
Abstraction for Model Checking
Modular Interpreted Systems over ATL

Michael Köster and Peter Lohmann

Computational Intelligence Group,
Clausthal University of Technology

Oberseminar
24.02.2011

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 1/30

Outline

1 Motivation

2 Modular Interpreted System

3 Specification Logic: ATL

4 Abstraction for MIS

5 The Model Checking Algorithm

6 Conclusion

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 2/30

1 Motivation

Motivation

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 3/30

1 Motivation

Local Communities

Nowadays Social Networks:
exchange of information,
groups of interests, and
explicit use of a computer or smart phone.

Local Communities: social networks + real social networks
exchange of information works automatically,
spontaneous and dynamic groups of interests, and
implicit use of a smart phone.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 4/30

1 Motivation

Local Communities

Nowadays Social Networks:
exchange of information,
groups of interests, and
explicit use of a computer or smart phone.

Local Communities: social networks + real social networks
exchange of information works automatically,
spontaneous and dynamic groups of interests, and
implicit use of a smart phone.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 4/30

1 Motivation

Communication between Agents
Example 1 (Communicating Agents)

a1

a2

a3

a4

b1 b2

Agents of team B are not allowed to
send a message back.
If an agent bj has received a message
from ai then it has to send it to some
agent ak in the following round,
k > i.

Is it possible for team A to ensure that a4

will know the message eventually?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 5/30

1 Motivation

Communication between Agents
Example 1 (Communicating Agents)

a1

a2

a3

a4

b1 b2

Agents of team B are not allowed to
send a message back.
If an agent bj has received a message
from ai then it has to send it to some
agent ak in the following round,
k > i.

Is it possible for team A to ensure that a4

will know the message eventually?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 5/30

1 Motivation

Communication between Agents
Example 1 (Communicating Agents)

a1

a2

a3

a4

b1 b2

Agents of team B are not allowed to
send a message back.
If an agent bj has received a message
from ai then it has to send it to some
agent ak in the following round,
k > i.

Is it possible for team A to ensure that a4

will know the message eventually?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 5/30

1 Motivation

Communication between Agents
Example 1 (Communicating Agents)

a1

a2

a3

a4

b1 b2

Agents of team B are not allowed to
send a message back.
If an agent bj has received a message
from ai then it has to send it to some
agent ak in the following round,
k > i.

Is it possible for team A to ensure that a4

will know the message eventually?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 5/30

1 Motivation

Communication between Agents
Example 1 (Communicating Agents)

a1

a2

a3

a4

b1 b2

Agents of team B are not allowed to
send a message back.
If an agent bj has received a message
from ai then it has to send it to some
agent ak in the following round,
k > i.

Is it possible for team A to ensure that a4

will know the message eventually?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 5/30

1 Motivation

Issues

How can we
formalize such a system?

Modular Interpreted System (MIS)

deal with big systems?

Abstraction for MIS

formulate minimal properties (fairness, liveness, safety)?

Alternating-Time Temporal Logic (ATL)

ensure that the minimal properties hold?

Model Checking

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 6/30

1 Motivation

Issues

How can we
formalize such a system?
Modular Interpreted System (MIS)
deal with big systems?

Abstraction for MIS

formulate minimal properties (fairness, liveness, safety)?

Alternating-Time Temporal Logic (ATL)

ensure that the minimal properties hold?

Model Checking

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 6/30

1 Motivation

Issues

How can we
formalize such a system?
Modular Interpreted System (MIS)
deal with big systems?
Abstraction for MIS
formulate minimal properties (fairness, liveness, safety)?

Alternating-Time Temporal Logic (ATL)

ensure that the minimal properties hold?

Model Checking

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 6/30

1 Motivation

Issues

How can we
formalize such a system?
Modular Interpreted System (MIS)
deal with big systems?
Abstraction for MIS
formulate minimal properties (fairness, liveness, safety)?
Alternating-Time Temporal Logic (ATL)
ensure that the minimal properties hold?

Model Checking

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 6/30

1 Motivation

Issues

How can we
formalize such a system?
Modular Interpreted System (MIS)
deal with big systems?
Abstraction for MIS
formulate minimal properties (fairness, liveness, safety)?
Alternating-Time Temporal Logic (ATL)
ensure that the minimal properties hold?
Model Checking

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 6/30

2 Modular Interpreted System

Modular Interpreted System

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 7/30

2 Modular Interpreted System

Modular Interpreted System
Idea:

Several loosely connected components.
Work is done in the components.
Little interaction between the components.

Definition 2 (Modular Interpreted System (MIS))
A MIS is a tuple S = (Agt,Act , In) where:

Agt = {a1, . . . , ak} agents,
Act actions,
In interaction alphabet.

