
Complexity Theory
Prof. Dr. Jürgen Dix

Computational Intelligence Group
Clausthal University of Technology

WS 16/17

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 1

Time and Date: Lecture (SR 210):
Wednesday/Thursday, 10ct.
Exercises/Labs (SR210): approx. fortnightly
Assistent: Niklas Fiekas

Homepage

http://cig.in.tu-clausthal.de/
Visit regularly!

Important info about scripts, slides, exercises et
cetera.

Exam: oral examination.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 2

http://cig.in.tu-clausthal.de/

What is this lecture about? (1)
This lecture course builds on “Informatics III” and deepens many
topics introduced there.

The first chapter (5 lectures, 2 labs) starts with Makanin’s problem
(word equations over a free monoid) which is decidable, and then
covers some topics from the Chomsky hierarchy: the
Myhill-Nerode theorem (how to construct a minimal finite
automaton), deterministic PDA’s, type 1 languages, normalform
for type 0 and type 1 languages, Ehrenfeucht’s theorem and
Lindenmayer systems, a class of grammars that is orthogonal to
parts of the Chomsky hierarchy.

Chapter 2 (6 lectures, 2 labs) discusses undecidability results in
greater depth (Post’s Correspondence theorem, (primitive)
recursive functions, Hilbert’s 10. problem (solving diophantine
equations)). We also cover Rice’s theorem and its analogue for
grammars.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 3

What is this lecture about? (2)
Chapters 3 (2 lectures, 1 lab) and 4 (3 lectures, 1 lab) cover
classical complexity results: time versus space, speed-up,
gap-theorem, union-theorem and complexity classes: PH (the
polynomial hierarchy), PSPACE, EXPSPACE and their subclasses.
We also prove Immerman/Szelepcsényi’s theorem. We end with
the decidability of Presburger arithmetic, the theory of reals with
addition (and multiplication) and their respective complexities.
The results are obtained by quantifier elimination.

Chapter 5 (1 lecture) is a short overview of the arithmetical and
analytical hierarchy (extending EXPSPACE into the undecidable)
and discusses descriptive complexity: Can we find logics
corresponding to complexity classes (Fagin’s theorem).

Many thanks to Nils Bulling for proofreading and helping with
the exercises of previous versions.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 4

Table of contents

1. The Chomsky Hierarchy
2. (Un-) Decidability
3. SPACE versus TIME
4. EXPSPACE
5. More advanced topics

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 5

1 The Chomsky Hierarchy

1. The Chomsky Hierarchy
1 The Chomsky Hierarchy

Makanin’s Algorithm
Minimal DFA
cf = hom(DyckXreg)
DPDA/DCF
LBA/Type 1
re = hom(cs)
Ehrenfeucht
Lindenmayer

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 6

1 The Chomsky Hierarchy

Content of this chapter:
Type 3: 1 Does a unique minimal automaton exist?

2 PDAs are indeterministic. Which class do
deterministic PDA’s generate? ãÑ DCF.

Type 2: 1 Dyck = CFL: Each cf-language has the form
hompDyckX type3q.

Type 1: 1 Languages of type 1: LBA acceptable.
2 Contextsensitive = bounded.
3 Type 1 is closed under complements.

Type 0: Each r.e. set has the form homptype1q.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 7

1 The Chomsky Hierarchy

Content of this chapter:

Ehrenfeucht: Equality of morphisms modulo L can be
checked on a finite test set.

New class: Incomparable to Type 2, 3:

Lindenmayer systems: a class which is
incomparable to both type 2 and type 3.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 8

1 The Chomsky Hierarchy

A (homo-) morphism is a structure-preserving mapping
from one algebraic structure in another one.

Definition 1.1 (Homomorphism)

A (homo-) morphism h : A1 Ñ A2

of one algebraic structure A1 “
`

M,Op1
m1
, . . . , Opkmk

˘

into another algebraic structure of the same type
A2 “

`

N,Op
1

m1
, . . . , Op

k

mk

˘

is a function h : M Ñ N that is compatible with all
operators. This means that the following holds: for
1 ď i ď k and for all a1, . . . , ani PM :

h
`

Opinipa1, . . . , aniq
˘

“ Op
i

ni

`

hpa1q, . . . , hpaniq
˘

.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 9

1 The Chomsky Hierarchy

Definition 1.2 (Isomorphism)

An Isomorphism from A1 “ pM,Op1
m1
, . . . , Opkmk

q

to A2 “ pN, Op
1
m1
, . . . , Op

k
mk
q is a homomorphism

h : A1 Ñ A2, which is bijective.

Example: Graphs.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 10

1 The Chomsky Hierarchy

For languages: a (homo-) morphism from a
language based on alphabet Σ to a language
based on alphabet Γ, is a function which maps

one symbol in Σ

to a word in Γ˚ (Γ is a different alphabet).

Some examples on blackboard 1.1.

Why are morphisms useful?
 blackboard 1.2

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 11

1 The Chomsky Hierarchy

Lemma 1.3 (Unique Extension to Σ˚)

h can be uniquely extended to h : Σ˚ Ñ Γ˚ so that:

hpu ˝ vq “ hpuq ˝ hpvq for all u, v P Σ˚, and
hpεq “ ε.

It suffices to define h on Σ. Then h is uniquely
defined on Σ˚.

h operates on words in Σ˚ by using symbol
after symbol!

A morphism h is ε-free if hpaq ‰ ε for all a P Σ.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 12

1 The Chomsky Hierarchy

Definition 1.4 ((Ext.) Regular Expressions RegΣ, Reg`Σ)

Regular expressions RegΣ are defined as follows:
1. 0 is a regular expression.
2. For all a P Σ is a a regular expression.
3. If r and s are regular expressions, then so are

pr ` sq (union),
prsq (concatenation),
pr˚q (Kleene star).

Extended regular expressions Reg`Σ are obtained when we
replace above “regular expression” by “extended regular
expression” and also add
4. If r and s are ext. regular expressions, then so are

p rq (negation),
pr X sq.

We usually omit parentheses and agree that ˚ is stronger than
concatenation, which is stronger than `, X and .

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 13

1 The Chomsky Hierarchy

Definition 1.5 (Semantics of Reg`Σ)

An (extended) regular expression r defines a language
Iprq over Σ as follows:

Ip0q :“ H,
Ipaq :“ tau, for a P Σ,
Ipr ` sq :“ IprqYIpsq,
Ipr X sq :“ IprqXIpsq,
Iprsq :“ IprqIpsq,
Ipr˚q :“ Iprq˚,
Ip rq :“ Σ˚zIprq.

We also use a` in a regular expression (this is a macro). We
use “1”, defined by 1 :“ 0˚. Obviously Ip1q “ tεu.
 blackboard 1.3

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 14

1 The Chomsky Hierarchy

1 What added value do and X give us? Can
we express more sets?

2 Consider the alphabet Σ “ ta0, a1, . . . , anu.
Give a regular expression of the language
consisting of all words over Σ that have not
the form ai0 for i ě 1?

3 Give a regular expression of the language
consisting of all words over Σ that have not
the following form

p. . . ppa2
0a1q

2a2q
2
¨ ¨ ¨ anq

2.

Languages can be described more succinctly!

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 15

1 The Chomsky Hierarchy

Given regular expression r, r1, how complex is it to
construct regular expressions for r and r X r1

and what is the size of these expressions?
1 Naive approach: Construct dfa’a (to

compute the complement). This requires to
transform a nfa in a dfa: exponential time
(subset cnstructio. Indeed: double
exponential (getting the regular expression
from the automaton).

2 Also the size of the constructed regular
expression is double exponential.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 16

1 The Chomsky Hierarchy

In fact, this is not accidental:
Size: In general, the size of the constructed

regular expressions is double
exponential in the input size.

Complexity: To construct r takes double
exponential time. To construct r X r1

takes exponential time. (The case
r1 X . . .X r

k for unlimited k is also
double exponential.)

We refer to Wouter Gelade and Frank Neven, Succinctness of the

Complement and Intersection of Regular Expressions, STACS: 25th

Annual Symposium on Theoretical Aspects of Computer Science,

Bordeaux, pages 325–336, 2008.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 17

1 The Chomsky Hierarchy

Checking eex’s (1)

Given a word w and an extended regular
expression eex, how to efficiently determine that
w P eex?

1 Construct automata corresponding to
subexpressions. What about the
complexity?

2 Is there an algorithm polynomial in |w| ` |eex|?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 18

1 The Chomsky Hierarchy

Checking eex’s (2)

We construct a table with yes/no entries for
each subexpression r of eex, and
each substring xij of w (starting from position
i and ending in j), such that

"

Y, if xij P Iprq;
N, else.

 blackboard 1.4

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 19

1 The Chomsky Hierarchy

Checking eex’s (3)

The table has size p|eex| ` |w|q3 (n subexpr. of
eex and npn`1q

2 substrings of w).
For each entry we have to consider all cases (to
build the expression) and we can show, that
determining each entry takes time at most
p|eex| ` |w|q. We start with small
subexpressions 0, a of eex and all substrings of
w. Then consider subexpressions built from
X,`, ˝,˚ , .
This gives a complexity of p|eex| ` |w|q4.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 20

1 The Chomsky Hierarchy

Decidability of several problems
Finite Empty Equivalence Intersection

Type 0 no no no no
Type 1 yes no no no
0L yes no no no
Type 2 yes yes no no
DCF yes yes yesa no
Type 3 yes yes yes yes

aVery complicated, not in this lecture.

yes/no entries: Already given in Informatics III.
yes/no: This lecture.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 21

1 The Chomsky Hierarchy

Closure under certain operations

˝ ˚ h h´1 εfree´h Y X X reg R

Type 0 X X – X X X X X X X
Rec X X X – – X X X X X
Type 1 X X X – X X X X X X
0L – – – – – — — – – –
Type 2 X X – X X X X – X X
DCFL – – X – X – – – X –
Type 3 X X X X X X X X X X

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 22

1 The Chomsky Hierarchy

Deterministic finite automaton (dfa):
Given w P Σ˚, a dfa checks, whether w P L.
A dfa has:

a read-only head, moving to the left (not back).
an internal state, with finitely many values.

It starts in the initial state.
Reading one letter may result in a state change.
If it has read the whole word and ends in a final state,
then it accepts (“YES”): w is contained in L.
Otherwise it does not accept: “No”.
It stops after exactly |w| steps.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 23

1 The Chomsky Hierarchy

Notation as a graph:
a node for each possible state,
edges are marked with symbols: They
describe state changes.
Initial states are marked with an arrow,
final states are marked with a double circle.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 24

1 The Chomsky Hierarchy

Definition 1.6 (Deterministic Finite Automaton (dfa))

A deterministic finite automaton (dfa) is a tuple
A “ pK,Σ, δ, s0, F q, with

K a finite set of states,
Σ a finite alphabet,
δ : K ˆ Σ Ñ K the (total) transition function,
s0 P K the initial state, and
F Ď K the set of final states.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 25

1 The Chomsky Hierarchy

δpq, aq “ q1 means:
The automaton is in state q,
reads an a and
reaches state q1.

We extend δ to δ˚ : K ˆ Σ˚ Ñ K, which is defined
recursively over Σ˚ as follows:

δ˚pq, εq :“ q

δ˚pq, waq :“ δpδ˚pq, wq, aq

We often write δ instead of δ˚ if clear from
context.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 26

1 The Chomsky Hierarchy
1.1 Makanin’s Algorithm

1.1 Makanin’s Algorithm

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 27

1 The Chomsky Hierarchy
1.1 Makanin’s Algorithm

Content of this section:

1 We introduce finite sets of word equations
over a set of constants Σ and a set of variables
Ω. A solution is a set of instantiations of the
variables.

2 Makanin’s algorithm decides whether there
are solutions for such a system and even
computes them.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 28

1 The Chomsky Hierarchy
1.1 Makanin’s Algorithm

Example 1.7

Let Σ “ ta, b, cu, Ω “ tx, y, zu and consider the
equation

abxcy “ ycxba

Is that equation solvable? I.e. can we assign
words from Σ˚ to x, y such that we get the same
words on both sides of the equation? How many
solutions are there?

We denote the length of a word w by |w|, and the
number of occurrences of a variable x in it by |w|x.
Thus |abxcy| “ 5 and |ycxba|x “ 1 “ |ycxba|y.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 29

1 The Chomsky Hierarchy
1.1 Makanin’s Algorithm

Definition 1.8 (Word equations, solution)

A word equation over the alphabet Σ in the variables Ω is of
the form

L “ R,

where L,R are elements of pΣY Ωq˚.
A system of word equations over Σ in Ω is a set

S :“ tL1 “ R1, . . . , Lk “ Rku

of word equations. Such a system is quadratic if
@x P Ω :

řk
1p|Li|x ` |Ri|xq ď 2.

A solution of S is an instantiation σ : Ω Ñ Σ˚ such that
σpLiq “ σpRiq for all i “ 1, . . . k.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 30

1 The Chomsky Hierarchy
1.1 Makanin’s Algorithm

Theorem 1.9 (Makanin (1977))

There is an algorithm to compute whether there is a
solution of a finite system of word equations over Σ
in the variables Ω.

Another formulation: the existential theory
of equations over a free monoid is decidable.
In 1983, the result was extended to the
existential theory of equations over a free
group is decidable.
These are deep theorems and their proof is
quite complicated. We discuss its relation to
PCP and present a special case.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 31

1 The Chomsky Hierarchy
1.1 Makanin’s Algorithm

Lemma 1.10 (Quadratic Equations)

There is a simple algorithm due to Matijasevich
(1968) to compute whether there is a solution of a
finite system of quadratic word equations over Σ in
the variables Ω.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 32

1 The Chomsky Hierarchy
1.1 Makanin’s Algorithm

Proof of Lemma 1.10 (1).

We assume the system E is given as k equations
of the form L1 “ R1, . . . , Lk “ Rk.

We show our lemma by induction on Ω.

For Ω “ H, the lemma is clear (simply checking
whether all right and left hand sides correspond
to each other). Let }E} :“

řk
i“1 |LiRi|

1. step: Set σpxq “ ε for some x P Ω, obtaining
E 1 over Ωztxu. If there is a solution (can
be decided by induction hypothesis), we
call it singular solution, we are done. If
not, next step.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 33

1 The Chomsky Hierarchy
1.1 Makanin’s Algorithm

Proof of Lemma 1.10 (2).
2. step: Wlog we assume that for all solutions (if any)

σpxq ‰ ε for all x P Ω. Then the first equation has
either the form (1) x . . . “ a . . . or (2) x . . . “ y . . .
where x, y P Ω, x ‰ y, a P Σ. In case (1) we
transform rx{azs, in case (2) we transform
rx{yzs, where z is a new variable.
We get a new system E 1, still quadratic, with:
}E 1} ď }E} and E is solvable iff E 1 is solvable.
Let σ be a non-singular solution of E where
ΣxPΩ|σpxq| is minimal. Then we find a solution σ1

for E 1 with |σ1pzq| ň |σ1pxq| (note σpyq ‰ ε). So
the length of the shortest solution has
decreased. We proceed recursively.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 34

1 The Chomsky Hierarchy
1.1 Makanin’s Algorithm

Proof of Lemma 1.10 (2).

3. step: It remains to nondeterministically
guess a solution. If there is none, this
can be detected because there are only
finitely many different systems of
equations possible (up to renaming of
variables).

So we’ll enter a loop eventually and
know that we do not need to go on
anymore.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 35

1 The Chomsky Hierarchy
1.1 Makanin’s Algorithm

Example 1.11 (Illustration of Lemma 1.10)

Let Σ “ ta, b, cu and Ω “ tx, y, zu and consider

abxcy “ ycxba

Figure 1 on slide 37 shows all the instances that we get (up
to renaming of variables). Note that new equations need
not have strictly less variables or strictly shorter length (only
the shortest solution length decreases).

But they do not get any larger.

Therefore, there can be only finitely many of them. Thus
if there is no solution at all, this can be determined. If there
is a solution, it will be computed or guessed eventually.

We get as shortest length solution x :“ a, y :“ aba.
However, there is also the solution: x :“ aca, y :“ aba.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 36

1 The Chomsky Hierarchy
1.1 Makanin’s Algorithm

Figure 1: A simple algorithm for systems of quadratic equations.
Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 37

1 The Chomsky Hierarchy
1.1 Makanin’s Algorithm

What about the complexity of the general result?

Free monoids: The best bound of Makanin’s
algorithm is exponential space, while
the prblem has been shown to be in
PSPACE.

Free groups: There is no primitive recursive
bound for Makanin’s algorithm.
However, the complexity of the problem
has been shown to be in PSPACE.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 38

1 The Chomsky Hierarchy
1.2 Minimal DFA

1.2 Minimal DFA

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 39

1 The Chomsky Hierarchy
1.2 Minimal DFA

Another method to determine whether a
language is not regular. Given a language L, is
there a unique minimal dfa for L?

Definition 1.12 („L)

For a language L Ď Σ˚ we define the relation
„L Ď Σ˚ ˆ Σ˚:

v „L x if @w P Σ˚ : pvw P L iff xw P Lqq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 40

1 The Chomsky Hierarchy
1.2 Minimal DFA

Definition 1.13 (RA)

For a dfa A “ pK,Σ, δ, s0, F q we define the relation
RA Ď Σ˚ ˆ Σ˚:

vRAx if δps0, vq “ δps0, xq.

Lemma 1.14

„L, RA are equivalence relations
„L, RA are right congruences:
(v „L t iff @w P Σ˚ : pvw „L twq).

 blackboard 1.5

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 41

1 The Chomsky Hierarchy
1.2 Minimal DFA

Example 1.15

L “ tw P ta, bu˚ : #apwq “ 1 mod 3u.

There are exactly 3 equivalence classes:
1 rεs “ tw P ta, bu˚ : #apwq “ 0 mod 3u.
2 ras “ tw P ta, bu˚ : #apwq “ 1 mod 3u.
3 raas “ tw P ta, bu˚ : #apwq “ 2 mod 3u.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 42

1 The Chomsky Hierarchy
1.2 Minimal DFA

Example 1.16

L “ tw P tau˚ : w “ ap, p is primeu.

There are infinitely many equivalence classes.

Example 1.17

L “ tw P tau˚ : w “ ap, p and p` 2 are primesu.

How many equivalence classes are there?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 43

1 The Chomsky Hierarchy
1.2 Minimal DFA

Theorem 1.18 (Myhill-Nerode)

Let L Ď Σ˚ be a language. The following are
equivalent:
(1) L is rational (type 3).
(2) L is the union of some equivalence classes of a

right congruence of Σ˚, which has only finitely
many equivalence classes.

(3) „L has only finitely many equivalence classes.

 blackboard 1.6

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 44

1 The Chomsky Hierarchy
1.2 Minimal DFA

Proof
(1) Ñ (2): Let A be a dfa for L. Obviously RA has only
finitely many equivalence classes (bounded above by the
number of states). Use Lemma 1.14 to show that it is a right
congruence.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 45

1 The Chomsky Hierarchy
1.2 Minimal DFA

(2) Ñ (3): We show: Let R1 be an equivalence relation
which satisfies (2). Then each equivalence class of R1 is
contained in some equivalence class of „L.

Then „L has at most as many equivalence classes as R1

(several classes of R1 could be contained in „L), therefore
only finitely many.

Let xR1y. Because of the right congruence property (for all
z P Σ˚): xzR1yz. Thus yz P L iff xz P L. Therefore x „L y.
Thus rxs„R1 is contained in rxs„L.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 46

1 The Chomsky Hierarchy
1.2 Minimal DFA

(3) Ñ (1): „L is a right congruence (Lemma 1.14).

We construct a dfa M̂L, which accepts L:
K :“ trxs„L : x P Σ˚u,
δprxs„L , aq “ rxas„L,
s0 :“ rεs„L,
F :“ trxs„L : x P Lu.

δ is well-defined (right congruence). Our dfa accepts L,
because

δps0, xq “ rxs„L thus x P LpM̂Lq iff rxs„L P F

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 47

1 The Chomsky Hierarchy
1.2 Minimal DFA

Definition 1.19 (M̂L)

For L Ď Σ˚ we define the following automaton
M̂L “ pK,Σ, δ, s0, F q:

K :“ trws„L : w P Σ˚u,
s0 :“ rεs„L,
F :“ trws„L : w P Lu,
δprws„L, aq :“ rwas„L.

Is M̂L a finite automaton?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 48

1 The Chomsky Hierarchy
1.2 Minimal DFA

Assume a dfa contains states q, q1 with

@w P Σ˚ : δpq, wq P F iff δpq1, wq P F.

What does that mean?

q and q1 are equivalent.

Does there exist to each dfa A another automaton
which accepts the same language and has a
minimal number of states?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 49

1 The Chomsky Hierarchy
1.2 Minimal DFA

Definition 1.20 (Morphisms between dfa’s)

A morphism between two dfa’s
A1 “ pK1,Σ, δ1, s1, F1q, A2 “ pK2,Σ, δ, s2, F2q is a
mapping h : K1 Ñ K2 such that:

1 hps1q “ s2,
2 hpF1q Ď F2,
3 hpK1zF1q Ď K2zF2,
4 hpδ1pq, aqq “ δ2phpqq, aq for all q P K1 and a P Σ.

An isomorphism between two dfa’s is a bijective
morphism between them.

In the following we assume that all states of an
automaton are reachable.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 50

1 The Chomsky Hierarchy
1.2 Minimal DFA

Lemma 1.21

For any morphism h from dfa A1 to dfa A2 it holds
that LpA1q “ LpA2q.

Proof

Let si be the initial and Fi the set of final states of
Ai.

w P LpA1q ô δ1ps1, wq P F1

ô hpδ1ps1, wqq P F2

ô δ2phps1q, wq P F2

ô δ2ps2, wq P F2

ô w P LpA2q

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 51

1 The Chomsky Hierarchy
1.2 Minimal DFA

Lemma 1.22

The mapping hA : AÑ M̂LpAq defined by
hApqq “ rws„LpAq if δps0, wq “ q is a surjective
morphism from A to M̂LpAq.

Proof.

Firstly, we observe that hA is a function as A is
reachable.
hA is well-defined: Suppose there is another
word v ‰ w with δps0, vq “ q. Then, v „LpAq w
and thus rvs “ rws.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 52

1 The Chomsky Hierarchy
1.2 Minimal DFA

hA is a morphism: hAps0q “ rεs is the initial state
of M̂LpAq.
Final states: Let q P FA iff
Dw P LpAqpδps0, wq “ qq iff
Dw P LpAqphApqq “ rwsq iff hApqq P FM̂LpAq

.

Transitions: δ̂phApqq, aq “ δ̂prws, aq with
δps0, wq “ q which is equivalent to rwas which
is equivalent to hAppq with
p “ δps0, waq “ δpδps0, wq, aq “ δpq, aq, which is
thus equal to hApδpq, aqq.
hA is surjective: For each w there is a state q
with δps0, wq “ q.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 53

1 The Chomsky Hierarchy
1.2 Minimal DFA

Theorem 1.23 (Minimality of M̂L)

Let A be a dfa and L “ LpAq. The following are
equivalent:

1 A is minimal: each dfa A1 with LpA1q “ LpAq
has at least as many states as A.

2 A is isomorphic to M̂L.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 54

1 The Chomsky Hierarchy
1.2 Minimal DFA

Proof of Theorem 1.23
We have shown (Proof of Theorem 1.18), that each other dfa
accepting L, defines an equivalence relation which is a
refinement of „L: each of these classes is contained in one
of the classes of „L.
Therefore each such dfa has at least as many classes as
M̂L.

Let M 1 be a dfa which accepts L and has the same number
of states as M̂L. We define an isomorphism between M 1

and M̂L. Let q1 a state of M 1. Then there is a word w with
δ1ps10, wq “ q1 (otherwise q1 could be removed). We map q1 to
δps0, wq (this is well-defined).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 55

1 The Chomsky Hierarchy
1.2 Minimal DFA

Proof of Theorem 1.23 (cont.)

“1 ñ 2”: Let A be minimal. There is a surjective
moprhism hA : AÑ M̂L (Lemma 1.22). Now, if hA
would not be injective we have that A has more
states than M̂L. Contradiction as A is minimal!
“2 ñ 1”: Let A be isomorph to M̂L; hence, there is
a bijection h1A : M̂L :Ñ A. Let A1 be a (reachable)
dfa with LpA1q “ L. By Lemma 1.22 there is a
surjective morphism hA1 : A1 Ñ M̂L. Now we have
that hA1A :“ h1A ˝ hA1 : A1 Ñ A is a surjective
morphism. Then, we have that |KA1| ě |KA| which
implies that A is minimal as A1 is arbitrary.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 56

1 The Chomsky Hierarchy
1.2 Minimal DFA

Definition 1.24 (Equivalence of states)

Given a dfa A, we call two states q1, q2 equivalent,
if @w P Σ˚ : δpq1, wq P F iff δpq2, wq P F

How can we check equivalence of states? After
all, we have to take into account infinitely many
words w.

Check words of length at most |K| ´ 2!
Theorem 1.25 (Finite test set)

If two states are equivalent for all words of length at
most |K| ´ 2, then they are equivalent in the sense
of Definition 1.24.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 57

1 The Chomsky Hierarchy
1.2 Minimal DFA

>
a

b

a

b

a

b

b

a
a

b a

b

a

b a

b

1 2 3 4

5 6 7 8

Figure 2: A dfa A.

We first check words of length at most 0, then 1,
then 2, . . . , until 6.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 58

1 The Chomsky Hierarchy
1.2 Minimal DFA

Definition of „n: blackboard 1.7
Lemma 1.26

Let A be a reachable dfa. Let En denote the
partition belonging to „n and E belonging to „.

1 En`1 and E are finer than En.
2 q „n`1 q

1 iff (1) q „1 q
1 and

(2) for all a P Σ : pδpq, aq „n δpq
1, aqq for all

q, q1 P K and n P N.
3 If En “ En`1 then En “ E.
4 En0 “ E for n0 “ |K| ´ 2.

This lemma implies Theorem 1.25.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 59

1 The Chomsky Hierarchy
1.2 Minimal DFA

Lemma 1.27

Let A be a dfa accepting the language L with the
following two properties:

1 All states are reachable.
2 No two states are equivalent.

Then A is isomorphic to M̂L.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 60

1 The Chomsky Hierarchy
1.2 Minimal DFA

Proof.

Let A be a reachable dfa in which no two states
are equivalent. By Lemma 1.22 there is a surjective
morphism hA : AÑ M̂L. It remains to show that
hA is also bijective. Suppose hA is not injective.
Then there are states q, q1 with hApqq “ hApq

1q:

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 61

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

1.3 cf = hom(DyckXreg)

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 62

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

We introduced in Informatik III the Dyck
languages Dyckn.

Chomsky-Schützenberger

Our main theorem in this section says, that a
contextfree language is essentially the
homomorphic image of a Dyck language.

Later (Theorem 1.73 on Slide 163) we prove that a
type 0 language is essentially the homomorphic
image of a type 1 language.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 63

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Definition 1.28 (Dycklanguage Dk)

For k P N let Vk :“ tx1, x1, x2 . . . , xk, xku an
alphabet over the 2k symbols x1, x1, . . . , xk, xk.
The Dyck language Dk is the smallest set satisfying
the following conditions:

1 ε P Dk,
2 If w P Dk, then so is xiwxi.
3 If u, v P Dk, then so is uv.

This set can be seen as the set of all correctly
formed expressions with brackets.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 64

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Theorem 1.29 (Closed under hom)

The classes L0, L2, L3 are closed under
homomorphisms. L1 is closed under ε-free
homomorphisms. All classes are closed under
inverse homomorphisms.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 65

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Proof

Let Gi “ pVi, Ti, Ri, Siq with i P t1, 2u two cf
grammars, Li “ LpGiq and V1 X V2 “ H.
Let h : T ˚1 Ñ Γ˚ a morphism, and let
G :“ pV1,Γ, R

1
1, S1q; with

AÑ α P R1 iff AÑ α̂ P R1
1, and α̂ is obtained

from α by replacing each occurrence of a terminal
a in α by hpaq. Then G generates exactly hpL1q.
The remaining parts follow easily.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 66

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Theorem 1.30 (CFL= h(Dyck X reg))

For each contextfree language L there is a n P N,
a regular language Lreg and a homomorphism h
with

L “ hpDyckn X Lregq

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 67

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Proof
Let L be given by G “ pV, T,R, Sq in Chomsky normalform
L “ LpGq. We set n :“ |R|.
We assume wlog that the first l rules have the form
A ùñ BC (denoted by ri : Ai ùñ BiCi, 1 ď i ď l) and the
remaining rules have the form A ùñ a (denoted by
rj : Dj ùñ aj, l ` 1 ď j ď n). Note that these symbols are
not all distinct: all Ai, Bi, Ci’s are also some Dj’s (why?).
And not all aj’s have to be different:
V “ tAi, Dj| 1 ď i ď l ť j ď nu and T “ taj| l ť j ď nu.
We define the following l ` pl ` 1qpn´ lq rules:

1 Ai ùñ xiBi, for 1 ď i ď l,
2 Dj ùñ xjxjxiCi, for 1 ď i ď l and l ` 1 ď j ď n,
3 Dj ùñ xjxj, for l ` 1 ď j ď n.

So we get a new grammar G1 “ pV, Vn, R1, Sq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 68

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Proof (2)

The terminals aj from G are now the words xjxj. What is
the difference between LpGq and LpG1q?
As it is rightlinear, the language generated is regular.
Define Lreg:=LpG1q. There are words generated that are not
in Dyckn.
Not all words generated by G1 correspond to derivations in
G. The problem is that the parentheses xi and xi might not
match (and one cannot enforce this by the pumping
lemma). However, the matching expressions are all
contained in LpG1q. Indeed, we claim that this is the only
difference:

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 69

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Proof (3)
We show:

1 For each derivation in G of a word w, there is a
corresponding derivation in G1 which is also in Dyckn.

2 Each derivation in G1 of a word w1 which is also in
Dyckn, comes from a corresponding derivation in G of
the corresponding word w1.

In an exercise, you have to make precise the meaning of
corresponding. This immediately leads to a homomorphism
h such that L “ hpDyckn X Lregq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 70

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Up to now, we did not use the automaton that corresponds
to a cf grammar.

1 cf languages are covered by PDA’a (push-down
automata) (see Informatik III).

2 We also repeat the following undecidability result from
Informatik III. The problem to decide for a given DTM M
whether LpMq “ H is undecidable.

3 Remember Ogden’s lemma.
4 Remember the Chomsky normalform.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 71

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

From Informatics III
Classical definition of a PDA.

Idea of the Stack, batch: Last in, first out:
it can store arbitrarily many information units; only the most
recent info can be accessed.

A rule S Ñ aAb is like a call of a procedure for A: after
processing A there is still a b to process.
Push-Down-Automaton: like finite automaton, but
with an additional stack. Transition function:

depends on the first stack symbol
does not only change the state, but also reads and
writes on the stack

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 72

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Definition 1.31 (Push-Down-Automaton (PDA))

A Push-Down-Automaton (PDA) is a tuple
M “ pK,Σ,Γ,∆, s0, Z0, F q with

K a finite set of states
Σ the input alphabet
Γ the stack alphabet
s0 P K the initial state
Z0 P Γ the downmost stack symbol
F Ď K a set of final states
∆ the transition function, a finite

subset of pK ˆ pΣY tεuq ˆ Γq ˆ pK ˆ Γ˚q

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 73

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

What does the transition function?
In one working step, the PDA does

depending on the actual state K,
depending on the next input symbol (or not depending
on it),
depending on the topmost stack symbol

the following:
next input symbol is read, or not (reading ε),
topmost stack symbol is removed,
state might be changed
zero or more symbols are written on the stack. For a
new stack word γ “ A1 . . . An, A1 will be topmost, then
A2 etc until An.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 74

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Used symbols:

Symbols a, b, c for letters from Σ,
u, v, w for words from Σ˚,
A,B for stack symbols of Γ,
γ, η for whole stacks from Γ˚.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 75

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

What does the transition function?
Notion of configuration: describes the actual situation
of the PDA completely
Consists of:

current state,
rest of the input,
complete stack

Relation $ between configurations:
For configurations C1, C2 the string

C1 $ C2

means that the PDA can get from C1 to C2 in one
single step.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 76

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Definition 1.32 (Accepted language of a PDA)
A PDA M can accept a language in two different ways:
using final states or using empty stack:
Lf pMq“tw P Σ˚ | Dq P F Dγ P Γ˚

`

ps0, w, Z0q $
˚
M pq, ε, γq

˘

u

LepMq“tw P Σ˚ | Dq P K
`

ps0, w, Z0q $
˚
M pq, ε, εq

˘

u

Notes:
If clear from context whether we mean Lf pMq or LepMq,
we simply write LpMq.
The input w must be scanned M completely:

ps0, w, Z0q $
˚
pq, ε, ¨q

is requested.
A PDA might not terminate (even if it is accepting).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 77

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Note that the bottommost symbol may be
removed, but then the PDA hangs: it can not
work anymore, there is no successor
configuration.

This corresponds to the hanging of a nd. fa, if the
transition function is not defined (which can
happen here as well).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 78

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Definition 1.33 (Configuration of a PDA, $)

A configuration C of a PDA M “ pK,Σ,Γ,∆, s0, Z0, F q is a
triple

C “ pq, w, γq P K ˆ Σ˚ ˆ Γ˚.

(w is the part of the input that has not yet been read, γ is the
complete stack, and q is the actual state.)

ps0, w, Z0q is called initial configuration with input w.

C2 is called successor configuration of C1, or C1 $ C2, if
Da P Σ DA P Γ Dw P Σ˚ Dγ, η P Γ˚, so that

either C1 “ pq1, aw,Aγq, C2 “ pq2, w, ηγ), and
pq1, a, Aq ∆ pq2, ηq,

or C1 “ pq1, w,Aγq, C2 “ pq2, w, ηγq, and
pq1, ε, Aq ∆ pq2, ηq,

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 79

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

∆ of a PDA is essentially indeterministic:

∆ Ď pK ˆ pΣY tεuq ˆ Γq ˆ pK ˆ Γ˚q

Using the indeterminism is a powerful tool:
(Palindroms over ta, bu)
ps0, ε, Z0q ∆ ps1, εq

(

accepting ε

ps0, a, Z0q ∆ ps0, Aq
ps0, a, Aq ∆ ps0, AAq
ps0, a, Bq ∆ ps0, ABq
ps0, b, Z0q ∆ ps0, Bq
ps0, b, Aq ∆ ps0, BAq
ps0, b, Bq ∆ ps0, BBq

,

/

/

/

/

/

.

/

/

/

/

/

-

Build the stack

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 80

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

ps0, ε, Aq ∆ ps1, εq
ps0, ε, Bq ∆ ps1, εq

*

Change direction for palindromes
with odd number of symbols

ps0, a, Aq ∆ ps1, εq
ps0, b, Bq ∆ ps1, εq

*

Change direction for palindromes
with even number of symbols

ps1, a, Aq ∆ ps1, εq
ps1, b, Bq ∆ ps1, εq

*

Remove the stack

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 81

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Definition 1.34 (Turing-Machine (DTM))

A deterministic Turing-Machine (DTM) M is a
tuple M “ p K,Σ, δ, s q with

K a finite set of states, h R K (h is the final
state),
Σ an alphabet with L,R R Σ,# P Σ,
δ : K ˆ Σ Ñ pK Y thuq ˆ pΣY tL,Ruq a
transition function, and
s P K a start state.

Number of states: |K| ´ 1 (s is not counted).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 82

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Definition 1.35 (Configuration of a DTM, ID (1st try))

A configuration or instantaneous description
(ID) C of a DTM M “ p K,Σ, δ, s q is a word of the
form C “ wqu with

q P K Y thu is the actual state,
w P Σ˚ the contents of the tape left of the
head,
u P Σ˚ the contents of the tape right of the
head, the head is located on the leftmost
symbol of u (if u “ ε then the blank is
scanned).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 83

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Definition 1.36 (Successor Configuration)

A configuration C2 is called successor configuration of C1,
written

C1 $M C2

if:
Ci “ wiqiaiui for i P t1, 2u, and
there is a transition δpq1, a1q “ xq2, by as follows:
Case 1: b P Σ. Then w1 “ w2, u1 “ u2, a2 “ b.
Case 2: b “ L. Then for w2 and a2: w1 “ w2a2.

For u2: If a1 “ # and u1 “ ε then ist u2 “ ε,
otherwise u2 “ a1u1.

Case 3: b “ R. Then w2 “ w1a1.
For a2 and u2: If u1 “ ε then u2 “ ε and
a2 “ #, otherwise u1 “ a2u2.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 84

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Definition 1.37 (Valid Computation)

Let M be a DTM. We write

C $˚M C 1

iff there is a sequence C0, C1, . . . , Cn of
configurations (n ě 0), s.t. C “ C0 and C 1 “ Cn
and for all i ă n: Ci $M Ci`1.
Then C0, C1, . . . , Cn is called a valid computation
of M of length n from C0 to Cn.
A computation halts (or terminates), if the last
configuration does.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 85

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

In view of some undecidability results in this section, we
need some results about (in-)valid DTM computations.

We have just described the concept of a valid computation.
However, for our purposes we redefine it slightly: a valid
computation is a string of the form

w1#wR2 #w3#wR4 # . . .#wn

such that the usual conditions hold (each wi is a
configuration, w1 the initial configuration, and wi`1 is a
successor configuration of wi).

The reason why we are using wR2 instead of w2 is because
twwR|w P Σ˚u is contextfree, but tww|w P Σ˚u is not.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 86

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Definition 1.38 (Arbitrary computations ComppMq)

For a TM M, the set of arbitrary computations, denoted by
ComppMq, consists of all (finite) strings of the form
w1#wR2 #w3#wR4 # . . .#wn such that:

1. w1 is an initial ID of M (i.e. M starts on some word w),
2. all wi are ID’s compatible to M,
3. wi $ wi`1: the ID’s describe a valid step of M.

We do not yet assume that wn is a terminating ID: the
computation might go on forever.
ComphaltpMq is the subset of ComppMq which also satisfies:
4. wn is the final ID: M halts with wn.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 87

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

1 Note that ComphaltpMq consists of terminating
computations.

2 The general halting problem for TM’s is closely
related to ComphaltpMq: M does not terminate
for any word w (LpMq “ H) iff
ComphaltpMq “ H.

3 M terminates on all words w (LpMq “ Σ˚) iff
ComphaltpMq “ Σ˚.

4 The last two properties are not true for
ComppMq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 88

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Theorem 1.39 (ComphaltpMq “ Lcf X L
1
cf)

The set ComphaltpMq of a DTM M is the
intersection of two cf languages (and grammars
for them can be constructed).
The same is true for ComppMq.

Proof.

The idea is to use L1 for wi $ wR
i`1 for odd i and L2

for wR
i $ wi`1 for even i.

The intersection of both languages is then the set
of all computations.
Complete Proof: blackboard 1.7.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 89

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Theorem 1.40 (Invalid TM computations as a CFL)

The set of all invalid halting computations of a
DTM, i.e. the complement of ComphaltpMq, is a cf
language (and its grammar can be constructed).
The same is true for the complement of ComppMq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 90

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Proof.

