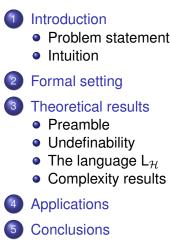
A logical method for temporal knowledge representation and reasoning

Matei Popovici1

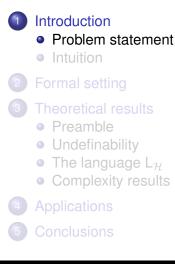

¹POLITEHNICA University of Bucharest Computer Science and Engineering Department

February 12, 2003

Matei Popovici Temporal reasoning using temporal graphs

イロト イポト イヨト イヨト

Outline



ヨト イヨト

ъ

Problem statement Intuition

Outline

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

ъ

Problem statement Intuition

Problem statement

• Objective: Modelling domains that change in time

ヘロン ヘアン ヘビン ヘビン

Problem statement Intuition

Problem statement

- Objective: Modelling domains that change in time
- Example:

ヘロア ヘビア ヘビア・

Problem statement Intuition

Problem statement

- Objective: Modelling domains that change in time
- Example:

Bob is single

ヘロア ヘビア ヘビア・

Problem statement Intuition

Problem statement

- Objective: Modelling domains that change in time
- Example:

ヘロア ヘビア ヘビア・

Problem statement Intuition

Problem statement

- Objective: Modelling domains that change in time
- Example:

ヘロア ヘビア ヘビア・

Problem statement Intuition

Problem statement

- Objective: Modelling domains that change in time
- Example:

Distinctive features of our domains:

• No timestamps for events are known.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Problem statement Intuition

Problem statement

- Objective: Modelling domains that change in time
- Example:

Distinctive features of our domains:

- No timestamps for events are known.
- The occurrence of an event can be related to previous events (partial ordering)

ヘロト ヘ戸ト ヘヨト ヘヨト

Problem statement Intuition

Problem statement

- Objective: Modelling domains that change in time
- Example:

Distinctive features of our domains:

- No timestamps for events are known.
- The occurrence of an event can be related to previous events (partial ordering)

くロト (過) (目) (日)

Problem statement Intuition

Problem statement

- Objective: Modelling domains that change in time
- Example:

Distinctive features of our domains:

- No timestamps for events are known.
- The occurrence of an event can be related to previous events (partial ordering)
- The domain's evolution is **non-Markovian**.

くロト (過) (目) (日)

Problem statement Intuition

Problem statement

How do we represent

Matei Popovici Temporal reasoning using temporal graphs

イロト 不得 とくほ とくほとう

Problem statement Intuition

Problem statement

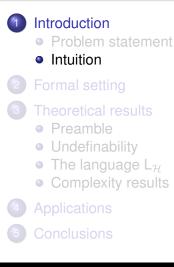
How do we represent and reason about changing domains

Matei Popovici Temporal reasoning using temporal graphs

ヘロン ヘアン ヘビン ヘビン

Problem statement Intuition

Problem statement


How do we **represent** and **reason** about changing domains in an **efficient** manner ?

Matei Popovici Temporal reasoning using temporal graphs

ヘロン ヘアン ヘビン ヘビン

Problem statement Intuition

Outline

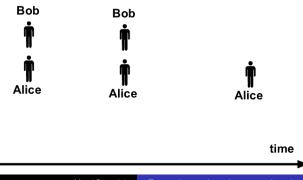
Matei Popovici Temporal reasoning using temporal graphs

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

Problem statement Intuition

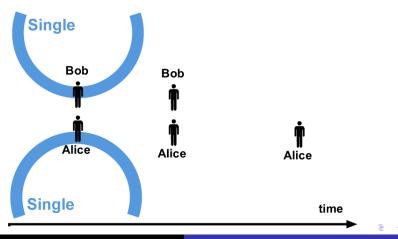
Intuition



Matei Popovici Temporal reasoning using temporal graphs

Problem statement Intuition

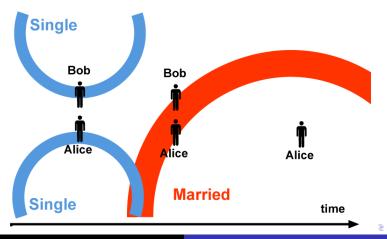
Intuition



Matei Popovici Temporal reasoning using temporal graphs

ъ

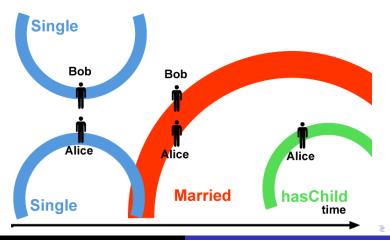
Problem statement Intuition


Intuition

Matei Popovici Temporal reasoning using temporal graphs

Problem statement Intuition

Intuition

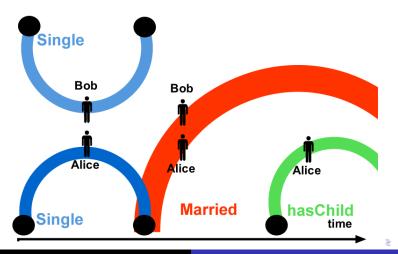


Matei Popovici

Temporal reasoning using temporal graphs

Problem statement Intuition

Intuition



Matei Popovici

Temporal reasoning using temporal graphs

Problem statement Intuition

Intuition

Matei Popovici

Temporal reasoning using temporal graphs

Formal setting

Matei Popovici Temporal reasoning using temporal graphs

ヘロト 人間 とくほとく ほとう

Formal setting

• elements of a set *I* = {*Bob*, *Alice*}, called **universe**

Matei Popovici Temporal reasoning using temporal graphs

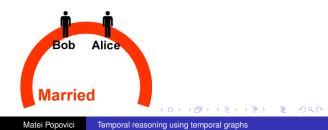
ヘロア ヘビア ヘビア・


Formal setting

- elements of a set *I* = {*Bob*, *Alice*}, called **universe**
- relation symbols from a vocabulary
 - $\sigma = \{$ *Single*, *Married*, *hasChild* $\}$


Single Married hasChild

ヘロト ヘ戸ト ヘヨト ヘヨト


- elements of a set $I = \{Bob, Alice\}$, called **universe**
- relation symbols from a vocabulary
 - $\sigma = \{$ *Single*, *Married*, *hasChild* $\}$
- relation instances (Bob, Alice) ∈ Married^I where Married^I ⊆ I × I.