Example 3
Agt = {a1, a2, a3, a4, b1, b2},
Act = {sendx | x ∈ Agt} ∪ {noop}
In = {nothing,ma1 ,ma2 ,ma3 ,ma4} ∪
P({maibj

| i ∈ {1, . . . , 4}, j ∈ {1, 2}}))

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 8/30

2 Modular Interpreted System

Modular Interpreted System
Definition 2 (Modular Interpreted System (MIS))
A MIS is a tuple S = (Agt,Act , In) where:

Agt = {a1, . . . , ak} agents,
Act actions,
In interaction alphabet.

Example 3
Agt = {a1, a2, a3, a4, b1, b2},
Act = {sendx | x ∈ Agt} ∪ {noop}
In = {nothing,ma1 ,ma2 ,ma3 ,ma4} ∪
P({maibj

| i ∈ {1, . . . , 4}, j ∈ {1, 2}}))

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 8/30

2 Modular Interpreted System

Modular Interpreted System
Definition 2 (Modular Interpreted System (MIS))
A MIS is a tuple S = (Agt,Act , In) where:

Agt = {a1, . . . , ak} agents,
Act actions,
In interaction alphabet.

Example 3
Agt = {a1, a2, a3, a4, b1, b2},
Act = {sendx | x ∈ Agt} ∪ {noop}
In = {nothing,ma1 ,ma2 ,ma3 ,ma4} ∪
P({maibj

| i ∈ {1, . . . , 4}, j ∈ {1, 2}}))

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 8/30

2 Modular Interpreted System

MIS Agent I

Definition 4 (MIS Agent)
Each agent has the following internal structure:

ai = (Sti,

di

,

outi

,

ini

,

oi

,

Πi, πi

)

The global state space is defined as St := St1 × · · · × Stk.

Example 5 (Agent a1)

u k

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 9/30

2 Modular Interpreted System

MIS Agent I
Definition 4 (MIS Agent)
Each agent has the following internal structure:

ai = (Sti,

di

,

outi

,

ini

,

oi

,Πi, πi)

The global state space is defined as St := St1 × · · · × Stk.

Example 5 (Agent a1)

u

unknownai

k

knownai

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 9/30

2 Modular Interpreted System

MIS Agent I
Definition 4 (MIS Agent)
Each agent has the following internal structure:

ai = (Sti, di,

outi

,

ini

,

oi

,Πi, πi)

The global state space is defined as St := St1 × · · · × Stk.

Example 5 (Agent a1)

u k
noopnoop

sendb1

sendb2

noop

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 9/30

2 Modular Interpreted System

MIS Agent I
Definition 4 (MIS Agent)
Each agent has the following internal structure:

ai = (Sti, di,

outi

, ini, oi,Πi, πi)

The global state space is defined as St := St1 × · · · × Stk.

Example 5 (Agent a1)

u k
noop,ma1noop,nothing

sendb1 , γ
sendb2 , γ
noop, γ

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 9/30

2 Modular Interpreted System

MIS Agent I
Definition 4 (MIS Agent)
Each agent has the following internal structure:

ai = (Sti, di, outi, ini, oi,Πi, πi)

The global state space is defined as St := St1 × · · · × Stk.

Example 5 (Agent a1)

u k
noop,ma1 ,nothingnoop,nothing

sendb1 , γ,ma1b1

sendb2 , γ,ma1b2

noop, γ,nothing

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 9/30

2 Modular Interpreted System

MIS Agent II
Example 6 (Agents bj)

256 states
Every state is labeled with knownbj

if the agent received some
time ago the message from ai.
Others are labeled with unknownbj

.
While the agent is waiting for a message it does nothing.
When it receives a message it has to send the message to one of
the opponents with a higher number then i.
If the agent received the message from each agent ai it does
nothing.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 10/30

2 Modular Interpreted System

MIS Agent II
Example 6 (Agents bj)

256 states
Every state is labeled with knownbj

if the agent received some
time ago the message from ai.
Others are labeled with unknownbj

.
While the agent is waiting for a message it does nothing.
When it receives a message it has to send the message to one of
the opponents with a higher number then i.
If the agent received the message from each agent ai it does
nothing.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 10/30

2 Modular Interpreted System

MIS Agent II
Example 6 (Agents bj)

256 states
Every state is labeled with knownbj

if the agent received some
time ago the message from ai.
Others are labeled with unknownbj

.
While the agent is waiting for a message it does nothing.
When it receives a message it has to send the message to one of
the opponents with a higher number then i.
If the agent received the message from each agent ai it does
nothing.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 10/30

2 Modular Interpreted System

MIS Agent II
Example 6 (Agents bj)

