)
- ensure that the minimal properties hold?

- formalize such a system?
 Modular Interpreted System (MIS)
- deal with big systems? Abstraction for MIS
- formulate minimal properties (fairness, liveness, safety)?
 Alternating-Time Temporal Logic (ATL)
- ensure that the minimal properties hold? Model Checking

Michael Köster · CIG, Clausthal University of Technology

Oberseminar 24.02.2011 7/30

Idea:

- Several **loosely** connected components.
- Work is done in the components.
- Little interaction between the components.

Definition 2 (Modular Interpreted System (MIS))

A MIS is a tuple $S = (\mathbb{A}\mathrm{gt}, Act, \mathcal{I}n)$ where:

- $Agt = \{a_1, \ldots, a_k\}$ agents,
- Act actions,
- $\mathcal{I}n$ interaction alphabet.

Definition 2 (Modular Interpreted System (MIS))

A MIS is a tuple $S = (\mathbb{A}\mathrm{gt}, Act, \mathcal{I}n)$ where:

- $Agt = \{a_1, \ldots, a_k\}$ agents,
- Act actions,
- *In* interaction alphabet.

Example 3

• Agt =
$$\{a_1, a_2, a_3, a_4, b_1, b_2\}$$
,

•
$$Act = {send_x | x \in Agt} \cup {noop}$$

Michael Köster · CIG, Clausthal University of Technology

Definition 4 (MIS Agent)

Each agent has the following internal structure:

$$a_i = (St_i, \quad , \quad , \quad , \quad , \quad)$$

Definition 4 (MIS Agent)

Each agent has the following internal structure:

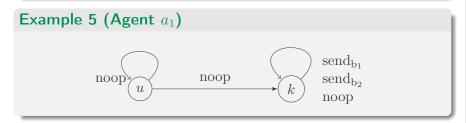
$$a_i = (St_i, \quad , \quad , \quad , \quad , \quad \Pi_i, \pi_i)$$

2 Modular Interpreted System

Definition 4 (MIS Agent)

Each agent has the following internal structure:

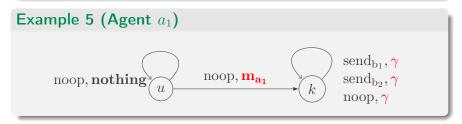
$$a_i = (St_i, d_i, \dots, \dots, \Pi_i, \pi_i)$$



Definition 4 (MIS Agent)

Each agent has the following internal structure:

$$a_i = (St_i, d_i, \dots, in_i, o_i, \Pi_i, \pi_i)$$



Definition 4 (MIS Agent)

Each agent has the following internal structure:

$$a_i = (St_i, d_i, out_i, in_i, o_i, \Pi_i, \pi_i)$$

The global state space is defined as $St := St_1 \times \cdots \times St_k$.

Example 5 (Agent a_1)

- 256 states
- Every state is labeled with known_{bj} if the agent received some time ago the message from a_i.
- Others are labeled with unknown_{bi}.
- While the agent is waiting for a message it does nothing.
- When it receives a message it has to send the message to one of the opponents with a higher number then *i*.
- If the agent received the message from each agent a_i it does nothing.

- 256 states
- Every state is labeled with known_{bj} if the agent received some time ago the message from a_i.
- Others are labeled with unknown_{bi}.
- While the agent is waiting for a message it does nothing.
- When it receives a message it has to send the message to one of the opponents with a higher number then *i*.
- If the agent received the message from each agent a_i it does nothing.

- 256 states
- Every state is labeled with known_{bj} if the agent received some time ago the message from a_i.
- Others are labeled with unknown_{bi}.
- While the agent is waiting for a message it does nothing.
- When it receives a message it has to send the message to one of the opponents with a higher number then *i*.
- If the agent received the message from each agent *a_i* it does nothing.

- 256 states
- Every state is labeled with known_{bj} if the agent received some time ago the message from a_i.
- Others are labeled with unknown_{bi}.
- While the agent is waiting for a message it does nothing.
- When it receives a message it has to send the message to one of the opponents with a higher number then *i*.
- If the agent received the message from each agent *a_i* it does nothing.

Example 6 (Agents b_j)

- 256 states
- Every state is labeled with known_{bj} if the agent received some time ago the message from a_i.
- Others are labeled with unknown_{bi}.
- While the agent is waiting for a message it does nothing.
- When it receives a message it has to send the message to one of the opponents with a higher number then *i*.
- If the agent received the message from each agent a_i it does nothing.

