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About this lecture (1)

This MSc course is about Decision Making in Multi Agent
Systems. We look at decision making mainly from a
game-theoretical perspective. The lecture can be roughly
divided into three parts:

m Classical game theory: We take the perspective of a single
agent participating in a game. How should she behave?
Complete/incomplete information games (Chapters 1 and 5),
repeated games (Chapter 2), mechanism design (Chapter 6),
cooperative (or coalitional) game theory (Chapter 3).

m Voting and auctions: Here we take the perspective of a
designer (or principal). Agents will follow the rules that she
defines (but will act selfishly). Social choice, ranking systems,
various types of auctions (Chapter 6).
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About this lecture (2)

m Formalizing solution concepts in ATLP: We define an
extension of the well-known logic ATL, namely ATLP, that
allows us to formalize various solution concepts within this
logic. This makes it possible to reason about it and do model
checking (Chapter 8).

m Temporal logics LTL, CTL: In order to better understand the
logic ATL, we briefly introduce linear femporal logic (LTL),
and branching time logic (CTL) (Chapter 7).

My thanks go to Dr. Nils Bulling who helped to transform my
former MAS course into this new and advanced format.
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Lecture Overview

Classical Game Theory: Complete/incomplete information
games, repeated/ coalitional games, mechanism
design.

Chapters 1-3, 5-6: (5+2+3+1+1=) 12 lectures.

Voting and auctions: Social choice and auctions.

Chapter 4: 5 lectures.

LTL and CTL: Temporal logics to motivate the logic ATL.

Chapter 7: 2 lectures.
ATLP: An extension of ATL, a logic handling strategies, to
express game-theoretical solution concepts.
Chapter 8: 3 lectures.
Exercises: 6 exercise classes (roughly fortnightly).
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Outline

Complete Information Games
Repeated Games

Coalitional Games

Social Choice and Auctions
Incomplete Information Games
Mechanism Design

From Classical to Temporal Logics

ol o M-~ oSl

Strategic Logics
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1. Complete Information Games

Complete Information Games
m Examples and Terminology
m Normal Form Games
m Extensive Form Games
m An Example from Economics
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Outline (1)

We illustrate the difference between classical Al and MAS. We
present several evaluation criteria for comparing protocols.

We then introduce the formal machinery of game theory
assuming we have complete information:

m normal form (NF) games, where players play simultanously,

m extensive form (tree form) games, where players play one
after another. Here the history plays a role and players come
up with strategies depending on the past.

m We also distinguish between perfect and imperfect recall
and discuss various notions of equilibria.

m Finally we consider the existence of equilibria for market
mechanisms.
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Classical DAI: System Designer fixes
Interaction-Protocol which is uniform
for all agents. The designer also fixes a
strategy for each agent.

What is a the outcome, assuming that the given
protocol is followed and the agents follow the
given strategies?
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MAI: Interaction-Protocol is given. Each
agent determines its own strategy
(maximising its own good, via a utility
function, without looking at the global
task).

Global optimum

Find a protocol such that if each agent choses its
best local strategy, the outcome is a global
optimum.
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1.1 Examples and Terminology
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1.1 Examples and Terminology
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We need to compare protocols. Each such protocol leads to
a solution. So we determine how good these solutions are.

Social Welfare: Sum of all utilities
Pareto Efficiency: A solution z is Pareto-optimal, if

there is no solution 2’ with:
(1) Jagent ag : uty,(z') > utey(x)
(2) Vagents ag’ : ut,y(2') > ut g (z).

Individual rational: The payoff should be higher than not
participating at all.
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Stability:
Case 1: Strategy of an agent depends on
the others.
The profile sj = (s}, s3,...,s5) is called a
Nash-equilibrium, iff Vi : s is the best
strategy for agent i if all the others
choose
(57,8351 81_ 15 S541s- - ,STAO.
Case 2: Strategy of an agent does not

depend on the others.
Such strategies are called dominant.
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1.1 Examples and Terminology

Example 1.1 (Prisoners Dilemma, Type 1)

Two prisoners are suspected of a crime (which they both
committed). They can choose to (1) cooperate with each other
(not confessing to the crime) or (2) defect (giving evidence that
the other was involved). Both cooperating (not confessing) gives
them a shorter prison term than both defecting. But if only one of
them defects (the betrayer), the other gets maximal prison term.
The betrayer then has maximal payoff.

Prisoner 2
cooperate | defect
. cooperate (3,3) (0,5)
Prisoner 1 —efect 5,0) a,n
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1.1 Examples and Terminology

m Social Welfare: Both cooperate,

m Pareto-Efficiency: All are Pareto optimal,
except when both defect.

m Dominant Strategy: Both defect.
m Nash Equilibrium: Both defect.
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Prisoners dilemma revisited: ¢ 2 a = d

1 Complete Information Games
1.1 Examples and Terminology

= b

Prisoner 2

defect

cooperate
. cooperate | (a,a)
Prisoner 1 defect (b,0)

(c,b)
(d,d)
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Example 1.2 (Trivial mixed-motive, Type 0)

Player 2
C D
C | 44 | (23
D | 3,2 | (1,1)

Player 1
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Example 1.3 (Battle of the Bismarck Sea)

In 1943 the northern half of New Guinea was controlled by
the Japanese, the southern half by the allies. The Japanese
wanted to reinforce their troops. This could happen using
two different routes: (1) north (rain and bad visibility) or (2)
south (weather ok). Trip should take 3 days.