256 states
Every state is labeled with knownbj

if the agent received some
time ago the message from ai.
Others are labeled with unknownbj

.
While the agent is waiting for a message it does nothing.
When it receives a message it has to send the message to one of
the opponents with a higher number then i.
If the agent received the message from each agent ai it does
nothing.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 10/30

2 Modular Interpreted System

MIS Agent II
Example 6 (Agents bj)

256 states
Every state is labeled with knownbj

if the agent received some
time ago the message from ai.
Others are labeled with unknownbj

.
While the agent is waiting for a message it does nothing.
When it receives a message it has to send the message to one of
the opponents with a higher number then i.
If the agent received the message from each agent ai it does
nothing.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 10/30

2 Modular Interpreted System

MIS Agent II
Example 6 (Agents bj)

256 states
Every state is labeled with knownbj

if the agent received some
time ago the message from ai.
Others are labeled with unknownbj

.
While the agent is waiting for a message it does nothing.
When it receives a message it has to send the message to one of
the opponents with a higher number then i.
If the agent received the message from each agent ai it does
nothing.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 10/30

2 Modular Interpreted System

MIS Agent II
Example 6 (Agents bj)

256 states
Every state is labeled with knownbj

if the agent received some
time ago the message from ai.
Others are labeled with unknownbj

.
While the agent is waiting for a message it does nothing.
When it receives a message it has to send the message to one of
the opponents with a higher number then i.
If the agent received the message from each agent ai it does
nothing.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 10/30

2 Modular Interpreted System

Advantages of Modular Interpreted Systems
Modular (removing, replacing of agents)
Interaction reduced to an abstract interaction symbol
Computational ground

Example 7 (Communicating Agents)

a1

a2

a3

a4

b1 b2

Is it possible for team A to ensure that a4

will know the message eventually?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 11/30

2 Modular Interpreted System

Advantages of Modular Interpreted Systems
Modular (removing, replacing of agents)
Interaction reduced to an abstract interaction symbol
Computational ground

Example 7 (Communicating Agents)

a1

a2

a3

a4

b1

Is it possible for team A to ensure that a4

will know the message eventually?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 11/30

3 Specification Logic: ATL

Specification Logic: ATL

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 12/30

3 Specification Logic: ATL

Alternating-time Temporal Logic

Definition 8 (Alternating-time temporal Logic (ATL))
The language of plain ATL is defined over the non-empty sets:

Π of Propositions p ∈ Π
Agt of Agents A ⊆ Agt
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕUϕ.

Main Idea: cooperation modalities
〈〈A〉〉Xϕ “coalition A has a collective strategy to enforce in the
next step ϕ”

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 13/30

3 Specification Logic: ATL

Alternating-time Temporal Logic

Definition 8 (Alternating-time temporal Logic (ATL))
The language of plain ATL is defined over the non-empty sets:

Π of Propositions p ∈ Π
Agt of Agents A ⊆ Agt
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕUϕ.

Main Idea: cooperation modalities
〈〈A〉〉Xϕ “coalition A has a collective strategy to enforce in the
next step ϕ”

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 13/30

3 Specification Logic: ATL

Example 9
Is it possible for team A to ensure that a4 will know the message
eventually?

S, q |= 〈〈A〉〉(>Uknowna4)

with A = {a1, a2, a3, a4} and q is the global state where a1 is in state
k, all other agents from team A are in state u and the agents from
team B are in state (∅, ∅)

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 14/30

4 Abstraction for MIS

Abstraction for MIS

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 15/30

4 Abstraction for MIS

Basic Idea I
Partitioning the local state space by using handcrafted
equivalence relation:

Reducing all equivalent states to just one
Agents get fewer choices and the opponents more choices
Influence symbols of the abstract states:

all influence symbols that are an outcome of executing a action in
each concrete state

Local transition function:
Input: abstract state, action, influence symbol
Output: abstract state

unfold both equivalence classes
connection between concrete state of 1st equivalence class to
concrete state of 2nd equivalence class?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 16/30

4 Abstraction for MIS

Basic Idea I
Partitioning the local state space by using handcrafted
equivalence relation:

Reducing all equivalent states to just one
Agents get fewer choices and the opponents more choices
Influence symbols of the abstract states:

all influence symbols that are an outcome of executing a action in
each concrete state

Local transition function:
Input: abstract state, action, influence symbol
Output: abstract state

unfold both equivalence classes
connection between concrete state of 1st equivalence class to
concrete state of 2nd equivalence class?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 16/30

4 Abstraction for MIS

Basic Idea I
Partitioning the local state space by using handcrafted
equivalence relation:

Reducing all equivalent states to just one
Agents get fewer choices and the opponents more choices
Influence symbols of the abstract states:

all influence symbols that are an outcome of executing a action in
each concrete state