Michael Köster · CIG, Clausthal University of Technology

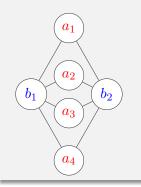
- 256 states
- Every state is labeled with known_{bj} if the agent received some time ago the message from a_i.
- Others are labeled with unknown_{bi}.
- While the agent is waiting for a message it does nothing.
- When it receives a message it has to send the message to one of the opponents with a higher number then *i*.
- If the agent received the message from each agent a_i it does nothing.

- 256 states
- Every state is labeled with known_{bj} if the agent received some time ago the message from a_i.
- Others are labeled with unknown_{bi}.
- While the agent is waiting for a message it does nothing.
- When it receives a message it has to send the message to one of the opponents with a higher number then *i*.
- If the agent received the message from each agent a_i it does nothing.

Advantages of Modular Interpreted Systems

- Modular (removing, replacing of agents)
- Interaction reduced to an abstract interaction symbol
- Computational ground

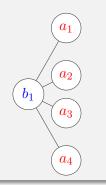
Example 7 (Communicating Agents)



Advantages of Modular Interpreted Systems

- Modular (removing, replacing of agents)
- Interaction reduced to an abstract interaction symbol
- Computational ground

Example 7 (Communicating Agents)



Specification Logic: ATL

Michael Köster · CIG, Clausthal University of Technology

Oberseminar 24.02.2011 12/3

Alternating-time Temporal Logic

Definition 8 (Alternating-time temporal Logic (ATL))

The language of plain ATL is defined over the non-empty sets:

- Π of **Propositions** $p \in \Pi$
- Agt of Agents $A \subseteq Agt$

 $\varphi ::= \mathsf{p} \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle \langle A \rangle \rangle \mathbf{X} \varphi \mid \langle \langle A \rangle \rangle \mathbf{G} \varphi \mid \langle \langle A \rangle \rangle \varphi \mathbf{U} \varphi.$

Main Idea: cooperation modalities

• $\langle\langle A\rangle\rangle \mathbf{X}\varphi$ "coalition A has a collective strategy to enforce in the next step φ "

Michael Köster · CIG, Clausthal University of Technology

Oberseminar 24.02.2011 13/3

Alternating-time Temporal Logic

Definition 8 (Alternating-time temporal Logic (ATL))

The language of plain ATL is defined over the non-empty sets:

- Π of **Propositions** $p \in \Pi$
- Agt of Agents $A \subseteq Agt$

 $\varphi ::= \mathsf{p} \mid \neg \varphi \mid \varphi \lor \varphi \mid \langle \langle A \rangle \rangle \mathbf{X} \varphi \mid \langle \langle A \rangle \rangle \mathbf{G} \varphi \mid \langle \langle A \rangle \rangle \varphi \mathbf{U} \varphi.$

Main Idea: cooperation modalities

• $\langle\langle A\rangle\rangle{\bf X}\varphi$ "coalition A has a collective strategy to enforce in the next step φ "

Example 9

Is it possible for team A to ensure that a_4 will know the message eventually?

$$S, \mathbf{q} \models \langle \langle A \rangle \rangle (\top \mathbf{U} \mathsf{known}_{\mathsf{a}_4})$$

with $A = \{a_1, a_2, a_3, a_4\}$ and q is the global state where a_1 is in state k, all other agents from team A are in state u and the agents from team B are in state (\emptyset, \emptyset)

4 Abstraction for MIS

Abstraction for MIS

Michael Köster · CIG, Clausthal University of Technology

Oberseminar 24.02.2011 15/3

- Reducing all equivalent states to just one
- Agents get fewer choices and the opponents more choices
 Influence symbols of the abstract states:
 - all influence symbols that are an outcome of executing a action in each concrete state
- Local transition function:
 - Input: abstract state, action, influence symbol Output: abstract state
 - unfold both equivalence classes
 - connection between concrete state of 1st equivalence class to concrete state of 2nd equivalence class?

- Reducing all equivalent states to just one
- Agents get fewer choices and the opponents more choices
- Influence symbols of the abstract states:
 - all influence symbols that are an outcome of executing a action in each concrete state
- Local transition function:
 - Input: abstract state, action, influence symbol Output: abstract state
 - unfold both equivalence classes
 - connection between concrete state of 1st equivalence class to concrete state of 2nd equivalence class?