When is a string not in ComphaltpMq?
1 It is not of the required form w1#w2# . . ., or
2 w1 is not initial, or
3 wn is not final, or
4 wi $ wR

i`1 is false for some odd i, or
5 wR

i $ wi`1 is false for some even i.
The first 3 properties can be decided by dfa’s. The
last 2 properties can be decided by PDA’s.
The set of invalid computations is then the union
of two cf languages and a regular set, thus it is
itself cf.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 91

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

We use Theorems 1.39 and 1.40 for several undecidability
results.
Theorem 1.41 (Undecidability for CFL Problems)

The following problems are undecidable. For cf grammars
G1, G2 and R a regular set, to decide

1 Is LpG1q X LpG2q “ H?
2 Is LpG1q “ Σ˚?
3 Is LpG1q “ LpG2q?
4 Is LpG1q Ď LpG2q?
5 Is LpG1q “ R?
6 Is R Ď LpG1q?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 92

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Proof.
1 Reduce LpMq “ H to the problem.
2 For any TM M, we construct (using Theorem 1.40) a cf

grammar G with LpGq “ Σ˚ iff LpMq “ H.
3 Let G2 by any grammar that generates Σ˚. Reduce to 1.
4 Let G2 by any grammar that generates Σ˚. Reduce to 1.
5 Let R “ Σ˚ and reduce to 1.
6 Let R “ Σ˚ and reduce to 1.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 93

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Here is another theorem that helps us to establish
some undecidability results.
Theorem 1.42 (Valid Computations of a TM)

Let M be a DTM that makes at least 2 moves on
every input. Then the following are equivalent:

The set ComphaltpMq is cf.
LpMq is finite.

Proof: (2) implies (1): trivial. For the other one, assume the set is
cf and infinite. Then one can choose a word w1#wR2 #w3# . . . s.t.
w2 is greater than the constant from Ogden’s lemma (for the cf
language ComphaltpMq). Find an appropriate marking and pump
once to pump the word out of the language.
 blackboard 1.8.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 94

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

From Informatik III: Ogden’s Lemma

Theorem 1.43 (Ogden’s Lemma)

For each cf language L Ď Σ˚ there exists n P N,
such that: For all z P L with |z| ě n and each
marking of at least n distinguished positions in z
(connected or not) there exist u,vvv, w,xxx, y, P Σ˚, s.t.

z “ uvvv wxxxy,
vvv and xxx contain all together at least one
distinguished position,
vvvwxxx contains at most n distinguished positions,
uvvviwxxxiy P L for all i P N0.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 95

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

We use Theorem 1.42 to prove:

Theorem 1.44 (Undecidability for CFL Problems (2))

The following problems are undecidable. For cf
grammars G1, G2:

1 Is LpG1q cf?
2 Is LpG1q X LpG2q cf?

Proof: blackboard 1.9.

What about the problem whether LpG1q is finite?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 96

1 The Chomsky Hierarchy
1.3 cf = hom(DyckXreg)

Here are a few problems for cf languages that are
decidable.
Lemma 1.45 (Decidable cf problems)

The following problems are decidable for a
contextfree grammar G:

1 Is LpGq “ H?
2 Is LpGq finite?
3 Is LpGq infinite?

Proof: Think of useless symbols, and Chomsky
Normalform and the corresponding problems for
regular languages.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 97

1 The Chomsky Hierarchy
1.4 DPDA/DCF

1.4 DPDA/DCF

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 98

1 The Chomsky Hierarchy
1.4 DPDA/DCF

Deterministic PDA’s with a deterministic, but not
necessarily complete relation.

For each combination of state, input- and
stack symbol, there is at most one transition.
If the PDA can do a ε-transition, then it is not
allowed to read alternatively an input
symbol.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 99

1 The Chomsky Hierarchy
1.4 DPDA/DCF

Definition 1.46 (DPDA)

A PDA M “ pK,Σ,Γ,∆, s0, Z0, F q is deterministic, if:
Da P Σ ∆pq, a, Zq “ H ùñ ∆pq, ε, Zq “ H for all
q P K,Z P Γ: If in a state q with top stack symbol Z a
symbol a can be read on the input tape, then there is
no ε-transition for q and Z.
|∆pq, a, Zq| ď 1 for all q P K,Z P Γ, a P ΣY tεu: There is
at most one transition in each configuration.

The class of languages that can be accepted by DPDA’s is
denoted by DCF. We also call such a language simply dcf.

Note that ∆pq, a, Zq can be empty, even if the input is not
yet consumed completely. In that case, ε-moves are
possible, until a state or topmost stack symbol is reached
such that ∆pq1, a, Z 1q “ H.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 100

1 The Chomsky Hierarchy
1.4 DPDA/DCF

Theorem 1.47 (L3 Ř DCF Ř L2)

The following holds:

L3 Ř DCF Ř L2

when acceptance for DPDA’s is defined with final
states.

For DPDA’s the acceptance with empty stack is
weaker than with final states (in fact, it does not
make sense, as even L3 Ď DCF does not hold).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 101

1 The Chomsky Hierarchy
1.4 DPDA/DCF

Proof
DCF Ř L2: “Ď” is trivial. We show that

L :“ taibjck | i “ j or j “ ku P L2z DCF. As L is
contextfree (guess nondeterministically whether
i “ j or j “ k) and DCF is closed under
complements (see below), then so would be
L “ pabcq˚zL (if L P DCF). But then LX a˚b˚c˚

would also be contextfree (intersection of a cf
with a regular language). But we have:

LX a˚b˚c˚ “ taibjck | i ‰ j and j ‰ ku

and this language is not contextfree (Pumping
Lemma).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 102

1 The Chomsky Hierarchy
1.4 DPDA/DCF

L3 Ř DCF: “Ď” is trivial, because each det. PDA can be used
as a dfa.
The language twcwR | w P ta, bu˚u is not regular,
but in DCF (no need to guess the middle, as this
is given by c).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 103

1 The Chomsky Hierarchy
1.4 DPDA/DCF

Empty stack vs final states: Consider L :“ ta, abu over
Σ “ ta, bu. As a has to be accepted via empty
stack, there is a computation for each DPDA of
the form

pq0, a, Z0q $
˚
pq, ε, εq

Each such DPDA does the following on ab:

pq0, ab, Z0q $
˚
pq, b, εq

thus it hangs.
Therefore no DPDA accepting via empty stack
can accept the language L :“ ta, abu.
It is easy to construct DPDA’s accepting this
language via final states.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 104

1 The Chomsky Hierarchy
1.4 DPDA/DCF

It seems that the difference between accepting with
final states and with empty stack depends on the fact
that our PDA gets stuck when the stack is empty (and
the word to be scanned is not yet fully read).
So why not simply allow the transition function to be
defined on pK ˆ pΣY tεuq ˆ ΓY tεuq rather than on
pK ˆ pΣY tεuq ˆ Γq.
Then a PDA does not get stuck when the stack is empty
(the successor configuration can be changed easily) and
our counterexample does not apply.

Can you find a different counterexample?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 105

1 The Chomsky Hierarchy
1.4 DPDA/DCF

DCF is closed under complements, because it is
deterministic. But this is nontrivial, because a DPDA might

hang, and then the complement automaton (where
final and nonfinal states have been switched)
would hang as well: a word would then be
accepted in neither automaton;

have ε-moves, which lead from a final in a nonfinal state.
Then a word w would be accepted from both
automata.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 106

1 The Chomsky Hierarchy
1.4 DPDA/DCF

DPDA’s are allowed to do ε-moves (but not, when at the
same time a symbol can be scanned). What if we do not
allow ε-moves at all?
Lemma 1.48 (DPDA without ε-moves)

1 DPDA’s without ε-moves accept less languages than
DPDA’s with ε-moves.

2 However, one can restrict wlog. to DPDA’s without
ε-moves after the last symbol is read.

Proof
For 1., consider the language

t0i1ja2i| i, j ě 1u Y t0i1jb2j| i, j ě 1u

For 2., use the notion of a predicting machine.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 107

1 The Chomsky Hierarchy
1.4 DPDA/DCF

The predicting machine
For each DPDA M and dfa A we can construct a DPDA
πpM,Aq such that:

1 pq0, x, rZ0, µ0sq $
˚
πpM,Aq pr, y, rZ1, µ1srZ2, µ2s . . . rZn, µnsq

iff
1 pq0, x, Z0q $

˚
M pr, y, Z1 . . . Znq and

2 for 1 ď i ď n: µi is the set of all pq, pq for which

for some w pq, w, ZiZi`1 . . . Znq $
˚
M ps, ε, γq

for some s P FM and γ P Γ˚ and δApp, wq P FA.

So the new stack symbols give us information about DPDA
M and dfa A: is there some input string that causes both M
and A to terminate on it.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 108

1 The Chomsky Hierarchy
1.4 DPDA/DCF

Theorem 1.49 (DPDA do not hang)

For each DPDA M there is an equivalent DPDA M1

which does not hang: it scans the entire input (for
all inputs).

Lemma 1.50 (DCF is closed under complementation)

The complement of a DCF language is also a DCF
language.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 109

1 The Chomsky Hierarchy
1.4 DPDA/DCF

Lemma 1.51 (DCF X Regular = DCF)

The intersection of a DCF language with a regular
language is in DCF.

Proof: Exactly the same construction as for a PDA.

Lemma 1.52 (DCF not closed under operations)

DCF is not closed under Y, X, homomorphisms,
concatenation, Kleene closure.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 110

1 The Chomsky Hierarchy
1.4 DPDA/DCF

(Part 1).
Y,X: Consider the proof in Informatik III, that L2 is not

closed under X: the languages used there are all
in DCF. As DCF is closed under complements, it
can not be closed under Y because we have

L1 X L2 “ p L1 Y L2q

concatenation: Consider L1 “ ta
ibicj : i, j ě 0u,

L2 “ ta
ibjcj : i, j ě 0u, and L3 “ 0L1 Y L2, which

is DCF, but 0˚L3 is not. Assume it is. Then
L4 “ 0˚L3 X 0a˚b˚c˚ is also DCF. But
L4 “ 0L1 Y 0L2, so L1 Y L2 is also DCF:
Contradiction.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 111

1 The Chomsky Hierarchy
1.4 DPDA/DCF

(Part 2).
homomorphism: L5 :“ 0L1 Y 1L2 is DCF. Let h be the hom

that maps 1 to 0 and leaves all other symbols as
they are. Then hpL6q “ L4, which is not DCF.

Kleene closure: L6 :“ t0u Y L3 is DCF, but L˚6 is not (why?).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 112

1 The Chomsky Hierarchy
1.4 DPDA/DCF

Theorem 1.53 (Decidability of some DCF problems)

Let L be dcf and R regular. Then the following
problems are decidable:

1 Is L “ R?
2 Is R Ď L?
3 Is L Ď R?

Compare with Theorem 1.41.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 113

1 The Chomsky Hierarchy
1.4 DPDA/DCF

Proof.

1 L “ R iff L1 “ pLXRq Y pLXRq “ H. But L1

is cf. Eliminate useless symbols. If useful
symbols remain, the language is not empty.

2 R Ď L iff LXR “ H. Again, LXR is cf.
3 L Ď R iff R X L “ H. Again, R X L is cf.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 114

1 The Chomsky Hierarchy
1.4 DPDA/DCF

Theorem 1.54 (Undecidability of some DCF problems)

The following problems are undecidable. For dcf
L,L1:

1 Is LX L1 “ H?
2 Is L Ď L1?
3 Is LX L1 dcf?
4 Is LX L1 cf?
5 Is LY L1 dcf?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 115

1 The Chomsky Hierarchy
1.4 DPDA/DCF

Proof.

1 Observe that the languages used in
Theorem 1.39 are in fact DCF.

2 From 1. by L Ď L1 iff LX L1 “ H.
3 Use Theorem 1.42. Then the intersection is

either finite or not cf. Thus decidability of the
problem in question would imply decidability
of finiteness for LpMq.

4 Same as for 3.
5 Closure under complementation: reduces 3.

to 5.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 116

1 The Chomsky Hierarchy
1.4 DPDA/DCF

We will show later (Theorem 2.14) that it is
undecidable to determine, given any
contextfree grammar G, whether the language
generated by G is deterministic contextfree.
Compare with Theorem 1.41, 5.
However, the problem to determine whether
two dcf languages, represented by their
contextfree grammars, are identical, is
decidable.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 117

1 The Chomsky Hierarchy
1.4 DPDA/DCF

Theorem 1.55 (Senizergues, 1997)

Given two DPDA’s, it is decidable whether they
generate the same language. The upper bound on
the decision procedure is primitive recursive.

Theorem 1.56 (Valiant, 1966)

Given a dcf language L, it is decidable whether L is
regular or not.

We’ll show later (Corollary 2.14) that if we only
assume that L is cf, then it is undecidable whether
L is regular.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 118

1 The Chomsky Hierarchy
1.5 LBA/Type 1

1.5 LBA/Type 1

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 119

1 The Chomsky Hierarchy
1.5 LBA/Type 1

We have introduced in Informatik III languages of type 0
(arbitrary grammars) and of type 1 (contextsensitive
grammars).

What exactly is the difference?

We have shown in Informatik III that type 0 languages
are exactly the r.e. languages (i.e. acceptable by
DTM’s).
We show in this section, that type 1 languages are a
strict subset of the decidable (recursive) languages. We
also provide a machine model that fits for this class: the
linear bounded automaton (LBA).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 120

1 The Chomsky Hierarchy
1.5 LBA/Type 1

contextsensitive (cs) iff @P Ñ Q P R:

either
´

Du, v, α P pV Y T q˚ DA P V
`

P “ uAv

and Q “ uαv with |α| ě 1
˘

¯

, or the rule has
the form S Ñ ε
S does not occur in any conclusion of a rule.

That means:
A variable A is transformed into a string α of
length at least 1. The word does not get
shorter, unless ε P L.
The replacement of A by α is only done, if
the context left and right, is there.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 121

1 The Chomsky Hierarchy
1.5 LBA/Type 1

A language that is not of type 2

Example 1.57 (Powers of 2)

We consider the following language

Lpowers of 2 :“ ta2i
| i P Nu

This language is not contextfree (pumping lemma
for CFL’s).

How to define a contextsensitive grammar for
Lpowers of 2?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 122

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Consider the following grammar G:

1. S Ñ ACaB
2. Ca Ñ aaC
3. CB Ñ DB
4. CB Ñ E
5. aD Ñ Da
6. AD Ñ AC

7. aE Ñ Ea
8. AE Ñ ε

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 123

1 The Chomsky Hierarchy
1.5 LBA/Type 1

A,B are endmarkers. C moves through between them
and doubles the number of a’s.
When C hits the B, it becomes D or E.
In the case of D, D goes left and introduces a C when
the start is hit: the process starts again.
In the case of E, it also goes left, leaves the a’s
unchanged and leads to a terminal word: a string of a’s.
Show by induction on the number of steps, that the
following holds (if 4. is never used): all generated
strings are of the form

S,
AaiCajB, where i` 2j is a power of 2,
AaiDajB, where i` j is a power of 2.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 124

1 The Chomsky Hierarchy
1.5 LBA/Type 1

But G is not contextsensitive (or is it)?
To create a contextsensitive grammar G1, we introduce
composite variables and rewrite the rules of grammar G:

transform w “ AaaaaCaaaB into w1
“ rAasaaarCasaraBs.

We need the following new composite variables: rACaBs,
rAas, rACas, rADas, rAEas, rCas, rDas, rEas, raCBs, rCaBs,
raDBs, raEs, rDaBs, raBs.
Rules 1, 3, 4, 6, and 8 remain unchanged:

11. S Ñ rACaBs
31. raCBs Ñ raDBs
41. raCBs Ñ raEs
61. rADas Ñ rACas
81. rAEas Ñ a

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 125

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Rules 2, 5, and 7 are as follows:

21. rCasa Ñ aarCas
rCasraBs Ñ aarCaBs
rACasa Ñ rAasarCas
rACasraBs Ñ rAasarCaBs
rACaBs Ñ rAasraCBs
rCaBs Ñ araCBs

51. arDas Ñ rDasa
raDBs Ñ rDaBs
rAasrDas Ñ rADasa
arDaBs Ñ rDasraBs
rAasrDaBs Ñ rADasraBs

71. arEas Ñ rEasa
raEs Ñ rEas

rAasrEas Ñ rAEasa

Then: S ùñ˚
G w if and only if S ùñ˚

G1
w1.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 126

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Given a language L and a grammar G with
L “ LpGq.

How does a DTM accept L?

It just simulates a derivation in G:

Given an input w,
a NTM starts with S and guesses an arbitrary derivation.
If it has derived a terminal word u, this is compared with w. If
u “ w, then it is accepted.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 127

1 The Chomsky Hierarchy
1.5 LBA/Type 1

We repeat the correspondence of type 0 and
DTM’s from Informatics III.
Theorem 1.58 (DTM corresponds to type 0)

Let L be of type 0. Then there exists a DTM which
accepts L.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 128

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Proof
It suffices to construct a NTM, because it can be simulated
by a DTM.

Let L be a language over T of type 0.
Then there is G0 “ pV, T,R, Sq, generating L.
We construct a indeterministic 2-DTM M0 which
accepts L: It guesses a derivation G0.
M0 reads input w on the first tape.
It generates on tape 2 the start symbol S of the
grammar.

s0,
#w#
#

$
˚
M0

s0,
#w#
#S

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 129

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Proof (continued)
Then M0 guesses on tape 2 a derivation in G0.
For S ùñ˚ u ùñ˚ . . . it computes as follows

s0,
#w#
#S

$
˚ #w#

#u#

M0 guesses indet. a rule P Ñ Q P R.
It searches in the string on tape 2 indeterministically for
P .
It replaces this P by Q.
If Q is longer or shorter than P , M0 uses the shift
machines SR and SL to adjust the rest of the word
accordingly.
M0 chooses the next rule.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 130

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Proof (continued)
M0 guesses indeterministically to compare the word
on tape 2 with w.
If u “ w, then M0 halts, otherwise M0 does never stop.
Then:

M0 halts at input w
iff

There is a derivation S ùñ˚
G0
w

(which can be simulated by M0 on tape 2)
iff

w P LpG0q.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 131

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Theorem 1.59 (DTM languages are of type 0)

Let L be a language that is accepted by a DTM.
Then L is of type 0, i.e. L is generated by a
grammar G.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 132

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Proof

Given L and DTM M accepting L.
We construct G generating L:

It generates an arbitrary word A1 . . . An,
and simulates M on Input a1 . . . an.
If w is accepted from M, then G transforms
A1 . . . An into a1 . . . an.
If a1 . . . an is not accepted by M, then G does
never transform A1 . . . An into terminals.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 133

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Proof (continued)

Turing machines in a special format:
Normally for input va the start configuration is

s,#va#

Our DTM’s use the following start
configuration for input va:

Ť va Ţ

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 134

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Proof (continued)

During the whole computation:
the left end is marked with Ť und
the right end is marked with Ţ.

If it needs more space to the right, it should
move the Ţ.
For each “normal” DTM M accepting a
language L, there is a M1 in the new format.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 135

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Example 1.60 (TM with endmarkers)

The following TM M accepts tan | n P Nu:
Let M “ ptq1u, ta, bu, δ, q1q

with δ:
pq1, aq ÞÑ q1, L ÞÑ

pq1, bq ÞÑ q1, b
pq1,Ťq ÞÑ h,Ť

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 136

1 The Chomsky Hierarchy
1.5 LBA/Type 1

The grammar G works for M as follows:
G guesses a word. G also codes the state and
the head position of M.
G starts as follows:

S ùñ˚

G
Ť
w

w

〈
a

a

s0

〉
Ţ .

How to describe this with rules?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 137

1 The Chomsky Hierarchy
1.5 LBA/Type 1

The following rules suffice to produce (any)
input:

S ÑŤ A1 | Ť

〈 #

#

s0

〉
Ţ

A1Ñ
c
cA1 |

〈 c

c

s0

〉
Ţ @c P ta, bu

The second rule in the first line is for input ε.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 138

1 The Chomsky Hierarchy
1.5 LBA/Type 1

The two and three level symbols are variables
of G!
State and head position are coded in the third
Example:

S ùñ˚

G
Ť
a

a

a

a

〈
a

a

s0

〉
Ţ .

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 139

1 The Chomsky Hierarchy
1.5 LBA/Type 1

If pq, aq∆pq1, a1q: @b P T Y t#u:
 blackboard 1.10.

If pq, aq∆pq1, Rq: @b, c, d P T Y t#u:〈
b

a

q

〉
d
c Ñ

b
a

〈
d

c

q1

〉
and

〈
b

a

q

〉
ŢÑ

b
a

〈 #
#
q1

〉
Ţ

If pq, aq∆pq1, Lq: @b, c, d P T Y t#u:

d
c

〈
b

a

q

〉
Ñ

〈
d

c

q1

〉
b
a and Ť

〈
b

aq

〉
Ñ

〈
Ţ

q1

〉
b
a

If pq,Ťq∆pq1, Rq: @c, d P T Y t#u:
〈
Ť

q

〉
d
c ÑŤ

〈
d

c

q1

〉
.

Note that all these symbols are variables!

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 140

1 The Chomsky Hierarchy
1.5 LBA/Type 1

If M halts, then the input is some element
from V ˚. Then we do the following:

We clear the lower track.
We only keep the upper track, the
original input.
Blanks and Ť,Ţ have to be removed.
This has to be done with appropriate
rules.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 141

1 The Chomsky Hierarchy
1.5 LBA/Type 1

In general, a grammar is not bounded:
The simulated DTM may move the Ţ to the right or left
as needed.
So we have a derivation

S ùñ
˚

G
Ť
u

u

〈
a

a

s0

〉
Ţ ùñ

˚

G
Ť
u1

x1

〈
c

b

h

〉
u2# . . .#

x2# . . .#
Ţ

The additional blanks have to be removed, as well as
the Ţ and the Ť (the word gets shorter)! We need ε
productions for that: ŤÑ ε, ŢÑ ε, # Ñ ε.
What remains is just the word w, the original input.

Thus G generates w iff the DTM M accepts w.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 142

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Theorem 1.58 and Theorem 1.59 taken together
can also be reformulated as follows:
Theorem 1.61 (r.e. corresponds to DTM’s)

A language is recursively enumerable (r.e.) if and
only if it as accepted by a DTM.

The importance of the construction in the proof
of Theorem 1.59 is that almost the same
construction works for LBA’a and
contextsensitive grammars.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 143

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Definition 1.62 (Linear bounded automaton (LBA))

A linear bounded automaton (LBA) is an
indeterministic Turing machine (NTM) M which
satisfies:

Initial configuration of M:
"

s0,Ť wa Ţ, for input wa ‰ ε;
s0,Ť # Ţ, for input ε.

If M reads Ť, it makes a step to the right.
If M reads Ţ, it makes a step to the left.
M never writes Ť or Ţ.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 144

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Consider again Example 1.57.How to define a

LBA that decides Lpowers of 2?

Use an LBA with 4 tapes (or tracks).

Theorem 1.63 (Type 1 languages correspond to LBA’a)

L is contextsensitive iff L is accepted by a LBA.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 145

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Proof

LBA’a accept languages of type 1:
LBA with 2 tracks. Upper track: Input, lower
track: simulating a derivation of G.
G ist bounded: the derived word does not get
shorter.
It suffices to consider derivations of length up
to the length of the input.
So the space between Ť and Ţ suffices.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 146

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Proof (continued)

LBA’a accept languages of type 1:
We build on (and modify) the proof of Theorem 1.58.
The simulated DTM got the input between Ť and Ţ but
the Ţ could be moved (to enlarge the storage).
Now we construct a bounded grammar, which
simulates the computation of the LBA M.

Problem 1: rules

〈
b

a

q

〉
ŢÑ

b
a

〈 #
#
q1

〉
Ţ.

Problem 2: rules ŤÑ ε, ŢÑ ε, # Ñ ε.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 147

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Proof (continued)

Solution: Hide Ţ,Ť within the variables by introducing new
4- and 5-level symbols.
Guessing the word w is now done by the rules (compare
with Slide 138):

S Ñ

〈
Ť

a

a

〉
A1 |

〈 Ť

Ţ

a

a

s0

〉

A1Ñ
a
aA1 |

〈 Ţ

a

a

s0

〉
Ţ @a P T

 blackboard 1.11

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 148

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Lemma 1.64 (ComppMq is of Type 1)

Let M be a Turing machine (indeterministic or not).
Then the following holds:

1 ComppMq is contextsensitive.
2 ComphaltpMq is contextsensitive.

Corresponding LBA’a as well as cs grammars can
be efficiently constructed.

Compare this Lemma with Theorem 1.39.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 149

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Proof
Given an arbitrary TM M, we construct an LBA B as follows.
B gets a huge string #c1#c2# . . .# and has to decide
whether this is an accepting sequence of configurations of a
word w for the DTM M.
It is easy to verify that this can be done (just moving the
head on the input): zig-zagging between ci and ci`1 to
verify that ci`1 is a legal successor configuration.
By Theorem 1.63 we can construct a cs grammar as well.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 150

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Corollary 1.65 (Emptiness Problem for LBA)

The problem to determine for a given LBA M

whether LpMq “ H is undecidable.
The problem to decide for a given contextsensitive
grammar G whether LpGq “ H is undecidable.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 151

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Lemma 1.66 (LBA’a as deciders)

The following problems can be decided by an LBA:
1 Does a dfa M accept a word w?
2 Does a cf grammar generate a word w?
3 Given a dfa M , is LpMq “ H?

Proof: exercise

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 152

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Theorem 1.67 (Type 1 languages are recursive)

A contextsensitive language is recursive. For each
contextsensitive grammar G, one can construct a
DTM M which solves the word problem for G.
In other words: the word problem for LBA’a is
decidable.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 153

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Proof
There are two possibilities.
Grammars: To check a given word w of length n for

derivability in the grammar, it suffices to check
all possible words up to length n (because the
grammar is bounded). These are finitely many.

LBA: If a LBA does not terminate, it has to repeatedly
go into the same configuration. But there are
only finitely many configurations, so that can be
checked.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 154

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Theorem 1.68 (Diagonalisation)

Let M1,M2, . . . ,Mi, . . . an enumeration of DTM’s
which decide certain languages LpMiq (over an
alphabet containing t0, 1u).
Then there is a recursive language Lrec over t0, 1u
which is not decided by any of the machines.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 155

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Proof

Let Lrec over t0, 1u defined as follows (valpwq is the
value of w written in binary):

w P Lrec iff Mval(w) prints “N” for input w

If Lrec would be decided by some Mk (k P N), then
one consider w with valpwq “ k:

Mk prints “Y” for input w
iff

w P Lrec
iff

Mvalpwq “Mk prints “N” for input w, Contr.!!.
Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 156

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Theorem 1.69 (Type 1 strictly contained in Rec)
There is a recursive language which is not contextsensitive.

Proof
We have to show that all DTM’s that decide languages of
type 1 can be enumerated. Obviously, all type 1 languages
over t0, 1u can be represented: gödelisation of grammars.
Thus the contextsensitive grammars are enumerable.
With Theorem 1.67 the respective DTM’s can be effectively
constructed.

A more natural example is the set of true formulae in
Presburger arithmetic. It is recursive, but any decision
procedure is at least double exponential (so it can not be
decided by a LBA (see Section 3).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 157

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Lemma 1.70 (Closure properties of Type 1)

The contextsensitive languages are closed under
union, intersection, inverse homomorphisms,
concatenation, ε-free homomorphisms, and Kleene
closure.

Proof.

This is best done with LBA’a: exercise.

Lemma 1.71 (Type 1 not closed under hom)

The contextsensitive languages are not closed
under homomorphisms. The same is true for the
class of recursive languages.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 158

1 The Chomsky Hierarchy
1.5 LBA/Type 1

Proof.
We consider ComppMq for a TM M. In Lemma 1.64, we have
shown that this set is contextsensitive. We modify this set
slightly, by putting a copy of the first ID in front of each
string. This copy is using a different alphabet Σ1 which is
isomorphic to Σ. So we consider the set

tw11w1#wR2 #w3#wR4 # . . .#wn|w1#wR2 #w3#wR4 # . . .#wn P ComppMqu

We define a homomorphism on Σ1 Y Σ (exercise) such
that hpComppMqq is the set

tw11h|M terminates when started with w1u

Y tw11|w
1
1 is an initial ID of Mu

This set is not contextsensitive, not even recursive (the
halting problem is reducible to it).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 159

1 The Chomsky Hierarchy
1.5 LBA/Type 1

We have just seen, that the class of recursive
languages, Rec, is inbetween the
contextsensitive and the recursively
enumerable classes.
What can we say about closure properties of
Rec?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 160

1 The Chomsky Hierarchy
1.5 LBA/Type 1

The following theorem was open for several
decades. It was proved independently at the end
of the 80’ies by Neil Immerman and Róbert
Szelepcsényi.

Theorem 1.72 (Type 1 closed under complements)

Contextsensitive languages are closed under
complements.

The proof follows from a more general theorem
later (Theorem 4.4 on Slide 533).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 161

1 The Chomsky Hierarchy
1.6 re = hom(cs)

1.6 re = hom(cs)

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 162

1 The Chomsky Hierarchy
1.6 re = hom(cs)

What is the relation between type 1 and type 0
languages?

Theorem 1.73 (Each r.e. L is of the form hptype1q)

Each type 0 language is the homomorphic image
of a contextsensitive language. I.e. each r.e.
language has the form hpLq where h is a
homomorphism and L is a language of type 1.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 163

1 The Chomsky Hierarchy
1.6 re = hom(cs)

Proof
Let L be r.e. and M a DTM that accepts L. Let c be a new
symbol not in Σ and

L1 “ twci| M accepts w by a sequence of
moves in which the head never moves
more than i positions to the right of wu

Obviously, L1 is accepted by a LBA (it simulates M, treats
c as blank and halts when it goes beyond the sequence
of c’s).
Define h as follows: hpaq “ a for all a P Σ, hpcq “ ε. Then
L “ hpL1q.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 164

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

1.7 Ehrenfeucht

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 165

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

For a given language L, we call two morphisms
equivalent, if they agree on L.
Is there a smaller set T Ă L so that checking
L-equivalence can be reduced to just check T?
Such a T is called test set.

Ehrenfeucht Hypothesis for languages L

For each language L Ď Σ˚ there is a finite test set T .

An interesting question is, whether such a set can be
effectively constructed.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 166

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

We have defined the notion of a (homo-)
morphism f from Σ˚ in Γ˚. An interesting notion
is to define the equivalence of two morphisms
with respect to a language L.
Definition 1.74 (f, g equivalent wrt. L Ď Σ˚, f “L g)

Two morphisms f, g : Σ˚ Ñ Γ˚ are equivalent wrt.
L Ď Σ˚, written f “L g, if for all w P L:
fpwq “ gpwq.

Given two morphisms f, g. Is it decidable
whether they are equivalent wrt. Σ˚?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 167

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Example 1.75

Let Σ “ Γ “ ta, bu and let

fpaq :“ a

fpbq :“ bb
gpaq :“ abb
gpbq :“ b

Then we have f ‰ g but

f “pabbq˚ g.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 168

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Lemma 1.76

f “L g implies fpLq “ gpLq but the converse does
not hold.

Lemma 1.77 (Undecidability of fpLq “ gpLq)

The following problem is undecidable. Given a cf
language L and two morphisms f, g, decide
whether fpLq “ gpLq.

Proof.

Reduction of equality of contextfree languages.

 blackboard 1.12.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 169

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Lemma 1.78 (Undecidability of f “L g)

The following problem is undecidable. Given a
language L of type 1 and two morphisms f, g,
decide whether f “L g.

Proof.

Reduction of PCP (next chapter).
 blackboard 1.13

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 170

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Does it suffice to test the equality of morphisms
on a subset of L only?
Definition 1.79 (Test-Set)

A set T Ď L of a language L Ď Σ˚ is called
Test-Set, if for all morphisms f, g the following
holds:

f “L g if and only if f “T g

In Example 1.75, the set tabbu is a test set. Our first

result is to determine a test set for for regular
languages. While the proof is elementary, it is a
bit complicated and makes use of the following
lemma.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 171

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Lemma 1.80 (Solving the equation xy “ yz)

Let V “ tx, y, zu a set of variables and Σ an
alphabet. We are interested in determining
morphisms h : V ˚ Ñ Σ˚ such that hpxyq “ hpyzq:
such an h is called a solution of the equation
xy “ yz. For hpxq, hpzq ‰ ε the following are
equivalent:

h is a solution of the equation xy “ yz.
There are r, s P Σ˚ and k P N0 with

hpxq “ rs, hpyq “ prsqkr, hpzq “ sr.

Proof.

 exercise
Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 172

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Theorem 1.81 (Test set for regular languages)

Let L be a regular language given by a deterministic
finite automaton A “ pK,Σ, δ, s0, F q. Then the
following set is a finite test set for L:

tw : |w| ď 2|K|u

Proof.

Let f, g : Σ˚ Ñ Γ˚ and f “L g. We assume
w “ a1 . . . an P L a word of minimal length
s.t. fpwq ‰ gpwq and n ŋ 2|K|.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 173

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Proof (cont.)
As w P L, there must exist a state q which is visited at least three
times. Therefore we can split w into four parts w “ u1u2u3u4:

δpq0, u1q “ q “ δpq, u2q “ δpq, u3q

and δpq, u4q P F . Obviously the three words u1u2u4, u1u3u4, u1u4

are also all in L. We also have u2 ‰ ε ‰ u3 which means that f and
g coincide on these three words.
In the following we will use these identities:

fpu1qfpu2qfpu4q “ gpu1qgpu2qgpu4q

fpu1qfpu3qfpu4q “ gpu1qgpu3qgpu4q

fpu1qfpu4q “ gpu1qgpu4q

We compare fpu1q with gpu1q.
We get 3 cases: |fpu1| “ |gpu1|, |fpu1| ŋ |gpu1|, |fpu1| ň |gpu1|.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 174

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Proof (cont.)
Case 1: |fpu1| “ |gpu1|. Then, using the identities, we have
fpu1q “ gpu1q, fpu4q “ gpu4q, fpu3q “ gpu3q, and thus

fpwq “ fpu1u2u3u4q “ fpu1qfpu2qfpu3qfpu4q “
gpu1qgpu2qgpu3qgpu4q “ gpu1u2u3u4q “ gpwq

which is a contradiction

Case 2: and Case 3: are similar. It suffices to do one of them.
In case 2 (|fpu1| ŋ |gpu1|), we have fpu1q “ gpu1qx and gpu4q “ xfpu4q
for a x P Γ˚. Then we have gpu1qxfpu2qfpu4q “ gpu1qgpu2qxfpu4q.
Therefore xfpu2q “ gpu2qx or: gpu2qx “ xfpu2q.
In the same way, we can show xfpu3q “ gpu3qx or: gpu3qx “ xfpu3q.
We also have fpu2q ‰ ε ‰ gpu2q: were fpu2q “ ε, then ε “ gpu2q and thus
fpwq “ . . . “ gpwq, a contradiction.
We are now in a position to apply Lemma 1.80 (twice, for each
equation). Putting this together and computing fpwq and gpwq gives us
the contradiction fpwq “ gpwq (blackboard 1.14).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 175

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Can we effectively construct test sets for
regular languages?

Corollary 1.82 (Test set for regular languages)

The problem to decide for a given regular
expression ex and morphisms f, g whether f “L g

is decidable.

Proof.

Obvious.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 176

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

We note without proof: (Albert/Culik 1980)

Theorem 1.83 (Test set for contextfree languages)

For each contextfree language L one can
effectively construct a finite test set.
The problem to decide for a given
contextfree language L and morphisms f, g
whether f “L g is decidable.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 177

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

It would be nice to always guarantee a finite test
set: this was stated as a hypothesis by
Ehrenfeucht.
Theorem 1.84 (Lawrence, Albert, Guba 1985)

For each language L Ď Σ˚ there exists a finite test
set T Ă L.

Before turning to the proof, we note a few simple
consequences.
Corollary 1.85 (Decidability for fixed L)

Let L Ď Σ˚ be given. Then the problem to decide for
given morphisms f, g whether f “L g is decidable.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 178

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Another interesting implication is by considering
Lemma 1.78.
Corollary 1.86 (Test sets for Type 1 are not computable)

The problem to compute for a given contextsensitive
language a finite test set is not algorithmically
solvable.

Note that here we consider the language as a
parameter: it is part of the input (represented as
a contextsensitive grammar (which is a finite
object)).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 179

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Definition 1.87 (Ehrenfeucht for Zrx1, . . . , xrs)

Let Zrx1, . . . , xrs be the ring of polynomials in
x1, . . . , xr.
The Ehrenfeucht hypothesis for Zrx1, . . . , xrs is
the following. For all Q Ď Zrx1, . . . , xrs there is a
finite Q1 Ď Q such that for all ~z P Zr the following
holds

p@q P Q : qp~zq “ 0q iff p@q1 P Q1 : q1p~zq “ 0q

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 180

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Definition 1.88 (Ehrenfeucht for word equations)

Let V “ tv1, . . . , vru be a set of r variables.
The Ehrenfeucht hypothesis for V is the
following. For all S Ď V ˚ ˆ V ˚ there is a finite
T Ď S such that for all morphisms h : V Ñ Σ˚ the
following holds

h is solution of S iff h is solution of T

The set S constitutes a set of equations. Simple
example is xxy, yzy, i.e. the equation considered in
Lemma 1.80.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 181

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Lemma 1.89 (Word equations vs standard hypothesis)
The Ehrenfeucht hypothesis for word equations implies the
standard hypothesis.

Proof.

For Σ “ ta1, . . . , aru we define copies Σ̂ and Σ̃ and natural
embeddings Ψ1 : Σ˚ Ñ Σ̃˚, Ψ2 : Σ˚ Ñ Σ̂˚. Let

S :“ txΨ1pwq,Ψ2pwqy | w P Lu

be a (possibly infinite) system of word equations. By
assumption, there is an equivalent finite set S 1 involving
only finitely many words tw1, . . . wku “: T . We claim T is a
test set for L. blackboard 1.15

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 182

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Lemma 1.90 (Zrx1, . . . , xrs and word equations)

The Ehrenfeucht hypothesis for Zrx1, . . . , xrs implies
the Ehrenfeucht hypothesis for word equations.

Proof (Sketch).
How do we encode a word equation in the polynomial ring? We
code each single word as an m-ary object, but we also have to
make sure that each position in the whole word is unique:

a word a0a1 . . . an´1 P Σn of length n is written in the
polynomial ring as polpwq “ a0 ` a1X

1 ` . . .` an´1X
n´1, and

a word w1 . . . wm P Σ˚ is written as polpw1 . . . wmq “
polpw1q ` polpw2qX

| w1 | ` . . .``polpwmqX
| w1w2...wm´1 | .

In that way, we assign each h and S a set Q of polynomials s.t. h is
a solution of S iff p@q P Q : qp~zq “ 0q (for any ~z P Zr). So a finite
Qfin induces a finite Sfin.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 183

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

So we are left with an algebraic
problem.
Consider Q Ď Zrx1, . . . , xrs. Can we
show that each such Q has a finite
base?
Then the Ehrenfeucht hypothesis for
Zrx1, . . . , xrs follows (exercise).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 184

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

1 It suffices to show the existence of finite bases
for ideals (invented by Kummer as an
analogue for prime numbers).

2 A ring R with the property that each ideal in R
has a finite base is called noetherian.

3 Z is a noetherian ring with 1.

4 Hilbert’s Basisssatz: If a ring R with 1 is
noetherian, then so is Rrxs (famous theorem
of Hilbert). And so is Rrx1, . . . , xrs.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 185

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Definition 1.91 (Ideal I, noetherian ring)

A subset I of a commutative ring R with 1 is
called ideal if it satisfies the following:

1 0 P I,
2 if a, b P I then a´ b P I,
3 if a P I and r P R then ra P I.

If all ideals of R have a finite base, the ring is
called noetherian.

For our purpose, the ring R we need is Z. A
typical ideal is the set of all even numbers 2Z.

Ideals date back to Kummer blackboard 1.16

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 186

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Theorem 1.92 (Hilbert)

If R is noetherian, then so is Rrx1, . . . , xns.

Proof.

1 It suffices to prove the result for n “ 1.
2 The main idea is to relate ideals in Rrxs to

ideals in R: by using the coefficients of the
highest powers of the polynomials.