- elements of a set *I* = {*Bob*, *Alice*}, called **universe**
- relation symbols from a vocabulary
 - $\sigma = \{$ *Single*, *Married*, *hasChild* $\}$
- relation instances (Bob, Alice) ∈ Married^I where Married^I ⊆ I × I. We also write Married(Bob, Alice)

- elements of a set *I* = {*Bob*, *Alice*}, called **universe**
- relation symbols from a vocabulary
 - $\sigma = \{$ *Single*, *Married*, *hasChild* $\}$
- relation instances (Bob, Alice) ∈ Married^I where Married^I ⊆ I × I. We also write Married(Bob, Alice)
- (*I*, *Single^I*, *Married^I*, *hasChild^I*) is a **labelling domain**

- elements of a set $I = \{Bob, Alice\}$, called **universe**
- relation symbols from a vocabulary
 - $\sigma = \{$ *Single*, *Married*, *hasChild* $\}$
- relation instances (Bob, Alice) ∈ Married^I where Married^I ⊆ I × I. We also write Married(Bob, Alice)
- (*I*, *Single^I*, *Married^I*, *hasChild^I*) is a **labelling domain**
- (labelled) quality edges that span (labelled) action nodes

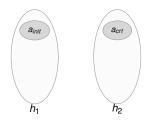
Temporal graphs

Matei Popovici Temporal reasoning using temporal graphs

イロン イロン イヨン イヨン

Temporal graphs

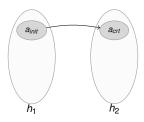
a_{crt}


• A set A of action nodes

Matei Popovici Temporal reasoning using temporal graphs

★ E → ★ E →

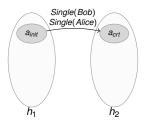
æ


- A set A of action nodes
- A set H of hypernodes and $T : A \rightarrow H$

(E)

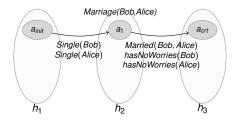
э

< 🗇



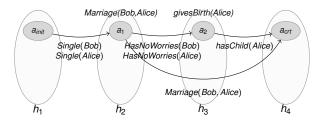
- A set A of action nodes
- A set *H* of **hypernodes** and $\mathcal{T} : A \to H$
- A set $E \subseteq A^2$ of quality edges

ヨト イヨト


Temporal graphs

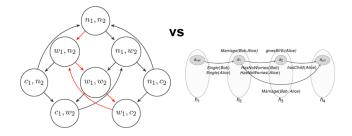
- A set A of action nodes
- A set H of **hypernodes** and $T : A \rightarrow H$
- A set E ⊆ A² of quality edges, labelled with relation instances from a labeling domain

→ Ξ → < Ξ →</p>


Temporal graphs

- A set A of action nodes
- A set *H* of **hypernodes** and $T : A \rightarrow H$
- A set E ⊆ A² of quality edges, labelled with relation instances from a labeling domain

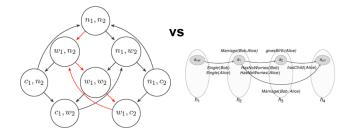
< < >> < </>


Temporal graphs

- A set A of action nodes
- A set *H* of **hypernodes** and $T : A \rightarrow H$
- A set E ⊆ A² of quality edges, labelled with relation instances from a labeling domain

くロト (過) (目) (日)

Temporal graphs and Kripke Structures

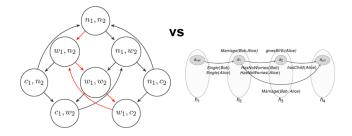

Temporal graphs versus Kripke Structures:

Matei Popovici Temporal reasoning using temporal graphs

★ Ξ → < Ξ → </p>

э

Temporal graphs and Kripke Structures

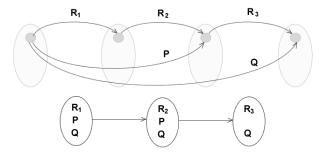


Temporal graphs versus Kripke Structures: • Kripke Structures (KS) are computational structures

Matei Popovici Temporal reasoning using temporal graphs

★ Ξ > < Ξ > ...

Temporal graphs and Kripke Structures

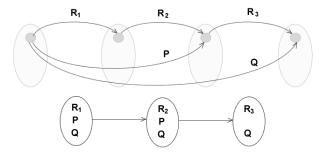

Temporal graphs versus Kripke Structures:

- Kripke Structures (KS) are computational structures
- temporal graphs are behavioural structures (similar to paths from a KS

프 🖌 🛪 프 🛌

< 17 ▶

Temporal graphs and Kripke Structures

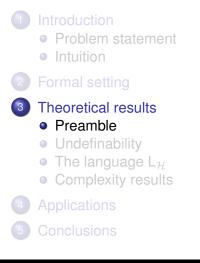


Temporal graphs versus Kripke Structures:

Matei Popovici Temporal reasoning using temporal graphs

프 🖌 🛪 프 🕨

Temporal graphs and Kripke Structures



Temporal graphs versus Kripke Structures: • explosion of the number of labellings (scalability problem)

프 🖌 🛪 프 🕨

Preamble Undefinability The language L_H Complexity results

Outline

Matei Popovici Temporal reasoning using temporal graphs

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

Why is theory important for our endeavour:

ヘロト 人間 とくほとく ほとう

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

Why is theory important for our endeavour:

 It shows whether or not we can achieve tractable implementations

ヘロン ヘアン ヘビン ヘビン

3

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

Why is theory important for our endeavour:

- It shows whether or not we can achieve tractable implementations
- It provides answers to questions such as:

ヘロア 人間 アメヨア 人口 ア

ъ

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

Why is theory important for our endeavour:

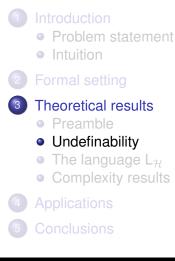
- It shows whether or not we can achieve tractable implementations
- It provides answers to questions such as:
 - Why not First-Order Logics ?