- Reducing all equivalent states to just one
- Agents get fewer choices and the opponents more choices
- Influence symbols of the abstract states:
 - all influence symbols that are an outcome of executing a action in each concrete state
- Local transition function:
 - Input: abstract state, action, influence symbol Output: abstract state
 - unfold both equivalence classes
 - connection between concrete state of 1st equivalence class to concrete state of 2nd equivalence class?

Partitioning the local state space by using handcrafted equivalence relation:

- Reducing all equivalent states to just one
- Agents get fewer choices and the opponents more choices
- Influence symbols of the abstract states:
 - all influence symbols that are an outcome of executing a action in each concrete state
- Local transition function:

- unfold both equivalence classes
- connection between concrete state of 1st equivalence class to concrete state of 2nd equivalence class?

Partitioning the local state space by using handcrafted equivalence relation:

- Reducing all equivalent states to just one
- Agents get fewer choices and the opponents more choices
- Influence symbols of the abstract states:
 - all influence symbols that are an outcome of executing a action in each concrete state

Local transition function:

- unfold both equivalence classes
- connection between concrete state of 1st equivalence class to concrete state of 2nd equivalence class?

Partitioning the local state space by using handcrafted equivalence relation:

- Reducing all equivalent states to just one
- Agents get fewer choices and the opponents more choices
- Influence symbols of the abstract states:
 - all influence symbols that are an outcome of executing a action in each concrete state
- Local transition function:

- unfold both equivalence classes
- connection between concrete state of 1st equivalence class to concrete state of 2nd equivalence class?

Partitioning the local state space by using handcrafted equivalence relation:

- Reducing all equivalent states to just one
- Agents get fewer choices and the opponents more choices
- Influence symbols of the abstract states:
 - all influence symbols that are an outcome of executing a action in each concrete state

Local transition function:

- unfold both equivalence classes
- connection between concrete state of 1st equivalence class to concrete state of 2nd equivalence class?

Partitioning the local state space by using handcrafted equivalence relation:

Labeling:

- Assigning a proposition to an abstract state if all concrete states in the equivalence class are labeled with that proposition
- If a proposition only holds in some states of the class we remove it from set of propositions

- Labeling:
 - Assigning a proposition to an abstract state if all concrete states in the equivalence class are labeled with that proposition
 - If a proposition only holds in some states of the class we remove it from set of propositions

- Labeling:
 - Assigning a proposition to an abstract state if all concrete states in the equivalence class are labeled with that proposition
 - If a proposition only holds in some states of the class we remove it from set of propositions

Abstraction Relation

Definition 10 (Abstraction Relation)

An abstraction relation for a MIS is a product $\equiv \equiv \equiv_1 \times \cdots \times \equiv_k$ where each $\equiv_i \subseteq St_i \times St_i$ is an equivalence relation for the states St_i of agent a_i .

For $q \in St_i$, we write $[q]_{\equiv_i}$ for the equivalence class of the local state q with respect to \equiv_i . And for $q \in St = St_1 \times \cdots \times St_k$, we write $[q]_{\equiv}$ for the equivalence class of the global state q.

Michael Köster · CIG, Clausthal University of Technology

Definition 11 (Abstraction for MIS)

For a MIS S = (Agt, Act, In), an abstraction relation \equiv for S and a set of favored agents $A \subseteq Agt$ we define the abstraction of S with respect to \equiv and A as the MIS

$$S^A_{\equiv} := (\mathbb{A}\mathrm{gt}', Act, \mathcal{I}n)$$

where $\operatorname{Agt}' := \{a'_1, \dots, a'_k\}$ and $a'_i = (St'_i, d'_i, out'_i, in'_i, o'_i, \Pi'_i, \pi'_i)$ with • $St'_i := \{[q]_{\equiv_i} \mid q \in St_i\}$ • $d'_i([q]_{\equiv_i}) := \begin{cases} \bigcap_{q' \in [q]_{\equiv_i}} d_i(q') & \text{for } a_i \in A \\ \bigcup_{q' \in [q]_{\equiv_i}} d_i(q') & \text{for } a_i \notin A \end{cases}$ • $out'_i([q]_{\equiv_i}, \alpha) := \bigcup_{q' \in [q]_{\equiv_i}} out_i(q', \alpha)$ for all $q \in St_i$, $\alpha \in Act$, $\gamma, \gamma_1, \dots, \gamma_k \in \mathcal{I}n$ and $p_i \in \Pi'_i$.

