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Problem statement

Objective: Modelling domains that change in time

Example:

Distinctive features of our domains:
No timestamps for events are known.
The occurrence of an event can be related to previous
events (partial ordering)
The domain’s evolution is non-Markovian.
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Formal setting

elements of a set I = {Bob,Alice}, called universe
relation symbols from a vocabulary
σ = {Single,Married ,hasChild}
relation instances (Bob,Alice) ∈ Married I where
Married I ⊆ I × I. We also write Married(Bob,Alice)

(I,SingleI ,Married I ,hasChild I) is a labelling domain
(labelled) quality edges that span (labelled) action
nodes
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Temporal graphs

A set A of action nodes
A set H of hypernodes and T : A→ H
A set E ⊆ A2 of quality edges, labelled with relation
instances from a labeling domain
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Kripke Structures (KS) are computational structures
temporal graphs are behavioural structures (similar to
paths from a KS
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Why is theory important for our endeavour:

It shows whether or not we can achieve tractable
implementations
It provides answers to questions such as:

Why not First-Order Logics ?
Why not Description Logics ?
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Temporal graphs and FOL undefinability

There exists no formula from First Order Logic (FOL) which can
express:

connectivity or the existence of a path between
two components of a temporal graph
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The Ehrenfeucht-Fraïssé method (connectivity)

fix a natural number k

Matei Popovici Temporal reasoning using temporal graphs



Introduction
Formal setting

Theoretical results
Applications
Conclusions

Preamble
Undefinability
The language LH
Complexity results

The Ehrenfeucht-Fraïssé method (connectivity)

build two temporal graphs Hk
A and Hk

B
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The Ehrenfeucht-Fraïssé method (connectivity)

Theorem (Ehrenfeucht-Fraïssé):

If blue has a winning strategy
on a k -round game, played over Hk

A and Hk
B then there exists

no formula from FO[k ] which is true in Hk
A and false Hk

B
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The Ehrenfeucht-Fraïssé method (connectivity)

Importance of our result:

SQL cannot be used for querying about temporal graph
properties
Description Logics (without cyclic TBoxes) cannot be used
to reason about temporal graphs
A language which is suitable for reasoning about temporal
graphs is outside FOL
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LH Syntax

Let Vars be a set of variables, A be a σE ∪ σA-structure and HA be a
A-labelled t-graph. Also, let X ∈ {E ,A}, and †E ∈ CQ and †A ∈ CA. The
syntax of a X -formula is recursively defined with respect to A, as follows:

if R ∈ σX with arity(R) = n and t ∈ (Vars ∪ I)n, then R(t) is an atomic
Q-formula (or an atom).
if φ is a X -formula then (φ) is also a X -formula;
if φ, ψ are X -formulae then φ †X ψ and φ¬ †X ψ are also X -formulae. We
call †X a positive relation and ¬†X a negative/negated relation.
Let R ∈ σX , φ, ψ, ω be X-formulae and †X , †′X designate positive or
negated relations. If φ has any of the following forms: (i) φ = R(t), (ii)
φ = R(t) †X ψ or (iii) φ = (R(t) †X ω) †′X ψ, then it is R-compatible.

If φ and ϕ are both R-compatible, then φ ∧ ϕ and φ ∨ ϕ are X formulae, and
R-compatible as well.
If φ is a E or A-formula and x are variables occurring in φ, then we also write
φ(x), to highlight these variables.
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LH Semantics

Let A be a σE ∪ σA (labelling) structure, and H be a A-labelled t-graph.
i ∈ A, R ∈ σE ∪ σA, a, a′ denote action nodes from H, and q, q′ denote
quality edges. We write φ[x\i], to refer to the formula obtained from φ by
replacing all variables from x with individuals from i . Also, let X ∈ {E ,A}.
The semantics of X -formulae is defined as follows:

1 ‖φ(x)‖X
H =

⋃
i{q ∈ ‖φ[x\i]‖

Q
H};

2 ‖R(i)‖X
H = {q : R(i) ∈ LX (q)};

3 ‖(φ) †Q ψ‖Q
H = {q ∈ ‖φ‖Q

H : ∃q′ ∈ ‖ψ‖Q
H such that λ†Q (q, q

′)}
4 ‖(φ) †A ψ‖A

H = {a ∈ ‖φ‖A
H : ∃a′ ∈ ‖ψ‖A

H such that λ†A(a, a
′)}

5 ‖φ¬ †X ψ‖X
H = ‖(φ)¬ †X ψ‖X

H = ‖φ‖X
H \ ‖φ †X ψ‖X

H;
6 ‖φ †X (ψ)‖X

H = ‖φ †X ψ‖X
H

7 ‖R(i) †X ψ‖X
H = ‖(R(i)) †X ψ‖X

H;
8 ‖φ ∨ ψ‖X

H = ‖φ‖X
H ∪ ‖ψ‖X

H;
9 ‖φ ∧ ψ‖X

H = ‖φ‖X
H ∩ ‖ψ‖X

H;
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The language LH

Let ϕ ∈ LH be a formula and H be a temporal graph.
‖ϕ‖EH is the set of quality edges that satisfy ϕ

ainit

h1

a1

Marriage(Bob,Alice)

h2

a2

givesBirth(Alice)

h3

acrt

h4

Single(Bob)
Single(Alice)