Let I be an ideal in Rrxs. We have to show that
there is a finite basis.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 187

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Proof (cont.)
The set of coefficients of the highest powers:

I 1 “ ta : axk ` bxk´1
` . . . P Iuu Y t0u

forms an ideal (why?): by assumption, it is finitely generated
by a set ta1, . . . , aru.

We denote by polpaiq “ aix
ni ` . . . the polynomial for ai. Let

N be the maximum of the ni.

Let BaseN “ tpolpa1q, . . . , polparqu. Our final base will be a
finite union BaseN Y . . .YBase0.

(1) All polynomials in I of degree ě N can already be
obtained from BaseN .
 blackboard 1.17

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 188

1 The Chomsky Hierarchy
1.7 Ehrenfeucht

Proof (cont.)

(2) The coefficients of xN´1 in all polynomials in I (plus 0)
form an ideal in R (why?) So there is a finite base
tar`1, . . . , asu of it.

(3) Let BaseN´1 “ tpolpar`1q, . . . , polpasqu. All polynomials
of degree N ´ 1 can be written as a linear combination
of these base functions and functions of degree at most
N ´ 2: see (1).

(4) We then consider the coefficients of xN´2, . . . , x0 and
add all the corresponding polynomials which gives us
BaseN´2, . . . , Base0: the union constitutes the final
base.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 189

1 The Chomsky Hierarchy
1.8 Lindenmayer

1.8 Lindenmayer

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 190

1 The Chomsky Hierarchy
1.8 Lindenmayer

As opposed to the grammars in the Chomsky
hierarchy, for Lindenmayer systems the following
holds:

Production rules are applied in parallel, not
sequentially.
There is no distinction between terminals and
non-terminals.

http://www.jjam.de/Java/Applets/Fraktale/
Lindenmayer.html

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 191

http://www.jjam.de/Java/Applets/Fraktale/Lindenmayer.html
http://www.jjam.de/Java/Applets/Fraktale/Lindenmayer.html

1 The Chomsky Hierarchy
1.8 Lindenmayer

Aristid Lindenmayer (1968): Mathematical
models for cellular interaction in
development, I and II;, J. Theoret. Biol. 18,
280-315.
Modelling the development of simple
organisms.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 192

1 The Chomsky Hierarchy
1.8 Lindenmayer

Definition 1.93 (Lindenmayer System G, (0L, D0L))
A Lindenmayer system is a tuple G “ pΣ,R, wq with:

1 Σ is the alphabet,

2 ε ‰ w P Σ˚,

3 R is a finite set of rules R of the form: R Ă Σˆ Σ˚. For
pP,Qq P R we write P ÑG Q.

We assume that for each v P Σ there is at least one word w1 with
v ÑG w

1 (otherwise we add v ÑG v). If there is for each v P Σ
exactly one word w1, v ÑG w

1, then G is called deterministic.

A Lindenmayer system G is also called 0L. A deterministic system
is called D0L. The language generated by G is the set of all words
that can be derived from w with all the rules in G.

A language L is called 0L-language (resp. D0L-language), if there
is a 0L system (resp. D0L system) that generates L. The class of
languages is denoted by 0L, resp. D0L.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 193

1 The Chomsky Hierarchy
1.8 Lindenmayer

Are there 0L (D “ L) grammars for the
following languages?
L1 “ ta

n : n ŕ 2u

L2 “ tpabq
2n : n ŕ 0u

 blackboard 1.18
Lemma 1.94

The language tan : n ě 2u is no D0L

language.

 blackboard 1.19

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 194

1 The Chomsky Hierarchy
1.8 Lindenmayer

Some interesting examples

tε, a, a2u P 0L but tε, a5, a10u R 0L,
tau and ta3u P 0L but ta, a3u R 0L,
ptan : n ŕ 2u X ta, a4uq R 0L,
tau and tε,2 au P 0L, but
tautε, a2u “ ta, a3u R 0L,
tanbn : n ě 1u R 0L,

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 195

1 The Chomsky Hierarchy
1.8 Lindenmayer

Lemma 1.95 (Non Closedness of 0L)

0L is not closed under
ε-free homomorphisms,
union,
intersection with regular languages,
concatenation.

 blackboard 1.20

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 196

1 The Chomsky Hierarchy
1.8 Lindenmayer

Lemma 1.96 (Incomparability of 0L)

0L is incomparable wrt. set inclusion to
the following classes:

finite languages,
infinite regular languages,
contextfree, non-regular languages.

 blackboard 1.21

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 197

1 The Chomsky Hierarchy
1.8 Lindenmayer

We note without proof:
Lemma 1.97 (0L Ď CSL)

0L is strictly contained in the class of
contextsensitive languages.

Does that imply, that the word problem
for 0L-languages is decidable?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 198

1 The Chomsky Hierarchy
1.8 Lindenmayer

Lemma 1.98 (Derivation bounded by kG)

Let G “ pΣ,R, w0q be a 0L system. Then there is a kG P N
(which can be effectively computed from G) such that for each
ε ‰ w P LpGq there exists a derivation

w0 ñG w1 ñG . . .ñG wm “ w

with: |wi| ď kG|w| for i “ 0, 1, . . . ,m.

Proof.
Let LipGq be the set of words derivable after i steps, and

n :“ |Σ | , r :“ maxrules aÑ x P Rt |x | u,
s :“ maxxPLipGq, i“0,1,...,nt | x | u,
kG :“ maxts, rn`1u.

 blackboard 1.22

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 199

1 The Chomsky Hierarchy
1.8 Lindenmayer

Corollary 1.99 (Word problem for 0L)

The word problem for 0L systems is decidable.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 200

1 The Chomsky Hierarchy
1.8 Lindenmayer

Proof.
Let w ‰ ε (why?). Compute the bound kG which exists according
to Lemma 1.98. We define KnpG,wq as the set of all v P Σ˚ which
satisfy (for i “ 1, . . .m)

w0 ñ v1 ñ . . .ñ vm “ v with m ď n and |vi| ď kG|w|

Kn`1pG,wq is the union of KnpG,wq and the set

tv : Dz P KnpG,wq : z ñ v and |v| ď kG|w|u

We have 1 “ |K0pG,wq| ď . . . ď |KnpG,wq| ď . . . ď |Σ|kG|w|`1. The
sequence gets stationary: there is a t such that for all m ě 1

KtpG,wq “ Kt`mpG,wq

This we can reduce the check “w P LpGq” to “w P KtpG,wq”.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 201

1 The Chomsky Hierarchy
1.8 Lindenmayer

Lemma 1.100 (Undecidability of 0L-equivalence)

It is undecidable whether two 0L systems generate
the same languages.

Proof.
We reduce the PCP (next chapter) to this problem. Therefore let
I “ txu1, v1y1, xu2, v2y2, . . . , xuk, vkyku an instance of PCP over
ta, bu. We define 0L systems GI , HI s.t.

LpGIq Ě twDu
R : w, u P Σ‹, w ‰ uu,

LpHIq “ LpGIq Y twDv
R : w “ ui1 . . . uit , v “ vi1 . . . vit , t ě

1, i1, . . . it P t1, . . . , nuu.

Obviously: LpGIq ‰ LpHIq iff I has a solution.

It remains to define the 0L systems GI , HI :
 blackboard 1.23

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 202

2 (Un-) Decidability

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 203

2 (Un-) Decidability

2. (Un-) Decidability
2 (Un-) Decidability

Universal DTM
PCP
Tiling the Plane
Recursive Functions
Random Access Machines
Hilberts 10. Problem
Theorem of Rice
Recursion theorem
Oracle TMn
Reductions

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 204

2 (Un-) Decidability

Content of this chapter:

1 Universal DTMs.
2 Post’s Correspondence-problem: PCP.
3 Partial recursive functions.
4 The Grzegorczyk Hierarchie.
5 Yet another machine model: Random Access Machines.

Loop-, Goto- und While-Programs.
6 Hilbert’s 10. problem.
7 Theorems of Rice and Greibach.
8 smn- and Recursion- Theorem.
9 Oracle Turingmachines.

10 Reductions.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 205

2 (Un-) Decidability

Reduction of one problem P1 to another one P2

We have to construct a total, computable
function f , which assigns

to each instance p1 of P1

an instance p2 of P2, such that
the answer to p1 is “yes” iff the answer to p2

is also “yes”.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 206

2 (Un-) Decidability

Definition 2.1 (Reduction)

Let L1, L2 be languages over Σ “ t|u (so that
Σ˚ “ N).
We say L1 reduces to L2 (denoted by L1 ĺ L2),
iff
there is a DTM-computable function f : NÑ N,
such that:

@n P N
`

n P L1 iff fpnq P L2

˘

.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 207

2 (Un-) Decidability

The most important property of reductions is the
following.

Lemma 2.2

If L1 ĺ L2, and L1 is undecidable, then L2 is also
undecidable.

We will introduce more reductions later in this
chapter (Slides 430 and Slides 416).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 208

2 (Un-) Decidability

Definition 2.3 (Turing machine (DTM))

A deterministic Turing machine (DTM) M is a
tuple M “ p K,Σ, δ, q0 q, where

K is a finite set of states h R K,
Σ an alphabet with L,R R Σ,# P Σ,
δ : K ˆ Σ Ñ pK Y thuq ˆ pΣY tL,Ruq a
transition function, and
q0 P K the initial state.

Number of states: |K| ´ 1 (initial state is not
counted). h is the final state.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 209

2 (Un-) Decidability

In a δ step δpq, aq “ pq1, xq a DTM can,
depending on the current state q P K and
depending on the letter a P Σ, that is currently scanned,

do the following
move left, if x “ L, or
move right, if x “ R, or
overwrite a, which is currently scanned, by b P Σ, if
x “ b P Σ.

In addition, the state is changed to q1 P K Y thu. As h R K,
there is no transition after h has been reached.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 210

2 (Un-) Decidability

Important:

Note that our notion of a DTM cannot print and
move at the same time. Also, there is only one
halting state h, not several. This is done
differently in other approaches in the literature.
Of course this does not change any theorems, but
it affects some proofs.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 211

2 (Un-) Decidability

The following is known from Informatics 3:
Enumeration of DTM’s: There is an enumeration

M1,M2, . . . of all DTM’s.

Enumeration of Σ˚: There is an enumeration
w1, w2, . . . of all inputs.

Universal DTM U: There is a universal machine U

which simulates any DTM:
Upi, jq “Mipwjq. I.e. U takes as input
two numbers and then starts the
machine Mi on input wj.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 212

2 (Un-) Decidability

We now consider DTM’s that are deciders: on
each input, either Y or N is printed.
Enumeration of deciders: Is there an

enumeration M1,M2, . . . of all DTM’s
that are deciders?

Cantor: Assume there is an enumeration. Then
we define Mnew as follows. On input w
we first compute j with w “ wj and then
we compute Mjpwjq. Finally we switch
the result (from N to Y and vice versa).

There are countably many deciders M1, . . ., but they can not be

enumerated by any DTM: The function that assigns to each natural

number the Gödelnumber of a decider is not computable.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 213

2 (Un-) Decidability

Enumeration of LBA’a: Is there an enumeration
M1,M2, . . . of all LBA’a?
There is certainly an enumeration of all
DTM’s that are not LBA’a. If there were
an enumeration of all LBA’a, then the
following problem would be decidable:
check for a given DTM whether it is an
LBA (simply check whether it belongs to
one list or the other). But this problem is
undecidable (see one of the exercises).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 214

2 (Un-) Decidability

Modified Enumeration of LBA’a as deciders: Is
there an enumeration M1,M2, . . . of
LBA’a that are deciders with the
following property: for all
contextsensitive languages, there is at
least one LBA in the enumeration that
accepts this language.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 215

2 (Un-) Decidability

1 Indeed, there is such an enumeration:
Enumerate all grammars, check out those that
are contextsensitive and compute the
respective LBA.

2 What happens with the Cantor
construction? It simply shows us that this
enumeration can not be done by a LBA.

3 Why is the Cantor construction not applicable
to the enumeration of all DTM’s? Well, it is.
But we do not get a contradiction because we
can not implement the switch of the outputs:
DTM’s simply do not have to terminate.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 216

2 (Un-) Decidability
2.1 Universal DTM

2.1 Universal DTM

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 217

2 (Un-) Decidability
2.1 Universal DTM

There is a DTM U which can simulate
arbitrary DTM’s:
U gets as input

the program of a DTM M and

a word w on which M works.

U simulates M by looking which δ
transition M would do.
Such a DTM U is called universal
Turing Machine.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 218

2 (Un-) Decidability
2.1 Universal DTM

Question: What is the best format of the rules of a
DTM M to feed them to a universal DTM?

Or: What do we need to describe a DTM
completely?

its alphabet,
its states,
its δ function and
its starting state.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 219

2 (Un-) Decidability
2.1 Universal DTM

We now standardize the alphabet, the states and the start
state for all DTM’s. Then it suffices to just state the
δ-transitions. Therefore:

We consider an infinite Σ8 “ ta0, a1, . . .u , such that the
alphabet of each DTM can be seen as a subset of Σ8.
The names of the states do not matter. We assume they
are denoted by q1, . . . , qn, where the n can differ from
DTM to DTM.
We also denote by q1 the starting state and by q0 the
halting state.

We have achieved the following:
A DTM is completely described by listing its δ
transitions.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 220

2 (Un-) Decidability
2.1 Universal DTM

How can a description look like?
The DTM L# has the rules

q1,# ÞÑ q2, L q2,# ÞÑ q0,#
q1, | ÞÑ q2, L q2, | ÞÑ q2, L

Assume # is the sign a0, and | is a1. We can describe DTM
L# as follows:

a0 a1

q1 q2, L q2, L
q2 q0, a0 q2, L

or shorter: Z S 2λ S 2λ
Z S 0a0 S 2λ

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 221

2 (Un-) Decidability
2.1 Universal DTM

We use
Z for “next line”
S for “next column”
λ for “left”,
ρ for “right”,
a for the the sign a,
the number n for the n-th state and the n-th sign of Σ8.

We write n as a sequence of n strokes || . . . |.
We need a to distinguish the state from the sign that is
printed: |||a|| stands for q3a2 (without a we could not
distinguish q2a3 from q3a2).
So we have described the DTM by a single word:

ZS||λS||λZS0a0S||λ

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 222

2 (Un-) Decidability
2.1 Universal DTM

Example 2.4 (Gödelisation)

We denote by Gödelisation any fixed
procedure to assign each DTM a natural
number or a word (Gödelnumber,
Gödelword) in such a way, that the DTM
can be effectively computed given the
number (or the word).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 223

2 (Un-) Decidability
2.1 Universal DTM

We give a detailed construction of a universal
Turing-Machine U .

U is a 3-DTM.
U gets the input on 2 tapes:

Tape 2 U contains the Gödelization gpMq of a DTM M.
Tape 1 of U contains the Gödelisation gpwq of the input w for
M.

During the computation the tapes are used as
follows:

Tape 1 contains the (contents of the) tape of M as a
Gödelword.
Tape 2 contains the Gödelword of M.
Tape 3 contains the Gödelword of the actual state of M.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 224

2 (Un-) Decidability
2.1 Universal DTM

During the simulation the following holds for all
w P pΣ8zt#uq

˚:
iff M computes sM,#w# $˚M h, uaiv
iff U computes

sU , # gp#w#q #, # gpMq #, # $˚U
h, # gpuq a |i`1 gpvq, # gpMq #, #

and
iff M started on input sM,#w# never halts.
iff U started on

sU , # gp#w#q #, # gpMq #, #
never halts.

Thus:
If the head of M is located on a cell with ai,
then ai is gödelised by a|i`1, and
the head of tape 1 of U is located on the first letter ’a’ of
gpaiq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 225

2 (Un-) Decidability
2.1 Universal DTM

Overview of U
We use NOP for the DTM that does nothing:

NOP :“ ą Rp1qLp1q

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 226

2 (Un-) Decidability
2.1 Universal DTM

- ?

?

?

? -

-

-

-

ą UinitialiseU :“

Rp3q
|p3q

Lp3qL
p1q
#

Usearch δ

Unew state

λp2q

t on tape 3: # = g(h) — halts. u

$

&

%

#gp#wqa |
#gpMq

|

,

.

-

$

&

%

#gpuqa |j`1gpvq
#gpMq

| |i´1

,

.

-

$

’

&

’

%

#gpuqa |j | gpvq

#α . . . βEi,j . . .

|i#

,

/

.

/

-

$

&

%

#gpuqa | . . . | gpvq

#α . . . β |tσ . . . σ “ a or λ or ρ or β
|t

,

.

-

NOP

ap2q

ρp2q

Uleft

Uwrite character

Uright
$

&

%

#gpu1qa | . . . | gpv1q
#gpMq

|t

,

.

-

#p3q

Figure 3: The structure of the universal DTM U
Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 227

2 (Un-) Decidability
2.1 Universal DTM

The submachine Uinitialise:
When U starts, the 3 tapes are:

#gp#w#q#

#gpMq#

#

- -Rp3q|p3qLp3q Lp1qLp1qUinitialise :“ ą L
p2q
#

Figure 4: The submachine Uinitialise

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 228

2 (Un-) Decidability
2.1 Universal DTM

Uinitialise works as follows:
The head on tape 2 is immediately left to gpMq.
It writes the number of the starting state on tape 3: |.
On tape 1 the head is put on the gödelisation of the
symbol, on which the head of M sits,
namely on the first symbol of the gödelisation: ’a’.

So the tapes look as follows:

#gp#wqa|

#gpMq#

#|

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 229

2 (Un-) Decidability
2.1 Universal DTM

Assume,
M is in state qi, and
M sees the symbol aj.

Then the tapes are as follows, when Usearchδ starts to work:

#gpuqa |j`1gpvq

#gpMq

| |
i´1

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 230

2 (Un-) Decidability
2.1 Universal DTM

?

? ?
-

?

-

ą R
p2q
α Rp3q

|p3q

#p3q

tright line iu
tsearch in gpMquUsearch δ :“

NOP Rp1q
|p1q

R
p2q
β

tright entryEi,ju
tto serach in line iu

‰ |p1q

Lp1q

Figure 5: The submachine Usearch δ

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 231

2 (Un-) Decidability
2.1 Universal DTM

The machine Usearch δ:
Usearch δ does the following:

It looks for the i-te line, which corresponds to
qi, by counting the α.
Then it looks for the entry of qi and aj, by
counting the occurrences of β.

The tapes of U now look:

#gpuqa |j|gpvq

α . . . βEi,j

|
i#

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 232

2 (Un-) Decidability
2.1 Universal DTM

The machine Unewstate:
When Unewstate starts:

#gpuqa |j| gpvq

#α . . . βEi,j . . .

|
i#

-
?

?
-

?

-
?

Unewstate :“ ą Lp3q #p3q t clear gpqiq on tape 3 u
|p3q

Rp3q Rp2q

t and place head left of it u

‰ |p2q

L
p3q
#

#p3q

twrite gpqtqu
t on tape 3 u

|p3qRp3q
|p2q

Figure 6: The machine Unewstate
Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 233

2 (Un-) Decidability
2.1 Universal DTM

Unewstate does the following:
The old state is removed from tape 3
The entry Ei,j starts with a number of strokes: the new
state. It ends with the first non-stroke symbol.
The new state is copied to tape 3.

The tapes of U look as follows:

#gpuqa |j| gpvq

#α . . . β |tΣ . . . Σ “ a or λ oder ρ or β
|

t

If Σ “ β, then the entry Ei,j was empty and U hangs, like
the simulated machine M.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 234

2 (Un-) Decidability
2.1 Universal DTM

The machine Uleft:
When Uleft starts, the tapes are:

#gpuqa |j| gpvq

#α . . . β |tλ . . .

|
t

?
ap1q

6

-

6

-

?

Uleft :“ ą Rp1q

Lp1qLp1q t to the right in the Gödelword u

#p1qRp1q#p1q t on a blank u

L
p1q
a L

p2q
#L

p1q
a

ap1q

#p1q

|p1q

Figure 7: The machine Uleft
Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 235

2 (Un-) Decidability
2.1 Universal DTM

Uleft does the following:
The gödelisation of each symbol starts with ’a’.
To simulate a step of M to the left, Uleft takes two steps
to the left, to the next ’a’.
Special case: U is on the blank of a gödelword to the
extreme right of the described tape.
Tape 1 in this case:

#gpuqa |# . . .

U has to clear the last ’a|’.
U moves the head of tape 2 to the left immediately
before gpq.

The tapes of U are:

#gpu1qa | . . . | gpv1q

#gpMq

|
t

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 236

2 (Un-) Decidability
2.1 Universal DTM

The machine Uright:
When Uright starts:

#gpuqa |j| gpvq

#α . . . β |tρ . . .

|
t

-

?
6

Uright :“ ą Rp1q

#p1q

t To the right in the Gödelword u
twrite gp#qu

ap1q
L
p2q
#

ap1qRp1q|p1qLp1q

Figure 8: The machine Uright

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 237

2 (Un-) Decidability
2.1 Universal DTM

Uright does the following:

The head of U of tape 1 is on the last stroke of
the actual symbol.
The next symbol to the right is a ’a’, the start
of the next letter.
If there is no ’a’, then U is on a blank to the
right of the gödelword of the tape contents. U
writes gp#q “ a|.
U moves the head of tape 2 to the left before
gpMq.

The tapes of U are:

#gpu1qa | . . . | gpv1q

#gpMq

|
t

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 238

2 (Un-) Decidability
2.1 Universal DTM

The machine Uwritesymbol:
When Uwritesymbol starts:

#gpuqa |j| gpvq

#α . . . β |ta . . .

|
t

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 239

2 (Un-) Decidability
2.1 Universal DTM

?
-

.......................

?

?

6

?
-

-
?

-

-

Uwritesymbol :“ ą L
p1q
a

Rp2q
tcompare lengthu
told symbolu

told char. longeru

|p1q |p2q

‰ |p1q ‰ |p2q

#p1qRp1q

|p2q

Rp2q

σp1q
t new char. longer u

NOP

‰ |p2q

L
p1q
a L

p2q
#

|p1q ‰ |p1q

#p1qS
p1q
R σp1qLp1q |p1q

Rp1q

σp1q
#p1qS

p1q
L σp1q

Figure 9: The machine Uwritesymbol
Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 240

2 (Un-) Decidability
2.1 Universal DTM

Uwritesymbol does the following:

The gödelword a|j`1 on tape 1 has to be
replaced by the gödelword a|r`1.
j ă r: Gödelisation of the new letter is longer
than the old one.
gpvq has to be shifted to the right.

For each "‘additional"’ stroke on tape 2:
Shift gpvq by one cell to the right:
Use the shift-right machine SR.
Separate the word-to-be-shifted with #, remember the
overwritten symbol.
Write a ’|’ in the free cell.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 241

2 (Un-) Decidability
2.1 Universal DTM

j ą r: Gödelisation of the new symbol is
shorter than the one of the old one. gpvq has
to be shifted to the left.

Here only strokes have to be removed.
gpvq starts with a or # an.
Shift the word to the right of the head of tape 1 by one cell to
the left.
Use the shift-left machine SL.
Separate the word to be shifted with #, remember the
overwritten symbol.
Repeat shift-left, until a non-stroke is reached.

Finally: Position the head of tape 1 to the a,
with which the current tape symbol starts.
Head of tape 2left before gpMq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 242

2 (Un-) Decidability
2.1 Universal DTM

The tapes of U are:

#gpuqa | . . . | gpvq

#gpMq

|
t

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 243

2 (Un-) Decidability
2.1 Universal DTM

Summary:
We use for the simulated DTM M a
gödelisation via a word over tα, β, ρ, λ, a, 0, |u.
α, β are separators between the descriptions of
the δ-transitions.
Then U can easily find the right δ-transition.
The input word is gödelised with the same
method as the DTM M. The alphabet is
ta, 0, |u.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 244

2 (Un-) Decidability
2.1 Universal DTM

In each step U works as follows:
Given the state of M and the currently scanned
symbol of M, U searches for the gödelisation of the
right δ-transition.
It changes the state according to the entry in gpMq.
It changes the contents of the tape according to the
entry in gpMq.

When the tape symbol is changed, then the
gödelword of the tape contents right to the head
has to be moved to the right or the left:
Different tape symbols have gödelisations of
different length.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 245

2 (Un-) Decidability
2.2 PCP

2.2 PCP

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 246

2 (Un-) Decidability
2.2 PCP

Content of this section:
1 Posts Correspondence problem is an interesting

example of an undecidable problem.
2 It can be reduced to many problems (which are

therefore also undecidable).
3 In particular PCP can be reduced to the problem

whether a contextfree grammar is unique or not.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 247

2 (Un-) Decidability
2.2 PCP

Definition 2.5 (Correspondence system, PCP)

A correspondence system P over an alphabet Σ is a finite,
indexed set of rules:

P “ txu1, v1y1, xu2, v2y2, . . . , xuk, vkyku

with ui, vi P Σ˚.
A solution of P is a finite sequence of indices i1, . . . , in
(1 ď i1, . . . , in ď k) such that

ui1ui2 . . . uin “ vi1vi2 . . . vin

This PCP problem (Post’s Correspondence Problem) is the
following. Given any correspondence system P over an
alphabet Σ, determine whether there is a solution of it.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 248

2 (Un-) Decidability
2.2 PCP

Emil Post.
A variant of a recursively unsolvable
problem.
Bulletin of the AMS, 52:264–268,
1946.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 249

2 (Un-) Decidability
2.2 PCP

Definition 2.6 (Variants of PCP: 01-PCP, PCPk)

The problem 01-PCP is the PCP problem over the
alphabet t0, 1u.
The problem PCPk, for fixed k P N, is a PCP where
each input consists of exactly k pairs.

Example 2.7

What about the following correspondence
systems?

P1 “ txa, aby1, xb, cay2, xca, ay3, xabc, cy4u

P2 “ txab, ay1, xbcc, bbcy2, xba, cby3, xc, babcy4u

P1: 12314, P2: 123114

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 250

2 (Un-) Decidability
2.2 PCP

Example 2.8

Some more correspondence systems.

P3 “ txa2, a2by1, xb
2, bay2, xab

2, by3, xabc, cy4u
P4 “ txa2b, a2y1, xa, ba

2y2u

P3: 1213, P4: no solution Exercise

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 251

2 (Un-) Decidability
2.2 PCP

Lemma 2.9 (PCP over one alphabet)

The PCP over a one element alphabet (|Σ| “ 1) is
decidable.

Proof: Exercise.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 252

2 (Un-) Decidability
2.2 PCP

Note that when a PCP has one solution, then it
has infinitely many. Can you find a solution of the
following one:

p001, 0q, p01, 011q, p01, 101q, p10, 001q

The shortest solution has length 66 and starts
with 2,4,3,4,4,2,1,2,4,3.
This one is even worse

p0, 0000q, p00, 001q, p0111, 000q, p1001, 1q

The shortest solution has length 698!!

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 253

2 (Un-) Decidability
2.2 PCP

Theorem 2.10 (Undecidability of PCP)

There is no algorithm to determine for a given
correspondence system P whether it has a solution
or not: PCP is undecidable.

Proof (Part 1).

We consider the following variant of PCP, called
MPCP. Input is as for PCP, but we ask whether
there is a solution i1, . . . , in with i1 “ 1.
We show that

H ĺ MPCP,
MPCP ĺ PCP.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 254

2 (Un-) Decidability
2.2 PCP

Proof (Part 2).

We introduce new symbols $ and # and denote
for w “ a1 . . . am P Σ`:

w :“ #a1# . . .#am#
ẃ :“ a1# . . .#am#
ẁ :“ #a1# . . .#am

To each instance I “ px1, y1q, . . . , pxk, ykq of length
k for MPCP we assign an instance fpIq of length
k ` 1

fpIq :“ px1, ỳ1q, px́1, ỳ1q, px́2, ỳ2q, . . . , px́k, ỳkq, p$,#$q

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 255

2 (Un-) Decidability
2.2 PCP

Proof (Part 3).

I has a solution with i1 “ 1 iff fpIq has (any)
solution.The idea is to use the fact that all LHS’s
end with the # while all RHS’s start with it.
To start with a # we need to use the 0’th pair as a start and
the k ` 1’th as the last (for the last #).

To be precise, (1) if I has a solution 1, i1, . . . , ir, then fpIq

has a solution 0, i1, . . . , ir, k ` 1 and (2) if fpIq has a solution
i1, . . . , ir then I has a solution 1, i2 . . . , ir´1.

Therefore MPCP ĺ PCP.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 256

2 (Un-) Decidability
2.2 PCP

Proof (Part 4).

It remains to show H ĺ MPCP.

For each DTM M and input w we have to construct a
correspondence system px1, y1q, . . . , pxn, ynq such that this
system has a solution iff M halts on w.

The MPCP is over the alphabet K Y ΣY t#u:
words code configurations.

Suppose M halts on w. Then there is a series of
configurations from the initial one into an
accepting one. We have to simulate this in our
sequence of indices.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 257

2 (Un-) Decidability
2.2 PCP

Proof (Part 5).

The sequences we build should look as follows

xi1 . . . xij “ #s0#s1#s2#
yi1 . . . yij “ #s0#s1#s2#s3#

I.e. the first is one configuration short of the
second. We start with p#,#wq0#q (MPCP).

We need to find pairs px, yq to simulate the
running of the DTM and to construct

LHS: #wq0# . . .#αk´1qk´1βk´1#
RHS: #wq0# . . .#αkqkβk#

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 258

2 (Un-) Decidability
2.2 PCP

Proof (Part 6).
The following pairs allow us to achieve this:

p#,#q, px, xq for x P Γ,
for each q ‰ h, p any state (including h), x, y, z P Γ:

pqx, pyq if δpq, xq “ pp, yq
pqx, xpq if δpq, xq “ pp,Rq
pxq, pxq if δpq, xq “ pp, Lq

By induction on k one verifies: If the DTM accepts w then
we can build a sequence

LHS: #wq0# . . .#αk´1qk´1βk´1#
RHS: #wq0# . . .#αkhβk#

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 259

2 (Un-) Decidability
2.2 PCP

Proof (Part 7).
We need to make both sides identical in order to get a
solution to the MPCP.

Up to now, all pairs ensure that the LHS can not get longer
than the RHS. The following pairs make sure that this can be
repaired:

pxhy, hq, phy, hq, pxh, hq, and ph##,#q.

With these pairs, we can always extend the LHS such that
the two sides get identical. In addition, we can easily state
additional pairs in the MPCP such that this can be achieved.

 blackboard 2.1

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 260

2 (Un-) Decidability
2.2 PCP

Lemma 2.11 (Undecidability of 01-PCP)

PCP can be reduced to 01-PCP, therefore 01-PCP is
undecidable as well.

Proof: Exercise
Lemma 2.12 (Undecidability of PCP7 (Senizergues,
Matjiasevic, 1996))

The problem PCPk, for fixed k ě 7, is undecidable

Lemma 2.13 (Decidability of PCP2 (Ehrenfeucht,
Karhumaki, Rozenberg, 1982))

The problems PCP1, PCP2 are decidable.

Nearly proved in Stacs 2015, that also PCP5 and
PCP6 are undecidable.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 261

2 (Un-) Decidability
2.2 PCP

Theorem 2.14 (Undecidability of various problems)

Let G,G1, G2 be contextfree grammars. Then the
following problems are undecidable:

1 Is LpG1q X LpG2q “ H?
2 Is |LpG1q X LpG2q| infinite?
3 Is LpG1q X LpG2q contextfree?
4 Is LpG1q Ď LpG2q?
5 Is LpG1q “ LpG2q?
6 Is LpGq deterministic contextfree?
7 Is LpGq regular?
8 Is LpGq deterministic contextfree?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 262

2 (Un-) Decidability
2.2 PCP

Proof (Part 1).
We assign to each PCP I “ tpx1, y1q, . . . , pxk, ykqu over t0, 1u
two contextfree grammars G1, G2 over t0, 1, $, a1, . . . , aku
as follows. G1 consists of the rules

S Ñ A$B
A Ñ a1Ax1 | . . . | akAxk
A Ñ a1x1 | . . . | akxk
B Ñ yR1 Ba1 | . . . | y

R
k Bak

B Ñ yR1 a1 | . . . | y
R
k ak

Obviously, LpG1q is as follows

tain . . . ai1xi1 . . . xin$yRjm . . . y
R
j1
aj1 . . . ajm |n,m ě 1 ď ip, jq ď ku.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 263

2 (Un-) Decidability
2.2 PCP

Proof (Part 2).
G2 consists of the rules

S Ñ a1Sa1 | . . . | akSak |T
T Ñ 0T0 | 1T1 | $

Obviously, LpG2q “ tuv$vRuR|u P ta1, . . . , aku
˚, v P t0, 1u˚u.

The function I ÞÑ pG1, G2q is a reduction of PCP to
LpG1q X LpG2q “ H.
It is also a reduction of PCP to LpG1q X LpG2q “ 8 (if the
intersection is nonempty, then it must be infinite).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 264

2 (Un-) Decidability
2.2 PCP

Proof (Part 3).
For (4) and (5), we note that both grammars determine
languages that are deterministic contextfree (and DCFL
is closed under complements). Thus we can effectively
construct G11, G

1
2 with LpG1iq “ LpGiq. Then

LpG1q X lpG2q “ H Ø LpG1q Ď LpG12q
Ø LpG1q Y LpG

1
2q “ LpG12q

Ø LpG3q “ LpG12q

G3 is not necessarily deterministic contextfree but can be
effectively constructed.

Thus I ÞÑ pG1, G
1
2q is a reduction of PCP to LpG1q Ď LpG2q

and I ÞÑ pG3, G
1
2q is a reduction of PCP to LpG1q “ LpG2q.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 265

2 (Un-) Decidability
2.2 PCP

Proof (Part 4).

We can certainly effectively construct G4 with
LpG4q “ LpG11q Y LpG

1
2q.

Then I ÞÑ pG4q is a reduction of PCP to “LpGq is
deterministic contextfree” (because I has a
solution iff LpG1q X LpG2q “ LpG4q is not
contextfree).

It is immediate that I ÞÑ pG4q is also a reduction of
PCP to “LpGq is regular” as well as to “LpGq is
deterministic contextfree”.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 266

2 (Un-) Decidability
2.2 PCP

Because the two grammars constructed in the proof of
the last theorem generate deterministic cf languages, we
get:

Corollary 2.15 (Undecidability of various problems (2))

Let G1, G2 be two cf grammars that correspond to DCFL
languages. Then the following problems are undecidable:

1 Is LpG1q X LpG2q “ H?
2 Is |LpG1q X LpG2q| infinite?
3 Is LpG1q X LpG2q deterministic contextfree?
4 Is LpG1q Y LpG2q deterministic contextfree?
5 Is LpG1q X LpG2q contextfree?
6 Is LpG1q Y LpG2q contextfree?
7 Is LpG1q Ď LpG2q?
8 Is LpG1q regular?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 267

2 (Un-) Decidability
2.2 PCP

Plane tiling

Given: A finite set of tiles of different shape.
Wanted: Tiles can be put together, provided they fit

together (valid tiling).

Figure 10: Simple periodic tilings.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 268

2 (Un-) Decidability
2.3 Tiling the Plane

2.3 Tiling the Plane

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 269

2 (Un-) Decidability
2.3 Tiling the Plane

Aperiodic Plane tiling

Figure 11: Aperiodic tiling (Penrose).
Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 270

2 (Un-) Decidability
2.3 Tiling the Plane

Aperiodic Plane tiling

Figure 12: Tiling of the plane after Heesch.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 271

2 (Un-) Decidability
2.3 Tiling the Plane

Are there sets of tiles that allow only aperiodic
tilings? Here is a set of tiles introduced by
Robinson with this property.

Figure 13: Robinson tiles and tiling.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 272

2 (Un-) Decidability
2.3 Tiling the Plane

The Domino-Problem (1)

Plane tiling dates back to Hilbert’s 18th
problem (and was solved by Reinhardt in
1928).
Hao Wang considered it in 1961 again and
came up with an algorithm to compute a
periodic tiling or give out no if it does not exist
(for any set of tiles). However, he assumed that
if the plane is tileable, it is also periodically
tileable.
In 1964, one of his PhD students showed the
problem to be undecidable (and thus the
assumption to be false).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 273

2 (Un-) Decidability
2.3 Tiling the Plane

The Domino-Problem (2)

Given: A finite set of different quadratic tiles, edges are
colored (Wang tiles).

Wanted: Tiles can be put together, provided the colors of
the edges match (valid tiling). Tiles can not be
rotated.
The following set tiles the plane aperiodically.

Figure 14: A set of Wang tiles.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 274

2 (Un-) Decidability
2.3 Tiling the Plane

The Domino-Problem (3)

Plane Tiling: Can the whole plane be covered with tiles
(tiling of the plane)? We assume we have
infinitely many tiles of each sort.

Finite Plane tiling: Given a finite set of Wang tiles and a
color col. Is there a tiling of a finite rectangular
part, where the boundary is colored with col?

Periodic: A tiling is periodic, if there exists p, q P N, such
that the tiles at positions pi, jq and pi` p, j ` qq
are identical (for all i, j P Z).

Aperiodic: A tiling is aperiodic if it is not periodic and there
is no arbitrarily large part that is periodic.

Periodic Plane Tiling: Given a finite set of Wang tiles, is
there a periodic tiling of the plane?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 275

2 (Un-) Decidability
2.3 Tiling the Plane

The Domino-Problem (3)
For fixed p, q, xp, qy-tileability of the plane is decidable (try all
finitely many possibilities of the pˆ q rectangle).

Lemma 2.16 (Periodic Plane Tiling)

Periodic plane tiling is recursively enumerable.

Lemma 2.17 (Plane Tiling)

If plane tiling is not possible, then there exists a finite rectangle
of the plane that cannot be tiled.

Corollary 2.18

Plane tiling is co-recursively enumerable.

Proof of Corollary 2.18: exercise.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 276

2 (Un-) Decidability
2.3 Tiling the Plane

Proof of Lemma 2.17 (1).
Let a set of tiles be given.

We construct a theory T such that (1) any model of T
induces a plane tiling, (2) any unsatisfiable finite subset
T0 of T induces a finite rectangle that cannot be tiled.

Then we apply the compactness theorem: T is satisfiable iff
each finite subset is satisfiable. So if there is no plane tiling,
T is not satisfiable, so there must be a finite subset T0 of T
that is not satisfiable. But then T0 induces a finite rectangle
that cannot be tiled.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 277

2 (Un-) Decidability
2.3 Tiling the Plane

Proof of Lemma 2.17 (2).
We represent a tile by the constant ta,b,c,d where a, b, c, d are from
a finite set Col “ tcol1, col2, . . . , coln0u: the first index represents
east, the second west, the third south and the fourth north (i.e. the
respective side of the tile). For the given set of tiles, we include
the appropriate constants into T (as well as the negations of all
possible tiles that are not given).

The fact that a tile is located at position i, j (where i, j P Z) is
represented as loce,w,s,ni,j . We add loce,w,s,ni,j Ñ te,w,s,n to T for all
i, j, e, w, s, n (to make sure that such a tile exists): axioms for
location.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 278

2 (Un-) Decidability
2.3 Tiling the Plane

Proof of Lemma 2.17 (3).
It remains to encode that we have a valid tiling: axioms for valid
tiling. These axioms come in three groups.

We must ensure that there is exactly one tile on each position i, j:
loccol1,col1,col1,col1i,j _ loccol1,col1,col1,col2i,j _ . . ._ loc

coln0 ,coln0 ,coln0 ,coln0
i,j ,

and: ploce,w,s,ni,j ^ loce
1,w1,s1,n1

i,j q for xe, w, s, ny ‰ xe1, w1, s1, n1y. We
introduce the notation loc˚,˚,˚,˚i,j for the first disjunction. If we fix

one colour, we use loccol1,˚,˚,˚i,j for the appropriate disjunction.