Definition 12 (Abstraction for MIS)

For a MIS S = (Agt, Act, In), an abstraction relation \equiv for S and a set of favored agents $A \subseteq Agt$ we define the abstraction of S with respect to \equiv and A as the MIS

$$S^A_{\equiv} := (\mathbb{A}\mathrm{gt}', Act, \mathcal{I}n)$$

where $\operatorname{Agt}' := \{a'_1, \dots, a'_k\}$ and $a'_i = (St'_i, d'_i, out'_i, in'_i, o'_i, \Pi'_i, \pi'_i)$ with • $in'_i([q]_{\equiv_i}, \gamma_1, \dots, \gamma_{k-1}) := \bigcup_{q' \in [q]_{\equiv_i}} in_i(q', \gamma_1, \dots, \gamma_{k-1})$ • $o'_i([q]_{\equiv_i}, \alpha, \gamma) := \bigcup_{q' \in [q]_{\equiv_i}} \{[q'']_{\equiv_i} \mid q'' \in o_i(q', \alpha, \gamma)\}$ • $\Pi'_i := \Pi_i \cap \{p_i \mid \forall q \in \pi_i(p_i) : \forall q' \in [q]_{\equiv_i} : q' \in \pi_i(p_i)\}$ • $\pi'_i(p_i) := \{[q]_{\equiv_i} \mid q \in \pi_i(p_i)\}$ for all $q \in St_i$, $\alpha \in Act$, $\gamma, \gamma_1, \dots, \gamma_k \in \mathcal{I}n$ and $p_i \in \Pi'_i$.

Example for Abstraction

Example 13 (Agents b_j)

256 states

$$\begin{array}{ll} S_i & := & \{(R,N) \mid \emptyset \neq R \subseteq \{r_1, \dots, r_i\}, n_i \in N\} \setminus \bigcup_{j=1}^{i-1} S_j \\ & \quad \text{for } i = 1, \dots, 3 \\ S_{\text{rest}} & := & \{(R,N) \mid (R,N) \notin S_1 \cup \dots \cup S_3\} \end{array}$$

Result: 4 states

Michael Köster · CIG, Clausthal University of Technology

The Model Checking Algorithm

Michael Köster · CIG, Clausthal University of Technology

Oberseminar 24.02.2011 22/3

Idea

Input:

- $\blacksquare \mathsf{MIS} \ S$
- init of global states of S
- ATL formula φ
- for each quantifier subformulae an abstraction relation

Output:

- $\blacksquare \ {\rm true}: \ {\rm iff} \ S,q \models \varphi \ {\rm for \ all} \ q \in init$
- \blacksquare unknown : we do not know whether S satisfies φ or not

Idea

Input:

- $\blacksquare \mathsf{MIS} \ S$
- init of global states of S
- ATL formula φ
- for each quantifier subformulae an abstraction relation

Output:

- $\bullet \ {\rm true}: \ {\rm iff} \ S,q \models \varphi \ {\rm for \ all} \ q \in init$
- \blacksquare unknown : we do not know whether S satisfies φ or not

- λ Boolean formula (conjunctions and disjunctions only),
- $\theta_1, \ldots, \theta_n$ are arbitrary ATL formulae each beginning with a quantifier, i.e. each θ_i is of the form $\langle \langle B \rangle \rangle \theta'_i$, and
- ℓ_1, \ldots, ℓ_m are literals.
- For all $i \in \{1, \ldots, n\}$ do:
 - w. Set $S := S(w_0, W_0)$, a new global proposition w_0 is introduced in S and it is labeled exactly in the states in W_0 .
- If $S, s \models \lambda(w_1, \dots, w_n, \ell_1, \dots, \ell_m)$ for all $s \in init$ then return true. Otherwise return unknown.

- λ Boolean formula (conjunctions and disjunctions only),
- $\theta_1, \ldots, \theta_n$ are arbitrary ATL formulae each beginning with a quantifier, i.e. each θ_i is of the form $\langle \langle B \rangle \rangle \theta'_i$, and
- ℓ_1, \ldots, ℓ_m are literals.
- For all $i \in \{1, \ldots, n\}$ do:
- * Set $S := S(w_0, W_0)$, a new global proposition w_0 is introduced in S and it is labeled exactly in the states in W_0 .
- If $S, s \models \lambda(w_1, \ldots, w_n, \ell_1, \ldots, \ell_m)$ for all $s \in init$ then return true. Otherwise return unknown.