Local transition function:
Input: abstract state, action, influence symbol
Output: abstract state

unfold both equivalence classes
connection between concrete state of 1st equivalence class to
concrete state of 2nd equivalence class?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 16/30

4 Abstraction for MIS

Basic Idea I
Partitioning the local state space by using handcrafted
equivalence relation:

Reducing all equivalent states to just one
Agents get fewer choices and the opponents more choices
Influence symbols of the abstract states:

all influence symbols that are an outcome of executing a action in
each concrete state

Local transition function:
Input: abstract state, action, influence symbol
Output: abstract state

unfold both equivalence classes
connection between concrete state of 1st equivalence class to
concrete state of 2nd equivalence class?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 16/30

4 Abstraction for MIS

Basic Idea I
Partitioning the local state space by using handcrafted
equivalence relation:

Reducing all equivalent states to just one
Agents get fewer choices and the opponents more choices
Influence symbols of the abstract states:

all influence symbols that are an outcome of executing a action in
each concrete state

Local transition function:
Input: abstract state, action, influence symbol
Output: abstract state

unfold both equivalence classes
connection between concrete state of 1st equivalence class to
concrete state of 2nd equivalence class?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 16/30

4 Abstraction for MIS

Basic Idea I
Partitioning the local state space by using handcrafted
equivalence relation:

Reducing all equivalent states to just one
Agents get fewer choices and the opponents more choices
Influence symbols of the abstract states:

all influence symbols that are an outcome of executing a action in
each concrete state

Local transition function:
Input: abstract state, action, influence symbol
Output: abstract state

unfold both equivalence classes
connection between concrete state of 1st equivalence class to
concrete state of 2nd equivalence class?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 16/30

4 Abstraction for MIS

Basic Idea I
Partitioning the local state space by using handcrafted
equivalence relation:

Reducing all equivalent states to just one
Agents get fewer choices and the opponents more choices
Influence symbols of the abstract states:

all influence symbols that are an outcome of executing a action in
each concrete state

Local transition function:
Input: abstract state, action, influence symbol
Output: abstract state

unfold both equivalence classes
connection between concrete state of 1st equivalence class to
concrete state of 2nd equivalence class?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 16/30

4 Abstraction for MIS

Basic Idea II

Partitioning the local state space by using handcrafted
equivalence relation:

Labeling:
Assigning a proposition to an abstract state if all concrete states
in the equivalence class are labeled with that proposition
If a proposition only holds in some states of the class we remove it
from set of propositions

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 17/30

4 Abstraction for MIS

Basic Idea II

Partitioning the local state space by using handcrafted
equivalence relation:

Labeling:
Assigning a proposition to an abstract state if all concrete states
in the equivalence class are labeled with that proposition
If a proposition only holds in some states of the class we remove it
from set of propositions

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 17/30

4 Abstraction for MIS

Basic Idea II

Partitioning the local state space by using handcrafted
equivalence relation:

Labeling:
Assigning a proposition to an abstract state if all concrete states
in the equivalence class are labeled with that proposition
If a proposition only holds in some states of the class we remove it
from set of propositions

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 17/30

4 Abstraction for MIS

Abstraction Relation

Definition 10 (Abstraction Relation)
An abstraction relation for a MIS is a product ≡ = ≡1 × · · ·× ≡k
where each ≡i⊆ Sti × Sti is an equivalence relation for the states Sti
of agent ai.

For q ∈ Sti, we write [q]≡i for the equivalence class of the local state
q with respect to ≡i. And for q ∈ St = St1 × · · · × Stk, we write [q]≡
for the equivalence class of the global state q.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 18/30

4 Abstraction for MIS

Definition 11 (Abstraction for MIS)
For a MIS S = (Agt,Act , In), an abstraction relation ≡ for S and a
set of favored agents A ⊆ Agt we define the abstraction of S with
respect to ≡ and A as the MIS

SA≡ := (Agt′,Act , In)

where Agt′ := {a′1, . . . , a′k} and a′i = (St′i, d
′
i, out

′
i, in

′
i, o
′
i,Π
′
i, π
′
i) with

St′i := {[q]≡i | q ∈ Sti}

d′i([q]≡i) :=

{ ⋂
q′∈[q]≡i

di(q′) for ai ∈ A⋃
q′∈[q]≡i

di(q′) for ai /∈ A

out′i([q]≡i , α) :=
⋃

q′∈[q]≡i

outi(q′, α)

for all q ∈ Sti, α ∈ Act , γ, γ1, . . . , γk ∈ In and pi ∈ Π′i.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 19/30