くロト (過) (目) (日)

ъ

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

Why is theory important for our endeavour:


- It shows whether or not we can achieve tractable implementations
- It provides answers to questions such as:
 - Why not First-Order Logics ?
 - Why not Description Logics ?

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

Outline

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

Temporal graphs and FOL undefinability

There exists no formula from First Order Logic (FOL) which can **express**:

Matei Popovici Temporal reasoning using temporal graphs

ヘロア 人間 アメヨア 人口 ア

æ

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

Temporal graphs and FOL undefinability

There exists no formula from First Order Logic (FOL) which can express: connectivity

Matei Popovici Temporal reasoning using temporal graphs

ヘロト 人間 ト ヘヨト ヘヨト

æ

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

Temporal graphs and FOL undefinability

There exists no formula from First Order Logic (FOL) which can **express**: **connectivity** or the **existence of a path** between two components of a temporal graph

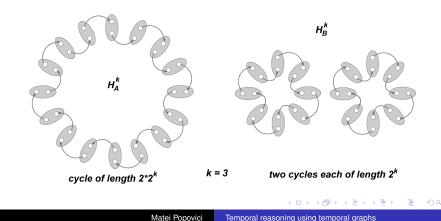
Matei Popovici Temporal reasoning using temporal graphs

ヘロト ヘ戸ト ヘヨト ヘヨト

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

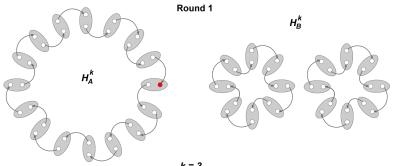
fix a natural number k


イロト 不得 とくほ とくほとう

3

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

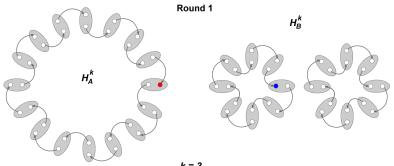
The Ehrenfeucht-Fraïssé method (connectivity)


build two temporal graphs \mathcal{H}^k_A and \mathcal{H}^k_B

Undefinability

The Ehrenfeucht-Fraïssé method (connectivity)

play a k-round, two-player game: red vs blue

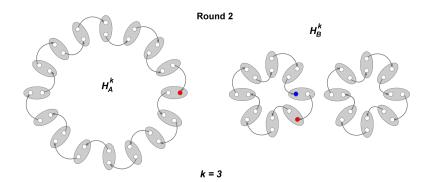

k = 3

★ E > ★ E

Undefinability

The Ehrenfeucht-Fraïssé method (connectivity)

play a k-round, two-player game: red vs blue

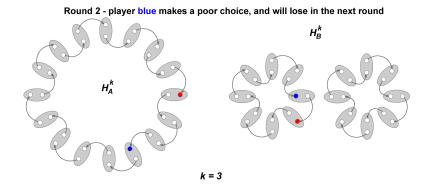

k = 3

★ E > ★ E

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

play a k-round, two-player game: red vs blue

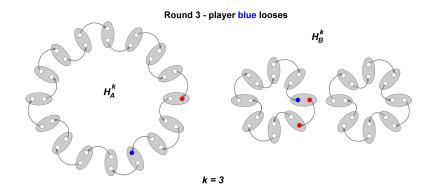


★ E > ★ E

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

play a k-round, two-player game: red vs blue

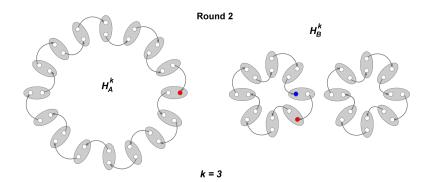

< 🗇 🕨

★ E → ★ E →

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

play a k-round, two-player game: red vs blue

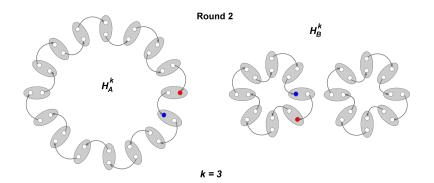


크 > < 크

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

play a k-round, two-player game: red vs blue

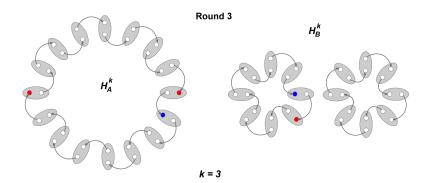


★ E > ★ E

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

play a k-round, two-player game: red vs blue

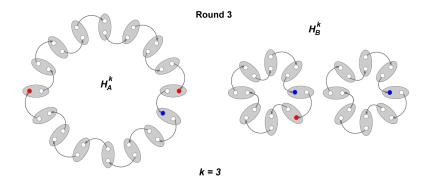


★ E > ★ E

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

play a k-round, two-player game: red vs blue

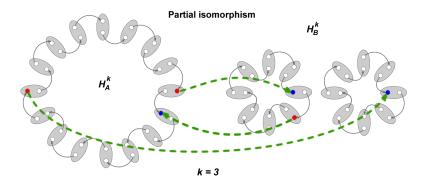


★ E > ★ E

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

play a k-round, two-player game: red vs blue

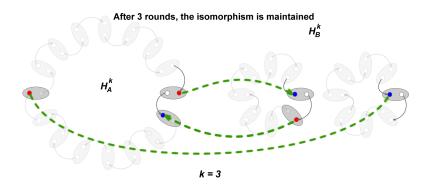


★ E > ★ E

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

play a k-round, two-player game: red vs blue


< 🗇 🕨

< ∃ > <

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

play a k-round, two-player game: red vs blue

< 🗇 ▶

→ Ξ →

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

Theorem (Ehrenfeucht-Fraïssé):

Matei Popovici Temporal reasoning using temporal graphs

ヘロト 人間 ト ヘヨト ヘヨト

ъ

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

Theorem (Ehrenfeucht-Fraïssé): If blue has a winning strategy

Matei Popovici Temporal reasoning using temporal graphs

イロト イポト イヨト イヨト

æ

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

Theorem (Ehrenfeucht-Fraïssé): If blue has a winning strategy on a *k*-round game