Algorithm modelcheck(S, init, φ , $(\equiv_{\psi})_{\psi \in qsf(\varphi)}$): Let $\varphi = \lambda(\theta_1, \dots, \theta_n, \ell_1, \dots, \ell_m)$ where

- λ Boolean formula (conjunctions and disjunctions only),
- $\theta_1, \ldots, \theta_n$ are arbitrary ATL formulae each beginning with a quantifier, i.e. each θ_i is of the form $\langle \langle B \rangle \rangle \theta'_i$, and
- ℓ_1, \ldots, ℓ_m are literals.

w Set $S := S(u_i, W_i)$, a new global proposition u_i is introduced in S and it is labeled exactly in the states in W_i .

If $S, s \models \lambda(w_1, \ldots, w_n, \ell_1, \ldots, \ell_m)$ for all $s \in init$ then return true. Otherwise return unknown.

Michael Köster · CIG, Clausthal University of Technology

Algorithm modelcheck(S, init, φ , $(\equiv_{\psi})_{\psi \in qsf(\varphi)}$): Let $\varphi = \lambda(\theta_1, \dots, \theta_n, \ell_1, \dots, \ell_m)$ where

- λ Boolean formula (conjunctions and disjunctions only),
- $\theta_1, \ldots, \theta_n$ are arbitrary ATL formulae each beginning with a quantifier, i.e. each θ_i is of the form $\langle \langle B \rangle \rangle \theta'_i$, and
- ℓ_1, \ldots, ℓ_m are literals.

w Set $S := S(u_i, W_i)$, a new global proposition u_i is introduced in S and it is labeled exactly in the states in W_i .

If $S, s \models \lambda(w_1, \ldots, w_n, \ell_1, \ldots, \ell_m)$ for all $s \in init$ then return true. Otherwise return unknown.

Michael Köster · CIG, Clausthal University of Technology

- λ Boolean formula (conjunctions and disjunctions only),
- $\theta_1, \ldots, \theta_n$ are arbitrary ATL formulae each beginning with a quantifier, i.e. each θ_i is of the form $\langle \langle B \rangle \rangle \theta'_i$, and
- ℓ_1, \ldots, ℓ_m are literals.
- For all $i \in \{1, \ldots, n\}$ do:
 - Set $W_i := label(\theta_i, \equiv_{\theta_i}).$
 - Set $S := S(w_i, W_i)$, a new global proposition w_i is introduced in S and it is labeled exactly in the states in W_i .
- If $S, s \models \lambda(w_1, \dots, w_n, \ell_1, \dots, \ell_m)$ for all $s \in init$ then return true. Otherwise return unknown.

- λ Boolean formula (conjunctions and disjunctions only),
- $\theta_1, \ldots, \theta_n$ are arbitrary ATL formulae each beginning with a quantifier, i.e. each θ_i is of the form $\langle \langle B \rangle \rangle \theta'_i$, and
- ℓ_1, \ldots, ℓ_m are literals.
- For all $i \in \{1, \ldots, n\}$ do:
 - Set $W_i := label(\theta_i, \equiv_{\theta_i})$.
 - Set $S := S(w_i, W_i)$, a new global proposition w_i is introduced in S and it is labeled exactly in the states in W_i .
- If $S, s \models \lambda(w_1, \dots, w_n, \ell_1, \dots, \ell_m)$ for all $s \in init$ then return true. Otherwise return unknown.

- λ Boolean formula (conjunctions and disjunctions only),
- $\theta_1, \ldots, \theta_n$ are arbitrary ATL formulae each beginning with a quantifier, i.e. each θ_i is of the form $\langle \langle B \rangle \rangle \theta'_i$, and

•
$$\ell_1, \ldots, \ell_m$$
 are literals.

For all
$$i \in \{1, \ldots, n\}$$
 do:

- Set $W_i := label(\theta_i, \equiv_{\theta_i})$.
- Set $S := S(w_i, W_i)$, a new global proposition w_i is introduced in S and it is labeled exactly in the states in W_i .
- If $S, s \models \lambda(w_1, \dots, w_n, \ell_1, \dots, \ell_m)$ for all $s \in init$ then return true. Otherwise return unknown.

- λ Boolean formula (conjunctions and disjunctions only),
- $\theta_1, \ldots, \theta_n$ are arbitrary ATL formulae each beginning with a quantifier, i.e. each θ_i is of the form $\langle \langle B \rangle \rangle \theta'_i$, and

•
$$\ell_1, \ldots, \ell_m$$
 are literals.

For all
$$i \in \{1, \ldots, n\}$$
 do:

• Set
$$W_i := label(\theta_i, \equiv_{\theta_i})$$
.