4 Abstraction for MIS

Definition 12 (Abstraction for MIS)
For a MIS S = (Agt,Act , In), an abstraction relation ≡ for S and a
set of favored agents A ⊆ Agt we define the abstraction of S with
respect to ≡ and A as the MIS

SA≡ := (Agt′,Act , In)

where Agt′ := {a′1, . . . , a′k} and a′i = (St′i, d
′
i, out

′
i, in

′
i, o
′
i,Π
′
i, π
′
i) with

in′i([q]≡i , γ1, . . . , γk−1) :=
⋃

q′∈[q]≡i

ini(q′, γ1, . . . , γk−1)

o′i([q]≡i , α, γ) :=
⋃

q′∈[q]≡i

{[q′′]≡i | q′′ ∈ oi(q′, α, γ)}

Π′i := Πi ∩ {pi | ∀q ∈ πi(pi) : ∀q′ ∈ [q]≡i : q′ ∈ πi(pi)}
π′i(pi) := {[q]≡i | q ∈ πi(pi)}

for all q ∈ Sti, α ∈ Act , γ, γ1, . . . , γk ∈ In and pi ∈ Π′i.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 20/30

4 Abstraction for MIS

Example for Abstraction

Example 13 (Agents bj)
256 states

Si := {(R,N) | ∅ 6= R ⊆ {r1, . . . , ri}, ni ∈ N} \
⋃i−1
j=1 Sj

for i = 1, . . . , 3
Srest := {(R,N) | (R,N) /∈ S1 ∪ · · · ∪ S3}

Result: 4 states

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 21/30

5 The Model Checking Algorithm

The Model Checking Algorithm

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 22/30

5 The Model Checking Algorithm

Idea

Input:
MIS S
init of global states of S
ATL formula ϕ
for each quantifier subformulae an abstraction relation

Output:
true : iff S, q |= ϕ for all q ∈ init
unknown : we do not know whether S satisfies ϕ or not

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 23/30

5 The Model Checking Algorithm

Idea

Input:
MIS S
init of global states of S
ATL formula ϕ
for each quantifier subformulae an abstraction relation

Output:
true : iff S, q |= ϕ for all q ∈ init
unknown : we do not know whether S satisfies ϕ or not

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 23/30

5 The Model Checking Algorithm

Algorithm: modelcheck
Algorithm modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)):
Let ϕ = λ(θ1, . . . , θn, `1, . . . , `m) where

λ Boolean formula (conjunctions and disjunctions only),
θ1, . . . , θn are arbitrary ATL formulae each beginning with a
quantifier, i.e. each θi is of the form 〈〈B〉〉θ′i, and
`1, . . . , `m are literals.
For all i ∈ {1, . . . , n} do:

Set Wi := label(θi,≡θi
).

Set S := S(wi,Wi), a new global proposition wi is introduced in
S and it is labeled exactly in the states in Wi.

If S, s |= λ(w1, . . . , wn, `1, . . . , `m) for all s ∈ init then return
true. Otherwise return unknown.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 24/30

5 The Model Checking Algorithm

Algorithm: modelcheck
Algorithm modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)):
Let ϕ = λ(θ1, . . . , θn, `1, . . . , `m) where

λ Boolean formula (conjunctions and disjunctions only),
θ1, . . . , θn are arbitrary ATL formulae each beginning with a
quantifier, i.e. each θi is of the form 〈〈B〉〉θ′i, and
`1, . . . , `m are literals.
For all i ∈ {1, . . . , n} do:

Set Wi := label(θi,≡θi
).

Set S := S(wi,Wi), a new global proposition wi is introduced in
S and it is labeled exactly in the states in Wi.

If S, s |= λ(w1, . . . , wn, `1, . . . , `m) for all s ∈ init then return
true. Otherwise return unknown.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 24/30

5 The Model Checking Algorithm

Algorithm: modelcheck
Algorithm modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)):
Let ϕ = λ(θ1, . . . , θn, `1, . . . , `m) where

λ Boolean formula (conjunctions and disjunctions only),
θ1, . . . , θn are arbitrary ATL formulae each beginning with a
quantifier, i.e. each θi is of the form 〈〈B〉〉θ′i, and
`1, . . . , `m are literals.
For all i ∈ {1, . . . , n} do:

Set Wi := label(θi,≡θi
).

Set S := S(wi,Wi), a new global proposition wi is introduced in
S and it is labeled exactly in the states in Wi.