Matei Popovici Temporal reasoning using temporal graphs

ヘロト 人間 ト ヘヨト ヘヨト

æ

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

Theorem (Ehrenfeucht-Fraïssé): If blue has a winning strategy on a *k*-round game, played over \mathcal{H}_A^k and \mathcal{H}_B^k

Matei Popovici Temporal reasoning using temporal graphs

くロト (過) (目) (日)

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

Theorem (Ehrenfeucht-Fraïssé): If blue has a winning strategy on a *k*-round game, played over \mathcal{H}_{A}^{k} and \mathcal{H}_{B}^{k} then there exists **no formula** from FO[k]

Matei Popovici Temporal reasoning using temporal graphs

ヘロト ヘ戸ト ヘヨト ヘヨト

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

Theorem (Ehrenfeucht-Fraïssé): If blue has a winning strategy on a *k*-round game, played over \mathcal{H}_{A}^{k} and \mathcal{H}_{B}^{k} then there exists **no formula** from FO[k] which is true in \mathcal{H}_{A}^{k} and false \mathcal{H}_{B}^{k}

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

Importance of our result:

Matei Popovici Temporal reasoning using temporal graphs

ヘロア 人間 アメヨア 人口 ア

3

Preamble Undefinability The language L_H Complexity results

The Ehrenfeucht-Fraïssé method (connectivity)

Importance of our result:

 SQL cannot be used for querying about temporal graph properties

ヘロト 人間 ト ヘヨト ヘヨト

æ

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)

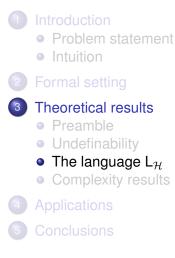
Importance of our result:

- SQL cannot be used for querying about temporal graph properties
- Description Logics (without cyclic TBoxes) cannot be used to reason about temporal graphs

くロト (過) (目) (日)

 $\begin{array}{l} \mbox{Preamble} \\ \mbox{Undefinability} \\ \mbox{The language } L_{\mathcal{H}} \\ \mbox{Complexity results} \end{array}$

The Ehrenfeucht-Fraïssé method (connectivity)


Importance of our result:

- SQL cannot be used for querying about temporal graph properties
- Description Logics (without cyclic TBoxes) cannot be used to reason about temporal graphs
- A **language** which is suitable for reasoning about temporal graphs is *outside* FOL

ヘロト 人間 ト ヘヨト ヘヨト

Preamble Undefinability The language L_H Complexity results

Outline

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Preamble Undefinability The language L_H Complexity results

$L_{\mathcal{H}}$ Syntax

Let \mathbb{V} ars be a set of variables, \mathcal{A} be a $\sigma_E \cup \sigma_A$ -structure and \mathcal{H}_A be a \mathcal{A} -labelled t-graph. Also, let $X \in \{E, A\}$, and $\dagger_E \in \mathfrak{C}_Q$ and $\dagger_A \in \mathfrak{C}_A$. The syntax of a X-formula is recursively defined with respect to \mathcal{A} , as follows:

- if $R \in \sigma_X$ with arity(R) = n and $\overline{t} \in (\mathbb{V} \text{ars} \cup I)^n$, then $R(\overline{t})$ is an **atomic** *Q*-formula (or an atom).
- if ϕ is a X-formula then (ϕ) is also a X-formula;
- if φ, ψ are X-formulae then φ †_X ψ and φ¬ †_X ψ are also X-formulae. We call †_X a **positive** relation and _X a **negative/negated** relation.
- Let R ∈ σ_X, φ, ψ, ω be X-formulae and †_X, †'_X designate positive or negated relations. If φ has any of the following forms: (i) φ = R(t̄), (ii) φ = R(t̄) †_X ψ or (iii) φ = (R(t̄) †_X ω) †'_X ψ, then it is *R*-compatible.

If ϕ and φ are both *R*-compatible, then $\phi \land \varphi$ and $\phi \lor \varphi$ are *X* formulae, and *R*-compatible as well.

If ϕ is a *E* or *A*-formula and \overline{x} are variables occurring in ϕ , then we also write $\phi(\overline{x})$, to highlight these variables.

Preamble Undefinability The language L_H Complexity results

L_H Semantics

Let \mathcal{A} be a $\sigma_E \cup \sigma_A$ (labelling) structure, and \mathcal{H} be a \mathcal{A} -labelled t-graph. $\overline{i} \in \mathcal{A}, R \in \sigma_E \cup \sigma_A, a, a'$ denote action nodes from \mathcal{H} , and q, q' denote quality edges. We write $\phi_{[\overline{x} \setminus \overline{i}]}$, to refer to the formula obtained from ϕ by replacing all variables from \overline{x} with individuals from \overline{i} . Also, let $X \in \{E, A\}$. The semantics of X-formulae is defined as follows:

$$\begin{aligned} \| \phi(\overline{x}) \|_{\mathcal{H}}^{X} &= \bigcup_{\overline{i}} \{ q \in \| \phi_{[\overline{x} \setminus \overline{j}]} \|_{\mathcal{H}}^{Q} \}; \\ & 2 \quad \| R(\overline{i}) \|_{\mathcal{H}}^{X} &= \{ q : R(\overline{i}) \in \mathcal{L}_{X}(q) \}; \\ & 3 \quad \| (\phi) \dagger_{Q} \psi \|_{\mathcal{H}}^{Q} &= \{ q \in \| \phi \|_{\mathcal{H}}^{Q} : \exists q' \in \| \psi \|_{\mathcal{H}}^{Q} \text{ such that } \lambda_{\dagger_{Q}}(q,q') \} \\ & 3 \quad \| (\phi) \dagger_{A} \psi \|_{\mathcal{H}}^{A} &= \{ a \in \| \phi \|_{\mathcal{H}}^{A} : \exists a' \in \| \psi \|_{\mathcal{H}}^{A} \text{ such that } \lambda_{\dagger_{A}}(a,a') \} \\ & 5 \quad \| \phi \neg \dagger_{X} \psi \|_{\mathcal{H}}^{X} &= \| (\phi) \neg \dagger_{X} \psi \|_{\mathcal{H}}^{X} &= \| \phi \|_{\mathcal{H}}^{X} \setminus \| \phi \dagger_{X} \psi \|_{\mathcal{H}}^{X}; \\ & 5 \quad \| \phi \dagger_{X} (\psi) \|_{\mathcal{H}}^{X} &= \| \phi \dagger_{X} \psi \|_{\mathcal{H}}^{X} \\ & 7 \quad \| R(\overline{i}) \dagger_{X} \psi \|_{\mathcal{H}}^{X} &= \| (R(\overline{i})) \dagger_{X} \psi \|_{\mathcal{H}}^{X}; \\ & 8 \quad \| \phi \lor \psi \|_{\mathcal{H}}^{X} &= \| \phi \|_{\mathcal{H}}^{X} \cup \| \psi \|_{\mathcal{H}}^{X}; \\ & 8 \quad \| \phi \land \psi \|_{\mathcal{H}}^{X} &= \| \phi \|_{\mathcal{H}}^{X} \cap \| \psi \|_{\mathcal{H}}^{X}; \end{aligned}$$