- Set $S := S(w_i, W_i)$, a new global proposition w_i is introduced in S and it is labeled exactly in the states in W_i .
- If $S, s \models \lambda(w_1, \dots, w_n, \ell_1, \dots, \ell_m)$ for all $s \in init$ then return true. Otherwise return unknown.

Algorithm $label(\psi, \equiv)$:

Let $\psi = \neg^{\psi} \langle \langle A \rangle \rangle \mathbf{Y} \lambda(\theta_1, \dots, \theta_n, \ell_1, \dots, \ell_m)$ where

- $\blacksquare \neg^{\psi}$ is \neg if ψ begins with a negation and it is the empty string elsewise,
- $\mathbf{Y} \in \{\mathbf{X}, \mathbf{G}, \mathbf{U}\}$,

 $lacksim \lambda$ is a monotone Boolean formula,

• $\theta_1, \ldots, \theta_n$ are arbitrary ATL formulae each beginning with a quantifier or a negation directly followed by a quantifier, and

• ℓ_1, \ldots, ℓ_m are literals.

Algorithm $label(\psi, \equiv)$:

Let $\psi = \neg^{\psi} \langle \langle A \rangle \rangle \mathbf{Y} \lambda(\theta_1, \dots, \theta_n, \ell_1, \dots, \ell_m)$ where

- $\blacksquare \neg^{\psi}$ is \neg if ψ begins with a negation and it is the empty string elsewise,
- $\mathbf{Y} \in \{\mathbf{X}, \mathbf{G}, \mathbf{U}\}$,

 $lacksim \lambda$ is a monotone Boolean formula,

• $\theta_1, \ldots, \theta_n$ are arbitrary ATL formulae each beginning with a quantifier or a negation directly followed by a quantifier, and

• ℓ_1, \ldots, ℓ_m are literals.

Algorithm *label*(ψ, \equiv):

Let $\psi = \neg^{\psi} \langle \langle A \rangle \rangle \mathbf{Y} \lambda(\theta_1, \dots, \theta_n, \ell_1, \dots, \ell_m)$ where

- \neg^{ψ} is \neg if ψ begins with a negation and it is the empty string elsewise.
- $\bullet \mathbf{Y} \in \{\mathbf{X}, \mathbf{G}, \mathbf{U}\},\$

λ is a monotone Boolean formula,

 l_1, \ldots, l_m are literals.

Algorithm $label(\psi, \equiv)$:

Let $\psi = \neg^{\psi} \langle \langle A \rangle \rangle \mathbf{Y} \lambda(\theta_1, \dots, \theta_n, \ell_1, \dots, \ell_m)$ where

- $\blacksquare \neg^{\psi}$ is \neg if ψ begins with a negation and it is the empty string elsewise,
- $\mathbf{Y} \in \{\mathbf{X}, \mathbf{G}, \mathbf{U}\}$,
- λ is a monotone Boolean formula,
- $\theta_1, \ldots, \theta_n$ are arbitrary ATL formulae each beginning with a quantifier or a negation directly followed by a quantifier, and

• ℓ_1, \ldots, ℓ_m are literals.

Algorithm $label(\psi, \equiv)$:

Let $\psi = \neg^{\psi} \langle \langle A \rangle \rangle \mathbf{Y} \lambda(\theta_1, \dots, \theta_n, \ell_1, \dots, \ell_m)$ where

- $\blacksquare \neg^{\psi}$ is \neg if ψ begins with a negation and it is the empty string elsewise,
- $\mathbf{Y} \in \{\mathbf{X}, \mathbf{G}, \mathbf{U}\}$,
- λ is a monotone Boolean formula,
- $\theta_1, \ldots, \theta_n$ are arbitrary ATL formulae each beginning with a quantifier or a negation directly followed by a quantifier, and
- ℓ_1, \ldots, ℓ_m are literals.

Construct the abstraction

 $S' := \begin{cases} S_{\equiv}^{\llbracket \psi \rrbracket} & \text{if } \psi \text{ does not begin with a negation} \\ S_{\equiv}^{\operatorname{Agt} \setminus \llbracket \psi \rrbracket} & \text{if } \psi \text{ does begin with a negation} \end{cases}$

- For all $i \in \{1, \dots, n\}$ do: Set $W_i := \{[q]_{\equiv} \mid \forall q' \in [q]_{\equiv} : q' \in label(\theta_i, \equiv_{\theta_i})\}.$ Set $S' := S'(w, W_i)$
- Compute the set W' of global states of S' (note that these are global states of the system abstracted with \equiv) satisfying ψ , i.e. W' :=

$$\{[q]_{\equiv} \mid S', [q]_{\equiv} \models \neg^{\psi} \langle \langle A \rangle \rangle \mathbf{Y} \lambda(w_1, \dots, w_n, \ell_1, \dots, \ell_m) \},\$$

by translating S^\prime to a non-deterministic CGS and then using the ATL model checking algorithm.

