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1 Motivation

Local Communities

Nowadays Social Networks:
exchange of information,
groups of interests, and
explicit use of a computer or smart phone.

Local Communities: social networks + real social networks
exchange of information works automatically,
spontaneous and dynamic groups of interests, and
implicit use of a smart phone.
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1 Motivation

Communication between Agents
Example 1 (Communicating Agents)

a1

a2

a3

a4

b1 b2

Agents of team B are not allowed to
send a message back.
If an agent bj has received a message
from ai then it has to send it to some
agent ak in the following round,
k > i.

Is it possible for team A to ensure that a4

will know the message eventually?
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1 Motivation

Issues

How can we
formalize such a system?

Modular Interpreted System (MIS)

deal with big systems?

Abstraction for MIS

formulate minimal properties (fairness, liveness, safety)?

Alternating-Time Temporal Logic (ATL)

ensure that the minimal properties hold?

Model Checking
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2 Modular Interpreted System

Modular Interpreted System
Idea:

Several loosely connected components.
Work is done in the components.
Little interaction between the components.

Definition 2 (Modular Interpreted System (MIS))
A MIS is a tuple S = (Agt,Act , In) where:

Agt = {a1, . . . , ak} agents,
Act actions,
In interaction alphabet.

Example 3
Agt = {a1, a2, a3, a4, b1, b2},
Act = {sendx | x ∈ Agt} ∪ {noop}
In = {nothing,ma1 ,ma2 ,ma3 ,ma4} ∪
P({maibj

| i ∈ {1, . . . , 4}, j ∈ {1, 2}}))
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2 Modular Interpreted System

MIS Agent I

Definition 4 (MIS Agent)
Each agent has the following internal structure:

ai = (Sti,

di

,

outi

,

ini

,

oi

,

Πi, πi

)

The global state space is defined as St := St1 × · · · × Stk.

Example 5 (Agent a1)

u k
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2 Modular Interpreted System

MIS Agent II
Example 6 (Agents bj)

256 states
Every state is labeled with knownbj

if the agent received some
time ago the message from ai.
Others are labeled with unknownbj

.
While the agent is waiting for a message it does nothing.
When it receives a message it has to send the message to one of
the opponents with a higher number then i.
If the agent received the message from each agent ai it does
nothing.
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2 Modular Interpreted System

Advantages of Modular Interpreted Systems
Modular (removing, replacing of agents)
Interaction reduced to an abstract interaction symbol
Computational ground

Example 7 (Communicating Agents)

a1

a2

a3

a4

b1 b2

Is it possible for team A to ensure that a4

will know the message eventually?
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3 Specification Logic: ATL

Alternating-time Temporal Logic

Definition 8 (Alternating-time temporal Logic (ATL))
The language of plain ATL is defined over the non-empty sets:

Π of Propositions p ∈ Π
Agt of Agents A ⊆ Agt
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕUϕ.

Main Idea: cooperation modalities
〈〈A〉〉Xϕ “coalition A has a collective strategy to enforce in the
next step ϕ”
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3 Specification Logic: ATL

Example 9
Is it possible for team A to ensure that a4 will know the message
eventually?

S, q |= 〈〈A〉〉(>Uknowna4)

with A = {a1, a2, a3, a4} and q is the global state where a1 is in state
k, all other agents from team A are in state u and the agents from
team B are in state (∅, ∅)
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Abstraction for MIS
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4 Abstraction for MIS

Basic Idea I
Partitioning the local state space by using handcrafted
equivalence relation:

Reducing all equivalent states to just one
Agents get fewer choices and the opponents more choices
Influence symbols of the abstract states:

all influence symbols that are an outcome of executing a action in
each concrete state

Local transition function:
Input: abstract state, action, influence symbol
Output: abstract state

unfold both equivalence classes
connection between concrete state of 1st equivalence class to
concrete state of 2nd equivalence class?
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4 Abstraction for MIS

Basic Idea II

Partitioning the local state space by using handcrafted
equivalence relation:

Labeling:
Assigning a proposition to an abstract state if all concrete states
in the equivalence class are labeled with that proposition
If a proposition only holds in some states of the class we remove it
from set of propositions
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4 Abstraction for MIS

Abstraction Relation

Definition 10 (Abstraction Relation)
An abstraction relation for a MIS is a product ≡ = ≡1 × · · ·× ≡k
where each ≡i⊆ Sti × Sti is an equivalence relation for the states Sti
of agent ai.

For q ∈ Sti, we write [q]≡i for the equivalence class of the local state
q with respect to ≡i. And for q ∈ St = St1 × · · · × Stk, we write [q]≡
for the equivalence class of the global state q.
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4 Abstraction for MIS

Definition 11 (Abstraction for MIS)
For a MIS S = (Agt,Act , In), an abstraction relation ≡ for S and a
set of favored agents A ⊆ Agt we define the abstraction of S with
respect to ≡ and A as the MIS

SA≡ := (Agt′,Act , In)

where Agt′ := {a′1, . . . , a′k} and a′i = (St′i, d
′
i, out

′
i, in

′
i, o
′
i,Π
′
i, π
′
i) with

St′i := {[q]≡i | q ∈ Sti}

d′i([q]≡i) :=

{ ⋂
q′∈[q]≡i

di(q′) for ai ∈ A⋃
q′∈[q]≡i

di(q′) for ai /∈ A

out′i([q]≡i , α) :=
⋃

q′∈[q]≡i

outi(q′, α)

for all q ∈ Sti, α ∈ Act , γ, γ1, . . . , γk ∈ In and pi ∈ Π′i.
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Definition 12 (Abstraction for MIS)
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where Agt′ := {a′1, . . . , a′k} and a′i = (St′i, d
′
i, out