HasNoWorries(Bob)
HasNoWorries(Alice)

Marriage(Bob,Alice)

hasChild(Alice)
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Let ϕ ∈ LH be a formula and H be a temporal graph.
‖ϕ‖EH is the set of quality edges that satisfy ϕ
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a1

Marriage(Bob,Alice)
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givesBirth(Alice)

h3

acrt
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Single(Bob)
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Let ϕ ∈ LH be a formula and H be a temporal graph.
‖ϕ‖EH is the set of quality edges that satisfy ϕ

ainit

h1

a1

Marriage(Bob,Alice)

h2

a2

givesBirth(Alice)

h3

acrt

h4

Single(Bob)
Single(Alice)

HasNoWorries(Bob)
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Complexity results

Computing ‖ϕ‖EH

≡ model checking the formula ϕ (w.r.t. a
temporal graph H)
The LH model checking problem is:

NP-complete, for the full language LH;
Methodology:

NP-complete model-checking
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Complexity results

Computing ‖ϕ‖EH≡ model checking the formula ϕ (w.r.t. a
temporal graph H)
The LH model checking problem is:

NP-complete, for the full language LH;
Methodology:

Make labellings trivial:

NP-complete model-checking

a1

h1

a2

h2

a3

h3

a4

h4

a5

h5

a6

h6

Q1(a, b, c, d) Q2(a, c, e, d) Q1(b, c, d , a)
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Complexity results

Computing ‖ϕ‖EH≡ model checking the formula ϕ (w.r.t. a
temporal graph H)
The LH model checking problem is:

NP-complete, for the full language LH;
Methodology:

Make labellings trivial: L∗H

NP-complete model-checking

a1

h1

a2

h2

a3

h3

a4

h4

a5

h5

a6

h6

p1 p2 p3
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Complexity results

Computing ‖ϕ‖EH≡ model checking the formula ϕ (w.r.t. a
temporal graph H)
The LH model checking problem is:

NP-complete, for the full language LH;
Methodology:

Make labellings trivial: L∗H PTIME model-checking

NP-complete model-checking
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Computing ‖ϕ‖EH≡ model checking the formula ϕ (w.r.t. a
temporal graph H)
The LH model checking problem is:

NP-complete, for the full language LH;
Methodology:

Assume 〈H, >〉 is known:

NP-complete model-checking
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Computing ‖ϕ‖EH≡ model checking the formula ϕ (w.r.t. a
temporal graph H)
The LH model checking problem is:

NP-complete, for the full language LH;
Methodology:

Assume 〈H, >〉 is known: L<
H

NP-complete model-checking
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Computing ‖ϕ‖EH≡ model checking the formula ϕ (w.r.t. a
temporal graph H)
The LH model checking problem is:

NP-complete, for the full language LH;
Methodology:

Assume 〈H, >〉 is known: L<
H NP-complete model-checking
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Complexity results

Comparing LH model checking with other approaches:

Method Reasoning problem Complexity
The TEDL HS satisfiability undecidable

The TEDL ALCT satisfiability PSPACE − complete
The DL ALC(cyclic TBoxes) subsumption EXPTIME
The DL FL0(cyclic TBoxes) subsumption PSPACE − complete

LH model-checking NP − complete
L∗H model-checking PTIME
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Applications of temporal graphs and LH

Specifying time-dependent device behaviour in
intelligent buildings
Data mining logs from HPC systems
Specifying optimal behaviour in MAS (Multi-Agent
Systems)
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Temporal graphs and L∗H in MAS

Setting: a finite set of players
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Temporal graphs and L∗H in MAS

a finite set of hypernodes
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Temporal graphs and L∗H in MAS

possible actions, for each player
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Temporal graphs and L∗H in MAS

an action ai consists of a set of labelled action nodes
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Temporal graphs and L∗H in MAS

quality edges created/destroyed by action nodes
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Temporal graphs and L∗H in MAS

each player i has a goal ϕi . The goal is satisfied iff ‖ϕi‖EH 6= ∅
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Temporal graphs and L∗H in MAS

Deviation: Is a player incentivised to change his action, given
the actions of others ?
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Temporal graphs and LH in MAS

Remark: The goal satisfaction of a player is affected by
what other players do
Question: What is the proper action each player should
take, in order to satisfy his goal ?
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Temporal graphs and LH in MAS

An action profile (a1, . . . ,an) is a:

Nash Equilibrium (NE) iff there is no individual player that
can deviate
Strong Nash Equilibrium (SNE) iff there is no coalition C
of players that can jointly deviate

Complexity results (for LH with propositional symbols):
The verification problem: coNP for NE and SNE
The synthesis problem: Σ2 for NE and SNE
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Specifying optimal behaviour in MAS (Multi-Agent
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Practical application: intelligent buildings

Specifying time-dependent device behaviour in intelligent
buildings

using a Domain-Specific Language (DSL). The
implementation relies on:

a model-checker for the language L∗H
written in Java & Haskell
tractable implementation

interaction with devices, which are abstracted by Web
Services

In it’s initial phase, DSL was developed under the FCINT
POSCCE project (Ontology-based Service Composition
Framework for Syndicating Building Intelligence)
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Conclusions

Temporal graphs are suitable for storing information
about the history of a domain
The language L∗H can be used to capture classes of
system properties, that are involved in complex temporal
relation.
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