Construct the abstraction

 $S' := \begin{cases} S_{\equiv}^{\llbracket \psi \rrbracket} & \text{if } \psi \text{ does not begin with a negation} \\ S_{\equiv}^{\mathbb{A}\text{gt} \setminus \llbracket \psi \rrbracket} & \text{if } \psi \text{ does begin with a negation} \end{cases}$

For all $i \in \{1, \ldots, n\}$ do:

• Set $W_i := \{ [q]_{\equiv} \mid \forall q' \in [q]_{\equiv} : q' \in label(\theta_i, \equiv_{\theta_i}) \}.$

• Set
$$S' := S'(w_i, W_i)$$
.

Compute the set W' of global states of S' (note that these are global states of the system abstracted with \equiv) satisfying ψ , i.e. W' :=

$$\{[q]_{\equiv} \mid S', [q]_{\equiv} \models \neg^{\psi} \langle \langle A \rangle \rangle \mathbf{Y} \lambda(w_1, \dots, w_n, \ell_1, \dots, \ell_m) \},\$$

by translating S^\prime to a non-deterministic CGS and then using the ATL model checking algorithm.

Construct the abstraction

 $S' := \begin{cases} S_{\equiv}^{\llbracket \psi \rrbracket} & \text{if } \psi \text{ does not begin with a negation} \\ S_{\equiv}^{\mathbb{A}\text{gt} \setminus \llbracket \psi \rrbracket} & \text{if } \psi \text{ does begin with a negation} \end{cases}$

- For all $i \in \{1, \ldots, n\}$ do:
 - Set $W_i := \{ [q]_{\equiv} \mid \forall q' \in [q]_{\equiv} : q' \in \textit{label}(\theta_i, \equiv_{\theta_i}) \}.$

Set
$$S' := S'(w_i, W_i)$$
.

Compute the set W' of global states of S' (note that these are global states of the system abstracted with \equiv) satisfying ψ , i.e. W' :=

$$\{[q]_{\equiv} \mid S', [q]_{\equiv} \models \neg^{\psi} \langle \langle A \rangle \rangle \mathbf{Y} \lambda(w_1, \dots, w_n, \ell_1, \dots, \ell_m) \},\$$

by translating S^\prime to a non-deterministic CGS and then using the ATL model checking algorithm.

Construct the abstraction

 $S' := \begin{cases} S_{\equiv}^{\llbracket \psi \rrbracket} & \text{if } \psi \text{ does not begin with a negation} \\ S_{\equiv}^{\mathbb{A}\text{gt} \setminus \llbracket \psi \rrbracket} & \text{if } \psi \text{ does begin with a negation} \end{cases}$

• For all $i \in \{1, \ldots, n\}$ do:

• Set $W_i := \{ [q]_{\equiv} \mid \forall q' \in [q]_{\equiv} : q' \in \textit{label}(\theta_i, \equiv_{\theta_i}) \}.$

Set
$$S' := S'(w_i, W_i)$$
.

Compute the set W' of global states of S' (note that these are global states of the system abstracted with \equiv) satisfying ψ , i.e. W' :=

$$\{[q]_{\equiv} \mid S', [q]_{\equiv} \models \neg^{\psi} \langle \langle A \rangle \rangle \mathbf{Y} \lambda(w_1, \dots, w_n, \ell_1, \dots, \ell_m) \},\$$

by translating S^\prime to a non-deterministic CGS and then using the ATL model checking algorithm.

Construct the abstraction

 $S' := \begin{cases} S_{\equiv}^{\llbracket \psi \rrbracket} & \text{if } \psi \text{ does not begin with a negation} \\ S_{\equiv}^{\mathbb{A}\text{gt} \setminus \llbracket \psi \rrbracket} & \text{if } \psi \text{ does begin with a negation} \end{cases}$

For all $i \in \{1, \ldots, n\}$ do: Soft $W := \left[\left[a \right] \mid \forall a' \in [a] : a' \in label(\theta, -1) \right]$

• Set
$$W_i := \{ |q| \equiv | \forall q' \in |q| \equiv : q' \in label(\theta_i, \equiv_{\theta_i}) \}.$$

• Set
$$S' := S'(w_i, W_i)$$
.