′
i, in

′
i, o
′
i,Π
′
i, π
′
i) with

in′i([q]≡i , γ1, . . . , γk−1) :=
⋃

q′∈[q]≡i

ini(q′, γ1, . . . , γk−1)

o′i([q]≡i , α, γ) :=
⋃

q′∈[q]≡i

{[q′′]≡i | q′′ ∈ oi(q′, α, γ)}

Π′i := Πi ∩ {pi | ∀q ∈ πi(pi) : ∀q′ ∈ [q]≡i : q′ ∈ πi(pi)}
π′i(pi) := {[q]≡i | q ∈ πi(pi)}

for all q ∈ Sti, α ∈ Act , γ, γ1, . . . , γk ∈ In and pi ∈ Π′i.
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4 Abstraction for MIS

Example for Abstraction

Example 13 (Agents bj)
256 states

Si := {(R,N) | ∅ 6= R ⊆ {r1, . . . , ri}, ni ∈ N} \
⋃i−1
j=1 Sj

for i = 1, . . . , 3
Srest := {(R,N) | (R,N) /∈ S1 ∪ · · · ∪ S3}

Result: 4 states
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5 The Model Checking Algorithm

The Model Checking Algorithm
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5 The Model Checking Algorithm

Idea

Input:
MIS S
init of global states of S
ATL formula ϕ
for each quantifier subformulae an abstraction relation

Output:
true : iff S, q |= ϕ for all q ∈ init
unknown : we do not know whether S satisfies ϕ or not
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5 The Model Checking Algorithm

Algorithm: modelcheck
Algorithm modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)):
Let ϕ = λ(θ1, . . . , θn, `1, . . . , `m) where

λ Boolean formula (conjunctions and disjunctions only),
θ1, . . . , θn are arbitrary ATL formulae each beginning with a
quantifier, i.e. each θi is of the form 〈〈B〉〉θ′i, and
`1, . . . , `m are literals.
For all i ∈ {1, . . . , n} do:

Set Wi := label(θi,≡θi
).

Set S := S(wi,Wi), a new global proposition wi is introduced in
S and it is labeled exactly in the states in Wi.

If S, s |= λ(w1, . . . , wn, `1, . . . , `m) for all s ∈ init then return
true. Otherwise return unknown.
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For all i ∈ {1, . . . , n} do:

Set Wi := label(θi,≡θi
).

Set S := S(wi,Wi), a new global proposition wi is introduced in
S and it is labeled exactly in the states in Wi.

If S, s |= λ(w1, . . . , wn, `1, . . . , `m) for all s ∈ init then return
true. Otherwise return unknown.
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5 The Model Checking Algorithm

Algorithm: label

Algorithm label(ψ,≡):
Let ψ = ¬ψ〈〈A〉〉Yλ(θ1, . . . , θn, `1, . . . , `m) where
¬ψ is ¬ if ψ begins with a negation and it is the empty string
elsewise,
Y ∈ {X,G,U},
λ is a monotone Boolean formula,
θ1, . . . , θn are arbitrary ATL formulae each beginning with a
quantifier or a negation directly followed by a quantifier, and
`1, . . . , `m are literals.
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5 The Model Checking Algorithm

Algorithm: label II
Construct the abstraction

S′ :=

{
S

JψK
≡ if ψ does not begin with a negation
S

Agt\JψK
≡ if ψ does begin with a negation

For all i ∈ {1, . . . , n} do:
Set Wi := {[q]≡ | ∀q′ ∈ [q]≡ : q′ ∈ label(θi,≡θi

)}.
Set S′ := S′(wi,Wi).

Compute the set W ′ of global states of S′ (note that these are
global states of the system abstracted with ≡) satisfying ψ,
i.e. W ′ :=

{[q]≡ | S′, [q]≡ |= ¬ψ〈〈A〉〉Yλ(w1, . . . , wn, `1, . . . , `m)},
by translating S′ to a non-deterministic CGS and then using the
ATL model checking algorithm.
Return W := {q ∈ St | [q]≡ ∈W ′}.
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5 The Model Checking Algorithm

Complexity and Soundness
Theorem 14
Algorithm modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)) runs in time

O (|init|+ |S| · |ϕ|) · 2
O

 P
ψ∈qsf(ϕ)

˛̨̨
S

JψK
≡ψ

˛̨̨!

where |S| denotes the size of the MIS S in a compact representation.
The cardinality of the global state space of S may then be upto 2Θ(|S|).

Theorem 15
Algorithm modelcheck is sound, i.e. if modelcheck(S, init, ϕ,
(≡ψ)ψ∈qsf(ϕ)) outputs true then S, q |= ϕ for all q ∈ init.
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Conclusion

Michael Köster · CIG, Clausthal University of Technology Oberseminar 24.02.2011 28/30



6 Conclusion

Conclusion

Modular Interpreted Systems facilitates modularity
ATL allows to talk about strategic properties
The abstraction for MIS :

is sound
allows to deal with bigger Systems
(depending on the equivalent relations)

Thank you for your attention!

Questions?
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