If S, s |= λ(w1, . . . , wn, `1, . . . , `m) for all s ∈ init then return
true. Otherwise return unknown.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 24/30

5 The Model Checking Algorithm

Algorithm: modelcheck
Algorithm modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)):
Let ϕ = λ(θ1, . . . , θn, `1, . . . , `m) where

λ Boolean formula (conjunctions and disjunctions only),
θ1, . . . , θn are arbitrary ATL formulae each beginning with a
quantifier, i.e. each θi is of the form 〈〈B〉〉θ′i, and
`1, . . . , `m are literals.
For all i ∈ {1, . . . , n} do:

Set Wi := label(θi,≡θi
).

Set S := S(wi,Wi), a new global proposition wi is introduced in
S and it is labeled exactly in the states in Wi.

If S, s |= λ(w1, . . . , wn, `1, . . . , `m) for all s ∈ init then return
true. Otherwise return unknown.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 24/30

5 The Model Checking Algorithm

Algorithm: modelcheck
Algorithm modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)):
Let ϕ = λ(θ1, . . . , θn, `1, . . . , `m) where

λ Boolean formula (conjunctions and disjunctions only),
θ1, . . . , θn are arbitrary ATL formulae each beginning with a
quantifier, i.e. each θi is of the form 〈〈B〉〉θ′i, and
`1, . . . , `m are literals.
For all i ∈ {1, . . . , n} do:

Set Wi := label(θi,≡θi
).

Set S := S(wi,Wi), a new global proposition wi is introduced in
S and it is labeled exactly in the states in Wi.

If S, s |= λ(w1, . . . , wn, `1, . . . , `m) for all s ∈ init then return
true. Otherwise return unknown.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 24/30

5 The Model Checking Algorithm

Algorithm: modelcheck
Algorithm modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)):
Let ϕ = λ(θ1, . . . , θn, `1, . . . , `m) where

λ Boolean formula (conjunctions and disjunctions only),
θ1, . . . , θn are arbitrary ATL formulae each beginning with a
quantifier, i.e. each θi is of the form 〈〈B〉〉θ′i, and
`1, . . . , `m are literals.
For all i ∈ {1, . . . , n} do:

Set Wi := label(θi,≡θi
).

Set S := S(wi,Wi), a new global proposition wi is introduced in
S and it is labeled exactly in the states in Wi.

If S, s |= λ(w1, . . . , wn, `1, . . . , `m) for all s ∈ init then return
true. Otherwise return unknown.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 24/30

5 The Model Checking Algorithm

Algorithm: modelcheck
Algorithm modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)):
Let ϕ = λ(θ1, . . . , θn, `1, . . . , `m) where

λ Boolean formula (conjunctions and disjunctions only),
θ1, . . . , θn are arbitrary ATL formulae each beginning with a
quantifier, i.e. each θi is of the form 〈〈B〉〉θ′i, and
`1, . . . , `m are literals.
For all i ∈ {1, . . . , n} do:

Set Wi := label(θi,≡θi
).

Set S := S(wi,Wi), a new global proposition wi is introduced in
S and it is labeled exactly in the states in Wi.

If S, s |= λ(w1, . . . , wn, `1, . . . , `m) for all s ∈ init then return
true. Otherwise return unknown.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 24/30

5 The Model Checking Algorithm

Algorithm: modelcheck
Algorithm modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)):
Let ϕ = λ(θ1, . . . , θn, `1, . . . , `m) where

λ Boolean formula (conjunctions and disjunctions only),
θ1, . . . , θn are arbitrary ATL formulae each beginning with a
quantifier, i.e. each θi is of the form 〈〈B〉〉θ′i, and
`1, . . . , `m are literals.
For all i ∈ {1, . . . , n} do:

Set Wi := label(θi,≡θi
).

Set S := S(wi,Wi), a new global proposition wi is introduced in
S and it is labeled exactly in the states in Wi.

If S, s |= λ(w1, . . . , wn, `1, . . . , `m) for all s ∈ init then return
true. Otherwise return unknown.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 24/30

5 The Model Checking Algorithm

Algorithm: label

Algorithm label(ψ,≡):
Let ψ = ¬ψ〈〈A〉〉Yλ(θ1, . . . , θn, `1, . . . , `m) where
¬ψ is ¬ if ψ begins with a negation and it is the empty string
elsewise,
Y ∈ {X,G,U},
λ is a monotone Boolean formula,
θ1, . . . , θn are arbitrary ATL formulae each beginning with a
quantifier or a negation directly followed by a quantifier, and
`1, . . . , `m are literals.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 25/30

5 The Model Checking Algorithm

Algorithm: label

Algorithm label(ψ,≡):
Let ψ = ¬ψ〈〈A〉〉Yλ(θ1, . . . , θn, `1, . . . , `m) where
¬ψ is ¬ if ψ begins with a negation and it is the empty string
elsewise,
Y ∈ {X,G,U},
λ is a monotone Boolean formula,
θ1, . . . , θn are arbitrary ATL formulae each beginning with a
quantifier or a negation directly followed by a quantifier, and
`1, . . . , `m are literals.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 25/30