The tiles fit to each other:
loce,w,s,ni,j Ñ ploc˚,e,˚,˚i`1,j ^ loc˚,˚,n,˚i,j`1 ^ loc˚,˚,˚,si,j´1 ^ locw,˚,˚,˚i´1,j q.

Obviously, by construction, any model of T induces a xp, qy-tiling
of the plane (by the loce,w,s,ni,j that are true).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 279

2 (Un-) Decidability
2.3 Tiling the Plane

Proof of Lemma 2.17 (4).
Suppose T0 is a finite subset of T that is unsatisfiable. So T0

contains finitely many axioms. Let imin, imax (resp. jmin, jmax)
the minimal and maximal ocurring i index (resp. j index). We
consider the rectangle with lowest left corner ximin, jminy and
highest right corner ximax, jmaxy.

If this rectangle were tileable, then T0 would be satisfiable (in fact,
an extension of T0, namely the one that contains all loce,w,s,ni,j facts
of the tiling, would be satisfiable). This is a contradiction.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 280

2 (Un-) Decidability
2.3 Tiling the Plane

Theorem 2.19 (Un-) Decidability of Plane Tiling)

Plane tiling as well as finite plane tiling are
undecidable.

Instead of the original problem, we consider the
following, slightly modified one.

Definition 2.20 (Plane Tiling with Restricted Origin)

Given a set of tiles and one distinguished tile t0, is
there a tiling of the plane that uses t0 at least
once?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 281

2 (Un-) Decidability
2.3 Tiling the Plane

Idea of Undecidability Proof
Find for each DTM a set of tiles that can simulate the DTM:
DTM M accepts a word w iff the corresponding set tiles
the plane.

Figure 15: Simulating a DTM with Wang Tiles.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 282

2 (Un-) Decidability
2.3 Tiling the Plane

Lemma 2.21 (DTM described by Wang tiles)

For each DTM M there is a finite set of tiles,
including a distinguished tile t0, such that the
following are equivalent:

the plane can be tiled using tile t0 at least once,
M does not terminate on empty input.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 283

2 (Un-) Decidability
2.3 Tiling the Plane

Corollary 2.22 (Plane Tiling with Restricted Origin)

Plane Tiling with Restricted Origin is
undecidable: Given a finite set of Wang tiles, there
is no algorithm to decide whether the plane can be
tiled with them (with a distinguished tile to be used
at least once).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 284

2 (Un-) Decidability
2.3 Tiling the Plane

Proof of Lemma 2.21 (1).

The first step is to show the following: For each
DTM M there is a finite set of tiles, including a
distinguished tile t0 s.t.

the upper right quarter of the plane can be
tiled using tile t0 at least once, iff
the TM M does not terminate on empty
input.

In the second step we add just one new tile with
which we can tile the remaining three
quarters.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 285

2 (Un-) Decidability
2.3 Tiling the Plane

Proof of Lemma 2.21 (2).
The idea is to start with the initial configuration of the
one-way infinite tape at the bottom (x-axis). The next
line describes the configuration after the first move, the
following line the second move etc. Only when the machine
never terminates (on empty input), will this quarter of the
plane be covered completely.
We need therefore

1 tiles for the initial configuration,
2 tiles to propagate the contents of the tape for “going

up”, and
3 tiles describing the moves of the DTM.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 286

2 (Un-) Decidability
2.3 Tiling the Plane

Proof of Lemma 2.21 (3).
Initial tiles: These are the only tiles with a “white” lower side: they

must be placed on the x-axis. Only one tile has two
“white” sides: it must be placed in the origin with t0 next
to it (exactly as the initial configuration of a DTM):
(second one is t0)

#

˚ , ˚

pq0,#q

˛ , ˛

#

˛

Tiles to go up: “Copy the content of the tape to the next level”
(respect current position and current state).

a

a
, p

a

pp,aq
,

a

pp,aq
p

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 287

2 (Un-) Decidability
2.3 Tiling the Plane

Proof of Lemma 2.21 (4).
Tiles describing δ: The first tile describes a simple write

action, the second one a move to the right, the
third one a move to the left. Note, that in our
model we do not allow to write and move in
the same step.

pp,bq

pq,aq
for δpq, aq “ pp, bq,

a

pq,aq
p for δpq, aq “ pp,Rq,

p

a

pq,aq
for δpq, aq “ pp, Lq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 288

2 (Un-) Decidability
2.3 Tiling the Plane

Proof of Lemma 2.21 (5).
To tile the upper quarter of the plane, the lowest line is fully
determined (note we have to use t0, which means it has to be the
second tile on the bottom)

#

˚ ˚

pq0,#q

˛ ˛

#

˛ ˛

#

˛ ˛

#

˛ ˛

#

˛ . . .

Then the next line up is also determined, when we require that
exctly one tile in each line shows a pair pp, aq on its top: above
t0 either one of the following types has to be placed:

pp,bq

pq0,#q
,

#

pq0,#q
p , or p

#

pq0,#q
.

If it is of type 1, then all others are
#

#
. If it is of type 2, then p

pp,aq

a
has to

be placed left to it, and all the others are again
#

#
. For the third type,

a

pp,aq
p must be placed as the first tile and all others are

#

#
.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 289

2 (Un-) Decidability
2.3 Tiling the Plane

Proof of Lemma 2.21 (6).
 blackboard 2.2
We also note that there is a tiling (with t0) iff there is a tiling
(with t0) and exactly one tile in each line shows a pair pp, aq
on its top (the problem is that instead of the tiles

a

a
one could also

place alternately the tiles
pp,aq

a
p and p

pp,aq

a
).

By induction, one shows easily that each line corresponds
exactly to a configuration of the DTM started on empty
input. Thus the whole quarter will be tiled iff the DTM does
never terminate.

The last step is to tile the whole plane. This can be
obtained by simply adding the tile , which is white at all
sides. This allows to tile the remaining three quarters of the
plane with only this tile.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 290

2 (Un-) Decidability
2.3 Tiling the Plane

Domino-Problem for finite areas (1)

Fixed rectangle: We fix a finite rectangular area of the
plane (n,m P N) and a particular color col for the
boundary. The Domino problem turns out to be
NP-complete.

Quasi-fixed rectangle: We fix n P N and two colors
col1, col2. We also fix two n-vectors of colors. Is
there an m P N and a tiling of the nˆm
rectangle respecting the two vectors (as upper
and lower parts) and the two colors on the two
sides? This problem is PSPACE-complete.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 291

2 (Un-) Decidability
2.3 Tiling the Plane

Domino-Problem for finite areas (2)

Square: Suppose we fix an n0-vector of colors
and a particular color col. Is there n P N
and a tiling of the nˆ n square that
respects the n0-vector (as initial segment
of the upper side and color col on all the
remaining boundary? This problem is
NEXPTIME-complete.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 292

2 (Un-) Decidability
2.4 Recursive Functions

2.4 Recursive Functions

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 293

2 (Un-) Decidability
2.4 Recursive Functions

Content of this section:
1 We introduce the class of primitive recursive functions

PR and the Grzegorczyk Hierarchy:
Ť

i E i “ PR. The
fourth class, E3 is also called the class of elementary
functions.

2 The Ackermann function is not primitive recursive, but
still DTM computable. This motivates the class of
(partial) µ-recursive functions R. This class
corresponds to WHILE programs and functions
computable by DTMs.
E i`1 corresponds to LOOP programs with i nested
LOOP statements.

3 Both primitive and µ-recursive functions satisfy certain
boundedness conditions: they cannot grow as fast as
possible. This is the reason why they are computable.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 294

2 (Un-) Decidability
2.4 Recursive Functions

In Informatics 3 we introduced the important notion of
a DTM computable function.
Note that we also considered partial computable
functions. They might not be always defined (when the
DTM does not terminate).
This and the next section is about different
characterizations of this notion.
We show that the µ-recursive functions are exactly the
functions (1) computable by Turing machines, and (2)
computable by WHILE programs.
Note that a set W

is re iff there is a partial computable function f with
Def pfq “W .
is recursive iff there is a total computable function f with
Rangepfq “W .

 blackboard 2.3

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 295

2 (Un-) Decidability
2.4 Recursive Functions

Definition 2.23 (Primitive recursive functions PR)

The class of primitive recursive functions is the smallest class that
contains the functions listed below and is closed by applying the
operations below.

1 Null 0: N0 Ñ N, pq ÞÑ 0,

2 Successor S: NÑ N, n ÞÑ n` 1,

3 Projections πki : Nk Ñ N, xn1, . . . , nky ÞÑ ni for 1 ď i ď k.

Simultaneous substitution: If g : Nr Ñ N, h1 : Nk Ñ N, . . . ,
hr : Nk Ñ N, are primitive recursive, so is

f : Nk Ñ N; n ÞÑ gph1pnq, . . . , hrpnqq,

Primitive Recursion: If g : Nk Ñ N, h : Nk`2 Ñ N are primitive
recursive, so is f : Nk`1 Ñ N with

fpn, 0q :“ gpnq
fpn,m` 1q :“ hpn,m, fpn,mqqProf. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 296

2 (Un-) Decidability
2.4 Recursive Functions

What about the following definition of a function
add? Is this a primitive recursive function?

addp0, xq “ x
addpy ` 1, xq “ addpy, xq ` 1

Yes, but the definition above does not show it.

addpx, 0q “ π1
1pxq

addpx, y ` 1q “ hpx, y, addpy, xqq

where hpx, y, zq “ Spπ3
3px, y, zqq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 297

2 (Un-) Decidability
2.4 Recursive Functions

Let n P N, f : Nn Ñ N, h : Nn`2 Ñ N and define the
following function g : Nn`1 Ñ N:

gpx1, . . . , xn, 0q “fpx1, . . . , xnq
gpx1, . . . , xn, y ` 1q“hpy, x1, . . . , xn, gpx1, . . . , xn, yqq

How to show that this function is primitive
recursive?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 298

2 (Un-) Decidability
2.4 Recursive Functions

Defining new functions using only Definition 2.23 can be difficult.
With more functions and operations it would be easier.
Base functions: The functions n`m, ´1, n´m, nm, nˆm etc

are all in PR.
Modifying variables: The scheme of primitive recursion is strict

on the handling of arguments. For example
fpnq “ n2 ` 1 cannot be defined in that form (all
functions have to be defined on all arguments).

Case distinction: A nice tool to have is definition by cases.
Sum and product: It would also be nice to allow building sums

and products out of old functions.
Simultaneous recursion: The schema of primitive recursion

only allows to define scalar functions. It would be
better to have functions that map into Nk.

These extensions are treated on the following slides.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 299

2 (Un-) Decidability
2.4 Recursive Functions

Lemma 2.24 (More base functions)
The following functions are in PR: n`m, ´1 (predecessor),
n´m (modified subtraction), |pn,mq|, nˆm, nm, n!.

Proof: blackboard 2.4
Lemma 2.25 (Modifying variables)

PR is closed under permutation, doubling and omitting of
variables when using simultaneous substitution.

Proof: For a tuple n we can produce any mr that is obtained
by permuting or doubling certain variables by

mr “ xπ
k
i1
pnq, . . . , πkitr pnqy

Additional applications of the projections allow us also the
omitting of variables.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 300

2 (Un-) Decidability
2.4 Recursive Functions

Definition 2.26 (Case distinction)

Assume gi, hi, 1 ď i ď r are functions from Nk Ñ N
and for all n there is exactly one 1 ď j ď r with
hjpnq “ 0. Then we define the following function
by case distinction:

fpnq “

$

’

&

’

%

g1pnq, if h1pnq “ 0;
... ...

grpnq, if hrpnq “ 0.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 301

2 (Un-) Decidability
2.4 Recursive Functions

Lemma 2.27 (PR is closed under case distinction)

Any class of functions which contains PR and is
closed under substitution and prim. recursion is also
closed under case distinction.

Proof.

fpnq “ g1pnqp1 ´ h1pnqq ` . . .` grpnqp1 ´ hrpnqq

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 302

2 (Un-) Decidability
2.4 Recursive Functions

Definition 2.28 (Bounded sum and product)

Let g : Nk`1 Ñ N. Then we define functions f1, f2 from Nk`1

into N as follows:

f1pn,mq “

"

0, if m “ 0;
ř

iťm gpn, iq, if m ş 0.

f2pn,mq “

"

0, if m “ 0;
ś

iťm gpn, iq, if m ş 0.

Lemma 2.29 (PR closed under bounded sum/product)

Any class of functions which contains PR and is closed
under substitution and prim. recursion is also closed under
bounded sums and bounded products.

Proof: exercise

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 303

2 (Un-) Decidability
2.4 Recursive Functions

Definition 2.30 (Simultaneous recursion)

Assume there are functions g : Nn Ñ Nm,
h : Nn`1`m Ñ Nm. Then there is exactly one
function f : Nn`1 Ñ Nm defined by

fpx, 0q “ gpxq
fpx, y ` 1q “ hpx, y, fpx, yqq

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 304

2 (Un-) Decidability
2.4 Recursive Functions

Definition 2.31 (PR for non-scalar functions)

A function f : Nn Ñ Nm is called primitive
recursive, if all component functions fi, where
fpxq “ pf1pxq, . . . , fmpxqq, are primitive recursive.

Lemma 2.32 (PR and simultaneous recursion)

Any class of functions which contains at least PR is
closed under simultaneous recursion as defined
in Definition 2.30.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 305

2 (Un-) Decidability
2.4 Recursive Functions

Fibonacci numbers

How to define Fibonacci numbers

using the basic functionality, and

using simultaneous recursion?

The idea is to store the last two numbers and thus to use a
function into N2:

¨

˝

fp0q “ p1, 0q
fp1q “ p1,1q
fp2q “ p2, 1q

˛

‚

¨

˝

F p0q “ p1, 0q
F py ` 1q “ p`pF pyqq, π2

1pF pyqq
`px1, x2q “ addpπ2

1px1, x2q, π
2
2px1, x2qq

˛

‚

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 306

2 (Un-) Decidability
2.4 Recursive Functions

How to prove Lemma 2.32?

The idea is to code a vector by a single number.
Compare with gödelisation (see Slide 223).
Lemma 2.33 (Coding Functions)

For each 2 ď m P N there exist functions
Cm : Nm Ñ N and Dm : NÑ Nm with:

1 Dm, Cm are bijections between N and Nm.
2 Dm, Cm are primitive recursive.
3 Dm ˝ Cm “ id “ Cm ˝Dm.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 307

2 (Un-) Decidability
2.4 Recursive Functions

Proof of Lemma 2.33

First we reduce the statement to the case m “ 2:

Cm`1px1, . . . , xm`1q “ Cmpx1, . . . , xm´1, C2pxm, xm`1qq

Dm`1pzq “ pid, . . . , id,D2qDmpzq

These two functions are obviously inverse to each
other. They are both primitive recursive if C2 and
D2 are.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 308

2 (Un-) Decidability
2.4 Recursive Functions

Proof of Lemma 2.33 (2)
For the case m “ 2 we consider the enumeration as shown
in Figure 16, which is defined by C2px, yq “ σpzq ` y where
we set σpzq “ px`yqpx`y`1q

2
. z “ x` y is the number of the

diagonal containing px, yq. We have σpz ` 1q “ σpzq ` z ` 1,
thus σ is primitive recursive and so is C2.

For fixed z, C2px, yq takes on the values
σpzq, σpzq ` 1, . . . , σpzq ` z. But the next value is already
σpzq ` z ` 1 which is σpz ` 1q so we have a bijection.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 309

2 (Un-) Decidability
2.4 Recursive Functions

Proof of Lemma 2.33 (3)
Similarly we show that D2 is primitive recursive: writing
k “ C2px, yq as a function of k, we get
zpkq “ µtăktσptq´ k “ 0u.

m = 2

10 2 3 4

5

6

7

8

9

1

2

3

4

Figure 16: Bijection of N and N2.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 310

2 (Un-) Decidability
2.4 Recursive Functions

Proof (of Lemma 2.32)

We define for x P Nn:

g1pxq “ Cmgpxq and h1px, y, zq “ Cmhpx, y,Dmzq

Finally we define

f 1px, 0q “ g1pxq
f 1px, y ` 1q “ h1px, y, f 1px, yqq

It remains to show that

f “ Dm ˝ f
1

(by induction on the variable y).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 311

2 (Un-) Decidability
2.4 Recursive Functions

We consider the following functions Ackn, called branches
of the Ackermann function.
Definition 2.34 (Ackermann and its Branches)

For n P N0 we define the following functions Ackn : N2 Ñ N:

Ack0px, yq “ y ` 1

Ackn`1px, 0q “

$

&

%

x, if n “ 0;
0, if n “ 1;
1, else.

Ackn`1px, y ` 1q “ Acknpx,Ackn`1px, yqq

The Ackermann function Ack : NÑ N is defined by
Ackpxq :“ Ackxpx, xq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 312

2 (Un-) Decidability
2.4 Recursive Functions

We get
Ack0px, yq “ y ` 1,
Ack1px, yq “ x` y,
Ack2px, yq “ xy,
Ack3px, yq “ xy.

Lemma 2.35 (Monotonicity of Ackermann)

All branches Ackn of the Ackermann function are
primitive recursive functions. They are also
strictly monotone in both arguments.

 exercise

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 313

2 (Un-) Decidability
2.4 Recursive Functions

The function Ackpn, n, nq : NÑ N is not primitive
recursive. It is contained in the larger class of recursive
functions. Proof later.
Grzegorczyk’s idea: Use the Ackn to build a hierarchy
of classes which finally yield the whole class PR:
Definition 2.37.
Define the classes analog to PR but with a limited
form of primitive recursion plus the function Ackn.
Thus each subclass consists of prim. recursive functions
that are dominated by a constant number of
applications of Ackn.
The larger class R of (partial) recursive functions is
obtained by adding another operation to PR: the
µ-operator.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 314

2 (Un-) Decidability
2.4 Recursive Functions

 blackboard 2.5

Definition 2.36 (Bounded operations)

The schema of primitive recursion in Definition 2.23 does
not constrain the functions h, g. The following variant puts a
bound on the function to be constructed.
Bounded Primitive Recursion: If g : Nk Ñ N, h : Nk`2 Ñ N

and b : Nk`1 Ñ N are primitive recursive, so is
f : Nk`1 Ñ N with

fpn, 0q :“ gpnq
fpn,m` 1q :“ hpn,m, fpn,mqq
fpn,mq ď bpn,mq

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 315

2 (Un-) Decidability
2.4 Recursive Functions

Definition 2.37 (Grzegorczyk Hierarchy En)

En is the smallest class of functions which
contains the null function, the successor function,
the projection functions πki and the function Ackn
and is closed under substitution and bounded
primitive recursion.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 316

2 (Un-) Decidability
2.4 Recursive Functions

Theorem 2.38 (Growth)

En: for all f P En there is cf such that for all t:

fptq ď Ackn`1pmax t2, tu, cfq

Proof.
Induction on n and the construction of functions in En.
Monotonicity properties of Ackn are important too.
Note that for f P E0, we can use the upper bound
maxt1, tu ` cf , for f P E1 we use pmaxt1, tuq ˆ cf and for
f P E2 we use pmaxt1, tuqcf .

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 317

2 (Un-) Decidability
2.4 Recursive Functions

Corollary 2.39 (Grzegorczyk Hierarchy is strict)

E0
Ř E1

Ř . . . Ř En Ř En`1
Ř PR

Proof.
Apply Theorem 2.38 and diagonalisation.

Assume Ackn`1px, xq P En. Then there is cF such that
Ackn`1px, xq ď Ackn`1px, cF q for all x ě 2. This is
contradicting the monotonicity condition on the second
argument.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 318

2 (Un-) Decidability
2.4 Recursive Functions

Example 2.40 (Fibonacci)

Consider the function fib : NÑ N, which assigns
to a number i the i` 1’th Fibonacci number.
Show that (1) fib P E3, (2) fibp2nq ě 2n for n ě 0
and (3) fib R E2.

 exercise

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 319

2 (Un-) Decidability
2.4 Recursive Functions

Here is another characterization of E3 which we
note without proof.

Lemma 2.41 (Characterization of E3 “ E)

E3 is the smallest class of functions containing
the null function, the successor function, the
projection functions, modified subtraction, and is
closed under substitution, bounded sum and
bounded product.
Such functions are also called elementary.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 320

2 (Un-) Decidability
2.4 Recursive Functions

 exercise
1 Show that f : N2 Ñ N; px, yq ÞÑ xy`1 is in E .
2 Show that f : NÑ N defined by fp0q “ 1,
fpn` 1q “ 2fpnq is not in E .

Non-elementary functions

Are non-elementary functions really needed in
ordinary mathematics?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 321

2 (Un-) Decidability
2.4 Recursive Functions

Theorem 2.42 (Grzegorczyk and primitive recursion)

The Grzegorczyk Hierarchy characterizes PR,
the class of primitive recursive functions:

8
ď

i“0

E i “ PR

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 322

2 (Un-) Decidability
2.4 Recursive Functions

Proof.
It suffices to show (why?) that for each prim. rec. function f
there is a nf P N with

fptq ď Acknf pmax t2, tu, nf q for all t P Nk.

We show this by induction on the construction of prim. rec.
functions.
Base functions: For S choose nS :“ 1. This nS works also

for all other base functions.
Substitution: Let fptq “ gpf1ptq, . . . , fkptqq. We choose

nf :“ maxpng,maxpnf1 , . . . , nfkq ´ 1q ` 2.
 blackboard 2.6

Prim. Recursion: Let fpt, 0q “ gpxq,
fpt, y ` 1q “ hpx, y, fpt, yqq. We choose
nf :“ maxpng, nhq ` 3. exercise

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 323

2 (Un-) Decidability
2.4 Recursive Functions

Often, the Ackermann-function is replaced by the
following one, which is very similar.
Definition 2.43 (Ackermann-Péter function)

The Ackermann-Péter function AP : N2 Ñ N is
defined as follows:

AP-1 APp0, yq “ y ` 1
AP-2 APpx` 1, 0q “ APpx, 1q
AP-3 APpx` 1, y ` 1q “ APpx,APpx` 1, yqq

 exercise: Give a (good) lower bound on
APp4, yq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 324

2 (Un-) Decidability
2.4 Recursive Functions

Lemma 2.44 (Minimal set of initial functions for PR)

To define the class PR, not all projections

πki

are needed. It suffices to have π1
3 and π2

2i`5,
i “ 0, 1, . . . as initial functions.
Together with null and successor, this set is minimal:
if any of these functions is left out, the class
obtained is strictly smaller than the class of
primitive recursive functions.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 325

2 (Un-) Decidability
2.4 Recursive Functions

We defined the class PR and gave a hierarchy for it.
We are now switching to the next subsection and
consider machines that are closer to real computers:
random access machines.
We show that PR corresponds to LOOP programs.
Indeed, En corresponds to LOOP programs with at
most n´ 1 nested loops.
But how to define the Ackermann function? We need
WHILE constructs in our programs. Is there an
equivalent extension of the class PR?
Yes, the class R of (partial) recursive functions. It is
obtained from PR by adding the µ-operator. This
operator in a sense simulates a WHILE loop.

We switch to Slides 343–351.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 326

2 (Un-) Decidability
2.4 Recursive Functions

Theorem 2.45 (PR = LOOP)

The primitive recursive functions are
exactly those that can be defined by LOOP
programs.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 327

2 (Un-) Decidability
2.4 Recursive Functions

Proof of Theorem 2.45: PR Ď LOOP.

Straightforward. Give LOOP programs for the
base functions and show that the operations
substitution and primitive recursion can be
implemented by LOOP programs. Substitution
of functions corresponds to composition of
programs.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 328

2 (Un-) Decidability
2.4 Recursive Functions

Proof of Theorem 2.45: LOOP Ď PR (1).
Induction on the construction of LOOP programs.

Problem: We have to deal with the registers of RAM’s, but
primitive recursive functions map into N.

Solution: Use the coding functions of Definition 2.33 to
code all registers into one natural number. Incrementing
or decrementing these registers can be done with primitive
recursive functions. Thus the LOOP constructs can be
simulated by functions in PR.

We finally have to show

P | ra0,...,aks “ rb0, . . . , bks iff gP pa0, . . . , akq “ pb0, . . . , bkq

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 329

2 (Un-) Decidability
2.4 Recursive Functions

Proof of Theorem 2.45: LOOP Ď PR (2).

The primitive recursion corresponding to a LOOP
program P : loop xi do Q end is as follows.

hpx, 0q “ x

hpx, n` 1q “ gQphpx, nqq
gP pnq “ hpni, nq

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 330

2 (Un-) Decidability
2.4 Recursive Functions

Definition 2.46 (µ-Operator)

Let g : Nk`1 Ñ N be a partial function. We say that the
function f : Nk Ñ N is obtained from g by applying the
unrestricted µ-operator if the following holds:

fpnq “ µitgpn, iq “ 0u

where µ is defined by

:“

$

&

%

i0, if gpn, i0q “ 0 and
@ 0 ď j š i0: gpn, jq is defined and ‰ 0;

undef, otherwise.

f is obtained from g by applying the normal µ-operator, if g
is total, fpnq “ µitgpn, iq “ 0u and for all n there is a j P N
with gpn, jq “ 0.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 331

2 (Un-) Decidability
2.4 Recursive Functions

Definition 2.47 (µ-recursive functions, R,Rpart)

The class of total µ-recursive functions, R, is the
smallest class which contains the primitive
recursive functions and is closed under
simultaneous substitution, primitive recursion
and applying the normal µ-operator.

The class of partial µ-recursive functions, Rpart,
is obtained by using the unrestricted µ-operator
in the definition above.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 332

2 (Un-) Decidability
2.4 Recursive Functions

Why are we so picky about distinguishing
both variants?
Diagonalisation only leads to a contradiction if
a function is total!
M prints fpnq iff M prints fpnq ` 1 is no
contradiction, if M does not halt at all.
The unrestricted µ-operator corresponds to
arbitrary WHILE constructs.
The normal µ-operator corresponds to
WHILE constructs that always terminate

Back to Definition 2.56 on slide 352.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 333

2 (Un-) Decidability
2.4 Recursive Functions

Theorem 2.48 (R = WHILE, Rpart = WHILEpart)

1 The total recursive functions are exactly those
total functions, that can be defined by WHILE
programs.

2 The partial recursive functions are exactly
those partial functions, that can be defined by
WHILE programs.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 334

2 (Un-) Decidability
2.4 Recursive Functions

Proof of Theorem 2.48: R Ď WHILE.

The proof is an extension of the proof of
Theorem 2.45.
The WHILE program corresponding to g “ µf is
x0 :“ 0
y :“ fpx, x0q

while y ‰ 0 do
x0 :“ x0 ` 1; y :“ fpx, x0q

end while

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 335

2 (Un-) Decidability
2.4 Recursive Functions

Proof of Theorem 2.48: WHILE Ď R.

The µ-operator corresponding to a WHILE
construct is done as
 exercise.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 336

2 (Un-) Decidability
2.4 Recursive Functions

Lemma 2.49 (Minimal set of initial functions for Rpart)

The class of partial recursive functions Rpart can
also be defined in the spirit of Lemma 2.44.

Rpart is the smallest class containing the null
function, the successor function, the projection π1

3

and any infinite subset of π2
i , i ě 2 as initial

functions and which is closed under substitution,
the unrestricted µ-operator and primitive recursion.

This set is minimal: if any of these functions is left
out, the class obtained is strictly smaller than
Rpart.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 337

2 (Un-) Decidability
2.4 Recursive Functions

Theorem 2.50 (Grzegorczyk and LOOP programs)

The class En`1 corresponds exactly to the class of all
LOOP programs with up to n nested LOOP
statements.

Proof.

By induction on n. The main part is to show that
computing Ackn`1 given a Loop program for Ackn
can be done by wrapping the Loop program with
another Loop construct. This increments the
nesting by 1. exercise

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 338

2 (Un-) Decidability
2.4 Recursive Functions

What does all this have to do with Turing
machines?
Theorem 2.51 (R = DTM, Rpart = DTMpart)

1 The total recursive functions are exactly those
total functions, that can be defined by Turing
machines.

2 The partial recursive functions are exactly
those partial functions, that can be defined by
Turing machines.

Therefore all notions of computability are
equivalent!

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 339

2 (Un-) Decidability
2.4 Recursive Functions

Proof.

(1): Using our previous results, it suffices to
show that GOTO programs can be
simulated by DTM’s.
 exercise

(2): Quite some coding!!

This finishes Sections 2.5 and 2.6.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 340

2 (Un-) Decidability
2.4 Recursive Functions

Universal functions

We know that there exists a universal DTM
for the class Rpart. In other words, there is a
partial recursive function which is universal for
the class Rpart.

Is there a universal function for the class R
in R?

Is there a universal function for the class PR
in PR?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 341

2 (Un-) Decidability
2.5 Random Access Machines

2.5 Random Access Machines

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 342

2 (Un-) Decidability
2.5 Random Access Machines

Content of this section:
1 We introduce Random Access Machines. These are

more similar to real computers than Turing machines.
2 We also introduce three different classes of programs.

They can be seen as simplified versions of Pascal or C
programs.

3 LOOP programs correspond to primitive recursive
functions.

4 WHILE programs correspond to general recursive
functions.

5 GOTO programs are equivalent to WHILE programs.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 343

2 (Un-) Decidability
2.5 Random Access Machines

Definition 2.52 (Random Access Machine)

A random access machine (RAM) consists of
1 a finite set of registers x1, x2, . . . , xn, where

each register can store an arbitrarily large
natural number,

2 a finite program (to be specified below).

Initially all registers are set to 0 (if not explicitly
said otherwise). The machine follows program
instructions in the order given.

We now describe several program constructs.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 344

2 (Un-) Decidability
2.5 Random Access Machines

Definition 2.53 (LOOP construct)

LOOP programs are inductively defined:
Induction base: The following are LOOP statements as

well as LOOP programs (for all xi):
xi :“ xi ` 1,
xi :“ xi ´ 1.

Induction step: If P1 and P2 are LOOP programs then
P1;P2 is a LOOP program,
loop xi do P1 end is a LOOP statement as
well as a LOOP program for all registers xi.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 345

2 (Un-) Decidability
2.5 Random Access Machines

Definition 2.54 (Semantics of LOOP programs)

Let M be a RAM. M executes LOOP programs as follows:
xi :“ xi ` 1: M increments register xi.
xi :“ xi ´ 1: If xi ą 0 then M decrements register xi.
Otherwise xi keeps the value 0.
loop xi do P1 end: M executes P n-times, where n is the
value stored in xi before the first execution of the loop.
P1;P2: M first executes P1 and then, with the numbers
stored then in the registers, the program P2.
Stop: If there are no more statements, the execution of
the program terminates.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 346

2 (Un-) Decidability
2.5 Random Access Machines

Definition 2.55 (LOOP computable)

A function f : Nk Ñ N is LOOP computable, if there is a RAM
M with LOOP program P , such that for all pn1, . . . , nkq P Nk

and all m P N:

fpn1, . . . , nkq “ m ðñ

M started with input ni in register xi for 1 ď i ď k and 0 in
all other registers, terminates with ni in xi for 1 ď i ď k, m in
register xk`1 and 0 in all remaining registers.

We denote by LOOP the set of all LOOP computable
functions.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 347

2 (Un-) Decidability
2.5 Random Access Machines

new command simulation as LOOP command

xi :“ c

//set xi to zero
loop xi do xi :“ xi ´ 1 end ;
xi :“ xi ` 1;

...
xi :“ xi ` 1

,

/

.

/

-

c´ times

xi :“ xj ˘ c

//set xn to xj
loop xj do xn :“ xn ` 1 end ;
xi :“ 0;
loop xn do xi :“ xi ` 1 end ;
xn :“ c;
loop xn do xi :“ xi ˘ 1 end ;
xn :“ 0

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 348

2 (Un-) Decidability
2.5 Random Access Machines

new command simulation as LOOP command

if xi “ 0 then P1 else P2 end

//If xi “ 0 then xn “ 1
//and xn`1 “ 0, and vice versa
xn :“ 1; xn`1 :“ 1;
loop xi do xn :“ xn ´ 1 end ;
loop xn do xn`1 :“ xn`1´1 end ;
//execute P1 respectively P2

loop xn do P1 end ;
loop xn`1 do P2 end ;
xn :“ 0; xn`1 :“ 0

if xi ą c then P end

xn :“ xi ´ c;
loop xn do xn`1 :“ 1 end ;
loop xn`1 do P end ;
xn :“ 0; xn`1 :“ 0

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 349

2 (Un-) Decidability
2.5 Random Access Machines

new command simulation as LOOP command

xi :“ xj ˘ xk

xi :“ xj ` 0;
loop xk do xi :“ xi ˘ 1 end

xi :“ xj ¨ xk

xi :“ 0;
loop xk do xi :“ xi ` xj end

NOP
//This command does nothing
xn :“ xn ´ 1

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 350

2 (Un-) Decidability
2.5 Random Access Machines

new command simulation as LOOP command

xi :“ xj DIV xk
xi1 :“ xj MOD xk

//each time xn counts up to xk
//If xk is reached, xj is once
//more dividable by xk
//xn`1 is used to test whether xn “ xk
xi :“ 0;
loop xj do
xn :“ xn ` 1;
xn`1 :“ xk ´ xn;
if xn`1 “ 0 then xi :“ xi ` 1; xn :“ 0
else NOP ;
endif
enddo;
xi1 :“ xn;
xn :“ 0; xn`1 :“ 0

And now back to Slide 327.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 351

2 (Un-) Decidability
2.5 Random Access Machines

We extend the class of LOOP programs by introducing more
constructs.
Definition 2.56 (WHILE construct)

WHILE programs are inductively defined
Induction base: The following are WHILE statements as

well as WHILE programs (for all xi):

xi :“ xi ` 1,
xi :“ xi ´ 1.

Induction step: If P1 and P2 are WHILE programs then
P1;P2 is a WHILE program,
while xi ‰ 0 do P1 end is a WHILE
statement as well as a WHILE program for
all registers xi.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 352

2 (Un-) Decidability
2.5 Random Access Machines

Question:
What is the semantics of WHILE programs?

Definition 2.57 (Semantics of the WHILE statement)

Let M be a RAM. M executes “while xi ‰ 0 do P1 end” as
follows:

1 If the value of xi is different from 0, then M executes P ,
otherwise it jumps to step 3.

2 M repeats step 1.
3 M executes the statement right after the WHILE

statement.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 353

2 (Un-) Decidability
2.5 Random Access Machines

Definition 2.58 (WHILE computable)

A function f : Nk Ñ N is called WHILE computable, if there is a
RAM M and a WHILE program P , such that for all
pn1, . . . , nkq P Nk and all m P N:

fpn1, . . . , nkq “ m ðñ

If M is activated with ni in register xi for 1 ď i ď k and 0 in all
other registers, then M terminates with ni in xi for 1 ď i ď k, m in
register xk`1 and 0 in all other registers.

fpn1, . . . , nkq undef ðñ
M activated with ni in register xi for 1 ď i ď k and 0 in all other
registers, does never terminate.

WHILE is the set of all total WHILE computable functions.
WHILEpart is the set of all partial WHILE computable functions.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 354

2 (Un-) Decidability
2.5 Random Access Machines

Can we implement the Ackermann function
with a WHILE program?
Can we implement each Ackn with a LOOP
program?

1 We implement Ackermann with stacks.
2 Stacks are not available in WHILE programs.
3 But we can simulate stacks as numbers using

the coding functions and the fact, that all
necessary operations on stacks can be done
with LOOP programs.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 355

2 (Un-) Decidability
2.5 Random Access Machines

Implementing Ackermann/Peter with stacks

For convenience we consider AP from
Definition 2.43:

AP p 2, 1 q 2, 1
AP p 1, AP p2, 0q q 1, 2, 0
AP p 1, AP p1, 1q q 1, 1, 1
AP p 1, AP p0, AP p1, 0qq q 1, 0, 1, 0

The stacks get larger and shorter and are not
bounded.

An algorithm for computing AP with a stack S is
shown on the next slide.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 356

2 (Un-) Decidability
2.5 Random Access Machines

Implementing Ackermann/Peter with stacks
Let Srs denote a stack. Initially its length is 2. When the algorithm
terminates (l “ 1), the value is stored in Sr1s.

while l ą 1 do
if Srl ´ 1s “ 0 then

Srl ´ 1s “ Srls ` 1; l “ l ´ 1
else if Srls “ 0 then

Srls “ 1;Srl ´ 1s “ Srl ´ 1s ´ 1
else

Srl ` 1s “ Srls ´ 1;Srls “ Srls ´ 1
Srl ´ 1s “ Srl ´ 1s ´ 1; l “ l ` 1

end if
end while

The idea is to use the coding functions from Lemma 2.33 to code tuples
xl1, . . . , lmy with Cm and to show, that push and pop on Cm can be
realized as Loop programs.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 357

2 (Un-) Decidability
2.5 Random Access Machines

A Beaver function
Length: Define the length lpP q of Loop programs by

counting the assignments and loops.
Normalized: Define normalized Loop programs by

requiring that all used registers in P are among
x1, . . . , x2lpP q. There are only finitely many
normalized programs of fixed length l.

Beaver: Let valpP q by the value of x1 after termination of
P when started on empty registers. Define

Bpnq :“ max
Loop program P

tvalpP q : P normalized of length ď nu.

B is not primitive recursive, but while computable.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 358

2 (Un-) Decidability
2.5 Random Access Machines

Definition 2.59 (GOTO construct)
GOTO programs are constructed as follows:

Index: An index j is any natural number: j P N.

GOTO statement: For a register xi and an index j the following
are GOTO statements:

xi :“ xi ` 1,
xi :“ xi ´ 1,
if xi “ 0 goto j.

GOTO program: GOTO programs are defined as follows:
j : I is a GOTO program, if I is a GOTO
statement,
P1;P2 is a GOTO program, if P1, P2 are already
GOTO programs.

Semantics of GOTO programs: as usual.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 359

2 (Un-) Decidability
2.5 Random Access Machines

Theorem 2.60 (LOOP vs WHILE programs)
LOOP programs can be simulated by WHILE programs.
LOOP computable functions are a strict subset of the set of
WHILE programs.

Proof.
It is easy to show that the LOOP construct can be simulated
with three WHILE constructs.
We have seen that the Ackermann function is WHILE
computable but not LOOP computable.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 360

2 (Un-) Decidability
2.5 Random Access Machines

Theorem 2.61 (WHILE=GOTO)

Given f : Nk ÝÑ N the following are equivalent:
f isWHILE computable,
f is GOTO computable,

Corollary 2.62 (WHILEtotal=GOTOtotal)

The last theorem is also true when we consider all
total functions that can be built with the
programming constructs.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 361

2 (Un-) Decidability
2.5 Random Access Machines

Proof of Theorem 2.61: (1) ñ (2).
We have to simulate the WHILE construct with a GOTO
program. Wlog we simulate while xi ‰ 0 do P end where
P does not contain any while, xnew is a new register, j1, j2, j3
are new indices. Let P̂ be the program P with indices in
front (starting with 1, 2, 3, . . . until the last line). The GOTO
program simulating the WHILE is

j1 : if xi “ 0 goto j3

P̂

j2 : if xnew “ 0 goto j1

j3 : xnew :“ xnew ´ 1

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 362

2 (Un-) Decidability
2.5 Random Access Machines

Proof of Theorem 2.61: (2) ñ (1).
We cannot simply simulate each GOTO statement independently. We
choose a new variable xcount s.t: if its value is i then in the GOTO
program to be simulated, the next line would be a GOTO statement
to index i.

For Pi : xi :“ xi ˘ 1, let P 1i be xi :“ xi ˘ 1;xcount :“ xcount ` 1. If Pi is of
the form if xi “ 0 goto j, let P 1i be

if xi “ 0 then xcount :“ j ; else xcount :“ xcount ` 1 end.