The allies want to bomb the convoy as long as possible. If
they search north, they can bomb 2 days (independently of
the route taken by the Japanese). If they go south, they can
bomb 3 days if the Japanese go south too, and only 1 day, if
the Japanese go north.
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Japanese
Sail North | Sail South
Al Search North 2 days 2 days
Search South 1 day 3 days

Allies: What is the largest of all row minima?
Japanese: What is smallest of the column maxima?

Battle of the Bismarck sea:
largest row minimum = smallest column maximum.

This is called a saddle point.
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1.2 Normal Form Games
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1.2 Normal Form Games

Definition 1.4 (n-Person Normal Form Game)

A finite n-person normal form game is a tuple
(A, Act, O, o, u), where

mA={1,...,i,...,n}is afinite set of players or agents.

B Act=A4; x---x A; x---x A, where 4; is the finite set
of actions available to playeri. @ € Act is called action
profile. Elements of A; are called pure strategies.

m O is the set of outcomes.
m o: Act — O assigns each action profile an outcome.

W=, .. M., o) Wherep; : O — Risa
real-valued utility (payoff) function for player i.
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Note that we distinguish between outcomes and utilities
assigned to them. Often, one assigns utilities directly to
actions.

|
Games can be represented graphically using an n-dimensional
payoff matrix. Here is a generic picture for 2-player, 2-strategy
games:

Player 2
a a3
CL% (ul(a%va%)7“2(a%ﬂa%) (#1(61%7@1)7/‘2(0‘%70’%)
Player 1
CL% (#1(a%=a3)7ﬂ2(a%a@%) (/Ll(a%’a%)’uQ(a%va%)
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|
We often forget about ¢ (thus we are making no distinction
between actions and outcomes). Thus we simply write
wi(al, a}) instead of the more precise p(o({al, al)).
However, there are situations where we need to distinguish
between the two, in particular when talking about
mechanism design (in Chapter 6, and auctions (in
Chapter 4, Section 7).
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1.2 Normal Form Games

Definition 1.5 (Common Payoff Game)

A common payoff game (feam game) is a game in which for
all action profilesd € A; x ... x A, and any two agents i,j
the following holds: (@) = p;(a).

In such games agents have no conflicting interests. Their
graphical depiction is simpler than above (the second
component is not needed).
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While a team game is on one side of the spectrum, there is
another type of games which is on the opposite side:

Definition 1.6 (Constant Sum Game)

A 2-player n-strategy normal form game is called constant
sum game, if there exists a constant ¢ such that for each
action profile @ € A; x As: (@) + p2(@) = c.

We usually set wlog ¢ = 0 (zero sum games).

Prof. Dr. Jurgen Dix - Department of Informatics, TUC Game Theory (MSc), WS 17/18 27



1.2 Normal Form Games

&Kw lU Clausthal 1 Complete Information Games

Constant sum games can also be visualised with a simpler
matrix, missing the second component (like common
payoff games) u,(a?, a2) in each entry:

Player 2

cC | D

C 4 2

Player 1 D 3 1

Of course, we then have to state whether it is a common
payoff or a zero-sum game (they are completely different).
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Pure vs. mixed strategies

What we are really after are strategies.

Definition 1.7 (Pure strategy)

A pure strategy for a player is a particular action that is
chosen and then played constantly.

A pure strategy profile is just an action profile
a={ay,...,a,).

Are pure strategy profiles sufficient?
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1.2 Normal Form Games
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Example 1.8 (Rochambeau Game)

Also known as paper, rock and scissors: paper covers rock,
rock smashes scissors, scissors cut paper.

Min
P S R
P 0 -1 1
Max S 1 0 -1
R -1 1 0

What about pure vs mixed strategies?
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Definition 1.9 (Mixed Strategy for NF Games)

Let (A, Act, O, o, u) be normal form game. For a set X let
II(X) be the set of all probability distributions over X.

The set of mixed strategies for player i is the set

S; = TI(4;). The set of mixed strategy profiles is S; X ... x S,,.
This is also called the strategy space of the game.

Note: Some books use
m S;, with elements s;, to denote the set of pure strategies,
m X; with elements o to denote the set of mixed strategies,
m u to denote utilities, and
m N to denote the set of agents.
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1.2 Normal Form Games

The support of a mixed strategy is the set of
actions that are assigned non-zero probabilities.