• Compute the set W' of global states of S' (note that these are global states of the system abstracted with \equiv) satisfying ψ , i.e. W' :=

$$\{[q]_{\equiv} \mid S', [q]_{\equiv} \models \neg^{\psi} \langle \langle A \rangle \rangle \mathbf{Y} \lambda(w_1, \dots, w_n, \ell_1, \dots, \ell_m) \},\$$

by translating S^\prime to a non-deterministic CGS and then using the ATL model checking algorithm.

Construct the abstraction

 $S' := \begin{cases} S_{\equiv}^{\llbracket \psi \rrbracket} & \text{if } \psi \text{ does not begin with a negation} \\ S_{\equiv}^{\mathbb{A}\text{gt} \setminus \llbracket \psi \rrbracket} & \text{if } \psi \text{ does begin with a negation} \end{cases}$

- For all $i \in \{1, \ldots, n\}$ do:
 - Set $W_i := \{ [q]_{\equiv} \mid \forall q' \in [q]_{\equiv} : q' \in \textit{label}(\theta_i, \equiv_{\theta_i}) \}.$

Set
$$S' := S'(w_i, W_i)$$
.

• Compute the set W' of global states of S' (note that these are global states of the system abstracted with \equiv) satisfying ψ , i.e. W' :=

$$\{[q]_{\equiv} \mid S', [q]_{\equiv} \models \neg^{\psi} \langle \langle A \rangle \rangle \mathbf{Y} \lambda(w_1, \dots, w_n, \ell_1, \dots, \ell_m) \},\$$

by translating S^\prime to a non-deterministic CGS and then using the ATL model checking algorithm.

• Return
$$W := \{q \in St \mid [q]_{\equiv} \in W'\}.$$

Complexity and Soundness

Theorem 14

Algorithm modelcheck($S, init, \varphi, (\equiv_{\psi})_{\psi \in qsf(\varphi)}$) runs in time

$$O\left(|init| + |S| \cdot |\varphi|\right) \cdot 2^{O\left(\sum_{\psi \in qsf(\varphi)} \left|S_{\equiv \psi}^{\llbracket \psi \rrbracket}\right|\right)}$$

where |S| denotes the size of the MIS S in a compact representation. The cardinality of the global state space of S may then be upto $2^{\Theta(|S|)}$.

Theorem 15

Algorithm modelcheck is sound, i.e. if modelcheck(S, init, φ , $(\equiv_{\psi})_{\psi \in qsf(\varphi)})$ outputs true then $S, q \models \varphi$ for all $q \in init$.

Michael Köster · CIG, Clausthal University of Technology

Conclusion

Michael Köster · CIG, Clausthal University of Technology

Oberseminar 24.02.2011 28/3

- Modular Interpreted Systems facilitates modularity
- ATL allows to talk about strategic properties
- The abstraction for MIS :
 - is sound
 - allows to deal with bigger Systems (depending on the equivalent relations)

Thank you for your attention!

Questions?

- Modular Interpreted Systems facilitates modularity
- ATL allows to talk about strategic properties
- The abstraction for MIS :
 - is sound
 - allows to deal with bigger Systems (depending on the equivalent relations)

Thank you for your attention!

Questions?

Michael Köster · CIG, Clausthal University of Technology

Oberseminar 24.02.2011 29/3

- Modular Interpreted Systems facilitates modularity
- ATL allows to talk about strategic properties
- The abstraction for MIS :
 - is sound
 - allows to deal with bigger Systems (depending on the equivalent relations)

Thank you for your attention!

Questions?

References

- W. Jamroga, T. Agotnes Modular Interpreted Systems Proceedings of AAMAS'07, pp. 892-899.
- Rajeev Alur and Thomas A. Henzinger and Orna Kupferman Alternating-time temporal logic
 J. ACM, Volume 49, Number 5, 2002, pp. 672-713.
- Michael Köster, Peter Lohmann Abstraction for Model Checking Modular Interpreted Systems over ATL (Extended Abstract) Proceedings of AAMAS'11
- Michael Köster, Peter Lohmann Abstraction for Model Checking Modular Interpreted Systems over ATL Proceedings of Programming Multi-Agent Systems, AAMAS'11