5 The Model Checking Algorithm

Algorithm: label

Algorithm label(ψ,≡):
Let ψ = ¬ψ〈〈A〉〉Yλ(θ1, . . . , θn, `1, . . . , `m) where
¬ψ is ¬ if ψ begins with a negation and it is the empty string
elsewise,
Y ∈ {X,G,U},
λ is a monotone Boolean formula,
θ1, . . . , θn are arbitrary ATL formulae each beginning with a
quantifier or a negation directly followed by a quantifier, and
`1, . . . , `m are literals.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 25/30

5 The Model Checking Algorithm

Algorithm: label

Algorithm label(ψ,≡):
Let ψ = ¬ψ〈〈A〉〉Yλ(θ1, . . . , θn, `1, . . . , `m) where
¬ψ is ¬ if ψ begins with a negation and it is the empty string
elsewise,
Y ∈ {X,G,U},
λ is a monotone Boolean formula,
θ1, . . . , θn are arbitrary ATL formulae each beginning with a
quantifier or a negation directly followed by a quantifier, and
`1, . . . , `m are literals.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 25/30

5 The Model Checking Algorithm

Algorithm: label

Algorithm label(ψ,≡):
Let ψ = ¬ψ〈〈A〉〉Yλ(θ1, . . . , θn, `1, . . . , `m) where
¬ψ is ¬ if ψ begins with a negation and it is the empty string
elsewise,
Y ∈ {X,G,U},
λ is a monotone Boolean formula,
θ1, . . . , θn are arbitrary ATL formulae each beginning with a
quantifier or a negation directly followed by a quantifier, and
`1, . . . , `m are literals.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 25/30

5 The Model Checking Algorithm

Algorithm: label II
Construct the abstraction

S′ :=

{
S

JψK
≡ if ψ does not begin with a negation
S

Agt\JψK
≡ if ψ does begin with a negation

For all i ∈ {1, . . . , n} do:
Set Wi := {[q]≡ | ∀q′ ∈ [q]≡ : q′ ∈ label(θi,≡θi

)}.
Set S′ := S′(wi,Wi).

Compute the set W ′ of global states of S′ (note that these are
global states of the system abstracted with ≡) satisfying ψ,
i.e. W ′ :=

{[q]≡ | S′, [q]≡ |= ¬ψ〈〈A〉〉Yλ(w1, . . . , wn, `1, . . . , `m)},
by translating S′ to a non-deterministic CGS and then using the
ATL model checking algorithm.
Return W := {q ∈ St | [q]≡ ∈W ′}.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 26/30

5 The Model Checking Algorithm

Algorithm: label II
Construct the abstraction

S′ :=

{
S

JψK
≡ if ψ does not begin with a negation
S

Agt\JψK
≡ if ψ does begin with a negation

For all i ∈ {1, . . . , n} do:
Set Wi := {[q]≡ | ∀q′ ∈ [q]≡ : q′ ∈ label(θi,≡θi

)}.
Set S′ := S′(wi,Wi).

Compute the set W ′ of global states of S′ (note that these are
global states of the system abstracted with ≡) satisfying ψ,
i.e. W ′ :=

{[q]≡ | S′, [q]≡ |= ¬ψ〈〈A〉〉Yλ(w1, . . . , wn, `1, . . . , `m)},
by translating S′ to a non-deterministic CGS and then using the
ATL model checking algorithm.
Return W := {q ∈ St | [q]≡ ∈W ′}.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 26/30

5 The Model Checking Algorithm

Algorithm: label II
Construct the abstraction

S′ :=

{
S

JψK
≡ if ψ does not begin with a negation
S

Agt\JψK
≡ if ψ does begin with a negation

For all i ∈ {1, . . . , n} do:
Set Wi := {[q]≡ | ∀q′ ∈ [q]≡ : q′ ∈ label(θi,≡θi

)}.
Set S′ := S′(wi,Wi).

Compute the set W ′ of global states of S′ (note that these are
global states of the system abstracted with ≡) satisfying ψ,
i.e. W ′ :=

{[q]≡ | S′, [q]≡ |= ¬ψ〈〈A〉〉Yλ(w1, . . . , wn, `1, . . . , `m)},
by translating S′ to a non-deterministic CGS and then using the
ATL model checking algorithm.
Return W := {q ∈ St | [q]≡ ∈W ′}.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 26/30

5 The Model Checking Algorithm

Algorithm: label II
Construct the abstraction

S′ :=

{
S

JψK
≡ if ψ does not begin with a negation
S

Agt\JψK
≡ if ψ does begin with a negation

For all i ∈ {1, . . . , n} do:
Set Wi := {[q]≡ | ∀q′ ∈ [q]≡ : q′ ∈ label(θi,≡θi

)}.
Set S′ := S′(wi,Wi).