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula

イロン 不同 とくほ とくほ とう

ъ

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula and \mathcal{H} be a temporal graph.

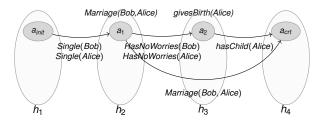
イロン 不同 とくほ とくほ とう

3

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula and \mathcal{H} be a temporal graph. • $\|\varphi\|_{\mathcal{H}}^{\mathcal{E}}$ is the **set** of quality edges that satisfy φ

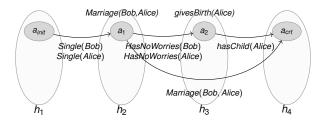


ヘロン 人間 とくほど くほとう

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula and \mathcal{H} be a temporal graph. • $\|\varphi\|_{\mathcal{H}}^{\mathcal{E}}$ is the **set** of quality edges that satisfy φ

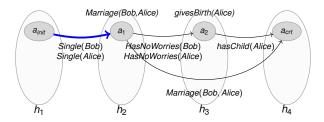

ヘロア ヘビア ヘビア・

æ

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula and \mathcal{H} be a temporal graph. • $\|\varphi\|_{\mathcal{H}}^{\mathcal{E}}$ is the **set** of quality edges that satisfy φ

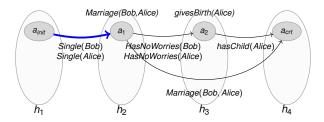

 $\|\text{Single}(x)\|_{\mathcal{H}}^{\mathcal{E}}$

ヘロア ヘビア ヘビア・

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula and \mathcal{H} be a temporal graph. • $\|\varphi\|_{\mathcal{H}}^{\mathcal{E}}$ is the **set** of quality edges that satisfy φ

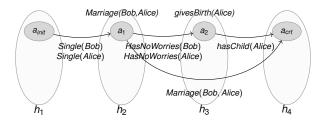

 $\|\text{Single}(x)\|_{\mathcal{H}}^{\mathcal{E}}$

・ロット (雪) () () () ()

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula and \mathcal{H} be a temporal graph. • $\|\varphi\|_{\mathcal{H}}^{E}$ is the **set** of quality edges that satisfy φ

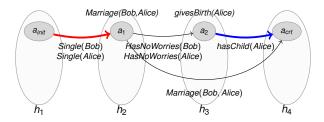

 $\|\text{Single}(x)\|_{\mathcal{H}}^{\mathcal{E}} = \{(a_{init}, a_1)\}$

ヘロア ヘビア ヘビア・

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula and \mathcal{H} be a temporal graph. • $\|\varphi\|_{\mathcal{H}}^{\mathcal{E}}$ is the **set** of quality edges that satisfy φ

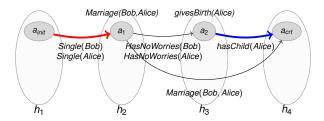

 $\|$ HasChild(x) after Single(x) $\|_{\mathcal{H}}^{E}$

ヘロト 人間 ト ヘヨト ヘヨト

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula and \mathcal{H} be a temporal graph. • $\|\varphi\|_{\mathcal{H}}^{\mathcal{E}}$ is the **set** of quality edges that satisfy φ

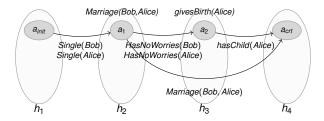

 $\|$ HasChild(x) after Single(x) $\|_{\mathcal{H}}^{E}$

くロト (過) (目) (日)

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula and \mathcal{H} be a temporal graph. • $\|\varphi\|_{\mathcal{H}}^{E}$ is the **set** of quality edges that satisfy φ

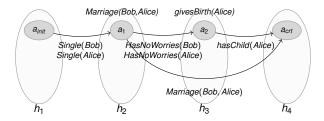

 $\|\text{HasChild}(x) \text{ after Single}(x)\|_{\mathcal{H}}^{E} = \{(a_{2}, a_{crt})\}$

ヘロア ヘビア ヘビア・

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula and \mathcal{H} be a temporal graph. • $\|\varphi\|_{\mathcal{H}}^{\mathcal{E}}$ is the **set** of quality edges that satisfy φ

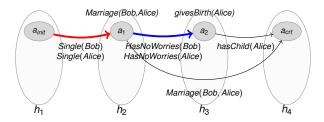

 $\|$ *HasNoWorries*(x) **after** *Single*(x) \land *HasNoWorries*(x) **before** *HasChild*(x) $\|_{\mathcal{H}}^{E}$

・ロット (雪) () () () ()

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula and \mathcal{H} be a temporal graph. • $\|\varphi\|_{\mathcal{H}}^{E}$ is the **set** of quality edges that satisfy φ

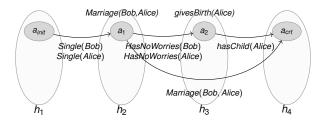

 $\|$ *HasNoWorries*(x) **after** *Single*(x) \land *HasNoWorries*(x) **before** *HasChild*(x) $\|_{\mathcal{H}}^{E}$