The WHILE program looks then as follows:

xcount :“ 1
while xcount ‰ 0 do

if xcount “ 1 then P 11 end
...

if xcount “ t then P 1t end
if xcount ą 1 then xcount :“ 0 end

end
Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 363

2 (Un-) Decidability
2.5 Random Access Machines

We consider the if construct defined as a macro
on Slide 351 with a LOOP program.

It can also be defined with WHILE construct.
However, it is more primitive (WHILE is not
definable with if).
We therefore define the class of WHILEif

programs, where if is a new primitive
construct.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 364

2 (Un-) Decidability
2.5 Random Access Machines

Definition 2.63 (WHILEif programs)

WHILEif programs are inductively defined
Induction base: The following are WHILEif statements as

well as WHILEif programs (for all xi):

xi :“ xi ` 1,
xi :“ xi ´ 1.

Induction step: If P1 and P2 are WHILEif programs then
“P1;P2” is a WHILEif program,
“if xi “ n then P1 end” is a WHILEif

program,
while xi ‰ 0 do P1 end is a WHILEif

statement as well as a WHILEif program for
all registers xi.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 365

2 (Un-) Decidability
2.5 Random Access Machines

Lemma 2.64 (WHILE=WHILEif)

WHILE programs andWHILEif programs are equivalent: they
compute the same functions.

Theorem 2.65 (One WHILE loop suffices)
EachWHILE computable function can be computed by a
WHILEif program with only one WHILE loop.

Proof.
Consider again Theorem 2.61. The theorem states that each
WHILE program can be simulated by a GOTO program. The
proof of Theorem 2.61 ((2) Ñ (1)) shows that we can
simulate this GOTO program by a WHILE program with just
one WHILE loop.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 366

2 (Un-) Decidability
2.5 Random Access Machines

Relation between WHILE computable
functions and DTM-definable functions?
We could show that GOTO programs can be
simulated by Turing machines.
The converse, however, is quite difficult.
Instead, it is easier to show that

1 R Ď WHILE, and
2 Rpart Ď WHILE, and then
3 each total DTM computable function is in R, and
4 each partial DTM computable function is in Rpart.

Now back to Theorem 2.48 on Slide 334.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 367

2 (Un-) Decidability
2.6 Hilberts 10. Problem

2.6 Hilberts 10. Problem

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 368

2 (Un-) Decidability
2.6 Hilberts 10. Problem

Content of this section:

1 We introduce Hilbert’s 10. Problem.
2 Instead of solving a set of diophantine

equations over N, we can also solve a single
diophantine equation over Z.

3 We reduce the halting problem of RAMs to the
solvability of a diophantine equation with
exponentiation over N.

4 Exponentiation can be eliminated
(Matiyasevich).

5 Thus Hilbert’s 10. Problem is unsolvable.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 369

2 (Un-) Decidability
2.6 Hilberts 10. Problem

Hilbert (1900), ICM talk in Paris

10. Entscheidung der Lösbarkeit einer
diophantischen Gleichung.

Eine diophantische Gleichung mit ir-
gendwelchen Unbekannten und mit ganzen
rationalen Zahlkoefficienten sei vorgelegt:
man soll ein Verfahren angeben, nach
welchem sich mittels einer endlichen Anzahl
von Operationen entscheiden lässt, ob die
Gleichung in ganzen rationalen Zahlen
lösbar ist.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 370

2 (Un-) Decidability
2.6 Hilberts 10. Problem

Definition 2.66 (Diophantine Equation)

A diophantine equation is an equation of the form
ppx1, . . . , xkq “ 0 where p is a polynomial in
x1, . . . , xk with coefficients in Z. Such an equation
is solvable over Z (resp. N) if there is a solution in
Zk (resp. Nk).

 blackboard 2.7

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 371

2 (Un-) Decidability
2.6 Hilberts 10. Problem

Definition 2.67 (Diophantine Set)

A set M Ď N is called diophantine if there is a
diophantine equation ppx0, x1, . . . , xkq “ 0 over Z
with M “ tx : Dx1 . . . xk P Z : ppx, x1, . . . , xkq “ 0u.

diophantine=re?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 372

2 (Un-) Decidability
2.6 Hilberts 10. Problem

The following problems can be restated as the
unsolvability of a certain diophantine equation:

Goldbach conjecture,
Riemann hypothesis,
Four Color Conjecture.

In fact, each Π0
1 statement (see Chapter 5) is

equivalent to the unsolvability of a particular
diophantine equation.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 373

2 (Un-) Decidability
2.6 Hilberts 10. Problem

Lemma 2.68 (Reduction)

Solving a set of diophantine equations over N
can be reduced to solving a single diophantine
equation over Z.

Solving sets of equations over N or Z can be reduced
to each other.

 exercise

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 374

2 (Un-) Decidability
2.6 Hilberts 10. Problem

Lemma 2.69 (Reduction to diophantine eq. with exp)

The halting problem for Random Access Machines
can be reduced to solving diophantine equations
with exponentiation over N.

Proof.

Given any GOTO program P with m instructions
over n ď m registers, we construct a set of
diophantine equations with exp, such:

P terminates when started with empty registers
iff

the set of equations has a solution over N

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 375

2 (Un-) Decidability
2.6 Hilberts 10. Problem

Proof of Lemma 2.69 (2).

Idea of the Reduction (1)
1 The variables in the equations to be

constructed contain the values of all
registers for each timepoint of the
computation.

2 We encode such values wrt to a suitable basis
B (large enough):

S
ÿ

i“0

aiB
i,

S: number of steps until termination.
Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 376

2 (Un-) Decidability
2.6 Hilberts 10. Problem

Proof of Lemma 2.69 (3).

Idea of the Reduction (2)
1 We use the notion n Ĳ n1 to denote dominance:

if n “
řS
i“0 aiB

i and n1 “
řS
i“0 biB

i, then n Ĳ n1

stands for ai ő bi for all i “ 0, . . . , S. This can
be defined with exponentiation.

2 The variable Wj encodes the values of register
Rj for all timepoints.

3 The variable Ni encodes the sequence
a0, . . . , aS where al P t0, 1u and al “ 1 iff
instruction i is done in step l.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 377

2 (Un-) Decidability
2.6 Hilberts 10. Problem

Proof of Lemma 2.69 (4).
Structure
In the following we are stating a finite set of equations
involving the variables B, S,C,W1, . . . ,Wn, N1, . . . , Nm, T
that are all existentially quantified.
This set of equations is constructed in such a way, that
P terminates when started with empty registers is
equivalent to the existence of values for the variables such
that the set of equations has a solution. Exponentiation is
important as we have to simulate the working of the GOTO
program which can have an exponential number of
configurations.
Clearly, if we had available a single diophantine set which
can simulate exponential behaviour (so as to represent all
configurations), we could use it and would not need
exponentiation.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 378

2 (Un-) Decidability
2.6 Hilberts 10. Problem

Proof of Lemma 2.69 (5).

Equations (1)
In order to store the values of the registers as a
number in a B representation, we need B to be
large enough. For convenience we make B a
power of 2 (multiplying a number with B is then
just shuffling the entries by one).

B ą S ` 1, B ą m, B “ 2C

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 379

2 (Un-) Decidability
2.6 Hilberts 10. Problem

Proof of Lemma 2.69 (6).

Equations (2)
The first eqution is to have available a number T
with the value

řS
i“0B

i. The second equation
makes sure that all entries of Ni are 0’s or 1’s. The
third ensures that only one instruction is active at
each point in time.

¨

˝

1` pB ´ 1qT “ BS`1

Ni Ĳ T
N1 ` . . .`Nm Ĳ T

˛

‚

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 380

2 (Un-) Decidability
2.6 Hilberts 10. Problem

Proof of Lemma 2.69 (7).

Equations (3)
Here we ensure that the computation starts with
the start state (first equation), ends after step S
(second equation), and that the start
configuration is with all registers empty (third
equation: BS`1 ´B “ 0`

řS
i“1pB ´ 1qBi).

¨

˝

1 Ĳ N1

BS Ĳ Nm

Wj Ĳ BS`1 ´B

˛

‚

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 381

2 (Un-) Decidability
2.6 Hilberts 10. Problem

Proof of Lemma 2.69 (8).
Equations (4)
Finally we have to simulate the program using equations.
The first equation is for i : goto l, the next two are for
i : xj “ xj ` 1 (for incrementing we define
I “ t1 ď i ď m : i : xj “ xj ` 1u for decrementing
D “ t1 ď i ď m : i : xj “ xj ´ 1u), and the last two are for
i : If xj “ 0 goto l.

¨

˚

˚

˚

˚

˝

BNi Ĳ Nl

BNi Ĳ Ni`1

Wj “ BpBj `
ř

iPI Ni ´
ř

iPDNi

BNi Ĳ Ni`1 `Nl

BNi Ĳ Ni`1 `BT ´ 2Wj

˛

‹

‹

‹

‹

‚

 blackboard 2.8

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 382

2 (Un-) Decidability
2.6 Hilberts 10. Problem

Theorem 2.70 (Matiyasevich (1970))

Diophantine equations over N with exponentiation can be
reduced to diophantine equations over N without it.

Proof.
It suffices to show the existence of one diophantine set D
with

xu, vy P D implies v ď uu,
for each k P N there is xu, vy P D with v ş uk.

This allows us to describe the exponentially many
configurations in the simulation of the GOTO program.
Matiyasevich proved this ingeniously with Fibonacci
numbers:

5

4

n

ť an ť 2n´1 for n ě 3

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 383

2 (Un-) Decidability
2.6 Hilberts 10. Problem

Corollary 2.71 (Hilbert’s 10th Problem is Undecidable)

1 Hilbert’s 10th Problem is undecidable.
2 All re sets are diophantine (and vice versa).
3 There is a polynomial p in x1, . . . , xk such that

the positive values of p are exactly the prime
numbers. In fact, for each re set there is such a
polynomial.

Using a universal Turing machine, there is indeed
a particular polynomial ppx, x1, . . . , xlq such that
there is no algorithm to decide, given n,
whether ppn, x1, . . . , xlq “ 0 has a solution.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 384

2 (Un-) Decidability
2.6 Hilberts 10. Problem

Proof.
1 is obvious.
2 We use the same set of equations as in the proof of

Lemma 2.69. The only bit we have to change is to make
sure that the machine is not started with empty
registers, but with x contained in the first one. We only
have to change the third equation on Slide 381 into the
following two:

W1 Ĳ x`BS`1 ´B,
x Ĳ W1.

3 We use the polynomial ppx, yq of the diophantine
equation and transform it into qpx, yq “ xp1´ p2px, yqq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 385

2 (Un-) Decidability
2.7 Theorem of Rice

2.7 Theorem of Rice

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 386

2 (Un-) Decidability
2.7 Theorem of Rice

Content of this section (1):
1 We introduce a powerful method for proving that

certain problems are undecidable: the Theorem of
Rice.

2 We already know that it is undecidable whether a
language (given as a Turing machine) is empty, finite,
regular, contextfree etc.

3 Rice’s theorem states that any nontrivial property of a
language is undecidable.

4 Greibach’s theorem is an analogue of Rice for language
classes and grammars.

5 With Greibach’s theorem, it is easy to show directly, that
it is undecidable whether a given contextfree grammar
is regular, inherently unique (or similar properties).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 387

2 (Un-) Decidability
2.7 Theorem of Rice

Content of this section (2):

1 The smn-Theorem states that for each partial recursive
function gpx, yq there is an algorithm that computes for
each DTM for g and x another DTM, that computes
gpx, yq upon input of y.

2 The Recursion theorem tells us that there is always a
fixed point for total recursive functions that map
indices to indices.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 388

2 (Un-) Decidability
2.7 Theorem of Rice

The following results are independent of a particular
gödelization.
Obviously, any gödelization assigns to each
nondeterministic DTM a natural number. But often, not
all numbers encode a nondeterministic DTM.
To deal with the last point, we introduce
Definition 2.72.
We use the notation Mpx1, . . . , xnq Ò to stand for “TM M,
started on the input x1# . . .#xn does not terminate”.
We use Mpx1, . . . , xnq Ó y to stand for “TM M, started on
the input x1# . . .#xn terminates with output y”. If the
output does not matter, we simply write
Mpx1, . . . , xnq Ó.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 389

2 (Un-) Decidability
2.7 Theorem of Rice

Definition 2.72 (Gödelization, Index)

Let M8 be a fixed DTM which does not terminate (on any
input). For a particular gödelization codepq we define for
e P N

Me :“

"

M, if codepMq “ e;
M8, otherwise.

For e P N and n P N, we define the partial recursive function
(also called Gödel numbering) ϕpnqe : Nn Ñ N

ϕpnqe px1, . . . , xnq :“

"

y, if Mepx1, . . . , xnq Ó y;
undef , if Mepx1, . . . , xnq Ò.

Wlog, we denote by M0 a DTM which does never terminate
(like M8). Similarly, we denote by ϕpnq0 the partial function
on n arguments which is always undefined.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 390

2 (Un-) Decidability
2.7 Theorem of Rice

ϕ
pnq
e and W

pnq
e

Each partial recursive function f : Nn Ñ N
has the form ϕ

pnq
e for some e P N. For n “ 1 we

often write ϕe.
The sets W pnq

e :“ Def pϕ
pnq
e q constitute an

enumeration of all re sets of Nn.
Is the following function computable?

u : N2
Ñ N, pi, nq ÞÑ ϕ

p1q
i pnq

Is there a total recursive function h : N2 Ñ N
with ϕp1qhpi,jq “ ϕ

p1q
i ˝ϕ

p1q
j ?

This leads to the smn theorem.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 391

2 (Un-) Decidability
2.7 Theorem of Rice

Step function Tn

We also use the step function Ti : NÑ N which assigns
to n P N the number of steps it takes until the DTM with
gödelnumber i, Mi, terminates on input n. If the DTM
does not terminate on n, then Tipnq is undefined. Thus
Ti is a partial recursive function.
The set txi, n, ty : Tipnq “ tu is recursive.
The set txi, n, jy : ϕipnq “ ju is re but not recursive.
The set Hg “ txi, ny : ϕipnq Óu is re but not recursive.
The set H “ ti : ϕipiq Óu is re but not recursive.

What about Mon “ ti : @j pϕipjq š ϕipj ` 1qqu?
What about Dec “ ti : @j ϕipjq P t0, 1uu?
What about Eq “ txi, jy : ϕi “ ϕju?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 392

2 (Un-) Decidability
2.7 Theorem of Rice

Theorem 2.73 (smn Theorem)

For each m,n P N there are total recursive
functions smn : Nm`1 Ñ N such that for all e P N,
x P Nm, y P Nn:

ϕpm`nqe px, yq “ ϕ
pnq
smn pe,xq

pyq.

Proof.
Given e and x, we do the following:

1 Construct new DTM M1: it gets n arguments, shuffles them to
positions m` 1, . . . , m` n and puts x on the first m arguments.

2 It starts Me (constructed from e) on the m` n arguments.

3 Gödelnumber of the new machine = smn pe, xq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 393

2 (Un-) Decidability
2.7 Theorem of Rice

Definition 2.74 (Index)
Let L be a re language. Then there are denumerable many
DTM’s which accept L. The gödelnumbers of them form
the index of L.

Let S be any set of re languages. S is also called property of
re sets.

Then IpSq :“ te : Me accepts a language L P Su is called
the index set of S.

Instead of re languages, one can also consider as set S

a set R Ď Rpart of partial recursive functions. Then the
index set is defined as follows: IpRq :“ te : ϕe P Ru.
Note that |IpRq| “ 8, even if R is finite.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 394

2 (Un-) Decidability
2.7 Theorem of Rice

Theorem 2.75 (Rice)

Let S be any property of of re languages (resp. of
partial recursive functions): S Ď type-0.

If S is nontrivial (i.e. H ‰ S ‰ type-0), then the
index set IpSq is undecidable.

Instead of “gödelnumber for M” we also say
“index of M”: for each DTM this is uniquely
defined.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 395

2 (Un-) Decidability
2.7 Theorem of Rice

Proof (of Theorem 2.75).
The nontriviality assumption gives us the existence of L,L1

with L P S, L1 R S. There are e, e1 P N with e P IpSq, e1 R IpSq.
We reduce the Halting problem H “ ti : ϕipiq Óu or the
complement of it, H “ ti : ϕipiq Òu, to IpSq.

Case 1: IpSq does not contain an index corresponding
to M8. We show that there is a (total)
computable function f with

x P ti : ϕipiq Óu iff fpxq P IpSq (1)

Case 2: IpSq does contain an index corresponding to
M8. We show that there is a (total) computable
function f 1 with

x P ti : ϕipiq Òu iff f 1pxq P IpSq (2)
Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 396

2 (Un-) Decidability
2.7 Theorem of Rice

Proof (of Theorem 2.75) (Case 1).
We define

gpx, yq :“

"

ϕepyq, for ϕxpxq Ó ;
undef , else.

g is computable: Da P N s.t. gpx, yq “ ϕp2qa px, yq.
smn theorem: We get a total recursive function s2

1pa, xq
with gpx, yq “ ϕs21pa,xqpyq. Let fpxq “ s2

1pa, xq in the first
equivalence on Slide 396.

ñ: Let ϕxpxq Ó. Then ϕfpxqpyq “ ϕs21pa,xqpyq “ ϕepyq.
Because e P IpSq: fpxq P IpSq.

ð: Let ϕxpxq Ò. Then ϕfpxqpyq “ ϕs21pa,xqpyq is the
function computed by M8. But then
fpxq R IpSq, because we are in Case 1.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 397

2 (Un-) Decidability
2.7 Theorem of Rice

Proof (of Theorem 2.75) (Case 2).
We define

gpx, yq :“

"

ϕe1pyq, for ϕxpxq Ó ;
undef , else.

g is computable: Da P N s.t. gpx, yq “ ϕp2qa px, yq.
smn theorem: We get a total recursive function s2

1pa, xq
with gpx, yq “ ϕs21pa,xqpyq. Let f 1pxq “ s2

1pa, xq in the second
equivalence on Slide 396.

ñ: Let ϕxpxq Ó. Then ϕf 1pxqpyq “ ϕs21pa,xqpyq “ ϕe1pyq.
Because e1 R IpSq: fpxq R IpSq.

ð: Let ϕxpxq Ò. Then ϕfpxqpyq “ ϕs21pa,xqpyq is the
function computed by M8. But then
fpxq P IpSq, because we are in Case 2.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 398

2 (Un-) Decidability
2.7 Theorem of Rice

Applications of Rice

Example 2.76 (Using Rice’s Theorem)
Apply the theorem of Rice and state S and IpSq explicitly.

1 Does M accept a regular language?

2 Does M terminate on all inputs of even length?

3 Does M terminate on each input?

4 Does M ever print “HAPPY-2017“ during its computation on
tape? exercise

5 Is “HAPPY-2017“ accepted by M?

6 Does M accept a language that can be also accepted with a
DTM M1 the number of states of which is a prime number?

7 Does M visit the start state 7 times?

 blackboard 2.9
Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 399

2 (Un-) Decidability
2.7 Theorem of Rice

What if we take as set S an arbitrary set M of
Turing machines. And we define the index set
as follows:

IpMq :“ te : Me PMu?

Does that make sense?

Can one apply Rice’s theorem to Does M run
in polynomial time on each input? What do
we get?

Is the problem “Does M accept L” decidable
for particular languages L? What if L itself is
decidable?

 blackboard 2.10
Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 400

2 (Un-) Decidability
2.7 Theorem of Rice

Colloquial formulation of Theorem of Rice

Nontrivial properties of DTM’s are undecidable.

What about the following properties:

DTM has 17 states,

DTM never ever moves the head to the right.

Beware!

Not all properties of DTM’s can be represented
as index sets! Not all sets A Ď N are index sets.

Rice is about properties of the language of a TM,
not about the TM itself or its behaviour.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 401

2 (Un-) Decidability
2.7 Theorem of Rice

Other problems

Correctness: Let a function f be given. Is it
decidable, whether a DTM M

computes f?
Special case: f corresponds to M8.

Specification: Given a specification for a
program to be developed. Is it
decidable, whether a program
satisfies it?

Equivalence: Is it decidable whether two
programs compute the same function?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 402

2 (Un-) Decidability
2.7 Theorem of Rice

Example 2.77 (NP and P)

Let L be given by a grammar or a DTM.
1 Is L acceptable in polynomial time?
2 Is L decidable in polynomial time?

Assume we know that L is in NP. Is the
problem “L P P?” decidable or not?

What if we know that L is in PSPACE and
then ask whether “L can be decided in
deterministic logarithmic time”?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 403

2 (Un-) Decidability
2.7 Theorem of Rice

The theorem of Rice helps us to determine that an
index set is not recursive.
Is there an analogue to show that an index set is not
even re?

Theorem 2.78 (When is an Index Set not even re?)
Let S be a property of recursively enumerable languages.
Then the index set IpSq is re, iff the following properties are
true

1 If L P S and L Ď L1 for some re L1, then L1 P S.
2 If L is an infinite set in S, then there is a finite subset L1 of
L with L1 P S.

3 The set of finite languages in S is re.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 404

2 (Un-) Decidability
2.7 Theorem of Rice

Applications

Example 2.79 (Showing an Index set to be re)

Which of the properties of re languages L are re?
L “ Σ˚.
L contains at most 17 elements.
L contains exactly 17 elements.
L contains at least 17 elements.
L ‰ H.
L is not recursive.
L is not re.

 blackboard 2.11

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 405

2 (Un-) Decidability
2.7 Theorem of Rice

A class C of languages is effectively closed under
concatenation with regular sets (resp. union), if RL, LR and
LY L1 can be effectively constructed from R,L, L1.

Theorem 2.80 (Greibach)
Let C be a class of languages which is effectively closed
under concatenation with regular sets and under union.
We also assume that the check for equality with Σ˚ is
undecidable for sufficiently large Σ.
Let a nontrivial property S be given, which is (1) closed
under {a (L P S implies L{a :“ tw : wa P Lu P S), and (2)
true for all regular languages.

Under these assumptions S is undecidable for C.

Typical application: class of languages = contextfree
languages. For a cf grammar G, it is undecidable whether
LpGq is regular (but we knew that already).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 406

2 (Un-) Decidability
2.8 Recursion theorem

2.8 Recursion theorem

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 407

2 (Un-) Decidability
2.8 Recursion theorem

A simple (very destructive) game
Player 1 writes programs, Player 2 manipulates them.
Player 1 wins, when she can write a program that
behaves identical to its manipulated version.
Would you like to be Player 1 or 2?

Theorem 2.81 (Recursion Theorem)

For each total recursive function σ : NÑ N there is n0 P N
(which can be effectively constructed) with

ϕn0pmq “ ϕσpn0qpmq for all m P N.

Manipulate any TM in an algorithmic way: obtain M1 from
M. Then there is a DTM M0 which computes the same as
M0

1: the manipulation was useless.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 408

2 (Un-) Decidability
2.8 Recursion theorem

Can you construct a DTM that writes its own index on
tape (on empty input) and stops?

Corollary 2.82 (Recursion Theorem: Kleene’s version)

To each partial recursive function ρ : N2 Ñ N there is n0 P N
(which can be effectively constructed) with

ϕn0pmq “ ρpn0,mq for all m P N.

Proof.
We consider ρ as a function on N by fixing the first
argument: for each x, the function ρpx, yq is a (partial)
recursive function in y, so it has the form ϕap¨q “ ρpx, ¨q,
therefore, by the smn theorem, there is a total recursive
function f : NÑ N with ϕfpxqp¨q “ ρpx, ¨q.

We apply the Recursion theorem and get the result.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 409

2 (Un-) Decidability
2.8 Recursion theorem

Proof (of Theorem 2.81).
We define

gpy, xq :“

"

ϕzpxq, if ϕypyq Ó z ;
undef , else.

g is computable: Da P N s.t. gpx, yq “ ϕp2qa px, yq.
smn theorem: We get a total recursive function s2

1pa, xq
with gpx, yq “ ϕs21pa,xqpyq. Let fpxq “ s2

1pa, xq, which is total
recursive. Thus:

ϕfpyqpxq “

"

ϕϕypyqpxq, if ϕypyq Ó;
undef , else.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 410

2 (Un-) Decidability
2.8 Recursion theorem

Proof (of Theorem 2.81) (2).

We define h : NÑ N, hpyq :“ σpfpyqq, which is
total recursive. Thus there is i0 with
h “ ϕi0.Therefore ϕi0pi0q Ó. We get

ϕfpi0qpxq “ ϕϕi0pi0qpxq “ ϕσpfpi0qqpxq

Therefore it suffices to set e :“ fpi0q.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 411

2 (Un-) Decidability
2.8 Recursion theorem

Kleene’s version says: each DTM can be modified so
as to get its own description (index) during a
computation and deal with it.
Suppose you are working on a DTM M to compute a
function t : NÑ N. But you need to assume that you
have available an index of that very machine you are
constructing.
So your DTM is really M1 that takes two inputs:
M1pn,mq but computes tpmq, asssuming that n is an
index of a DTM for t.
Kleene’s version assures there is indeed such a n0 and
your assumption for using M1pn0,mq is ok.
So you can define a macro “get your own description”
and use that for any DTM.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 412

2 (Un-) Decidability
2.8 Recursion theorem

Applications of the Recursion Theorem

1 In any enumeration M1, . . . ,Mi, . . . of all
DTM’s, there are two consecutive DTM’s
which compute the same function.
exercise

2 There is e with ϕepeqÓ and ϕepiqÒ for all i ‰ e.

3 There is a DTM that outputs its own index.
4 Programs that print out their own source code

are also called quines (after Willard van Orman
Quine). Here are two for Python3 and Ruby:

a="a=%c%s%c;print(a%%(34,a,34))";print(a%(34,a,34))

eval s=%q(puts"eval s=%q(#s)")

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 413

2 (Un-) Decidability
2.8 Recursion theorem

Applications of the Recursion Theorem (2)

While the halting problem is undecidable, we may
collect info about particular DTM’s and whether they
halt or not.
Assume we consider a formal system (eg. set theory) in
which we can formulate and reason about DTMs. We
add more and more axioms about termination of
particular DTM’s.
Can we ever reach a state of the formal system that
answers all questions about DTMs?
We assume that such a formal system is correct: it
contains and proves only correct statements.
In particular, if a TM stops after finitely many steps, the
system can prove that (it simulates it). If it does not
stop, the system does not claim it does.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 414

2 (Un-) Decidability
2.8 Recursion theorem

Lemma 2.83 (No FS captures the whole truth)

For any consistent and correct formal system FS there is a
DTM M and an input w0 such that

1 there is no proof in FS that Mpw0q terminates,
2 there is no proof in FS that Mpw0q does not terminate.

Proof.
Let ρ : N2 Ñ N be the partial recursive (why?) function

ρpi, jq :“

#

1, if FS proves that ϕipjq Ò
undef, else.

By Kleene there is n0 with ϕn0pjq “ ρpn0, jq. Now ρpn0, jq “ 1
iff ϕn0pjqÒ. Therefore ρpn0, jq must be undefined for all j,
but FS can’t prove it.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 415

2 (Un-) Decidability
2.9 Oracle TMn

2.9 Oracle TMn

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 416

2 (Un-) Decidability
2.9 Oracle TMn

Content of this section:
1 An Oracle DTM is a DTM that can ask an oracle and get

back an answer that it can use in further computations.
2 Such an oracle can be a problem we want to show to

be undecidable. Maybe we can solve the halting
problem with such an oracle.

3 An undecidable oracle allows us to compute more
undecidable problems. Such machines can also accept
non re languages (eg. the complement of the halting
problem).

4 This gives us another notion of reduction that is very
useful: Turing reducibility,

5 We introduce a hierarchy of undecidable problems.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 417

2 (Un-) Decidability
2.9 Oracle TMn

Motivation (1)

To prove undecidability of a problem by reducing an
undecidable problem to it is a powerful technique,
see Definition 2.1 on Slide 207: A ĺ B.
However, it needs a computable function to do the
reduction and this makes the method more difficult to
apply.
For example, H ł H. Therefore H cannot be shown
undecidable through ĺ alone.
A better notion seems to use a language A as an oracle:
this allows to do more reductions.
If we use H as an oracle, surely we can decide H and
vice versa.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 418

2 (Un-) Decidability
2.9 Oracle TMn

Motivation (2)
But ĺ has its advantages: one can prove more (the price is
limited applicability).

Assume A is re. Then A ĺ A implies that A is re too.
Because y P A iff fpyq P A (for a computable function
f : AÑ A) and any enumeration of A (plus the check
that such an element has the form fpyq) gives an
enumeration of A.
We already know from Inf. 3 that H is re but not
recursive and so H is not even re: therefore H ł H.
If A is not re and A ĺ B, then B is not re. So we also
have H ł H This is not true for oracles.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 419

2 (Un-) Decidability
2.9 Oracle TMn

Motivation (3)

Consider the following undecidable problems:

1 w0 P LpMq,
2 LpMq “ H,
3 LpMq “ Σ˚,
4 LpMq is a regular set.

Intuitively, the first problem seems to be the
easiest (just one check), while (2) and (3) need
an infinite number of checks in the worst case.
The fourth problem seems to be harder than the
first three.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 420

2 (Un-) Decidability
2.9 Oracle TMn

Definition 2.84 (Oracle DTM MA)

Let A Ď Σ˚. A Turing machine with oracle A,
denoted by MA, is a 1-tape DTM with 3
distinguished states q?, qy, qn.
If it reaches the state q?, it checks whether the
string to the left of the head (until the start of
the tape) is contained in A:

Yes: if it is contained in A, the DTM switches
into qy,

No: otherwise the DTM switches into qn.

If A is recursive, MA can be simulated by an
ordinary DTM.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 421

2 (Un-) Decidability
2.9 Oracle TMn

We have introduced in Definition 2.1 the
notion of a reduction ĺ that we extensively
used in proving undecidability.

In the next definition we distinguish between
two variants of ĺ and introduce a third one:
TM reducibility.

In the rest of this subsection, we only deal
with ĺTM .

From Slide 431 on, we compare all three
notions.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 422

2 (Un-) Decidability
2.9 Oracle TMn

Definition 2.85 (Reductions)

A set A1 is reducible to A2 iff there is a
DTM-computable function f : NÑ N, such that:

@n P N
`

n P A1 iff fpnq P A2

˘

.

ĺ1: if the function is a bijection, also called
one-one.

ĺm: if the function is any function, also
called many-one.

A1 is TM-reducible to A2, written A1 ĺTM A2, if
A1 can be decided by a DTM with oracle A2.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 423

2 (Un-) Decidability
2.9 Oracle TMn

Definition 2.86 (Recursive, re in A)

Let A Ď Σ˚. A language L is re in A, if L is
accepted by an oracle DTM MA.

L is recursive in A, if the accepting oracle DTM
MA always terminates (i.e. MA is a decider).

Often we denote by LApMq the language
accepted by machine M with oracle A: LpMAq.
(The oracle A does not belong to M.)

Are all languages re in the halting problem?
Is each language re for an appropriate A?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 424

2 (Un-) Decidability
2.9 Oracle TMn

Definition 2.87 (Equivalence wrt. Turing Reducibility)

We say that two languages L1, L2 are equivalent,
iff each is recursive in the other. This leads to
the notion of degrees of unsolvability.

Thus L1 is accepted by a DTM that takes L2 as an
oracle and vice versa.

Definition 2.88 (Hierarchy)

We consider the language S1 “ te : LpMeq “ Hu.

S1 is not re. We define the ascending hierarchy:

Si`1 :“ te : LSipMeq “ Hu

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 425

2 (Un-) Decidability
2.9 Oracle TMn

By induction, one verifies easily that
S1 Ĺ S2 Ĺ . . . Ĺ Si Ĺ Si`1 Ĺ

Theorem 2.89

The following holds:
S1 is equivalent to “w P LpMq”,
S2 is equivalent to “LpMq “ Σ˚”,
S3 is equivalent to “LpMq is a regular set”.

Proof.

 blackboard 2.12

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 426

2 (Un-) Decidability
2.9 Oracle TMn

Halting Problem for TM’s with oracle A

We use the notation HA to denote the halting set
for TM’s with oracle A: the set of indices of all
TM’s with oracle A that terminate on their own
gödelnumber.

For a recursive set A, HA is exactly the classical
halting set H. Obviously, for recursive A,B, the
sets HA and HB are equivalent (wrt.
Definition 2.87).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 427

2 (Un-) Decidability
2.9 Oracle TMn

Jump of a language

For a re set A, the jump of A, denoted by A1, is the
set HA: the set of all gödelnumbers of machines,
that terminate on their own gödelnumber using
as oracle the set A.

So A, A1, A11, . . . is a series of sets getting more
and more complicated/undecidable.

H1 is the classical halting set. H11 is a new halting
set HH obtained by machines that use the
classical halting set as an oracle.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 428

2 (Un-) Decidability
2.9 Oracle TMn

Suppose we are given a problem that is
undecidable. Can we prove this by reducing the
halting problem to it?

Or, to put it differently:

Post’s problem

Is the halting problem the simplest undecidable
problem?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 429

2 (Un-) Decidability
2.10 Reductions

2.10 Reductions

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 430

2 (Un-) Decidability
2.10 Reductions

Content of this section:

1 The Oracle DTM just introduced defines a
reduction from one set (language) to another
set (language): ĺTM Turing reducibility.

2 We compare this reduction with two more
reductions, that can be derived from
Definition 2.1: ĺ1 one-one reducibility and
ĺm many-one reducibility.

3 We introduce the most difficult problems wrt.
these reductions: ĺ- complete problems.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 431

2 (Un-) Decidability
2.10 Reductions

Properties of TM-Reduction

Let SAT be the problem to determine whether a
given formula in CNF is unsatisfiable.
Obviously, we have

SAT ĺTM SAT, and
SAT ĺTM SAT.

So both are equivalent: no one is harder than
the other.

But this sort of equivalence is rather coarse.
We know that SAT is in NP and SAT in co-NP.
TM-equivalence does not imply anything
about finer complexity measures.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 432

2 (Un-) Decidability
2.10 Reductions

The following properties hold for all reductions
introduced in Definition 2.85.
Lemma 2.90 (”1,”m,”TM)

The reductions ĺ from Definition 2.85 are reflexive
and transitive.

We can therefore define, for all reductions, the
equivalence relations ”1,”m,”TM .

We have seen on Slide 432 that SAT ”TM SAT.

Obviously H ”TM H, but not H ”m H (see the
discussion on Slide 418).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 433

2 (Un-) Decidability
2.10 Reductions

Definition 2.91 (”rec)

A recursive bijection on N is a recursive function that is
also a bijection.We define ”rec on A,B Ď N:

A ”rec B iff there is a recursive bijection with fpAq “ B.

All relations ”1,”m,”TM are recursively invariant: If
A ”rec B then A ”1 B, A ”m B, and A ”TM B.

An interesting application of the proof of the
Cantor-Bernstein theorem shows the following.

Theorem 2.92 (Myhill)
A ”rec B iff A ”1 B.

Proof.
 blackboard 2.13

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 434

2 (Un-) Decidability
2.10 Reductions

Lemma 2.93 (Some facts about ĺ1 and ĺm)

1 A ĺ1 B implies A ĺm B.
2 A ĺ1 B implies A ĺ1 B (also for ĺm).
3 (A ĺm B and B recursive) implies A recursive.
4 (A ĺm B and B re) implies A re.

Proof.

 blackboard 2.14

Are there (nonrecursive) sets, that are
incomparable wrt ĺm?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 435

2 (Un-) Decidability
2.10 Reductions

Are there most difficult sets?
Definition 2.94 (ĺ1, ĺm–completeness)

A Ď N is ĺ1-complete (resp. ĺm-complete), if
1 A is re, and
2 for all re sets B: B ĺ1 A (resp. B ĺm A).

txi, ny : ϕipnq Óu is ĺ1 complete.
ti : ϕipiq Óu is ĺm complete.

This is no coincidence!
Lemma 2.95 (ĺ1 complete = ĺm complete)

A set A is ĺ1 complete iff A is ĺm complete.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 436

2 (Un-) Decidability
2.10 Reductions

Relation between ĺm and ĺTM

Lemma 2.96
1 A ĺm B implies A ĺTM B.
2 (A ĺTM B and B recursive) implies A recursive.
3 If A ĺm B and B ĺTM C, then A ĺTM C.

“A ĺTM B implies A ĺm B” is false: (see also Slide 419)

txi, ny : ϕipnq Óu ĺTM S1, but

txi, ny : ϕipnq Óu łm S1.

“(A ĺTM B and B re) implies A re.” is false:

txi, ny : ϕipnq Óu ĺTM txi, ny : ϕipnq Óu, and

txi, ny : ϕipnq Óu is not re but can be recognized with
oracle txi, ny : ϕipnq Óu.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 437

2 (Un-) Decidability
2.10 Reductions

We are now coming back to the question on Slide 427.

How do the equivalence classes of ”TM look like? They
are called Turing degrees.

The Turing degrees form a poset, in fact a join
semilattice but not a lattice.

The least element is the set of all recursive sets,
denoted by O (the equivalence class of all recursive
sets).

For a degree d the jump of d, denoted by d1 is defined as
the degree consisting of the equivalence class of A1 (the
jump defined on Slide 427), where A P d.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 438

2 (Un-) Decidability
2.10 Reductions

Thus O1 is the Turing degree of the halting problem.
Obviously d1 is not recursive in d, it is more
complicated.

Post asked whether there are any re degrees between O
and O1.

Friedberg and Muchnik solved this problem by
inventing the priority method: there are indeed such
degrees strictly between O and O1.

Thus the halting problem is not the simplest
undecidable problem: in fact, there is no simplest
undecidable problem.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 439

3 SPACE versus TIME

3. SPACE versus TIME
3 SPACE versus TIME

Basics
Some Hierarchies
Relating TIME and SPACE
More Properties

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 440

3 SPACE versus TIME

Contents of this chapter

While we investigated in the previous chapters the
boundary between decidability and undecidability, in
this and the next chapter we consider only decidable
languages.
We show how to measure time and space complexity of
a given language.
Such measurements make only sense up to a constant
factor: space compression and linear speed-up.
Restricting to 1-DTM’s results in a quadratic time
increase, while space complexity remains the same.
We will see: (1) time-bounded problems are decidable
(trivial), and (2) space-bounded problems are
time-bounded and thus decidable (not so trivial).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 441

3 SPACE versus TIME

Contents of this chapter (2)

We show several tight, and strict hierarchies for space
and time.
We investigate the precise relations between
nondeterministic und deterministic Space- and Time
classes, including Savitch’s Theorem.
We show that there are arbitrarily large gaps for space
complexity (Borodin’s gap theorem) which leads to
unintuitive consequences.
There are also languages that can be sped up
indefinitely (Blum’s speed up theorem).
We prove the Union theorem.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 442

3 SPACE versus TIME

Figure 17: Some relations.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 443

3 SPACE versus TIME
3.1 Basics

3.1 Basics

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 444

3 SPACE versus TIME
3.1 Basics

Definition 3.1 (NTIMEpT pnqq, DTIMEpT pnqq)

Base model: k-DTM M (one tape for the input).
If M makes at most T pnq steps for each input of length n, it
is called T pnq time-bounded.
The accepted language by M has time complexity T pnq (in
fact, we mean maxpn` 1, rT pnqsq).

DTIMEpT pnqq is the class of languages, that are
accepted by T pnq time-bounded, DTM’s.
NTIMEpT pnqq is the class of languages, that are
accepted by T pnq time-bounded NTM’s.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 445

3 SPACE versus TIME
3.1 Basics

Definition 3.2 (NSPACEpSpnqq, DSPACEpSpnqq)

Base model: k-DTM M (one special tape just for the
input, input remains there (offline DTM)).
If M uses at most Spnq cells (on all tapes) for each input of
length n, it is called Spnq space-bounded.
The accepted language by M has space complexity Spnq (in
fact, we mean maxp1, rSpnqsq).