Compute the set W ′ of global states of S′ (note that these are
global states of the system abstracted with ≡) satisfying ψ,
i.e. W ′ :=

{[q]≡ | S′, [q]≡ |= ¬ψ〈〈A〉〉Yλ(w1, . . . , wn, `1, . . . , `m)},
by translating S′ to a non-deterministic CGS and then using the
ATL model checking algorithm.
Return W := {q ∈ St | [q]≡ ∈W ′}.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 26/30

5 The Model Checking Algorithm

Algorithm: label II
Construct the abstraction

S′ :=

{
S

JψK
≡ if ψ does not begin with a negation
S

Agt\JψK
≡ if ψ does begin with a negation

For all i ∈ {1, . . . , n} do:
Set Wi := {[q]≡ | ∀q′ ∈ [q]≡ : q′ ∈ label(θi,≡θi

)}.
Set S′ := S′(wi,Wi).

Compute the set W ′ of global states of S′ (note that these are
global states of the system abstracted with ≡) satisfying ψ,
i.e. W ′ :=

{[q]≡ | S′, [q]≡ |= ¬ψ〈〈A〉〉Yλ(w1, . . . , wn, `1, . . . , `m)},
by translating S′ to a non-deterministic CGS and then using the
ATL model checking algorithm.
Return W := {q ∈ St | [q]≡ ∈W ′}.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 26/30

5 The Model Checking Algorithm

Algorithm: label II
Construct the abstraction

S′ :=

{
S

JψK
≡ if ψ does not begin with a negation
S

Agt\JψK
≡ if ψ does begin with a negation

For all i ∈ {1, . . . , n} do:
Set Wi := {[q]≡ | ∀q′ ∈ [q]≡ : q′ ∈ label(θi,≡θi

)}.
Set S′ := S′(wi,Wi).

Compute the set W ′ of global states of S′ (note that these are
global states of the system abstracted with ≡) satisfying ψ,
i.e. W ′ :=

{[q]≡ | S′, [q]≡ |= ¬ψ〈〈A〉〉Yλ(w1, . . . , wn, `1, . . . , `m)},
by translating S′ to a non-deterministic CGS and then using the
ATL model checking algorithm.
Return W := {q ∈ St | [q]≡ ∈W ′}.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 26/30

5 The Model Checking Algorithm

Complexity and Soundness
Theorem 14
Algorithm modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)) runs in time

O (|init|+ |S| · |ϕ|) · 2
O

 P
ψ∈qsf(ϕ)

˛̨̨
S

JψK
≡ψ

˛̨̨!

where |S| denotes the size of the MIS S in a compact representation.
The cardinality of the global state space of S may then be upto 2Θ(|S|).

Theorem 15
Algorithm modelcheck is sound, i.e. if modelcheck(S, init, ϕ,
(≡ψ)ψ∈qsf(ϕ)) outputs true then S, q |= ϕ for all q ∈ init.

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 27/30

6 Conclusion

Conclusion

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 28/30

6 Conclusion

Conclusion

Modular Interpreted Systems facilitates modularity
ATL allows to talk about strategic properties
The abstraction for MIS :

is sound
allows to deal with bigger Systems
(depending on the equivalent relations)

Thank you for your attention!

Questions?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 29/30

6 Conclusion

Conclusion

Modular Interpreted Systems facilitates modularity
ATL allows to talk about strategic properties
The abstraction for MIS :

is sound
allows to deal with bigger Systems
(depending on the equivalent relations)

Thank you for your attention!

Questions?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 29/30

6 Conclusion

Conclusion

Modular Interpreted Systems facilitates modularity
ATL allows to talk about strategic properties
The abstraction for MIS :

is sound
allows to deal with bigger Systems
(depending on the equivalent relations)

Thank you for your attention!

Questions?

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 29/30

6 Conclusion

References
W. Jamroga, T. Agotnes
Modular Interpreted Systems
Proceedings of AAMAS’07, pp. 892-899.

Rajeev Alur and Thomas A. Henzinger and Orna Kupferman
Alternating-time temporal logic
J. ACM, Volume 49, Number 5, 2002, pp. 672-713.

Michael Köster, Peter Lohmann
Abstraction for Model Checking Modular Interpreted Systems over
ATL (Extended Abstract)
Proceedings of AAMAS’11

Michael Köster, Peter Lohmann
Abstraction for Model Checking Modular Interpreted Systems over
ATL
Proceedings of Programming Multi-Agent Systems, AAMAS’11

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 30/30