・ロット (雪) () () () ()

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula and \mathcal{H} be a temporal graph. • $\|\varphi\|_{\mathcal{H}}^{E}$ is the **set** of quality edges that satisfy φ

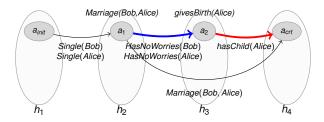

 $\|$ *HasNoWorries*(x) **after** *Single*(x) \land *HasNoWorries*(x) **before** *HasChild*(x) $\|_{\mathcal{H}}^{E}$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula and \mathcal{H} be a temporal graph. • $\|\varphi\|_{\mathcal{H}}^{E}$ is the **set** of quality edges that satisfy φ

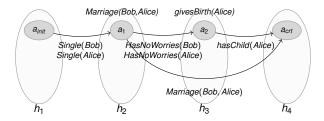

 $\|$ *HasNoWorries*(x) **after** *Single*(x) \land *HasNoWorries*(x) **before** *HasChild*(x) $\|_{\mathcal{H}}^{E}$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula and \mathcal{H} be a temporal graph. • $\|\varphi\|_{\mathcal{H}}^{E}$ is the **set** of quality edges that satisfy φ

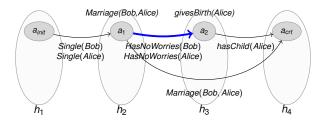

 $\|$ *HasNoWorries*(x) **after** *Single*(x) \land *HasNoWorries*(x) **before** *HasChild*(x) $\|_{\mathcal{H}}^{E}$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula and \mathcal{H} be a temporal graph. • $\|\varphi\|_{\mathcal{H}}^{\mathcal{E}}$ is the **set** of quality edges that satisfy φ

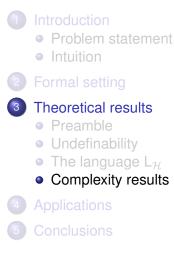

 $\|$ *HasNoWorries*(x) **after** *Single*(x) \land *HasNoWorries*(x) **before** *HasChild*(x) $\|_{\mathcal{H}}^{E}$

・ロット (雪) () () () ()

Preamble Undefinability The language L_H Complexity results

The language $L_{\mathcal{H}}$

Let $\varphi \in L_{\mathcal{H}}$ be a formula and \mathcal{H} be a temporal graph. • $\|\varphi\|_{\mathcal{H}}^{\mathcal{E}}$ is the **set** of quality edges that satisfy φ



 $\|$ *HasNoWorries*(x) **after** *Single*(x) \land *HasNoWorries*(x) **before** *HasChild*(x) $\|_{\mathcal{H}}^{E} = \{(a_{1}, a_{2})\}$

→ E > < E >

Preamble Undefinability The language L_H Complexity results

Outline

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Preamble Undefinability The language L_H Complexity results

Complexity results

Computing $\|\varphi\|_{\mathcal{H}}^{\mathcal{E}}$

イロン 不同 とくほ とくほ とう

Preamble Undefinability The language L_H Complexity results

Complexity results

Computing $\|\varphi\|_{\mathcal{H}}^{E} \equiv$ model checking the formula φ (w.r.t. a temporal graph \mathcal{H})

ヘロア ヘビア ヘビア・

э

Preamble Undefinability The language L_H Complexity results

Complexity results

Computing $\|\varphi\|_{\mathcal{H}}^{\mathcal{E}} \equiv$ **model checking** the formula φ (w.r.t. a temporal graph \mathcal{H}) The $L_{\mathcal{H}}$ **model checking** problem is:

ヘロア ヘビア ヘビア・

æ

Preamble Undefinability The language L_H Complexity results

Complexity results

Computing $\|\varphi\|_{\mathcal{H}}^{\mathcal{E}} \equiv$ **model checking** the formula φ (w.r.t. a temporal graph \mathcal{H}) The $L_{\mathcal{H}}$ **model checking** problem is:

• NP-complete, for the full language $\mathcal{L}_{\mathcal{H}}$;

・ロット (雪) () () () ()

Preamble Undefinability The language L_H Complexity results

Complexity results

Computing $\|\varphi\|_{\mathcal{H}}^{\mathcal{E}} \equiv$ **model checking** the formula φ (w.r.t. a temporal graph \mathcal{H}) The $L_{\mathcal{H}}$ **model checking** problem is:

• NP-complete, for the full language $\mathcal{L}_{\mathcal{H}}$;

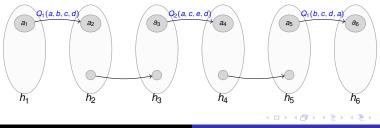
Methodology:

Matei Popovici Temporal reasoning using temporal graphs

ヘロア ヘビア ヘビア・

Preamble Undefinability The language L_H Complexity results

Complexity results


Computing $\|\varphi\|_{\mathcal{H}}^{E} \equiv$ model checking the formula φ (w.r.t. a temporal graph \mathcal{H})

The $L_{\mathcal{H}}$ model checking problem is:

• NP-complete, for the full language $\mathcal{L}_{\mathcal{H}}$;

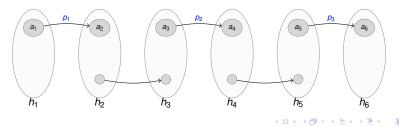
Methodology:

Make labellings trivial:

Matei Popovici Temporal reasoning using temporal graphs

Preamble Undefinability The language L_H Complexity results

Complexity results


Computing $\|\varphi\|_{\mathcal{H}}^{E} \equiv$ model checking the formula φ (w.r.t. a temporal graph \mathcal{H})

The $L_{\mathcal{H}}$ model checking problem is:

• NP-complete, for the full language $\mathcal{L}_{\mathcal{H}}$;

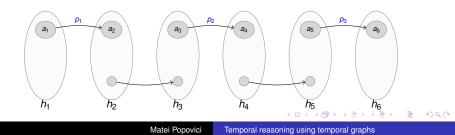
Methodology:

Make labellings trivial: L^{*}_H

Matei Popovici Temporal reasoning using temporal graphs

Preamble Undefinability The language L_H Complexity results

Complexity results


Computing $\|\varphi\|_{\mathcal{H}}^{E} \equiv$ model checking the formula φ (w.r.t. a temporal graph \mathcal{H})