DSPACEpSpnqq is the class of languages, that are
accepted by Spnq space-bounded, DTM’s.
NSPACEpSpnqq is the class of languages, that are
accepted by Spnq space-bounded, NTM’s.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 446

3 SPACE versus TIME
3.1 Basics

Question:

Why offline-TM’s?
Space functions of less than linear growth.

Question:

To which time/space class belongs

Lmirror :“ twcwR : w P p0` 1q˚u,

all words mirrored around c?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 447

3 SPACE versus TIME
3.1 Basics

Time: DTIMEpn` 1q. Copy the input to the right of c in
reverse order.
After finding c, just check the coming part.

Space: The machine described above gives DSPACEprn
2
sq.

Can we do better?
Yes: L P DSPACEplg nq. Use two tapes as binary counters.
Checking that there is exactly one c can be done with no
space. Then we check symbol for symbol on the right and
left side. We need the counters to keep track of the
positions.
One can easily do with one counter and one tape.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 448

3 SPACE versus TIME
3.1 Basics

How many tapes are needed?
What is the influence of the size of the alphabet?
What about the number of states?

Theorem 3.3 (Tapes, Alphabet, States)

Let L be a language accepted by an arbitrary TM (no
restriction on the number of tapes, number of states, number
of tape symbols).
Minimal Alphabet: L can be accepted by an offline NTM

(DTM) with only one tape and two tape symbols
t#, 1u.

Small State Space: L can be accepted by an offline NTM
(DTM) with only one tape and only three
states.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 449

3 SPACE versus TIME
3.1 Basics

Proof
Intuitively, it is obvious that one tape suffices: one can
always use tracks (see the proof of Theorem 1.63). Thus
instead of one symbol per cell, one can always use new
symbols that code finitely many symbols.
To minimize the number of tape symbols, one can certainly
simulate with 2 tape symbols a set of finitely many tape
symbols (simply as particular sequences). The finite control
of the program can then distinguish between the new
codes.
To minimize the number of states, the finite control can
easily be simulated with finitely many new tape symbols.
One needs only 3 states: one for the start state, one for the
halt state and a third one to distinguish it from the start
state. So there are effectively 2 states (to encode the finite
control with the tape symbols), plus the halt state.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 450

3 SPACE versus TIME
3.1 Basics

Important questions:

Time: Is DTIMEpfpnqq contained in the class
of recursive languages?

Space: Is DSPACEpfpnqq contained in the class
of recursive languages?

Time/Space: What about NTIMEpfpnqq,
NSPACEpfpnqq?

Of course, the answers depend on the
functions f . We require them to be recursive.
Later, in order to formulate more precise
relationships, we need more restricting notions
(Time/space constructible).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 451

3 SPACE versus TIME
3.1 Basics

Only the growth rate in a complexity class counts:
Constant factors can be ignored.

Theorem 3.4 (Tape Compression)

Let L be accepted by a k-DTM (resp. k-NTM) M1

which is Spnq space-bounded.
Then for any c ą 0, L is also accepted by a k-DTM
(resp. k-NTM) M2 which is cSpnq space-bounded.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 452

3 SPACE versus TIME
3.1 Basics

Proof

One direction is trivial. The other is by coding a
fixed number r (ą 2

c) of adjacent cells on the tape
as one new symbol. The states of the new
machine simulate the movements of the head
as state transitions (within the new symbol). For
r cells of the old machine, we only use at most 2:
the worst case arises when one is forced to move
from one block in the adjacent one.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 453

3 SPACE versus TIME
3.1 Basics

Corollary 3.5 (Tape Compression)

For all c ą 0 and space functions Spnq:

DSPACEpSpnqq “ DSPACEpcSpnqq
NSPACEpSpnqq “ NSPACEpcSpnqq

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 454

3 SPACE versus TIME
3.1 Basics

Theorem 3.6 (Time Speed Up)

Let L be accepted by a k-DTM M1 which is T pnq
time-bounded. We assume that k ą 1 and
infnÑ8

T pnq
n “ 8.

Then for any c ą 0, L is also accepted by a k-DTM
M2 which is cT pnq time-bounded.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 455

3 SPACE versus TIME
3.1 Basics

Proof

The proof is again by coding a fixed number r
(ą 22

c) of adjacent cells on the tape as one new
symbol. The states of the new machine
simulate the movements of the head as state
transitions (within the new symbol).

The new machine has to copy and encode the
input: n moves.
And rnr s steps to print the new symbols
encoding the entire input.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 456

3 SPACE versus TIME
3.1 Basics

Proof (2)
When simulating the old machine, the new one makes
11 instead of r steps:

It starts with scanning the neighboring cells: one move
to the right, two moves to the left, and one to the right.
This information is stored in the finite control. 4 moves.
Simulating the old machine: This takes no time, as it is
built-in to the transition rules. 0 moves.
The machine moves only when the heads have to move
into neighbouring cells (to change them) or to change
the current one. One move to overwrite the current
symbol, one to move left, one to overwrite it, two to
move right, one to overwrite it, one to move back (in
the worst case). 7 moves.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 457

3 SPACE versus TIME
3.1 Basics

Proof (3)
Thus if the old machine does T pnq moves, the new one does
at most

n` r
n

r
s` 11r

T pnq

r
s ť n`

n

r
` 11

T pnq

r
` 2

steps. Our assumption infnÑ8
T pnq
n
“ 8 ensures that for

each constant d: n ď T pnq
d

. Thus we get an upper bound of

T pnq
`11

r
`

2

d
`

1

rd

˘

It remains to choose d properly: d “ r
2
. This gives an upper

bound of 11
r
` 4

r
` 2

r
and together with r ş 22

c
we get

11
22
c` 4

22
c` 2

22
c “ 17

22
c which is š c.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 458

3 SPACE versus TIME
3.1 Basics

Corollary 3.7 (Time Speed Up)

For each c ą 0 and time functions T pnq with
infnÑ8

T pnq
n “ 8:

DTIMEpT pnqq “ DTIMEpcT pnqq
NTIMEpT pnqq “ NTIMEpcT pnqq

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 459

3 SPACE versus TIME
3.1 Basics

Question:
What happens if less tapes are available?

Consider the language Lmirror: Linear complexity does not
hold any more, if there is only one tape.
However, we have

Theorem 3.8 (Tape Reduction for TIME)

1 If L P DTIMEpT pnqq, then L is accepted by a
1-DTM that is time-bounded by T 2pnq,
2-DTM that is time-bounded by T pnq lg T pnq.

2 If L P NTIMEpT pnqq, then L is accepted by a
1-NTM that is time-bounded by T 2pnq,
2-NTM that is time-bounded by T pnq lg T pnq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 460

3 SPACE versus TIME
3.1 Basics

Proof

How many steps are needed to simulate a
k-DTM with a 1-DTM?
Consider L :“ twwR : w P Σ˚u.

1-DTM: How to decide L with a 1-DTM? I.e. for
m steps of a k-DTM, a 1-DTM uses m2

many steps (to be precise, 6m2).
We speed up by a factor of 1?

6
.

2-DTM: How to decide L with a 2-DTM? Here we
need a counter to count up to n: this
gives a factor of just lg T pnq, not T pnq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 461

3 SPACE versus TIME
3.1 Basics

The last theorem is also true for space-bounded functions.

Theorem 3.9 (Tape Reduction for SPACE)

If L P DSPACEpSpnqq, then L is accepted by a 1-DTM
that is space-bounded by Spnq.
If L P NSPACEpSpnqq, then L is accepted by a 1-NTM
that is space-bounded by Spnq.

Proof.
Proof like the last one. While simulating a k-DTM with a
1-DTM one needs the same number of cells: no speed-up is
needed (we simply use more tape symbols). Compare with
the proof of Theorem 3.3.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 462

3 SPACE versus TIME
3.1 Basics

Nondeterministic computations are shorter than
deterministic ones. But each NTM can be
simulated by a DTM. The following lemma gives
the precise relation.

Lemma 3.10 (NTIME vs. DTIME)

If L P NTIMEpfpnqq, then there is c ą 0 s.t.
L P DTIMEpcfpnqq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 463

3 SPACE versus TIME
3.1 Basics

(Proof of Theorem 3.10 (1)).
It is obvious how to simulate a NTM with a DTM: simply
enumerate all possible paths. However, to get the precise
bound used above, we compute the number of ID’s for an
input of length n. Assume the NTM M has s states, k tapes,
the alphabet is based on t symbols and the input is of length
n. Then in time fpnq at most fpnq tape cells can be visited.
Thus we have at most spfpnq ` 1qktkfpnq many different ID’s.
For d :“ spt` 1q3k we get for all n P N a simpler upper bound

spfpnq ` 1qktkfpnq ď dfpnq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 464

3 SPACE versus TIME
3.1 Basics

(Proof of Theorem 3.10 (2)).
How can a DTM determine whether M accepts an input
of length n?
It constructs a list of all ID’s accessible from the initial ID.

How much time is needed to do this?
It is bounded by the (length of the list)2.
There are at most dfpnq ID’s, each can be encoded with
1` kpfpnq ` 1q symbols. Thus the length of the list is at
most dfpnqp1` kpfpnq ` 1qq. This gives a time bound of the
multitape DTM of

`

dfpnqp1` kpfpnq ` 1qq
˘2. And this is

bounded by cfpnq for a suitable c.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 465

3 SPACE versus TIME
3.2 Some Hierarchies

3.2 Some Hierarchies

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 466

3 SPACE versus TIME
3.2 Some Hierarchies

Theorem 3.11 (DSPACEpfpnqq Ř Rec)

Let fpnq be any total recursive function. Then there is a
recursive language L that is not in DTIMEpfpnqq (resp.
not in DSPACEpfpnqq).

Proof.
We use diagonalization. Let M be the DTM computing fpnq.
Let M1, . . . ,Mi, . . . be an enumeration of all DTM’s. Let
x1, . . . , xi, . . . be an enumeration of all words of ta, bu˚.
Define the language

L “ txi : Mi does not accept xi within fp|xi |q movesu

L is recursive but not in DTIMEpfpnqq.
The proof for DSPACEpfpnqq is similar.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 467

3 SPACE versus TIME
3.2 Some Hierarchies

Well-behaved Functions
In the remainder of this chapter we state several relations
between complexity classes. Unfortunately, these do not
hold for arbitrary space or time functions. But they do
hold for almost all naturally occurring functions.

The technical notions we need to assume are:
Space: space functions Spnq need to be (fully) space

constructible: for each n there is an input of
length n s.t. a TM uses on this input exactly Spnq
cells.

Time: time functions T pnq need to be (fully) time
constructible: for each n there is an input of
length n s.t. a TM runs exactly Spnq steps on this
input.

In the following, remember our assumption on space/time
functions (Definitions 3.1, 3.2).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 468

3 SPACE versus TIME
3.2 Some Hierarchies

Definition 3.12 ((Fully) Space Constructible)

A function S : NÑ N is fully space constructible, if there is
a Spnq space-bounded Turing machine M such that on each
input of length n, M uses exactly Spnq cells.
S is called space constructible, if there is a Spnq
space-bounded Turing machine M such that on some input
of length n, M uses exactly Spnq cells.

Definition 3.13 ((Fully) Time Constructible)

A function T : NÑ N is fully time constructible, if there is a
T pnq time-bounded Turing machine M such that on each
input of length n, M runs exactly T pnq steps.
S is called time constructible, if there is a T pnq
time-bounded Turing machine M such that on some input
of length n, M runs exactly T pnq steps.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 469

3 SPACE versus TIME
3.2 Some Hierarchies

Lemma 3.14

We consider space functions Spnq.
1 Each space constructible function Spnq with
Spnq ě n is also fully space constructible.

2 If a language L is accepted by a Spnq
space-bounded TM with Spnq ě lgpnq, then L is
accepted by a Spnq space-bounded TM that
halts on all inputs.

Proof.

 exercise

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 470

3 SPACE versus TIME
3.2 Some Hierarchies

Definition 3.15 (Well-behaved Functions)

Consider the following space of functions from N
in N. It contains rloga ns (a P N), nk (k P N), 2n, n!
and is closed wrt. multiplication, exponentiation,
composition and multiplication by k (k P N). We
call such functions well-behaved.

Lemma 3.16

Well-behaved functions f with fpnq ě lgpnq are
space constructible.

Proof.

 exercise

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 471

3 SPACE versus TIME
3.2 Some Hierarchies

Theorem 3.17 (Time/Space Hierarchies)

Let S2pnq be space constructible and T2pnq fully
time constructible. We also assume, that
S1pnq ě lg n.

1 If infnÑ8
S1pnq
S2pnq

“ 0 then
DSPACEpS1pnqq Š DSPACEpS2pnqq.

2 If infnÑ8
T1pnq lg T1pnq

T2pnq
“ 0 then

DTIMEpT1pnqq Š DTIMEpT2pnqq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 472

3 SPACE versus TIME
3.2 Some Hierarchies

Proof of Theorem 3.17
First we assume that S2 is fully space constructible to
simplify the proof. The general version will be done in the
lab.
We fix an enumeration M1, . . . ,Mi, . . . of all offline DTM’s
over t0, 1u with (wlog.) one storage tape. Later we
represent these machines as words w over t0, 1u˚.

Thus each word w (sequence of 0’s and 1’s) can be seen as a
DTM Mw, s.t. there are infinitely many machines occurring
in the enumeration that accept the same language (see last
chapter). We also assume, wlog, that the size of machine
Mi in its binary representation is greater than i (adding
useless states). Thus, if machines corresponding to a
language L occur infinitely often, their sizes in the binary
representation get arbitrarily large (a property we need
later).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 473

3 SPACE versus TIME
3.2 Some Hierarchies

Proof of Theorem 3.17 (2)

We construct a DTM M that uses S2pnq space and disagrees
on at least one input with any S1pnq space bounded DTM.

Given a word w, the machine M first marks S2p|w|q cells on
the storage tape (this is where the fully space constructible
assumption comes in). Whenever the machine is about to
move beyond these bounds, it stops and rejects the input.

Then M simulates Mw, the TM encoded by w. If Mw is
S1pnq space bounded (and uses t tape symbols), what is
the space required to do this simulation?

M needs rlgptqsS1pnq space.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 474

3 SPACE versus TIME
3.2 Some Hierarchies

Proof of Theorem 3.17 (3)
Now we define M accepts w iff (1) M can do the simulation in
time S2pnq and (2) Mw stops without accepting w.
Obviously, LpMq is in DSPACEpS2pnqq.

To show that LpMq is not in DSPACEpS1pnqq, we assume it is
and show a contradiction. By Lemma 3.14, there is a DTM M̂

accepting LpMq, working in space S1pnq and always terminating.
Assume it is using t tape symbols, so t is fixed.
infnÑ8

S1pnq
S2pnq

“ 0 guarantees that there is a large enough w, such

that rlgptqsS1p|w|q ň S2p|w|q and LpMwq “ LpM̂q “ LpMq (LpM̂q
occurs infinitely often in the enumeration: our assumption |wi|ą i
ensures the inequation).

Thus M̂ can do the simulation and accepts w iff Mw does not
accept w, which is a contradiction.

For the second part of the theorem blackboard 3.1.
Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 475

3 SPACE versus TIME
3.2 Some Hierarchies

With the last theorem, we get:

DSPACEpnq Š DSPACEpn2q Š . . . Š DSPACEpnrq Š . . .

and

DTIMEpnq Š DTIMEpn2q Š . . . Š DTIMEpnrq Š . . .

as well as

DSPACEplg nq Š DSPACEplg2 nq Š . . . Š DSPACEplgr nq Š . . .

and

DTIMEplg nq Š DTIMEplg2 nq Š . . . Š DTIMEplgr nq Š . . .

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 476

3 SPACE versus TIME
3.2 Some Hierarchies

Question:

How about nondeterministic Space and Time?

The analogue of Theorem 3.17 holds.
There is no simple proof. The result is a
corollary to the Theorem of Immerman and
Szelepcsenyi.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 477

3 SPACE versus TIME
3.2 Some Hierarchies

The proof of the next theorem is straightforward.

Theorem 3.18 (Nondeterministic Hierarchies)

Let S1pnq, S2pnq and fpnq be fully space constructible. We also
assume that S2pnq ě n und fpnq ě n for all n P N. Let
T1pnq, T2pnq and f 1pnq be fully time constructible.

1 NSPACEpS1pnqq Ď NSPACEpS2pnqq implies
NSPACEpS1pfpnqqq Ď NSPACEpS2pfpnqqq.

2 NTIMEpT1pnqq Ď NTIMEpT2pnqq implies
NTIMEpT1pf

1pnqqq Ď NTIMEpT2pf
1pnqqq.

The proof uses a technique called padding that can be
applied in many situations (and ensures to get the same
results for deterministic complexity classes).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 478

3 SPACE versus TIME
3.2 Some Hierarchies

Proof of Theorem 3.18.
Let L1 be a language accepted by M1 in nondeterministic
space S1pfpnqq. We have to show that L1 can be accepted
in space S2pfpnqq, using the hypothesis.

We associate to L1 its padded version:

L2 “ tw§i : M1 accepts w in space S1p|w| `iqu.

L2 can be accepted by a TM working in space S1pnq: it
marks the S1p|w| `iq cells (S1 is fully constructible) and
simulates M1 on w. It accepts only if M1 does and M1 does
so not using more than S1p|w| `iq many cells.

By hypothesis, there is M3 which is S2pnq space bounded
accepting L2. blackboard 3.2

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 479

3 SPACE versus TIME
3.2 Some Hierarchies

Applying Theorem 3.18

Assume NSPACEpn4q Ď NSPACEpn3q. We apply
Theorem 3.18 for n3, n4 and n5 separately:

NSPACEpn12q Ď NSPACEpn9q

NSPACEpn16q Ď NSPACEpn12q

NSPACEpn20q Ď NSPACEpn15q

So we get:

NSPACEpn20
q Ď NSPACEpn9

q.

Using Theorem 3.21 (coming soon on Slide 487) we know
that NSPACEpn9q Ď DSPACEpn18q. We also know that
DSPACEpn18q Ď NSPACEpn18q (trivial).
Using Theorem 3.17: DSPACEpn18q Ĺ DSPACEpn20q,
which is a contradiction.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 480

3 SPACE versus TIME
3.2 Some Hierarchies

The last theorem implies the following hierarchies:

NSPACEpnq Š NSPACEpn2q Š . . . Š NSPACEpnrq Š . . .

and

NTIMEpnq Š NTIMEpn2q Š . . . Š NTIMEpnrq Š . . .

similarly

NSPACEplg nq Š NSPACEplg2 nq Š . . . Š NSPACEplgr nq Š . . .

and

NTIMEplg nq Š NTIMEplg2 nq Š . . . Š NTIMEplgr nq Š . . .

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 481

3 SPACE versus TIME
3.2 Some Hierarchies

Theorem 3.19 (Deterministic Hierarchies)

Let S1pnq, S2pnq and fpnq be fully space
constructible. We also assume that S2pnq ě n and
fpnq ě n for all n P N. Let T1pnq, T2pnq and f 1pnq be
fully time constructible.

1 DSPACEpS1pnqq Ď DSPACEpS2pnqq implies
DSPACEpS1pfpnqqq Ď DSPACEpS2pfpnqqq.

2 DTIMEpT1pnqq Ď DTIMEpT2pnqq implies
DTIMEpT1pf

1pnqqq Ď DTIMEpT2pf
1pnqqq.

Proof.
Completely analagous to the proof of Theorem 3.18.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 482

3 SPACE versus TIME
3.3 Relating TIME and SPACE

3.3 Relating TIME and SPACE

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 483

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Theorem 3.20 (Relationship between TIME and SPACE)

1 DTIMEpfpnqq Ď DSPACEpfpnqq.
2 If fpnq ě lg n and L P DSPACEpfpnqq, then

there is c ą 0 s.t. L P DTIMEpcfpnqq.
3 If L P NSPACEpfpnqq, then there is c ą 0 s.t.
L P DTIMEpcfpnqq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 484

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof
1. Obvious.

2. Assume there are s states and t tape symbols. Using fpnq
cells, the number of ID’s for an input of length n is bounded
by ps` 1qnfpnqtfpnq (using Theorem 3.9 we assume we deal
with a offline-DTM with one storage tape).
Because of fpnq ě lg n there is c such that for n ě 1:
cfpnq ě ps` 1qnfpnqtfpnq (why?).
We use a 3-DTM: One tape to count up to cfpnq, the others to
simulate the old machine. If no accepting state is reached
when the counter is maximal, the machine does not
accept. Otherwise the new machine accepts.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 485

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof (2)

3. Again we can bound the number of ID’s by cfpnq, but by
using a depth-first search after that, we only get a double
exponential bound.
In the following we show that the tree can be pruned so
that each ID occurs only once. We do this by a recursively
defined list.
How many steps are needed to construct this list?

1 l2 many comparisons (l number of ID’s),
2 multiplied with their maximal length (c1fpnq).

Altogether a bound of the form c2fpnq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 486

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Theorem 3.21 (NSPACE vs. DSPACE (Savitch))

For each fully space constructible function Spnq :

NSPACEpSpnqq Ď DSPACEpS2
pnqq

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 487

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof

Again there are cSpnq different ID’s for an input
of length n.
Their maximal length is Spnq. If the input is
accepted, it is so in at most cSpnq steps.
Let TestpI1, I2, iq the statement

I2 can be reached from I1 in at most 2i steps.

TestpI1, I2, iq can be solved recursively, by
calling TestpI1, I

1, i´ 1q and TestpI 1, I2, i´ 1q
(for all ID’s I 1 of length at most Spnq).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 488

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof (2)

We construct a DTM as follows.

For the initial configuration I0 and all
accepting configurations If (of length Spnq),
we check whether TestpI0, If , Spnq lg cq (the
third argument is the length of cSpnq).
This goes down recursively until the third
argument is 0: TestpI, I 1, 0q is true iff either
I “ I 1 or I 1 is reachable from I in one step.

original check is successful
iff

DTM accepts

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 489

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof (3)

The space used by the above DTM?
There are OpSpnqq many calls of Test . For each
call we have to store two ID’s and the counter
(third argument).
The ID’s have maximal length Spnq and the
counter lgSpnq. So we need storage of
OpSpnqq.
With OpSpnqq many calls, we need space of
size OpS2pnqq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 490

3 SPACE versus TIME
3.3 Relating TIME and SPACE

The following is a beautiful theorem from
Hopcroft, Paul and Valiant from 1975. No serious
improvements have been found until today.

Theorem 3.22 (DTIMEptpnqq Ď DSPACEp tpnq
lg tpnq

q)

For all time functions tpnq:

DTIMEptpnqq Ď DSPACEp
tpnq

lg tpnq
q

In particular, for fully time/space constructible
functions, DTIMEptpnqq Ř DSPACEptpnqq.
The proof on the next slides follows closely the original paper of Hopcroft, Paul

and Valiant from 1977.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 491

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof (0). Main idea.
We simulate a DTM running in time tpnq by
walking through a graph.
The graph has tpnq

1
3 -many nodes. These nodes

are time segments ∆ of length exactly tpnq
2
3 .

For simulating, we need the content of the
tape. By a tricky argument we ensure that only
a fraction of the whole content is needed (
pebble game).
We have to minimise space, not time. By
storing less (but the right) content, we can
reconstruct what is needed for the simulation.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 492

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof (1). Step 1: The pebble game.
We are playing a game by placing pebbles on the vertices
of such a graph.

The goal is to be able to place a pebble on a particular
vertex, determined in advance, before the game starts.
This should be done in such a way, that the maximum
number of pebbles in the graph (at any moment in time) is
below a certain bound.

In the general case, we must place a pebble on all (but one)
nodes. Therefore we need more structure: let Gk be the set
of all finite, directed, acyclic graphs (dag) with indegree at
most k. Vertices with indegree 0 are input vertices.

 blackboard 3.3

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 493

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof (2). Step 1: The pebble game. (2)

Rules for placing and moving the pebbles:
1 A pebble can always be placed on an input vertex.
2 If all in-nodes of a vertex v have pebbles, then a pebble

can be placed on v (the vertex fires).
3 Any pebble can be removed at any time.

Let Pkpnq be the maximum over all graphs in Gk with n
vertices of the number of pebbles required to place a
pebble on an arbitrary vertex of such a graph.

Lemma 3.23

For each k, Pkpnq “ Opn{ lg nq.

The bound is tight. blackboard 3.4

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 494

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof (3). Step 2: Relating the game with the problem.
We simulate a k-DTM of time complexity tpnq by a NTM
of space complexity tpnq

lg tpnq
. (This gives us the result for

NSPACEp tpnq
lg tpnq

q: DSPACEp tpnq
lg tpnq

q will be done separately.)

1 Each tape is partitioned into blocks of size tpnq
2
3 .

2 Modify k-DTM so that it respects blocks (add one more tape

as a clock: blocks are crossed only at multiples of time tpnq
2
3 (if a crossing is

attempted at other times, simulation is stopped). The new machine
works still in time tpnq: it is only slower by a constant.
What if a head crosses all the time the boundary? Slow down of tpnq

2
3 .

How to repair? blackboard 3.5

3 The new DTM runs in segments ∆ of time periods of
length tpnq

2
3 . There are tpnq

1
3 such time segments ∆.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 495

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof (4). Step 2: Relating the game with the problem (2).
1 For hpi,∆q being the position of the head of tape i after

segment ∆, we define hp∆q “ rhp1,∆q, . . . , hpk,∆qs and
h “ rhp1q, . . . , hptpnq

1
3 qs.

2 Directed graph: The tpnq
1
3 vertices vp∆q correspond to

the time segments ∆ of the computation of the DTM.
For tape i let ∆i be the last segment (prior to ∆) where
head i scanned the same block (as for ∆).

3 The edges are: from vp∆´ 1q to vp∆q and for 1 ď i ď k:
from vp∆iq to vp∆q.

4 What is the space needed to describe this graph? It is
pk ` 1qtpnq

1
3 lg tpnq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 496

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof (5). Step 2: Relating the game with the problem (3).
1 We denote by cp∆q “ rcp1,∆q, . . . , cpk,∆qs, where cpi,∆q

is the content of the block which tape i is scanning
during segment ∆. Let also fp∆q be the initial contents
of those blocks which are visited by the DTM for the first
time during the time segment ∆.

2 We use q “ rqp1q, . . . , qptpnq
1
3 qs, where qp∆q is the state

after time segment ∆. The result of the computation is
determined by the state after the final segment.

3 How can we verify a guessed sequence of head
positions and states?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 497

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof (6). Step 2: Relating the game with the problem (4).
1 DTM is deterministic and respects blocks: (1) qp∆q,
hp∆q, and cp∆q can be uniquely determined from
qp∆´ 1q, hp∆´ 1q, and cp∆1q, . . . , cp∆kq and fp∆q by
simulating time segment ∆. This requires space
Opktpnq

2
3 q. (2) Storing cp∆q also requires space

Opktpnq
2
3 q.

2 fp∆q, qp∆´ 1q, and hp∆´ 1q can be determined from
the guessed sequences q and h. The edges into vertex
vp∆q in the graph Gk give us the vertices associated with
cp∆1q, . . . , cp∆kq. How do we simulate the DTM? We
first compute cp1q, then cp2q, etc.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 498

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof (7). Step 2: Relating the game with the problem (5).
1 For the simulation we do not need to store the

contents of the blocks that correspond to all
vertices (that would be too much): we can
always reconstruct them. What is the minimal
number of blocks that must be stored (at
any time) to do the simulation?

2 This is exactly the pebble game.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 499

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof (8). Step 3: Intermediate result.
We aim to show

DTIMEptpnqq Ď NSPACEp
tpnq

lg tpnq
q

How can we build a NTM M1 that simulates our tpnq lg tpnq
time bounded k-DTM M in space tpnq?
Using the results above, we may assume that M respects
blocks. We now guess a sequence of states q1 and a
sequence of head positions h1. These sequences have
length at most tpnq

1
3 and it takes space tpnq

1
3 to write down

q1 and space tpnq
1
3 lg tpnq to write down h1.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 500

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof (9). Step 3: Intermediate result (2).
From h1 we construct the graph G from
Slide 496. This graph has tpnq

1
3 many nodes and

can be written down in space tpnq
1
3 lg tpnq.

Lemma 3.23 ensures that there is a strategy to
move a pebble to the output node by never
using more than tpnq

1
3 lg tpnq pebbles. For this

we need at most 2tpnq
1
3 many moves, because this

is also the number of patterns (and repeating a
pattern does not make sense).
The simulation is given on the next slide.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 501

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof (10). Step 3: Intermediate result (3).
1 Guess q1 and h1.

2 For 1 ď i ď 2tpnq
1
3 do

1 Guess move i of the above strategy.
2 If a pebble is placed on vp∆q, then

1 Compute and store qp∆q, hp∆q, and cp∆q.
2 If qp∆q ‰ q1p∆q or hp∆q ‰ h1p∆q then reject.
3 If the space used is greater or equal to n, then reject.

3 If a pebble is removed from vp∆q then erase qp∆q, hp∆q, and
cp∆q from the working tape.

3 If the simulation is not complete, then reject.

Only those cp∆q are stored (after move m), for which there is a pebble on the

corresponding vertex after this move. Storing cp∆q requires space Opktpnq
2
3 q,

multiplied with tpnq
1
3 lg tpnq proves the intermediate result.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 502

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof (11). Step 4: Making the simulation deterministic.
We have two nondeterministic steps in our simulation.

Guessing q1 and h1: We cycle through all sequences.

Guessing the pebble move: Construct NTM: Given G, a pattern
D of pebbles on G, and a number m between 1 and

2tpnq
1
3 , it prints out the first move of a strategy that

starts with D and moves the pebble on the output
node of G (never using more than Optpnq

1
3 lg tpnqq

pebbles and making at most 2tpnq
1
3 lg tpnq ´ m

moves, provided such a strategy exists. This NTM
needs nd. space Optpnq

1
3 lg tpnqq. By Theorem 3.21

(Savitch) there is a DTM using Optpnq
2
3 lg2 tpnqq

det. space. So the overall machine is below the space
bound and the next move can be determined
deterministically.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 503

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Proof (12). Step 5: Putting it all together.
1 We have shown that for space constructible functions
tpnq: DTIMEptpnqq Ď DSPACEp tpnq

lg tpnq
q.

2 The assumption space constructible can be lifted: We
successively simulate the proof of the Theorem for
tpnq “ 1, 2, . . . until the simulation gets through.

3 We note without proof that the following holds. If tpnq
and δpnq are both space constructible and
limnÑ8 δpnq “ 8,

DTIMEptpnqq Ř DSPACEptpnqq XDTIMEpδpnqtpnq lg tpnqq

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 504

3 SPACE versus TIME
3.3 Relating TIME and SPACE

What about

NTIMEptpnqq Ď NSPACEp
tpnq

lg tpnq
q?

Might be true but up to now (2017) it has not
been proved.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 505

3 SPACE versus TIME
3.3 Relating TIME and SPACE

Here is one of the very few results of strict
containment (without proof).

Theorem 3.24 (Linear det. ‰ linear nondet.)

We have the following strict containment between
the deterministic and the nondeterministic
linear time complexity classes:

DTIMEpnq Ř NTIMEpnq

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 506

3 SPACE versus TIME
3.4 More Properties

3.4 More Properties

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 507

3 SPACE versus TIME
3.4 More Properties

Theorem 3.25 (Union Theorem for SPACE)

Let fipnq, i “ 1, 2, . . . be an enumeration of recursive
functions with fipnq š fi`1pnq for all n P N. Then
there exists a recursive function Spnq with

DSPACEpSpnqq “
ď

iě1

DSPACEpfipnqq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 508

3 SPACE versus TIME
3.4 More Properties

Proof of Theorem 3.25

Construct a function Spnq satisfying
1 For all i: Spnq ě fipnq almost everywhere

(a.e).
2 If Sjpnq is the space complexity of a DTM Mj

and for each i: Sjpnq ě fipnq for infinitely
many n’s, then Sjpn0q ş Spn0q for some n0.

Note that a language is accepted by a TM that is Spnq space bounded

iff it is accepted by a TM that is Spnq space bounded a.e.

Therefore (1) proves “Ě”, (2) proves “Ď”.
 blackboard 3.6

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 509

3 SPACE versus TIME
3.4 More Properties

Proof of Theorem 3.25 (2)
Note that setting Spnq “ fnpnq leads to a class that is too big
(condition (2) is not satisfied). How can we modify Spnq so that
it is less than Sjpn0q for some n0 (which might be different for
each i)?
We guess for each Mj a ij s.t. fij pnq ě Sjpnq a.e. This guess can
be made deterministic: if it was wrong, we guess a larger value
and for some n1 we define Spn1q to be less than Sjpn1q.

Case 1: Sj grows faster than any fi: S is infinitely often less
than Sj .

Case 2: Some fi is almost everywhere greater than Sj :
Eventually we guess such an fi and stop assigning values of S
less than Sj .

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 510

3 SPACE versus TIME
3.4 More Properties

Proof of Theorem 3.25 (3)

List “ H

for n “ 1, 2, . . .do
if for all ij “ k on List, fkpnq ě Sjpnq
then add in “ n to List and set Spnq “ fnpnq
else

begin
Among all guesses on List with fkpnq š Sjpnq,
let ij “ k be the guess with the smallest k and
the smallest j (for that k).
Let Spnq “ fkpnq.
Replace ij “ k by ij “ n on List.
Add in “ n to List.
end

This defines exactly the S we need.
Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 511

3 SPACE versus TIME
3.4 More Properties

Theorem 3.26 (Union Theorem for TIME)

Let fipnq, i “ 1, 2, . . . be an enumeration of recursive
functions with fipnq š fi`1pnq for all n P N. Then
there exists a recursive function Spnq with

DTIMEpSpnqq “
ď

iě1

DTIMEpfipnqq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 512

3 SPACE versus TIME
3.4 More Properties

For particular functions (fully space/time
constructible), time and space hierarchies are dense.
This is not true for all functions: there can be arbitrarily
large gaps.

Theorem 3.27 (Borodin’s Gap Theorem)

Let gpnq be a total recursive function with gpnq ŕ n. Then there
exists a total recursive function Spnq such that

DSPACEpSpnqq “ DSPACEpgpSpnqqq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 513

3 SPACE versus TIME
3.4 More Properties

Proof.
For an enumeration M1, . . . ,Mi, . . . of DTM’s, we denote by
Sipnq the maximum number of cells used by Mi on an input
of length n (why is this a partial recursive function?). We
define S : NÑ N as follows: for all i

1 Spnq ě Sipnq a. e.,
2 Sipnq ě gpSpnqq infinitely often.

Assume now the two complexity classes are not identical,
i.e. there is a language L in DSPACEpgpSpnqqq but not in
DSPACEpSpnqq. Then L “ LpMiq for some i with
Sipnq ď gpSpnqq for all n. Together with the first condition
we have Sipnq ď Spnq a. e., which means L is in
DSPACEpSpnqq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 514

3 SPACE versus TIME
3.4 More Properties

Proof of Theorem 3.27 (2)
How can we define the function S with the above
properties?
Given n, we cannot simply compute the largest finite value
of Sipnq (for 1 ď i ď n) because the Sipnq might be
undefined.

Consider the following procedure to define S:

j “ 1
while DMi p1 ď i ď nq s.t. j ` 1 ď Sipnq ď gpjq
do j “ Sipnq
Spnq “ j

This is a total recursive function as can be seen by counting
ID’s.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 515

3 SPACE versus TIME
3.4 More Properties

While we have proved Borodin’s gap theorem
only for DSPACE, its analogues for NSPACE,
DTIME and NTIME are true as well.
Corollary 3.28 (Unintuitive Consequences)

There exist total recursive functions f such that

DSPACEpfpnqq “ DTIMEpfpnqq “ NSPACEpfpnqq “ NTIMEpfpnqq

 blackboard 3.7

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 516

3 SPACE versus TIME
3.4 More Properties

Any DTM can be sped up by a linear factor (time and
space): see Theorem 3.4 and Theorem 3.6.
But there are languages where no best program exists:
they can always be sped up significantly (not just by a
constant).

Theorem 3.29 (Blum’s Speed-Up Theorem)

For each total recursive function rpnq, there is a recursive
language L such that the following holds.
For each DTM Mi accepting L in space Sipnq, there is another
DTM Mj accepting L in space Sjpnq with:

rpSjpnqq ď Sipnq a.e.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 517

3 SPACE versus TIME
3.4 More Properties

Proof.
Wlog we assume rpnq is monotonically nondecreasing, fully
space-constructible and rpnq ě n2. We define the fully
space-constructible function h

hp1q “ 2, hpnq “ rphpn´ 1qq

Let M1, . . . ,Mi, . . . be an enumeration of offline DTM’s.
We construct L such that

1 If LpMiq “ L, then Sipnq ě hpn´ 1q a.e.,
2 for each k there is a DTM Mj with LpMjq “ L and
Sjpnq ď hpn´ kq.

These conditions imply (choose j s.t. Sjpnq ď hpn´ i´ 1q)

for each Mi accepting L there is Mj accepting L with:
Sipnq ě rpSjpnqq a.e.
 blackboard 3.8

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 518

4 EXPSPACE

4. EXPSPACE
4 EXPSPACE

Complexity classes
Reductions
Structure of NP
Oracles for P, NP
PH: Polynomial Hierarchy
Structure of PSPACE
EXPTIME/EXPSPACE

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 519

4 EXPSPACE

Motivation
We consider the structure of EXPSPACE=NEXPSPACE and its
subclasses: EXP, PSPACE, NP, P, L and NL. We also
investigate:

1 The notion of (1) polynomial many-one reduction
(Karp), and (2) logarithmic space many-one reduction.
A problem is reduced to a second one: It is at most as
difficult as the second one.

2 The notion of a complete/hard problem in a complexity
class: such a problem is among the most difficult in
this class.

3 Can diagonalization settle the P =NP question?
4 The polynomial hierarchy PH. Alternating TM’s and

Oracle TM’s.
5 Beyond PSPACE: EXP, NEXP, EXPSPACE.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 520

4 EXPSPACE

Brief Kurt Gödels an Johann von Neumann

Princeton, 20./III. 1956

Lieber Herr v. Neumann!

Ich habe mit größtem Bedauern von Ihrer Erkrankung gehört. Die Nachricht kam
mir ganz unerwartet. Morgenstern hatte mir zwar schon im Sommer von einem
Schwächeanfall erzählt, den Sie einmal hatten, aber er meinte damals, dass dem keine
grössere Bedeutung beizumessen sei. Wie ich höre, haben Sie sich in den letzten
Monaten einer radikalen Behandlung unterzogen u. ich freue mich, dass diese den
gewünschten Erfolg hatte u. es Ihnen jetzt besser geht. Ich hoffe u. wünsche Ihnen,
dass Ihr Zustand sich bald noch weiter bessert u. dass die neuesten Errungenschaften
der Medizin, wenn möglich, zu einer vollständigen Heilung führen mögen.

Da Sie sich, wie ich höre, jetzt kräftiger fühlen, möchte ich mir erlauben, Ihnen über ein
mathematisches Problem zu schreiben, über das mich Ihre Ansicht sehr interessieren
würde: Man kann offenbar leicht eine Turingmaschine konstruieren, welche von jeder
Formel F des engeren Funktionenkalküls u. jeder natürl. Zahl n zu entscheiden
gestattet, ob F einen Beweis der Länge n hat [Länge = Anzahl der Symbole]. Sei
ΨpF, nq die Anzahl der Schritte, die die Maschine dazu benötigt u. sei Φpnq “
maxF ΨpF, nq. Die Frage ist, wie rasch Φpnq für eine optimale Maschine

wächst. Man kann zeigen Φpnq ě kn. Wenn es wirklich eine Maschine mit

Φpnq „ kn (oder auch nur„ kn2) gäbe, hätte das Folgerungen von der
grössten Tragweite. Es würde nämlich offenbar bedeuten, dass man trotz der Unlös-
barkeit des Entscheidungsproblems die Denkarbeit des Mathematikers bei ja-oder-nein
Fragen vollständig durch Maschinen ersetzen könnte. Man müsste ja bloss das n so
gross wählen, dass, wenn die Maschine kein Resultat liefert, es auch keinen Sinn hat
über das Problem nachzudenken. Nun scheint es mir aber durchaus im Bereich der
Möglichkeit zu liegen, dass Φpnq so langsam wächst.