The $L_{\mathcal{H}}$ model checking problem is:

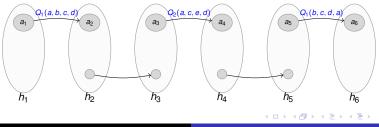
• NP-complete, for the full language $\mathcal{L}_{\mathcal{H}}$;

Methodology:

• Make labellings trivial: L* PTIME model-checking

Preamble Undefinability The language L_H Complexity results

Complexity results


Computing $\|\varphi\|_{\mathcal{H}}^{\mathcal{E}} \equiv$ **model checking** the formula φ (w.r.t. a temporal graph \mathcal{H})

The $L_{\mathcal{H}}$ model checking problem is:

• NP-complete, for the full language $\mathcal{L}_{\mathcal{H}}$;

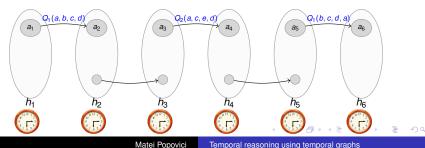
Methodology:

• Assume $\langle H, \rangle$ is known:

Matei Popovici Temporal reasoning using temporal graphs

Preamble Undefinability The language L_H Complexity results

Complexity results


Computing $\|\varphi\|_{\mathcal{H}}^{E} \equiv$ model checking the formula φ (w.r.t. a temporal graph \mathcal{H})

The $L_{\mathcal{H}}$ model checking problem is:

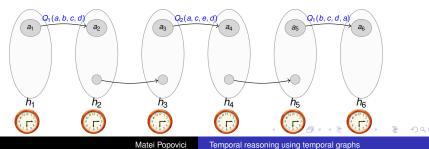
• NP-complete, for the full language $\mathcal{L}_{\mathcal{H}}$;

Methodology:

• Assume $\langle H, \rangle$ is known: $L_{\mathcal{H}}^{<}$

Preamble Undefinability The language L_H Complexity results

Complexity results


Computing $\|\varphi\|_{\mathcal{H}}^{E} \equiv$ model checking the formula φ (w.r.t. a temporal graph \mathcal{H})

The $L_{\mathcal{H}}$ model checking problem is:

• NP-complete, for the full language $\mathcal{L}_{\mathcal{H}}$;

Methodology:

• Assume $\langle H, \rangle$ is known: $L_{\mathcal{H}}^{\leq}$ NP-complete model-checking

Preamble Undefinability The language L_H Complexity results

Complexity results

Comparing $L_{\mathcal{H}}$ model checking with other approaches:

 $\begin{array}{c} \textbf{Method} \\ \text{The TEDL} \ \mathcal{HS} \\ \text{The TEDL} \ \mathcal{ALCT} \\ \text{The DL} \ \mathcal{ALC}(\text{cyclic TBoxes}) \\ \text{The DL} \ \mathcal{FL}_0(\text{cyclic TBoxes}) \\ \\ \mathcal{L}_{\mathcal{H}} \\ \mathcal{L}_{\mathcal{H}}^* \end{array}$

Reasoning problem

satisfiability satisfiability subsumption subsumption model-checking model-checking Complexity undecidable PSPACE – complete EXPTIME PSPACE – complete NP – complete PTIMF

イロト イポト イヨト イヨト

Applications of temporal graphs and $L_{\mathcal{H}}$

- Specifying time-dependent device behaviour in intelligent buildings
- Data mining logs from HPC systems
- Specifying optimal behaviour in MAS (Multi-Agent Systems)

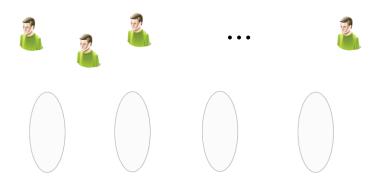
ヘロト 人間 ト ヘヨト ヘヨト

Applications of temporal graphs and $L_{\mathcal{H}}$

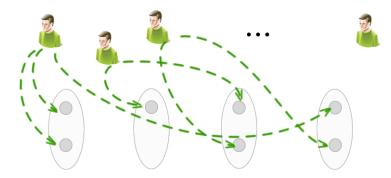
- Specifying time-dependent device behaviour in intelligent buildings
- Data mining logs from HPC systems
- Specifying **optimal** behaviour in **MAS** (Multi-Agent Systems)

Temporal graphs and $L^*_{\mathcal{H}}$ in MAS

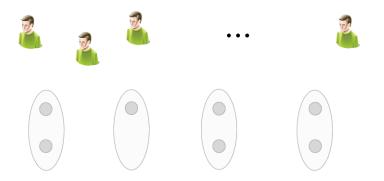
Setting: a finite set of players



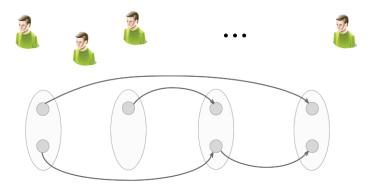
. . .


Temporal graphs and $L^*_{\mathcal{H}}$ in MAS

a finite set of hypernodes


Temporal graphs and $L^*_{\mathcal{H}}$ in MAS

possible actions, for each player

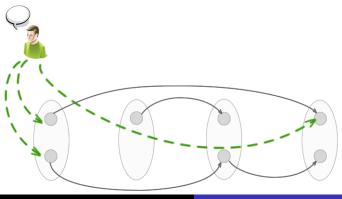

Temporal graphs and $L^*_{\mathcal{H}}$ in MAS

an action ai consists of a set of labelled action nodes

Temporal graphs and $L^*_{\mathcal{H}}$ in MAS

quality edges created/destroyed by action nodes

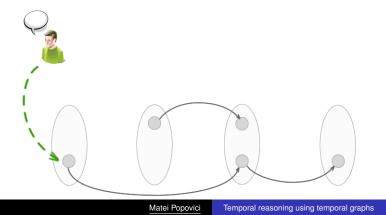
Temporal graphs and $L^*_{\mathcal{H}}$ in MAS


each player *i* has a **goal** φ_i . The goal is satisfied iff $\|\varphi_i\|_{\mathcal{H}}^{\mathcal{E}} \neq \emptyset$

Matei Popovici Temporal reasoning using temporal graphs

Temporal graphs and $L^*_{\mathcal{H}}$ in MAS

Deviation: Is a player incentivised to **change** his action, given the actions of others ?