Denn 1.) scheint Φpnq ě k∆n die einzige Abschätzung zu sein, die man durch
eine Verallgemeinerung des Beweises für die Unlösbarkeit des Entscheidungsproblems
erhalten kann; 2.) bedeutet ja Φpnq „ kn (oder„ kn2) bloss, dass die Anzahl

der Schritte gegenüber dem blossen Probieren von N auf log N (oder plog Nq2)
verringert werden kann. So starke Verringerungen kommen aber bei anderen finiten
Problemen durchaus vor, z.B. bei der Berechnung eines quadratischen Restsymbols
durch wiederholte Anwendung des Reziprozitätsgesetzes. Es wäre interessant zu wis-
sen, wie es damit z.B. bei der Feststellung, ob eine Zahl Primzahl ist, steht u. wie stark im
allgemeinen bei finiten kombinatorischen Problemen die Anzahl der Schritte gegenüber
dem blossen Probieren verringert werden kann.

Ich weiss nicht, ob Sie gehört haben, dass “Posts problem” (ob es unter den Proble-
men pDyqΦpy, xqmit rekursivem Φ Grade der Unlösbarkeit gibt) von einem ganz
jungen Mann namens Richard Friedberg in positivem Sinn gelöst wurde. Die Lösung,
abgesehen von der Aufstellung der Axiome, ist sehr elegant. Leider will Friedberg nicht
Mathematik, sondern Medizin studieren (scheinbar unter dem Einfluss seines Vaters).

Was halten Sie übrigens von den Bestrebungen, die Analysis auf die verzweigte
Typentheorie zu begründen, die neuerdings wieder in Schwung gekommen sind?
Es ist Ihnen wahrscheinlich bekannt, dass Paul Lorenzen dabei bis zur Theorie des
Lebesgueschen Masses vorgedrungen ist. Aber ich glaube, dass in wichtigen Teilen
der Analysis nicht eliminierbare imprädikative Schlussweisen vorkommen. Ich würde
mich sehr freuen, von Ihnen persönlich etwas zu hören; u. bitte lassen Sie es mich wis-
sen, wenn ich irgend etwas für Sie tun kann.

Mit besten Grüssen u. Wünschen, auch an Ihre Frau Gemahlin.
Ihr sehr ergebener

Kurt Gödel

PS. Ich gratuliere Ihnen bestens zu der Auszeichnung, die Ihnen von der amerik.
Regierung verliehen wurde.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 521

4 EXPSPACE

A useful blog: https://rjlipton.wordpress.com.

Lipton maintains a very interesting blog. There is a translation

from Gödels lost letter, many more historical remarks as well as

very recent developments, e.g. the quasipolynomial complexity

of graph-isomorphism claimed by Bobai in November 2015).
Princeton, 20 March 1956
Dear Mr. von Neumann:
With the greatest sorrow I have learned of your illness. The news came to me as quite unexpected. Morgenstern already last summer told me of a bout of weakness you once had,
but at that time he thought that this was not of any greater significance. As I hear, in the last months you have undergone a radical treatment and I am happy that this treatment was
successful as desired, and that you are now doing better. I hope and wish for you that your condition will soon improve even more and that the newest medical discoveries, if
possible, will lead to a complete recovery.
Since you now, as I hear, are feeling stronger, I would like to allow myself to write you about a mathematical problem, of which your opinion would very much interest me: One can
obviously easily construct a Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there is a proof of F of length
n (length = number of symbols). Let Ψ(F,n) be the number of steps the machine requires for this and let Φ(n) = maxF Ψ(F,n). The question is how fast Φ(n) grows for an optimal
machine. One can show that Ψ(n)ě kn. If there really were a machine with Φ(n)„ k n (or even„ k n2), this would have consequences of the greatest importance. Namely, it
would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be completely
replaced by a machine. After all, one would simply have to choose the natural number n so large that when the machine does not deliver a result, it makes no sense to think more
about the problem. Now it seems to me, however, to be completely within the realm of possibility that Φ(n) grows that slowly. Since it seems that Φ(n)ě k n is the only estimation
which one can obtain by a generalization of the proof of the undecidability of the Entscheidungsproblem and after all Φ(n)„ kn (or„ kn2) only means that the number of steps
as opposed to trial and error can be reduced from N to log N (or (log N)2). However, such strong reductions appear in other finite problems, for example in the computation of the
quadratic residue symbol using repeated application of the law of reciprocity. It would be interesting to know, for instance, the situation concerning the determination of primality of
a number and how strongly in general the number of steps in finite combinatorial problems can be reduced with respect to simple exhaustive search.
I do not know if you have heard that “Post’s problem”, whether there are degrees of unsolvability among problems of the form (D y) Φ(y,x), where Φ is recursive, has been solved in
the positive sense by a very young man by the name of Richard Friedberg. The solution is very elegant. Unfortunately, Friedberg does not intend to study mathematics, but rather
medicine (apparently under the influence of his father). By the way, what do you think of the attempts to build the foundations of analysis on ramified type theory, which have
recently gained momentum? You are probably aware that Paul Lorenzen has pushed ahead with this approach to the theory of Lebesgue measure. However, I believe that in
important parts of analysis non-eliminable impredicative proof methods do appear.
I would be very happy to hear something from you personally. Please let me know if there is something that I can do for you. With my best greetings and wishes, as well to your wife,
Sincerely yours,
Kurt Gödel
P.S. I heartily congratulate you on the award that the American government has given to you.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 522

https://rjlipton.wordpress.com

4 EXPSPACE
4.1 Complexity classes

4.1 Complexity classes

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 523

4 EXPSPACE
4.1 Complexity classes

Here are some classical complexity classes:
Definition 4.1 (From L to NEXPSPACE)

L :“ DSPACEplog nq
NL :“ NSPACEplog nq
P :“

Ť

iě1 DTIMEpniq
NP :“

Ť

iě1 NTIMEpniq
PSPACE :“

Ť

iě1 DSPACEpniq
NSPACE :“

Ť

iě1 NSPACEpniq

EXP :“
Ť

iě1 DTIMEp2n
i

q

NEXP :“
Ť

iě1 NTIMEp2n
i

q

EXPSPACE :“
Ť

iě1 DSPACEp2n
i

q

NEXPSPACE :“
Ť

iě1 NSPACEp2n
i

q

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 524

4 EXPSPACE
4.1 Complexity classes

The unions are complexity classes

Note that it is not clear that the unions on the preceding
page are indeed complexity classes, i.e. they have the form
Cpfpnqq for a function fpnq . We need Theorem 3.25 on
Slide 508 to establish this fact.

Definition 4.2 (co-C)
Let C be any of the above complexity classes. We define
co-C as the class of languages L, where the complement L
(“ Σ˚zL) is in C.

Obviously, all classes C defined on deterministic TM’s are
closed under complements. For those classes, co-C “ C.

Nondeterministic classes
If Cpfpnqq Ď co-Cpfpnqq then Cpfpnqq “ co-Cpfpnqq,
because L “ L.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 525

4 EXPSPACE
4.1 Complexity classes

We define a co-C machine M. This is a machine M which
passes its input to a machine M1 running in C, waits for the
answer and switches the result: reject becomes accept
and vice versa.

This is uncritical, if the machines considered are
deterministic: M accepts an input w iff M1 does not
accept it.
If C is any non-deterministic class, which means that
M1 is a NTM, then there might be accepting and
non-accepting computations.
Remember that a NTM does not accept an input w, if
all computations end in non-accepting states. We also
say that the machine rejects the input.
We define: M accepts an input iff M1 rejects it.
M does not accept w iff M1 accepts w (i.e. if there is at
least one accepting computation).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 526

4 EXPSPACE
4.1 Complexity classes

For all nondeterministic classes, with the
exception of

NEXPSPACE, which is identical to
EXPSPACE “ co-EXPSPACE,
NSPACE, which is identical to
PSPACE “ co-PSPACE,
NL, where NL “ co-NL follows from the
famous result of Immerman/Szelepcsényi
(Theorem 4.4, Slide 533, see also
Theorem 1.72 on Slide 161),

it is unknown whether they are closed under
complements.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 527

4 EXPSPACE
4.1 Complexity classes

Question:

What are the relations between the classes from
Definition 4.1?

With Savitch’s Theorem 3.21 (Slide 487), we get
(using the hierarchy on Slide 476, Theorem 3.18):

PSPACE “ NSPACE
Ť

iě1 DSPACEpniq “
Ť

iě1 NSPACEpniq

Similarly, we get

EXPSPACE “ NEXPSPACE

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 528

4 EXPSPACE
4.1 Complexity classes

Using Theorem 3.20 (3), we have NL Ď P.

We get (Theorem 3.17):

L Ň NL Ň P Ň NP Ň PSPACE

where at least one inclusion is strict (which
one is unknown): the hierarchy
DSPACEplogi nq is strict (see Slide 476).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 529

4 EXPSPACE
4.1 Complexity classes

Similarly:

P Ř EXP Ř EXPSPACE

(because the hierarchies DTIMEpniq and
DTIMEp2n

i

q are strict), and

PSPACE Ř EXPSPACE

(because the hierarchy DSPACEpniq is strict).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 530

4 EXPSPACE
4.1 Complexity classes

Obviously

EXP Ď NEXP Ď EXPSPACE.

With Theorem 3.20 (2), we have

PSPACE Ď EXP.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 531

4 EXPSPACE
4.1 Complexity classes

Lemma 4.3 (NSPACEpnq =Type-1)

The class of contextsensitive languages is exactly
the class NSPACEpnq.

Proof.

The class CSL is defined as a particular class of
grammars. By Theorem 1.63 we get the
connection to NSPACEpnq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 532

4 EXPSPACE
4.1 Complexity classes

Theorem 4.4 (Immerman/Szelepcsényi)

Let Spnq ě log n. Then
NSPACEpSpnqq “ co-NSPACEpSpnqq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 533

4 EXPSPACE
4.1 Complexity classes

Corollary 4.5 (CSL is closed under complements)

The class of contextsensitive languages is closed
under complements.

Corollary 4.6 (Tight Space Hierarchy for NSPACEpSpnqq)

Let S2pnq be space constructible. We also assume,
that both S1pnq and S2pnq are ě log n.

If infnÑ8
S1pnq
S2pnq

“ 0 then
NSPACEpS1pnqq Š NSPACEpS2pnqq.

Therefore we have an analogue of Theorem 3.17
for NSPACEpfpnqq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 534

4 EXPSPACE
4.1 Complexity classes

(Proof of Corollary 4.6).

The proof follows the analogous statement for
DSPACEpSpnqq (see Theorem 3.17). There we used the fact
that a DTM can easily switch between acceptance and
rejection. This is not true for a NTM. Therefore we reword
our definition on the top of Slide 475 as follows:

M accepts w iff (1) M can do the simulation in time S2pnq
and (2) Mw terminates and accepts w (for a contradiction,
we will use the complement of the language instead).
Obviously, LpMq is in NSPACEpS2pnqq.
Assume L is accepted by M in NSPACEpS1pnqq. So there is
M accepting L (Theorem 4.4). Choose w where Mw “M

and S1p|w|q
S2p|w|q

is small enough. Then M accepts w iff Mw “M

does. This is a contradiction.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 535

4 EXPSPACE
4.1 Complexity classes

(Proof of Theorem 4.4).
The original formulation required that Spnq be space
constructible. But this is not needed. We base the proof on
two lemmas, that are of independent interest and are
somehow related to the proof of Theorem 4.15.

Lemma 4.7 (Number of Reachable Nodes)

Given a directed graph with n nodes and a particular node x,
the number k of nodes reachable from x can be computed
in NSPACEplog nq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 536

4 EXPSPACE
4.1 Complexity classes

(Proof of Theorem 4.4 (2)).
The key in the proof of the theorem is the following lemma.
This is exactly the concept of a co-C machine as introduced
on Slide 526.

Lemma 4.8 (Rejecting NTM)

Given a directed graph, two nodes x, y of the graph and the
number k of nodes reachable from x, there is NTM working in
log n space for which the following holds:
If y is reachable from x, then all computations end in

non-accepting states;
if y is not reachable from x, then there is at least one

accepting computation.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 537

4 EXPSPACE
4.1 Complexity classes

(Proof of Theorem 4.4 (3)).
Let L be a language in NSPACEpSpnqq. So there is a NTM
machine M, space bounded by pSpnqq, accepting L. We have to
construct a machine M1, space bounded by Spnq, accepting L.
Given input w, we consider the following directed graph

nodes: all configurations of M.

edges: there is an edge from config to config 1, if M can reach
config 1 from config in one step.

Wlog we assume there is only one accepting configuration (we
can assume that the NTM has only one accept state). Note that
w P L iff there is no computation ending in the accept state.
We define the NTM M1 as follows:

1 Compute the number of nodes reachable from configinitial .

2 Use this number and check, whether configaccept is reachable
from configinitial . In that case reject, otherwise accept.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 538

4 EXPSPACE
4.1 Complexity classes

(Proof of Theorem 4.4 (4)).
Note that we do not explicitly construct (and write down)
the graph: it is implicitly represented by M.

Obviously the following holds:
M1 accepts L.
M1 is log n space-bounded in the number n of nodes in
the graph (the two lemmas).

How many nodes are there?
OpcSpnqq, where c is the size of the alphabet.
Thus M1 is Spnq space-bounded.

Therefore L P co-NSPACEpSpnqq, thus:
NSPACEpSpnqq Ď co-NSPACEpSpnqq. The converse
implication follows from that immediately (see the remark
on Slide 525).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 539

4 EXPSPACE
4.1 Complexity classes

(Proof of Lemma 4.7 (1)).
Let Si be the set of nodes reachable from x in at most i
steps. We compute Sk from Sk-1.
The problem in doing this is to determine whether a node is
reachable in one step from Sk by only knowing |Sk-1|: and
doing it in NSPACEplog nq.
The algorithm to achieve this follows on Slide 542.

The outer loop (for k) first gets |S0| “ |txu| “ 1. The next
iteration, k “ 1, determines |S1|, the neighbours of x. In
each iteration, the nodes from the previous one, Sk-1,
are counted again.
The l-counter is incremented (or not) for each w (if the
flag is true) and thus counts Sk.
For fixed w, the counter i counts the number of nodes
in Si that have been tried.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 540

4 EXPSPACE
4.1 Complexity classes

(Proof of Lemma 4.7 (2)).
The inner for-loop (lines 6–15) guesses nodes v in Si.
When one of them is adjacent to w, the flag is set to
true. If there is none, i is incremented and the search
goes on. So eventually an i, small as possible, is
computed. This i is compared to |Sk-1|: if it is smaller
then not all possible candidates have been tried. This
is because the nondeterministic guesses were wrong
and some v’s were discarded. In that case, one has to
start all over again (reject).
At the end of the for-loop, the flag tells us whether
w P Si`1.
l is only incremented, when all nodes in Si have been
checked.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 541

4 EXPSPACE
4.1 Complexity classes

1: for k=0, . . . , n-1 do
2: l :“ 0
3: for all nodes w of G do
4: i :“ 0
5: flag :“ false
6: for all nodes v of G do
7: nondeterministically goto line 8 or line 14:
8: if v is reachable from x in at most i steps then
9: if w is a neighbour of v then
10: flag :“ true
11: else
12: i :“ i` 1 % only when v P Si and w not adjacent to v
13: end if
14: end if
15: end for % if flag is true, then w P Si`1

16: if i š |Sk-1| then
17: reject % because not all candidates have been checked (line 7)
18: else
19: if flag “ true then
20: l :“ l ` 1 % the w is counted as an element of Sk
21: end if
22: end if
23: end for
24: end for
25: |Sk| :“ l

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 542

4 EXPSPACE
4.1 Complexity classes

(Proof of Lemma 4.8).

It is easy to define a machine which accepts if the
two nodes are reachable: see the proof of
Theorem 4.15. Here we do not even need the
number k.
But we want a NTM that rejects. The idea is the
following

If there are k different nodes reachable from x
and they are all different from y, then y is not
reachable from x.

The algorithm to achieve this follows on
Slide 544.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 543

4 EXPSPACE
4.1 Complexity classes

1: i :“ 0
2: for all nodes v of G do
3: nondeterministically goto line 4: or line 11:
4: if v is reachable from x then
5: if v “ x then
6: reject
7: else
8: i :“ i` 1
9: end if

10: end if
11: end for
12: if i š k then
13: reject
14: else
15: accept
16: end if

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 544

4 EXPSPACE
4.2 Reductions

4.2 Reductions

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 545

4 EXPSPACE
4.2 Reductions

We have already introduced in Chapter 2 several
notions of reduction. We have also defined the
most difficult problems in a given class: those,
which all others in the class can be reduced to.
We need fine-grained reductions.

The notion of a most difficult problem depends
on the underlying notion of reduction.
Such problems are called complete in the given
class wrt the notion of reducibility.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 546

4 EXPSPACE
4.2 Reductions

Definition 4.9 (P-Time-, log-Space Reducibility)
Let L1, L2 be two languages.
Polynomial Time: L2 is P-time reducible to L1 if there is a

polynomial time-bounded DTM M such that for
each input w a Mpwq is generated, such that

w P L2 iff Mpwq P L1 pL2 ĺpol L1q

Logarithmic Space: L2 is log-space reducible to L1 if there
is a log space-bounded offline-DTM M, such
that for each input w an output Mpwq is
generated, such that

w P L2 iff Mpwq P L1 pL2 ĺlog L1q

The output tape is “read-only” and the head
never moves to the left.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 547

4 EXPSPACE
4.2 Reductions

Reductions

How does this notion relate to the ones defined in
Definition 2.85 (Slide 423)?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 548

4 EXPSPACE
4.2 Reductions

Lemma 4.10 (P-Time- and log Space Reductions)

1 Let L2 ĺpol L1. Then: L2 P NP if L1 P NP,
L2 P P if L1 P P.

2 Let L2 ĺlog L1. Then
L2 P P if L1 P P

L2 P DSPACEplogk nq if L1 P DSPACEplogk nq
L2 P NSPACEplogk nq if L1 P NSPACEplogk nq

3 The composition of two log space reductions is again a
log-space reduction. Similarly for polynomial time
reductions.

4 log-space reducibility implies polynomial time reducibility.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 549

4 EXPSPACE
4.2 Reductions

Definition 4.11 (Complete, Hard)
Let C be any complexity class. For classes below or equal to
NP, we define:

A language L is called C-complete if L P C and each
language L1 P C is log-space reducible to L.
A language L is called C-hard if each language L1 P C is
log-space reducible to L.

For classes above or equal to PSPACE, we define:
A language L is called C-complete if L P C and each
language L1 P C is P-time reducible to L.
A language L is called C-hard if each language L1 P C is
P-time reducible to L.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 550

4 EXPSPACE
4.2 Reductions

Attention:

If there exists one NP-hard problem in P, then
P =NP.
If there exists one PSPACE-hard problem is
in P, then P =PSPACE.
If P ‰ NP, then no NP-complete problem is
solvable in polynomial time.
All problems in L are L-complete (wrt. ĺlog).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 551

4 EXPSPACE
4.3 Structure of NP

4.3 Structure of NP

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 552

4 EXPSPACE
4.3 Structure of NP

Intuitively:
Problems in P can be efficiently solved.
Those in NP need most probably exponential
time.
NP is the class of statements with easily
verifiable proofs.
PSPACE is a huge class, much bigger than P
or NP.
L=DSPACEplog nq is a small class in P and
even smaller in PSPACE.
NL=NSPACEplog nq is also small in P and
even smaller in PSPACE.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 553

4 EXPSPACE
4.3 Structure of NP

Search Problems
On the next few slides we introduce the P “ NP problem in
terms of search problems.

A binary relation R Ď Σ˚ ˆ Σ˚ is called
polynomially-bounded if there is a polynomial p such
that for all xx, yy P R: |y| ď pp|x|q.
Given a polynomially-bounded binary relation R, the
associated search problem is the following: Given x
find y such that xx, yy P R or show that such y does
not exist.
Psearch consists of those relations, that can be computed
in polynomial time.
NPsearch consists of those relations, where a potential
candidate xx, yy can be verified in polynomial time.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 554

4 EXPSPACE
4.3 Structure of NP

Definition 4.12 (Psearch , NPsearch)
Let R Ď Σ˚ˆΣ˚ be a polynomially bounded binary relation.

Psearch : is the class of associated search problems that
are solvable in polynomial time: There is a
polynomial time algorithm that given x
computes y such that xx, yy P R if it exists, or
outputs “No” otherwise.

NPsearch : is the class of associated search problems that
are verifiable in polynomial time: There is a
polynomial time algorithm that given xx, yy
determines whether xx, yy P R or not.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 555

4 EXPSPACE
4.3 Structure of NP

Theorem 4.13

P =NP iff Psearch =NPsearch

Proof.

 exercise

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 556

4 EXPSPACE
4.3 Structure of NP

We define:
Definition 4.14 (Reachability: STCON, USTCON)

How to decide whether there is a path between two
vertices in a graph. This problem can be stated for
directed and for undirected graphs.

LSTCON :“ txG, s, ty : G directed graph, s, t vertices
there is a directed path from s to tu

LUSTCON :“ txG, s, ty : G a graph, s, t vertices
there is a path between s to tu

While STCON is complete for NL (relatively easy), USTCON
is even in L (and thus complete for this class). The latter is a
highly nontrivial result and was open for several decades.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 557

4 EXPSPACE
4.3 Structure of NP

Theorem 4.15 (Completeness of STCON and USTCON)

While USTCON (see Definition 4.14) is complete for
L “ DSPACEplog nq, STCON is complete for
NL “ NSPACEplog nq (both under log space
reductions).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 558

4 EXPSPACE
4.3 Structure of NP

(Proof of Theorem 4.15).
We only do STCON, the other result is too difficult for this
course (note that USTCON P L is the difficult part). Given a
directed graph with n nodes and two nodes s, t.

Start with s and nondeterministically guess the next
node (it is also allowed not to move at all in this step).
Keep only the current node on the tape, not the whole
path, and the counter. Both need only log n space.
Terminate after exactly n´ 1 steps.
Check, whether t is the current node.
If yes: accept, else reject.

This shows that STCON is in NL.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 559

4 EXPSPACE
4.3 Structure of NP

(Proof of Theorem 4.15 (2)).
We have to show completeness of STCON under log space
reductions. Let L be any language in NSPACEplog nq. Thus
there is a NTM M accepting L and working in log space. We
consider the ID’s (instantaneous descriptions) of M when
started with an input x.

The length of an ID is 4 log n: the storage tape, the
current state, the position of the input head and the
position of the storage head.
Note that we do not consider the input x, only the
position of the input head (otherwise it would not be
in log n space).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 560

4 EXPSPACE
4.3 Structure of NP

(Proof of Theorem 4.15 (3)).

We describe a log n space-bounded offline DTM M1,
which works on an input x and produces a directed
graph Gx with nodes s, t such that

Mpxq Ó iff s is reachable from t in Gx

Nodes of Gx are the ID’s of the previous slides
It starts with the initial ID (M started on x) and cycles through
the ID’s by simulating M.
But how does it know which ID next: x is not part of an ID?
It does so by positioning its head on the right place of its input
x (which is encoded in the current ID).
It is obvious how and when to generate the edges from one ID
to all possible successor ID’s (note M is a NTM).

The right hand side is an instance of STCON. Therefore
we have reduced L (which was any language in
NSPACEplog nq) to STCON.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 561

4 EXPSPACE
4.3 Structure of NP

To motivate the above intuitions we consider the problem to
decide whether a given formula is satisfiable (satisfiability).

Definition 4.16 (Boolean Expressions)

Let Σsat :“ t^,_, , p, q, x, 0, 1u. This alphabet suffices, to
define arbitrary boolean expressions w over the infinite
variable set tx1, x2, . . .u. A variable xi is encoded by the sign
x followed by i in binary notation.
As usual each boolean expression can be assigned a
truthvalue t (true) or f (false) depending on the valuation of
the variables.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 562

4 EXPSPACE
4.3 Structure of NP

Here are a few examples:
1 px1 _ x2q ^ x1 evaluates to t for x1 “ f and
x2 “ f.

2 px1 _ x2q ^ x1 evaluates to f for x1 “ t (and
the value of x2 does not matter) or for x1 “ f
and x2 “ t.

3 x1 _ x1 always evaluates to t.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 563

4 EXPSPACE
4.3 Structure of NP

The satisfiability problem is the problem to decide whether
a given boolean expression can evaluate to t, i.e. to find an
appropriate valuation of the variables.

Definition 4.17 (Satisfiability: SAT)

Lsat :“ tw P Σ˚sat : w is a well formed formula,
there is a valuation for the xi,
s.t. w evaluates to true u

Often it is simpler to assume that a formula is in a certain
normalform. In particular, formulas of the form

px1 _ x2q ^ p x1 _ x3q ^ px2 _ x3q

play an important role.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 564

4 EXPSPACE
4.3 Structure of NP

Definition 4.18 (SAT, kkk-CNF, kkk-DNF)

A literal li is a variable xi or its negation xi. A clause is a
disjunction of literals. We define

DNF: A formula is in disjunctive normalform, if it is of
the form pl11^ . . .^ l1n1q_ . . ._plm1^ . . .^ lmnmq.

CNF: A formula is in conjunctive normalform, if it is
of the form
pl11 _ . . ._ l1n1q ^ . . .^ plm1 _ . . ._ lmnmq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 565

4 EXPSPACE
4.3 Structure of NP

Definition (Continued):
kkk-DNF: A formula is in kkk-DNF if it is in DNF and each

disjunction contains exactly kkk literals.
kkk-CNF: A formula is in kkk-CNF if it is in CNF and each

disjunction contains exactly kkk literals.

Note that we could also define these normalforms by
defining at most k literals. The reason is that we can always
do padding and fill the formulae by dummy variables. While
the formulae get longer, they only get longer by a constant
amount (k is fixed and the length of the formulae is not
restricted).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 566

4 EXPSPACE
4.3 Structure of NP

We define:
Definition 4.19 (Satisfiability: k-SAT)

Lk-sat :“ tw P Σ˚sat : w is in k-CNF,
w is a well formed formula,
there is a valuation for the xi,
s.t. w evaluates to trueu

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 567

4 EXPSPACE
4.3 Structure of NP

Lemma 4.20 (DNF and 2-SAT)

DNF: Satisfiability of formulae in DNF is in
DTIMEpn log nq.

2-SAT: L2-sat is NL-complete.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 568

4 EXPSPACE
4.3 Structure of NP

Proof.
The first part is trivial. For the second one, it suffices to
show that L2-sat is in NL. Consider a directed graph: The
nodes are the literals (and their negations) occurring in the
formula. For each clause L1 _ L2 we add a directed edge
from L1 to L2 and from L2 to L1 (in case L is already
negated, i.e. of the form C, then L is considered as C).
It remains to compute the strongly connected components
of the graph. The formula is satisfiable iff no strongly
connected component contains a literal and its negation.
In that case, we get a valid valuation by setting A to true, if
 A is not reachable from A. Otherwise it is set to false.
This shows that STCON log space reduces to L2-sat.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 569

4 EXPSPACE
4.3 Structure of NP

Question:
How to show that a given problem is in a certain complexity
class?

Answer
Reduce it to a known one

The same with a complete problem.
But we need one to start with!

NL: In that case, we used STCON and showed
directly, that all NSPACEplog nq languages
reduce to it.

NP: Here Cook showed in 1971 how to simulate the
computation of any NTM that is polynomially
time-bounded, by SAT.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 570

4 EXPSPACE
4.3 Structure of NP

Theorem 4.21 (Characterization of NP)

A language L is in NP iff there is a language L1 in P and a
k ě 0, s.t. for all w P Σ:

w P L iff there is a c : xw, cy P L1 and |c| ă |w|k.

c is called witness or certificate) of w in L. A DTM accepting
L1 is called verifier of L.

Proof.
 exercise

Colloquial formulation:

A decision problem is in NP iff each yes instance has a
small certificate (i.e. its length is polynomial in the input),
which can be verified in polynomial time.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 571

4 EXPSPACE
4.3 Structure of NP

Theorem 4.22 (SAT is NP-complete)

Lsat is NP-complete.

Proof.
The original proof was given by Cook in 1971. That
Lsat P NP is simple: just guess a valuation. Verifying it is
trivial (in linear time).
Now let L be any language in NP. Then there is a NTM M
accepting L and a polynomial ppnq such that M is ppnq
time-bounded.

In the following we describe a log space algorithm that,
on input x produces a formula φx with

M accepts x iff φx is satisfiable

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 572

4 EXPSPACE
4.3 Structure of NP

(Proof of Theorem 4.22 (2)).
1 We simulate computations of M.
2 Wlog each computation has exactly the form (where for

each ID |βi| “ ppnq): #β0#β1# . . .#βppnq.
3 Wlog we use new symbols that encode in each βi: (1)

the state, (2) the symbol currently scanned, (3) the
number mβiP N encoding which move is taken in ID i
to get to βi`1. Let F be the set of symbols encoding an
accepting state.

4 For each symbol X occurring in the computation and
each 0 ď i ť pppnq ` 1q2 we use boolean variables ci,X .
The idea is that ci,X is true iff the i’th symbol in the
computation is identical to X. E.g.
c0,#, cppnq`1,#, . . . , cppnqpppnq`1q,# are all true.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 573

4 EXPSPACE
4.3 Structure of NP

(Proof of Theorem 4.22 (3)).
We construct Ex such that

Ex is true for a valuation val of the ci,X
iff

tci,X : valpci,Xq “ trueu corresponds to a valid com-
putation of M.

Our aim is to ensure that Ex expresses the following:
(1) String: For each j with cj,Y P tci,X : valpci,Xq “ trueu (Y

arbitrary), there is exactly one Y0 such that cj,Y0 is
true.

(2) Initial: β0 is the initial ID for M with input x.
(3) Final: The last ID contains an accepting state.

(4) Move: Each ID follows from the previous one by the
move that is indicated by mβi.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 574

4 EXPSPACE
4.3 Structure of NP

(Proof of Theorem 4.22 (4)).
Ex is the conjunction of the following

(1)
ľ

i

«

ł

X

ci,X ^

˜

ł

X‰Y

pci,X ^ ci,Y q

¸ff

(2) blackboard 4.1

(3)
ł

ppnqpppnq`1qšišpppnq`1q2

˜

ł

XPF

ci,X

¸

(4) We can easily define a predicate QpW,X, Y, Zq which says that “symbol Z
could appear in position j of some ID, if W,X, Y are the symbols in
positions j ´ 1, j, j ` 1 of the previous ID”. We can also arrange that
QpW,#, X,#q is always true.

ľ

ppnqšjšpppnq`1q2

¨

˝

ł

QpW,X,Y,Zq

pcj´ppnq´2,W ^ cj´ppnq´1,X ^ cj´ppnq,Y ^ cj,Z

˛

‚

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 575

4 EXPSPACE
4.3 Structure of NP

Example 4.23 (More NP-Complete Problems)
Is a 3-SAT formula satisfiable?
Is a directed graph hamiltonian? (hamiltonian circle)
Is there a clique of size k in a graph? (maximum clique)
Is a graph colorable with 3 colors? (3-colorability)
Given a finite set of numbers and a number n. Is there a
subset which sums up to n?
(subset sum)

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 576

4 EXPSPACE
4.3 Structure of NP

The following relations are unknown:
1 P ‰ NP.
2 NP ‰ co-NP.
3 P ‰ PSPACE.
4 NP ‰ PSPACE.
5 L ‰ NL.
6 L ‰ NP.

But the following holds:
1 If P “ NP then EXP “ NEXP.
2 L ‰ PSPACE.
3 P ‰ EXP.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 577

4 EXPSPACE
4.3 Structure of NP

Lemma 4.24 (Ladner, 1975)

If NP ‰ P, then there are problems in NP that are
not NP-complete.

Proof.

 blackboard 4.2

Candidates for such problems are Graph-Isomorphism (are
two given graphs isomorphic?), or Factorization.
Is the complement of Graph-Isomorphism in NP?
Note (added in proof): Graph-Isomorphism is
quasipolynomial (Nov. 2015, Bolyai). Many people expect it
to be in P (might take another decade to prove).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 578

4 EXPSPACE
4.3 Structure of NP

Lemma 4.25

If NPX co-NP contains a NP-hard language,
then NP =co-NP.

Proof.

 blackboard 4.3

Lemma 4.26

If NP ‰ co-NP, then there are non-trivial
languages in NP that can not be reduced to any set
in co-NP.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 579

4 EXPSPACE
4.3 Structure of NP

Proof (of Lemma 4.26).

Let L1 P co-NP. Let L be nontrivial such that
L ĺpol L

1. Thus L ĺpol L1 via a reduction f . But
then L P NP (because txx, yy : xfpxq, yy P R2u is a
NP relation: R2 corresponds to L1)). Then
L P co-NP.

In fact, it is conjectured that

P Ř NPX co-NP

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 580

4 EXPSPACE
4.3 Structure of NP

Other known facts:
1 TAUT P co-NP. It is not known whether

TAUT P NP.
2 Primes P co-NP (trivial), and Primes P NP

(Pratt 1975).
3 In fact Primes P P

(Agrawal/Kayal/Saxena 2002).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 581

4 EXPSPACE
4.4 Oracles for P, NP

4.4 Oracles for P, NP

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 582

4 EXPSPACE
4.4 Oracles for P, NP

We have seen that diagonalization is a
powerful method.
Maybe one day one can settle the P =NP
question using diagonalization?
Unfortunately, this is not the case.
Any proof of NP Ę P by diagonalization
relativizes: for all oracles C: NPC

Ę PC.
One can define oracles A, B such that both
PA “ NPA and PA ‰ NPA.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 583

4 EXPSPACE
4.4 Oracles for P, NP

The idea of an Oracle TM has already been introduced in
Definition 2.84.

Definition 4.27 (PA,NPA)

Let A Ď Σ˚ be any language.
PA: PA is the set of all languages that are accepted

by a DTM with oracle A in polynomial time.
NPA: NPA is the set of all languages that are accepted

by a NTM with oracle A in polynomial time.

Observation
If diagonalization can be used to show NP Ę P, then for
each language A: NPA

Ę PA.

 blackboard 4.4

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 584

4 EXPSPACE
4.4 Oracles for P, NP

Is there an oracle A such that PA contains
undecidable languages? exercise

Theorem 4.28 (Baker/Gill/Solovay)

There exist oracles A,B with:
PA “ NPA,
PB ‰ NPB.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 585

4 EXPSPACE
4.4 Oracles for P, NP

Proof.

PA “ NPA: Let A be any PSPACE-complete problem.
Then

NPA
Ď NSPACE “ PSPACE Ď PA

which implies equality.
PB ‰ NPB: For a language B let

LpBq “ tx| Dw p|x| “ |w| ^ w P Bqu.

Obviously, LpBq P NPB. We want to construct a
B with LpBq R PB.
Enumerate all Oracle TMs M1, . . . ,Mk, . . . and
construct a language B with LpBq ‰ LpMB

k q by
diagonalization. exercise

Can the same method be used to show that
NPB

‰ co-NPB?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 586

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

4.5 PH: Polynomial Hierarchy

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 587

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

The SAT problem gives rise to a natural extension.
Instead of asking for a valuation of the variables,
why not asking questions of the form

Is there for all x, y an assignment for z such
that px_ y _ zq ^ p x_ zq is true?

We can write this in more compact form as

@x @y Dz ppx_ y _ zq ^ p x_ zqq

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 588

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

We define the language LQBF of quantified boolean
formulae as follows:

Definition 4.29 (LQBF)

Quantified boolean formulae are defined inductively:
A variable x is a QBF. The occurrence of x is free.
If φ, ψ are QBF, then so are φ, φ^ ψ, φ_ ψ. The
occurrence of variables in these expressions is the same
as in φ, ψ.
If φ is QBF, then Dxφ and @xφ are as well. The scope of
@, D are all free occurrences of x. The occurrence of x in
Dxφ or @xφ are bound.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 589

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

Definition 4.30 (Satisfiability: TQBF)

LTQBF :“ tφ : φ P LQBF is a well-formed formula,
φ does not have any free variables,
φ is trueu

How can we decide whether a given φ P LQBF
without free variables is true or not?

We systematically get rid of all quantified variables by instantiating
them to (all combninations of) true or false (and keeping in mind
whether they are universally or existentially quantified). We end
up with a (finite) set of boolean formulae that we can all check.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 590

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

Theorem 4.31 (LTQBF is PSPACE-complete)

The problem whether a QBF is true is
PSPACE-complete.

Proof.

 blackboard 4.5

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 591

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

Remember that the original SAT problem
concerned arbitrary (existential) formulae. k-SAT
required the formulae to be in a certain form
(CNF). Can we define an analogue for TQBF?
Definition 4.32 (Satisfiability: QSAT)

LQsat :“ txQ1x1Q2 . . . Qnxn, φy : φ P Σ˚sat,
Qi alternating quantifiers of the form @ bzw. D,

all variables in φ are among x1, . . . , xn,

such that the formula Q1x1Q2 . . . Qnxnφ is true u

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 592

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

Why do we require that the quantifiers are
alternating? Could we also allow formulae of the
form:

p@x@ypx_ yqq ^ pDz@wpz ^ wqq

Can we transform any LQBF formula into one of
the form required for LQsat? I.e. does the
following hold

LTQBF ĺpol LQsat?
Yes, here is an algorithm (exercise).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 593

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

The last algorithm leads to the notion of an
alternating Turing machine.

Let us consider the acceptance of an NTM. We can
view such an NTM as consisting of existential
states:

such a state is accepting, if there is at least
one outgoing path that is accepting,
it is non-accepting, if all outgoing paths are
either rejecting or infinite.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 594

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

We are now ready to define the notion of an

Definition 4.33 (Alternating Turing Machine (ATM))
An alternating Turing machine, ATM for short, is a NTM where
the following holds:

1 each state is either an @ state, a D state or a normal state,

2 @ and D states have exactly two children (outgoing paths),

3 a normal state has exactly one child.

A state s is accepting, iff
1 s is an @ state and all its children are accepting states,

2 s is an D state and at least one of its children is an accepting
state,

3 s is a normal state and its child is accepting.

An ATM is accepting, if its start state is accepting.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 595

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

Definition 4.34 (Polynomial Hierarchy, ATM version)

We define APTIME to be the set of all languages that can
be recognized by alternating Turing machines in
polynomial time. We also define:

ΠP
i : the set of languages that can be recognized by

ATM’s in polynomial time, where the first special state is
an @ state, and there are at most i changes between the
states
ΣP
i : the set of languages that can be recognized by

ATM’s in polynomial time, where the first special state is
an D state, and there are at most i changes between the
states.

Finally: PH :“
ď

iPN

pΠP
i Y ΣP

i q

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 596

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

Lemma 4.35 (Relation between NTM’s and ATM’s)

NP “ ΣP
1 and co-NP “ ΠP

1 .

Proof.

We use Theorem 4.21.
NP Ď ΣP

1 : The ATM guesses the witness c (from
Theorem 4.21) and verifies whether xw, cy is in L1.
ΣP

1 Ď NP: The ATM has only D-states, so it is a
NTM.

co-NP “ ΠP
1 is similar.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 597

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

Analogously to the sequential classes,
APTIMEpfpnqq consists of all languages
acceptable by an fpnq time bounded ATM.

Theorem 4.36 (APTIMEpfpnqq vs. DSPACEpfpnqq)

Let fpnq ě n.

1 It holds that
APTIMEpfpnqq Ď DSPACEpfpnqq

2 It holds that
DSPACEpfpnqq Ď APTIMEpf 2pnqq

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 598

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

Proof.
Let M be a f time-bounded ATM. We construct a f
space-bounded DTM M1 that simulates M on input w: it
does a depth-first search on the tree of all configurations
looking for the accepting states. It only accepts if the root
corresponds to an accepting state.
Problem: to store the configuration we need fpnq space,
but the depth is also fpnq, so this gives f 2pnq!!!
To do it in fpnq space, we do not store the configuration
itself, but just the indeterministic choice that led to the
actual configuration (this is done in constant space).

The second result is proved similar to Savitch’s theorem.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 599

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

Corollary 4.37 (PSPACE “ APTIME)

It holds that PSPACE “ APTIME.

Corollary 4.38 (Relation between ATM’s and TQBF)

LTQBF is APTIME-complete.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 600

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

Consider our notion of an oracle TM introduced
in Definition 2.84 on Slide 421. A TM with a
language L as oracle can compute more
languages than the TM alone.

Now suppose L is NP-complete. Then a TM with
oracle L can do as much as a TM with any L1

oracle, where L1 P NP.

Consequently we define NPNP as the class of
languages that can be recognized by a NTM with
oracles in NP in polynomial time. Thus we can
make a polynomial number of calls to arbitrary
NP oracles.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 601

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

Definition 4.39 (MinDNF)

LMinDNF :“ txφ, ky : φ P Σ˚sat,wff, k P N
there is a ψ P Σ˚satsuch that

|ψ| ď k and ψ, φ are equivalent u

MinDNF is certainly in NPNP (Oracle TM of
Definition 2.84) and in ΣP

2 (Hierarchy of
Definition 4.34). In fact, we have the following:
Lemma 4.40

MinDNF is NPNP-complete.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 602

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

Definition 4.41 (Polynomial Hierarchy, Oracle version)

For a complexity class C we denote by PC (resp.
NPC) the class of problems solvable in
deterministic polynomial (resp. nondeterministic
polynomial) time using C-oracles. Let
Σ0 :“ Π0 :“ P and

Σk`1 :“ NPΣk

Πk`1 :“ co-NPΣk

∆k`1 :“ PΣk

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 603

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

1 Thus Σ1 is NP with queries to a P-oracle,
i.e. Σ1 “ NP.

2 Similarly we have Π1 “ co-NP and ∆1 “ P.
3 A problem is in ∆2 “ PNP if it can be solved in

deterministic polynomial time with subcalls to
an NP-oracle.

4 Although the index is 2, ∆2 is considered to
belong to the first level of the polynomial
hierarchy.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 604

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

1 The second level of this hierarchy consists of
Σ2, Π2 and ∆3.

2 Here Σ2 :“ NPNP: nondeterministic
polynomial time with queries to an NP-oracle.

3 Π2 :“ co-NPNP and ∆3 :“ PrNPNP
s.

4 It is immediate that

Σk Y Πk Ď ∆k`1 Ď Σk`1 X Πk`1

5 It has not yet been proved that the inclusions
are proper. That is, it is not known whether
the hierarchy collapses at some point or not.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 605

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

Theorem 4.42 (ATM’s and oracle TM’s correspond)

The hierarchies introduced in Definition 4.41 on
Slide 603 and in Definition 4.34 on Slide 596 are
identical.

 blackboard 4.6
EXP can also be reformulated as the space class
APSPACE, the problems that can be solved by
an alternating Turing machine in polynomial
space. This is one way to see that
PSPACE Ď EXP.

Which problems are PH-complete?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 606

4 EXPSPACE
4.5 PH: Polynomial Hierarchy

Lemma 4.43

1 If there is a PH-complete language, then PH collapses.
2 If Σk “ Πk for a k P N, then PH “ Σk and the hierarchy

collapses.
3 If P = NP, then the polynomial hierarchy collapses

completely, to the 0th level, P.
4 If NP = co-NP, then the polynomial hierarchy collapses

to the first level, NP.
5 If Graph Isomorphism is NP-complete, then the

polynomial hierarchy collapses to the second level,
NPNP.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 607

4 EXPSPACE
4.6 Structure of PSPACE

4.6 Structure of PSPACE

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 608

4 EXPSPACE
4.6 Structure of PSPACE

What do we know about PSPACE?

1 PSPACE is a strict superset of the set of all
context-sensitive languages.

2 PH Ď PSPACE, but it is not known whether
the containment is proper.

3 If PSPACE “ PH, then the polynomial
hierarchy collapses (why?).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 609

4 EXPSPACE
4.6 Structure of PSPACE

We have already considered the word problem
for Typ 1 languages on Slide 153.
Definition 4.44 (LCSG)

LCSG :“ txG,wy : G a contextsensitive grammar
w a word generated by G u

Lemma 4.45 (CSG Ř PSPACE)

LCSG is PSPACE-complete.

But LCSG is contained in DSPACEpn2q, the bottom of PSPACE:
a contradiction?
Compare with Lemma 4.43: here we talk about space, not about
time.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 610

4 EXPSPACE
4.6 Structure of PSPACE

Proof.

Let L by any language in PSPACE, accepted by a
DTM M in space ppnq. We apply padding and
define

L1 “ ty§pp|y |q : y P Lu

Obviously, L1 is contextsensitive, so let G be a
grammar for it. Then the function

f : L ÞÑ LCSG; y ÞÑ pG, y§pp|y |qq

is a polytime reduction and proves the
completeness of LCSG for PSPACE.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 611

4 EXPSPACE
4.6 Structure of PSPACE

We define a generalized version of Tic-Tac-Toe. It
is played on an mˆ n board. The winner has to
produce k crosses (or naughts) in a row.
Definition 4.46 (Generalized LTic-Tac-Toe)

The problem is to decide whether there is a
winning strategy for player 1:

LTTT :“ txm,n, ky : m,n, k P N,
player 1 has a winning strategy
for the Tic-Tac-Toe game
played on the mˆ n board
(k stones in a row win).u

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 612

4 EXPSPACE
4.6 Structure of PSPACE

Obviously, generalized LTic-Tac-Toe is in DSPACEpmnq. In
fact, this is no surprise:

Theorem 4.47 (PSPACE completeness)
Generalized LTic-Tac-Toe is PSPACE-complete.

 exercise

We refer to Slide 274 for the Domino problem.

Lemma 4.48 (Quasi-fixed rectangle)
We fix n P N and two colors col1, col2. We also fix two n-vectors
of colors. Is there an m P N and a tiling of the nˆm rectangle
respecting the two vectors (as upper and lower parts) and the
two colors on the two sides? This problem is
PSPACE-complete.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 613

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

4.7 EXPTIME/EXPSPACE

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 614

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Obviously, P Ř EXP and P Ř NEXP.
If P “ NP then EXP “ NEXP.

Lemma 4.49 (DTM accepting in k steps LDTM accept)

The problem to decide whether a DTM accepts an
input in at most k steps:

LDTM accept :“ txM, w, ky : M a DTM , k P N,
w the input for M,
M accepts w in
at most k stepsu

is EXP-complete.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 615

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Proof.

EXP: It is in EXP because a trivial simulation
requires Opkq time, and the input k is
encoded using Oplog kq bits.

Complete: It is EXP-complete because, roughly
speaking, we can use it to determine if a
machine solving an EXP problem
accepts in an exponential number of
steps; it will not use more.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 616

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

The game of Checkers (“English Draughts”) is
usually played on a 8ˆ 8 board.
It has been recently solved: with perfect play,
it ends in a draw.
However, it can be easily generalized to a nˆ n
board.

Lemma 4.50 (nˆ n Checkers)

Solving the game of checkers on a nˆ n board is
EXP-complete.

The game of Go is also EXP-complete.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 617

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Here are two problems that turn out to be complete for
NEXP and EXPSPACE.
Definition 4.51 (Regular expressions Lregex)

The problem is to decide whether two regular expressions
represent the same languages:

Lregex :“ txr1, r2y : r1, r2 regular expressions ,
Ipr1q “ Ipr2qu

Lregex, no ˚ :“ txr1, r2y : r1, r2 not containing ˚,
Ipr1q “ Ipr2qu

While the first problem is EXPSPACE-complete, the
second is NEXP-complete.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 618

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

We refer again to Slide 274 for the Domino
problem.

Lemma 4.52 (Square Domino)

We fix a n0-vector of colors and a particular color
col. Is there n P N and a tiling of the nˆ n square
that respects the n0-vector (as initial segment of the
upper side and color col on all the remaining
boundary? This problem is NEXP-complete.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 619

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

In the following we introduce first-order theories of several
interesting structures. A knowledgeable reader can switch
to Slide 632.

Given a language L consisting of constants, function-
and predicate symbols, we define the set of L-terms and
L-formulae (and, most importantly, of L-sentences).
We then consider the set of all L-sentences that are
true in a certain model: the natural numbers N, the
integers Z, the rationals Q or the reals R.
These sets are also called theories, or, more precisely,
L-theories.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 620

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Language

What is the influence of the language L? Which
theories are r.e. or even recursive and what is
their complexity? How can one prove
(un-)decidability or precise (lower bounds) for
decidable theories?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 621

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

In the following definition, we need a base
language, or signature L. Such a signature
consists in general of a set of

constants,
function symbols, and
predicate symbols.

In particular, we consider L consisting of
Constants: 0, 1,
Functions: binary function symbol `,
Predicates: binary predicates .

“, and ă.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 622

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

The following definitions define the set of L-terms, as well
as the set of first-order sentences that we can interpret in
N,Z,R,Q or other interesting structures.

Definition 4.53 (First order logic LFO)

The language of first order logic wrt. a signature L is
defined as follows:

x, y, z, x1, x2, . . . , xn, . . .: a countable set Var of variables,
the predicate symbols of the signature L, and the 0-ary
predicates true and false,
the constants and the function symbols of the signature
L,
 , ^, _, Ñ: the sentential connectives,
p, q: the parentheses,
@, D: the quantifiers.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 623

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Definition (continued)
The concept of an L-term t and an L-formula ϕ are defined
inductively:

Term: L-terms t are defined as follows:
1 each variable is a L-term.
2 if fk is a k-dimensional function symbol from L and t1,

. . . ,tk are L-terms, then fkpt1, . . . , tkq is a L-Term.
The set of all L-terms that one can create from the set
X Ď Var is called TermLpXq or TermΣpXq. Using X “ H

we get the set of basic terms TermLpHq, short: TermL.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 624

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Definition (continued)
Formula: L-formulae ϕ are also defined inductively:

1 if P k is a k-dimensional predicate symbol from L and t1,
. . . ,tk are L-terms then P kpt1, . . . , tkq is a L-formula

2 for all L-formulae ϕ is p ϕq a L-formula
3 for all L-formulae ϕ and ψ are pϕ^ ψq and pϕ_ ψq

L-formulae.
4 if x is a variable and ϕ a L-formula then are pDxϕq and
p@xϕq L-formulae.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 625

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Definition (continued)
Atomic L-formulae are those which are composed
according to 1., we call them AtLpXq (X Ď Var). The set of
all L-formulae in respect to X is called FmlLpXq.

Positive formulae (Fml`L pXq) are those which are
composed using only 1, 3. and 4.

If ϕ is a L-formula and is part of an other L-formula ψ then
ϕ is called sub-formula of ψ.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 626

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Here are a few examples of formulae we can build:
1 @xDy py

.
“ x` 1q,

2 @x@y py
.
“ x _ Dzpx ă z ^ z ă yq _ Dzpy ă z ^ z ă xqq,

3 Dy@x px ă y _ x
.
“ yq,

4 DyDx r px` y
.
“ 14q ^ px` x` x` y

.
“ 15qs.

If we have multiplication ¨ available, we could also consider
the following formulae

DxDyDz px ¨ x ¨ x ` y ¨ y ¨ y
.
“ z ¨ z ¨ zq,

Dx x ¨ x
.
“ 2,

@xDy1Dy2Dy3Dy4 x
.
“ y1 ¨ y1 ` y2 ¨ y2 ` y3 ¨ y3 ` y4 ¨ y4.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 627

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Obviously, the more expressive the language, the more
formulae can be expressed.

Definition 4.54 (Presburger/Peano Arithmetic)

Let L` “ t0, 1,`,
.
“,ău and Lp`,¨q “ t0, 1,`, ¨,

.
“,ău.

ThpxZ, 0, 1,`, .“,ăyq “ all L`-sentences true in Z.
ThpxN, 0, 1,`, .“,ăyq “ all L`-sentences true in N.

These two theories are called Presburger arithmetic.

Peano arithmetic is obtained when we add multiplication.

ThpxZ, 0, 1,`, ¨, .“,ăyq “ all Lp`,¨q-sentences true in Z.
ThpxN, 0, 1,`, ¨, .“,ăyq “ all Lp`,¨q-sentences true in N.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 628

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Definition 4.55 (R with addition/multiplication)

Let L` “ t0, 1,`,
.
“,ău and Lp`,¨q “ t0, 1,`, ¨,

.
“,ău.

ThpxR, 0, 1,`, .“,ăyq “ all L`-sentences true in R.
ThpxQ, 0, 1,`, .“,ăyq “ all L`-sentences true in Q.

These two theories are called the reals (resp. rationals)
with addition only.
When we have multiplication, i.e. Lp`,¨q, we can express
much more.

ThpxR, 0, 1,`, ¨, .“,ăyq “ all Lp`,¨q-sentences true in R.
ThpxQ, 0, 1,`, ¨, .“,ăyq “ all Lp`,¨q-sentences true in Q.

The first theory is called theory of real closed fields.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 629

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

1 Give a L`-sentence that distinguishes Z and N.
2 Give a L`-sentence that distinguishes Q and N.
3 Give a Lp`,¨q-sentence that distinguishes Q and R.
4 Define a transformation from L`-sentences φ to

L`-sentences φ1, such that the following holds

φ P ThpNq iff φ1 P ThpZq

Thus N and Z are very closely related and therefore they
are both called Presburger Arithmetic (although they
are formally different).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 630

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

It is well-known that multiplication can be
reduced to addition: x ¨ pn` 1q

.
“ x ¨ n` x, and

x ¨ p0` 1q
.
“ x.

Can we use this and define multiplication ¨ in
the language L`?
No, this is not possible. Try to construct a
formula in the language L`.
It is not possible to come up with such a
formula, because each formula has a fixed
length and can not depend on the value of a
variable occurring in it.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 631

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

The theories we have introduced are quite complicated:
arbitrary sentences that can be formulated in the underlying
language.
In the following we will show:

1 Presburger arithmetic is recursive.
2 Peano arithmetic is undecidable (this leads to the

arithmetical hierarchy introduced in the next section).
3 The theory of reals with addition only is recursive. Its

nondeterministic time complexity is at at least
exponential.

4 It remains recursive (unlike the transition from
Presburger to Peano arithmetic) when multiplication is
added.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 632

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

An important technique to show decidability of a
first-order theory is quantifier elimination.

Definition 4.56 (Quantifier Elimination)

A theory T of L-sentences admits quantifier
elimination, if each sentence can be transformed
into an equivalent one which does not contain
any quantifiers (and hence also no variables).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 633

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Importance of Quantifier elimination

Most theories do not allow QE in their base
language.
All theories allow QE in an extended language
(see eg. Henkin’s proof of completeness of
FOL).
It remains to find a suitable extended
language.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 634

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Suppose we have shown that the theory of reals with
addition only admits quantifier elimination. What can we
conclude from that?

The atomic sentences are very simple: just equalities
and inequalities of fixed rational numbers. These are
easily decided to be true or false. And thus any
disjunction, conjunction negation etc. is also easily
detectable.
Therefore the theory of reals with addition only is
decidable.
A complexity bound is obtained by inspection of the
complexity of the quantifier elimination method.

The same conclusions can be drawn from quantifier
elimination of Presburger arithmetic.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 635

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Lemma 4.57 (Quantifier Elimination (QE))

To show that a theory admits QE, it suffices to
show that each formula of the form

Dx
ľ

i

φipx, y1, . . . yrq

where φipx, y1, . . . yrq are atomic formulae with
possibly additional variables yi, is equivalent to a
formula without the variable x and without any
quantifiers.

Proof.

Use the usual rules for modifying formulae.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 636

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Lemma 4.58 (Reals with addition)

The theory of reals with addition only admits
quantifier elimination.

Proof.

 blackboard 4.7

Corollary 4.59 (Q and R are indistinguishable in L`)

ThpxQ, 0, 1,`, .“,ăyq “ ThpxR, 0, 1,`, .“,ăyq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 637

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Corollary 4.60 (Axioms for R,Q in L`)

The following is a complete axiomatization of
ThpxR, 0, 1,`, .“,ăyq in the language L`. I.e. each sentence
of ThpxR, 0, 1,`, .“,ăyq follows from this axiomatization.

1 Axioms expressing that ă is a dense linear order
without endpoints.

2 Axioms expressing that xR, 0,`y is a group with neutral
element 0.

3 0 ă 1, @x px ă y Ñ x` 1 ă y ` 1q.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 638

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Lemma 4.61 (Reals with addition and multiplication)

The theory of reals with addition and multiplication
admits quantifier elimination.

Proof.

 blackboard 4.8

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 639

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Corollary 4.62 (Axioms for R in Lp`,¨q)
The following is a complete axiomatization of
ThpxR, 0, 1,`, ¨, .“,ăyq in the language Lp`,¨q. I.e. each
sentence of ThpxR, 0, 1,`, ¨, .“,ăyq follows from this
axiomatization.

1 Axioms expressing that R is an ordered field.
2 @x px ě 0 Ñ Dy x

.
“ y2q.

3 All polynomials of odd degree have a zero (this is an
axiom schema: for each fixed odd order n, we can write
down an axiom expressing the existence of a zero).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 640

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Often, it is convenient to extend the language a little and
show QE in this extended language.

Lemma 4.63 (Presburger arithmetic)

The theory of Presburger arithmetic admits quantifier
elimination in the following language: 0, 1,`,ď,´, | , -, where
´ is a unary function symbol, | and - are binary predicates
between a positive integer k .

“ 1` 1` . . .` 1 (k times) and a
term t. Equality t .“ t1 can be defined by t ď t1 ^ t1 ď t.
The unary function symbol satisfies ´t` t .“ 0.
k | t is defined by Dx pt .“ kxq. k - t is defined by pk | tq.

Proof.
 blackboard 4.9

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 641

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

Corollary 4.64 (Axioms for N in L`)

The following is a complete axiomatization of
ThpxN, 0, 1,`, .“,ăyq in the language L`. I.e. each sentence
of ThpxN, 0, 1,`, .“,ăyq follows from this axiomatization.
ThpxN, 0, 1,`, .“,ăyq is therefore decidable.

1 @x x` 0
.
“ x,

2 0` 1
.
“ 1, @x 0

.
“ x` 1,

3 @x@y x` y
.
“ y ` x,

4 x` 1
.
“ y ` 1 Ñ x

.
“ y,

5 @x@y px` yq ` 1
.
“ x` py ` 1q,

6 Let φpxq be a formula in L` that contains at most a free
variable x. Then the following is an axiom

φp0q ^ @x pφpxq Ñ φpx` 1qq Ñ @yφpyq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 642

4 EXPSPACE
4.7 EXPTIME/EXPSPACE

A closer inspection of the QE procedure yields the following
results.
Theorem 4.65 (Complexity of Arithmetic and R)

1 Any decision procedure for Presburger arithmetic requires
at least nondeterministic time 22cn.

2 Any decision procedure for the reals with addition only
requires at least nondeterministic time 2cn.

3 Presburger arithmetic can be decided in 22cn

nondeterministic space and in 222
dn

nondeterministic time.
4 The theory of reals with addition only can be decided in

2cn nondeterministic space and in 22dn nondeterministic
time.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 643

5 More advanced topics

5. More advanced topics
5 More advanced topics

Arithmetical Hierarchy
Analytical Hierarchy
Descriptive Complexity

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 644

5 More advanced topics

Motivation
In this section we consider several advanced topics. They are
all closely related to logics variants of first-order logic (FO)
and to second-order logic (SO).
We consider:

1 The arithmetical hierarchy, based on the first-order
(undecidable but r.e.) theory of the natural numbers.

2 The analytical hierarchy, based on the second-order
(undecidable and not even r.e.) theory of the natural
numbers.

3 Descriptive complexity: we describe complexity
classes by certain (fixpoint) logics. More precisely, we
show that problems in certain classes are exactly those
that can be expressed in certain logics.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 645

5 More advanced topics
5.1 Arithmetical Hierarchy

5.1 Arithmetical Hierarchy

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 646

5 More advanced topics
5.1 Arithmetical Hierarchy

The arithmetical hierarchy is based on the
theory ThpNq of the natural numbers in the
language Lp`,¨q (see Definition 4.54).

We note that we can
eliminate 1 (see next two slides), and
eliminate ă: x ă y iff Dz p z .

“ 0 ^ x` z
.
“ yq,

so that we can assume wlog. that the
language of Peano arithmetic consists of just
t0,`, ¨,

.
“u.

Later we show that we can also get rid of .“, at
least for our purposes.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 647

5 More advanced topics
5.1 Arithmetical Hierarchy

An illustrating example
We are now distinguishing between formulae in a certain
language (these formulae may contain the symbols 0,`, ¨)
and their interpretation in a certain structure N : 0N is the
neutral element in this structure, `N is a function on this
structure while 0,` are just symbols.

Example 5.1 (Natural numbers in different languages)

NPr “ pN0, 0
N ,`N ,

.
“

N
q („Presburger Arithmetic”),

NPA “ pN0, 0
N ,`N , ¨N ,

.
“

N
q („Peano Arithmetic”),

NPA1 “ pN0, 0
N , 1N ,`N , ¨N ,

.
“

N
q (variant of NPA).

These sets each define the natural numbers, but in different
languages.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 648

5 More advanced topics
5.1 Arithmetical Hierarchy

Question:
If the language is bigger then we can express more.
Is Lt0,1,`,¨, .“u more expressive then Lt0,`,¨, .“u?

Answer:
No, because one can replace the 1N by a Lt0,`,¨, .“u-formula:
there is a Lt0,`,¨, .“u-formula φpxq so that for each variable
assignment ρ the following holds:

N t0,1,`,¨,
.
“u |ùρ φpxq iff ρpxq “ 1N

Thus we can define a macro for 1.
Each formula of Lt0,1,`,¨, .“u can be transformed into an
equivalent formula of Lt0,`,¨, .“u.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 649

5 More advanced topics
5.1 Arithmetical Hierarchy

Question:

Is Lt0,1,`,¨, .“u perhaps more expressive than
Lt0,1,`, .“u, or can the multiplication be defined
somehow?

We will see later that Lt0,1,`,¨, .“u is indeed more
expressive:

the set of sentences valid in N t0,1,`,
.
“u is

decidable (see Corollary 4.64), whereas
the set of sentences valid in N t0,1,`,¨,

.
“u is not

even recursively enumerable.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 650

5 More advanced topics
5.1 Arithmetical Hierarchy

Arithmetical formulae
1 Recall Definition 2.66 on Slide 371: consider a

polynomial ppx1, . . . , xkq in the variables x1, . . . , xk with
coefficients in Z.

2 The set of all tuples xn1, . . . , nky of natural numbers that
are zeroes of ppx1, . . . , xkq is called an arithmetical
predicate.

3 We can rewrite the equation ppx1, . . . , xkq “ 0 and put
all negative terms on the right hand side. This results
in a Lt0,1,`,¨, .“u-formula that can be evaluated in the
natural numbers.

4 We call any Lt0,1,`,¨, .“u-formula arithmetical.
5 On the next slide we define a finer grained hierarchy

of arithmetical formulae.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 651

5 More advanced topics
5.1 Arithmetical Hierarchy

Definition 5.2 (Arithmetical Hierarchy)

We call an arithmetical formula Σ0
k (resp. Π0

k) if it
is of the form D @ . . . φ (resp. @ D . . . φ) where φ is a
quantifier-free Lt0,1,`,¨, .“u-formula and there are at
most k ´ 1 alternations of quantifier-blocks.
We call a set M Ď N of natural numbers
Σ0
k-definable (resp. Π0

k-definable), if M is
definable by a Σ0

k-formula (resp. Π0
k-formula). I.e.

there is a Σ0
k-formula (resp. Π0

k-formula) φpxq with
one free variable x such that

N |ù φpiq iff i PM.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 652

5 More advanced topics
5.1 Arithmetical Hierarchy

Σ0
0-definable = Π0

0-definable = recursive sets.
Σ0

1-definable = r.e. sets (Hilbert’s 10th
problem, see Corollary 2.71).
Π0

1-definable = complements of r.e. sets
An example of a Σ0

1 definable set: the set H of
all Gödel numbers of those Turing-machines
that stop on their own Gödel number.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 653

5 More advanced topics
5.1 Arithmetical Hierarchy

The higher a problem lies in the hierarchy, the
more undecidable it is. For example a
problem located at the second level, say Σ0

2,
can be thought of as being recursively
enumerable using an oracle which solves
Σ0

1-problems (like the halting problem).
Analogously to the polynomial hierarchy we
have the notions of Σ0

k-complete and
Π0
k-complete. As an example, the halting

problem is Σ0
1-complete.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 654

5 More advanced topics
5.1 Arithmetical Hierarchy

In contrast to the polynomial hierarchy, the arithmetical
hierarchy is strict. From now on we use Σ0

k`1 and Π0
k`1 not

only as a set of syntactically defined formulae, but also as a
set of arithmetical predicates, that can be defined by
respective formulae.

Theorem 5.3 (Arithmetical Hierarchy is Strict)

We denote by ∆0
k the intersection of Σ0

k`1 and Π0
k`1. We have

1 For each k P N: Σ0
kzΠ

0
k ‰ H.

2 For each k P N, Σ0
k Y Π0

k Ř ∆0
k “ Σ0

k`1 X Π0
k`1.

Proof.
 blackboard 5.1

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 655

5 More advanced topics
5.1 Arithmetical Hierarchy

In the rest of this section, we change our
treatment of Peano arithmetic slightly.
We show that we do not need the equality
symbol.
We show that we can consider `, ¨ as
predicates, not functions.
Therefore we need an additional unary
function symbol: spq, the successor function.
We can then show that our previous results,
which involve the infinite theory ThpNq, carry
over to a finitely axiomatizable theory PAfin.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 656

5 More advanced topics
5.1 Arithmetical Hierarchy

Question:
Can .

“ be simulated in “FO without .“”?

Answer:
We can try to axiomatize .

“. We consider FO without .“ with
an additional binary predicate eq and require the following
axioms:

@x eqpx, xq,
for each function symbol f with adequate arity:

@x1 . . . xn, y1 . . . yn peqpx1, y1q ^ . . . ^ eqpxn, ynqq

Ñ eqpfpx1, . . . , xnq, fpy1, . . . , ynqq,

for each predicate symbol P with adequate arity:

@x1 . . . xny1 . . . yn peqpx1, y1q ^ . . . ^ eqpxn, ynqq

Ñ pP px1, . . . , xnq Ñ P py1, . . . , ynqq.
Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 657

5 More advanced topics
5.1 Arithmetical Hierarchy

Important:

This set of axioms depends on the underlying language L,
we call it EQL.

Question:
Let φ be a formula in FO with .

“ and let φr .“ {eqs be obtained
from φ by replacing each appearing .

“ with eq.
Does the following equivalence hold?

T |ù .“ φ iff T r .“ {eqs Y EQL |ù φr
.
“ {eqs ?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 658

5 More advanced topics
5.1 Arithmetical Hierarchy

Answer:
Unfortunately not, because:

1 The axioms EQL leave open the possibility, that the
interpretation of eq in a structure A consists of Aˆ A
(thus all elements are equivalent).

2 Models may contain elements which can not be
represented by terms of the considered language – we
can make only limited statements about such elements.

It can be shown that we are not able to completely
axiomatize the identity even with additional axioms.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 659

5 More advanced topics
5.1 Arithmetical Hierarchy

We dealt with the natural numbers with addition and
multiplication before. There were two problems that we can
improve:

the set of terms is infinite and quite complicated and
there is no finite axiomatization (not even for
Presburger arithmetic, see Corollary 4.64).

We now look at them differently and consider the language
LPA with

a constant 0 and a unary function symbol s,
a binary predicate symbol eq and two ternary predicate
symbols ‘ and b.

Before defining some axioms about ‘ and b we define the
following abbreviation: the formula D!z φpzq stands for

Dz pφpzq ^ @y φpyq Ñ eqpy, zqq.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 660

5 More advanced topics
5.1 Arithmetical Hierarchy

Definition 5.4 (Peano arithmetic PAfin)

PAfin consists of EQLPA and the following axioms:

@x@yD!z ‘px, y, zq
@x ‘px, 0, xq
@x@y@z ‘px, y, zq Ñ ‘px, spyq, spzqq

@x@yD!z bpx, y, zq
@x bpx, 0, 0q
@x@y@zDz1 bpx, y, zq Ñ pbpx, spyq, z1q ^ ‘pz, x, z1qq

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 661

5 More advanced topics
5.1 Arithmetical Hierarchy

In contrast to Definition 4.54, we have the
following properties:

There is no equality symbol with a fixed
interpretation (it is just any binary relation
satisfying certain axioms).
The set of terms is quite simple:
sp0q, spsp0qq,
We have a finite axiomatization.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 662

5 More advanced topics
5.1 Arithmetical Hierarchy

Obviously N :“ pN0, 0
N , sN ,‘N ,bN , eqN q is a

model of all these axioms:
0N is the “right” 0,
sN is the successor function,
‘N is the addition,
bN is the multiplication of natural numbers
(each considered as a relation), and
eqN the identity.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 663

5 More advanced topics
5.1 Arithmetical Hierarchy

The following holds:
The set tφ : PAfin |ù φu is recursively
enumerable but not recursive (decidable).
The set tφ : N |ù φu is not even recursively
enumerable.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 664

5 More advanced topics
5.1 Arithmetical Hierarchy

The following is the famous result from Kurt
Gödel.
Theorem 5.5 (Gödel)

Each set of formulae which contains PAfin and
has N as one of its models is not recursive.
Each recursively enumerable set of formulae Φ
which contains PAfin and has N as one of its
models is incomplete, i.e. there is a ψ with:
N |ù ψ but Φ |ù ψ.
N can never be axiomatized completely.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 665

5 More advanced topics
5.2 Analytical Hierarchy

5.2 Analytical Hierarchy

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 666

5 More advanced topics
5.2 Analytical Hierarchy

What does the superscript 0 mean in Σ0
k?

It means that we consider first-order formulae
(we do not allow our arithmetical formulae to
contain second-order quantifiers).

This remark gives rise to the analytical hierarchy,
denoted by Σ1

k, Π1
k, where we consider

second-order arithmetical formulae.

We only count the number of alternations of the
quantifiers over sets. So any Σ0

k-formula is in Σ1
0,

for any k.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 667

5 More advanced topics
5.2 Analytical Hierarchy

For the arithmetical hierarchy the identity
Σ0

0 “ Σ0
1 X Π0

1 holds.
The analogue for the analytical hierarchy does
not hold. A counterexample is given by the
theory of the natural numbers N : the set of
true sentences in arithmetic is in Σ1

1 X Π1
1 but

not in Σ1
0. This set is also called

hyperarithmetical for obvious reasons.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 668

5 More advanced topics
5.3 Descriptive Complexity

5.3 Descriptive Complexity

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 669

5 More advanced topics
5.3 Descriptive Complexity

Motivation

In this section we take a completely different look
at complexity classes. We try to describe them
with certain logics, hence the name descriptive
complexity.

In traditional logic, the set of all models of a sentence
or a theory matters: ModpT q. We get completeness and
compactness results wrt. appropriate calculi.
For the existence of a calculus, it is important that
infinite models exist! Given a first-order theory T that
allows finite models the size of which is not bounded,
there must exist an infinite model.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 670

5 More advanced topics
5.3 Descriptive Complexity

Finite models
In computer science however, only finite models
matter. For example our complexity classes consist of
languages and each language consists of finite words
(or finite structures).

From strings to structures

How can we encode a finite string over an alphabet as a
finite structure over an appropriate signature(in the sense of
first-order logic)?

From structures to strings

How can we encode a finite structure over a signature (in
the sense of first-order logic) into a finite string over an
appropriate alphabet?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 671

5 More advanced topics
5.3 Descriptive Complexity

Definition 5.6 (Language expressible by a logic)

We say that a language L consisting of words over
an alphabet Σ is expressible in a logic with
signature τ , if there is a τ -sentence ϕ such that
the following holds

L “ tA : A is finite and A |ù ϕu

Strictly speaking we have to encode the
τ -structures as words over Σ. However, this can be
done in a straightforward way using a linear order
in the structure and appropriate normalization.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 672

5 More advanced topics
5.3 Descriptive Complexity

Finite models
NP for example contains the class of all 3-colorable
undirected graphs (viewed as a language of finite words).
Such graphs can be seen as first-order structures consisting
of (1) a finite universe, the set of nodes, and (2) a binary
relation on them (describing the edges between the nodes):

G “ xt1, . . . , nu, edgeGp¨, ¨qy

Question 1: Is there a first-order sentence ϕ, such that the
finite models of ϕ are exactly the finite 3-colorable graphs?

That would give us a description of L3-col dg with purely
logical means.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 673

5 More advanced topics
5.3 Descriptive Complexity

Finite models
As another example we consider the language LSTCON on
Slide 557. The models here are also graphs (directed), but
here we have in addition two explicit nodes s, t given:

G “ xt1, . . . , nu, sG, tG, edgeGp¨, ¨qy

And we are interested in those graphs where there is a
directed path from s to t.
Question 2: Is there a first-order sentence ϕ, such that the
finite models of ϕ are exactly the finite directed graphs
where sG and tG are connected?
That would give us a description of LSTCON with purely
logical means.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 674

5 More advanced topics
5.3 Descriptive Complexity

Finite models

The answer to question 1 is “No”, but if we
allow second order logic, then it is “Yes”.
The answer to question 2 is also “No”, but if
we allow an operator that describes transitive
closure, then it is “Yes”.
What if we stick to classical first-order logic?
Then we can describe all constant-depth
unlimited fan-in circuits.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 675

5 More advanced topics
5.3 Descriptive Complexity

FO and L3-col dg

How to define a 3-coloring of a directed graph?
It can be described with three unary predicates Col1,
Col2, Col3 and the conjunction of the following
sentences (we denote it by ϕ3-colpCol1, Col2, Col3q):

@x pCol1pxq _ Col2pxq _ Col3pxqq (3)
@x@y p pCol1pxq ^ Col1pyqq Ñ edgepx, yq q (4)
@x@y p pCol2pxq ^ Col2pyqq Ñ edgepx, yq q (5)
@x@y p pCol3pxq ^ Col3pyqq Ñ edgepx, yq q (6)

Each model xt1, . . . , nu, ColG1 , Col
G
2 , Col

G
3 , edge

Gp¨, ¨qy
satisfying ϕ3-colpCol1, Col2, Col3q) is a 3-coloring of G.
But this can not be expressed as a property in the
language just using edgep¨, ¨q.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 676

5 More advanced topics
5.3 Descriptive Complexity

SOL and L3-col dg

We consider the second order sentence ϕDSO:
DCol1DCol2DCol3 ϕ3-colpCol1, Col2, Col3q. Finite
models satisfying ϕDSO are exactly the finite
3-colorable graphs!
This works as well for graphs with a
hamiltonian cycle, or a vertex cover etc.
Given any existential second order sentence
ϕDSO over a signature and an appropriate finite
structure.

How complex is it to test whether the
structure satisfies it or not?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 677

5 More advanced topics
5.3 Descriptive Complexity

Finite models

We can guess the existential parts (with a
NDTM) and then check the rest. By suitably
normalizing the encoding of the structure we
can make sure that this check can be done in
polynomial time (in the size of the structure).

So the whole test is in NP!!!

Therefore DSO Ď NP.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 678

5 More advanced topics
5.3 Descriptive Complexity

FO and LSTCON

How to express in FO that s and t are connected?
What by defining a binary relation connpx, yq by

@x@y pedgepx, yq Ñ connpx, yqq (7)
@x@y p pconnpx, yq Ø Dz pconnpx, zq ^ connpz, yq q (8)

Unfortunately, this does not imply that conn is always
the smallest relation satisfying this (i.e. the transitive
closure of edge). Take any finite graph, let conn by the
transitive closure of edge and let conn˚ be the relation that is
true for all pairs of nodes. Clearly, conn˚ also satisfies the two
axioms. There is no set of first-order sentences to
distinguish between conn and conn˚ in the base language.
Intuitively, we want to express that conn should be the
smallest relation satisfying the two axioms.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 679

5 More advanced topics
5.3 Descriptive Complexity

FO and LSTCON

We extend first-order logic by a transitive
closure operator TC. If r is a binary relation,
then TCprq is the transitive closure of r.
In the language FO(TC) (but not in FO alone)
we can easily express the fact that s and t are
connected: TCpedgeqps, tq.

Given any FO formula with TC over a
signature and an appropriate finite structure.

How complex is it to test whether the
structure satisfies the formula or not?

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 680

5 More advanced topics
5.3 Descriptive Complexity

Finite models

We have to evaluate formulae involving the TC
operator. Whether two elements are in the
transitive closure can be guessed by a finite
path connecting them. This guess can be
easily verified by a polynomial number of
checks: to store the nodes we only need three
counters requiring log space.
So the whole test is in NL!!!
Therefore FO(TC) Ď NL.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 681

5 More advanced topics
5.3 Descriptive Complexity

Theorem 5.7

Let AC0 be the set of languages recognized by
polynomial-size circuits of bounded depth (and
unlimited fan-in AND and OR gates). Then:
AC0 corresponds exactly to FO.

Theorem 5.8 (Fagin (1974))

NP corresponds exactly to existential second order
logic DSO.

Theorem 5.9

NL corresponds exactly to existential first order
logic with transitive closure FO(TC).

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 682

5 More advanced topics
5.3 Descriptive Complexity

There are many more logics inbetween
first-order and second-order logic than just
FO(TC) We consider the following:

FO plus a commutative transitive closure
operator: FO(CTC).
FO plus a least fixpoint operator: FO(LFP).
SO + transitive closure: SO(TC).
SO + lfp: SO(lfp).

Transitive closure is of course a special case for a
least fixed point operator.

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 683

5 More advanced topics
5.3 Descriptive Complexity

Theorem 5.10 (Complexity Classes and their logics)

We have the following correspondences
AC0 – FO
L – FO(CTC)

NL – FO(TC)
P – FO(LFP)
NP – DSO

co-NP – @SO
PH – SO

PSPACE – SO(TC)
EXP – SO(LFP)

Prof. Dr. Jürgen Dix ‹ Department of Informatics ‹ TU Clausthal WS 16/17 684

	The Chomsky Hierarchy
	Makanin's Algorithm
	Minimal DFA
	cf = hom(Dyckreg)
	DPDA/DCF
	LBA/Type 1
	re = hom(cs)
	Ehrenfeucht
	Lindenmayer

	(Un-) Decidability
	Universal DTM
	PCP
	Tiling the Plane
	Recursive Functions
	Random Access Machines
	Hilberts 10. Problem
	Theorem of Rice
	Recursion theorem
	Oracle TMn
	Reductions

	SPACE versus TIME
	Basics
	Some Hierarchies
	Relating TIME and SPACE
	More Properties

	EXPSPACE
	Complexity classes
	Reductions
	Structure of NP
	Oracles for P, NP
	PH: Polynomial Hierarchy
	Structure of PSPACE
	EXPTIME/EXPSPACE

	More advanced topics
	Arithmetical Hierarchy
	Analytical Hierarchy
	Descriptive Complexity