Temporal graphs and $L^*_{\mathcal{H}}$ in MAS

Deviation: Is a player incentivised to **change** his action, given the actions of others ?

Temporal graphs and $L^*_{\mathcal{H}}$ in MAS

Deviation: Is a player incentivised to **change** his action, given the actions of others ?

Temporal graphs and $L_{\mathcal{H}}$ in MAS

- Remark: The goal satisfaction of a player is affected by what other players do
- *Question:* What is the **proper** action each player should take, in order to **satisfy his goal** ?

(4回) (日) (日)

Temporal graphs and $L_{\mathcal{H}}$ in MAS

An action profile (a_1, \ldots, a_n) is a:

イロン 不同 とくほ とくほ とう

ъ

Temporal graphs and $L_{\mathcal{H}}$ in MAS

An action profile (a_1, \ldots, a_n) is a:

• Nash Equilibrium (NE) iff there is no individual player that can deviate

Temporal graphs and $L_{\mathcal{H}}$ in MAS

An action profile (a_1, \ldots, a_n) is a:

- Nash Equilibrium (NE) iff there is no individual player that can deviate
- Strong Nash Equilibrium (SNE) iff there is no coalition *C* of players that can jointly deviate

Temporal graphs and $L_{\mathcal{H}}$ in MAS

An action profile (a_1, \ldots, a_n) is a:

- Nash Equilibrium (NE) iff there is no individual player that can deviate
- Strong Nash Equilibrium (SNE) iff there is no coalition *C* of players that can jointly deviate

Complexity results (for $L_{\mathcal{H}}$ with propositional symbols):

Temporal graphs and $L_{\mathcal{H}}$ in MAS

An action profile (a_1, \ldots, a_n) is a:

- Nash Equilibrium (NE) iff there is no individual player that can deviate
- Strong Nash Equilibrium (SNE) iff there is no coalition *C* of players that can jointly deviate

Complexity results (for $L_{\mathcal{H}}$ with propositional symbols):

• The verification problem:

ヘロト ヘアト ヘビト ヘビト

Temporal graphs and $L_{\mathcal{H}}$ in MAS

An action profile (a_1, \ldots, a_n) is a:

- Nash Equilibrium (NE) iff there is no individual player that can deviate
- Strong Nash Equilibrium (SNE) iff there is no coalition *C* of players that can jointly deviate

Complexity results (for $L_{\mathcal{H}}$ with propositional symbols):

• The verification problem: coNP for NE and SNE

Temporal graphs and $L_{\mathcal{H}}$ in MAS

An action profile (a_1, \ldots, a_n) is a:

- Nash Equilibrium (NE) iff there is no individual player that can deviate
- Strong Nash Equilibrium (SNE) iff there is no coalition *C* of players that can jointly deviate

Complexity results (for $L_{\mathcal{H}}$ with propositional symbols):

- The verification problem: coNP for NE and SNE
- The synthesis problem:

Temporal graphs and $L_{\mathcal{H}}$ in MAS

An action profile (a_1, \ldots, a_n) is a:

- Nash Equilibrium (NE) iff there is no individual player that can deviate
- Strong Nash Equilibrium (SNE) iff there is no coalition *C* of players that can jointly deviate

Complexity results (for $L_{\mathcal{H}}$ with propositional symbols):

- The verification problem: coNP for NE and SNE
- The synthesis problem: Σ_2 for NE and SNE

Applications of temporal graphs and $L_{\mathcal{H}}$

- Specifying time-dependent device behaviour in intelligent buildings
- Data mining logs from HPC systems
- Specifying optimal behaviour in MAS (Multi-Agent Systems)

Practical application: intelligent buildings

Specifying **time-dependent** device behaviour in intelligent buildings

ヘロト ヘ戸ト ヘヨト ヘヨト

э

Practical application: intelligent buildings

Specifying **time-dependent** device behaviour in intelligent buildings using a Domain-Specific Language (DSL).

Practical application: intelligent buildings

Specifying **time-dependent** device behaviour in intelligent buildings using a Domain-Specific Language (DSL). The implementation relies on:

Practical application: intelligent buildings

Specifying **time-dependent** device behaviour in intelligent buildings using a Domain-Specific Language (DSL). The implementation relies on:

a model-checker for the language L^{*}_H

Practical application: intelligent buildings

Specifying **time-dependent** device behaviour in intelligent buildings using a Domain-Specific Language (DSL). The implementation relies on:

- a model-checker for the language $L_{\mathcal{H}}^*$
 - written in Java & Haskell

Practical application: intelligent buildings

Specifying **time-dependent** device behaviour in intelligent buildings using a Domain-Specific Language (DSL). The implementation relies on:

- a model-checker for the language $L_{\mathcal{H}}^*$
 - written in Java & Haskell
 - tractable implementation

Practical application: intelligent buildings

Specifying **time-dependent** device behaviour in intelligent buildings using a Domain-Specific Language (DSL). The implementation relies on:

- a model-checker for the language $L_{\mathcal{H}}^*$
 - written in Java & Haskell
 - tractable implementation
- interaction with devices, which are abstracted by Web Services

Practical application: intelligent buildings

Specifying **time-dependent** device behaviour in intelligent buildings using a Domain-Specific Language (DSL). The implementation relies on:

- a model-checker for the language $L_{\mathcal{H}}^*$
 - written in Java & Haskell
 - tractable implementation
- interaction with devices, which are abstracted by Web Services

In it's initial phase, DSL was developed under the **FCINT POSCCE project** (Ontology-based Service Composition Framework for Syndicating Building Intelligence)

- **Temporal graphs** are suitable for storing information about the history of a domain
- The language $L_{\mathcal{H}}^*$ can be used to capture classes of system properties, that are involved in complex temporal relation.

・ 回 ト ・ ヨ ト ・ ヨ ト