What is the payoff of such strategies? We have to
take into account the probability with which an

action is chosen. This leads to the expected utility
“expected.
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1.2 Normal Form Games

Definition 1.10 (Expected Utility for player 7)

The expected utility for player i of the mixed strategy
profile (s,...,s,) is defined as

peeeds ) = 3 wsle(@) [T sitay):

What is the optimal strategy (maximising the expected
payoff) for an agent in an 2-agent setting?
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Example 1.11 (Fighters and Bombers)

1 Complete Information Games
1.2 Normal Form Games

Consider fighter pilots in WW II. A good strategy to attack
bombers is to swoop down from the sun: Hun-in-the-sun
strategy. But the bomber pilots can put on their sunglasses and
stare into the sun to watch the fighters. So another strategy is to
attack them from below Ezak-Imak strategy: if they are not
spotted, it is fine, if they are, it is fatal for them (they are much
slower when climbing). The table contains the survival

probabilities of the fighter pilot.

Bomber Crew
Look Up | Look Down
. . Hun-in-the-Sun 0.95 1
Fighter Pilots Erakimak s o
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Example 1.12 (Battle of the Sexes, Type 2)

Married couple looks for evening entertainment. They
prefer to go out together, but have different views about
what to do (say going to the theatre and eating in a
gourmet restaurant).

Wife
Theatre | Restaurant
Theatre (4,3) (2,2)
Sluslspine Restaurant (1,1) (3,4)
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1.2 Normal Form Games

Example 1.13 (Leader Game, Type 3)

Two drivers attempt to enter a busy stream of traffic. When
the cross traffic clears, each one has to decide whether to
concede the right of way of the other (C) or drive into the
gap (D). If both decide for C, they are delayed. If both
decide for D there may be a collision.

Driver 2
C D
C (2,2) (3,4)
D (4,3) (1,1)

Driver 1
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1.2 Normal Form Games
hal University of Technology

Example 1.14 (Matching Pennies Game)

Two players display one side of a penny (head or tails).
Player 1 wins the penny if they display the same, player 2
wins otherwise.

Player 2
Head Tails
Head (1,-1) -1, 1)
Tails -1, 1) (1,-1)

Player 1
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Definition 1.15 (Maxmin strategy)

Given a game ({1,2}, { A1, A2}, {p1, p2}), the maxmin strategy of
playeriis a mixed strategy that maximises the guaranteed payoff
of player i, no matter what the other player —i does:

arg max, min perpected (g g )
S—i
The maxmin value for player i is max,, min;_, pf””p“ted(si, 5_1).
The minmax strategy for player i is
arg min, max pEPe e (5,53
S—i
and its minmax value is ming, max,_, pe_ﬁp%ted(si, s_4).
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Lemma 1.16

In each finite normal form 2-person game (not
necessarily constant sum), the maxmin value of one
player is never strictly greater than the minmax
value for the other.
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1.2 Normal Form Games

We illustrate the maxmin strategy using a 2-person
3-strategy constant sum game:

Player B
B-I | B-Il | B-llI
A-l 0
A-ll 1

Player A

NI— (oot
>l [N

We assume Player A’s optimal strategy is to play strategy
m A-l with probability  and
m A-ll with probability 1 — .

In the following we want to determine z.
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1.2 Normal Form Games

Thus Player A’s expected utility is as follows:
when playing against B-l: 0z + 1(1 —z) = 1 — z,
when playing against B-Il: 2z + (1 — ) = £ + 3,
when playing against B-lll: 1z + 3(1 —z) = 3 — 4.
This can be illustrated with the following picture (see

blackboard). Thus B-1ll does not play any role.

Thus the maxmin point is determined by setting
e L]
TTo T3

which gives 2 = £. The value of the game s 2.

The strategy for Player B is to choose B-I with probability 1
and B-Il with probability 2.
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1.2 Normal Form Games

More in accordance with the minmax strategy let us compute

: ted
argmax, min p; " (s1, s2)
s

We assume Player A plays (as above) A-l with probability = and
A-ll with probability 1 — = (strategy s;. Similarly, Player B plays B-I
with probability y and B-Il with probability 1 — y (strategy s2).

We compute u?”e‘jed(sl, 52)
5 1
0-z-y + gx(l—y) +1-1—-2)y + 5(1—x)(1—y)
thus
4 1 1 1
T s s0) = y((—32) + ) + 5T+ 3

Prof. Dr. Jurgen Dix - Department of Informatics, TUC Game Theory (MSc), WS 17/18 42



!@KW TU (jlallsthal 1 Complete Information Games

1.2 Normal Form Games

According to the minmax strategy, we have to
choose z such that the minimal values of the
above term are maximal. For each value of z the
above is a straight line with some gradient. Thus
we get the maximum when the line does not
slope at all!

. 3 . . . . . 1
Thus z = £. A similar reasoning gives y = 7.
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Theorem 1.17 (von Neumann (1928))

In any finite 2-person constant-sum game the following holds:

The maxmin value for one player is equal to the minmax
value for the other. The maxmin of player 1 is usually
called value of the game.

For each player, the set of maxmin strategies coincides
with the set of minmax strategies.

The maxmin strategies are optimal: if one player does not
play a maxmin strategy, then its payoff goes down.

ﬂ:ﬂf} TU Clausthal 1 Complete Information Games
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From now on we use just p,(s1, s2) instead of the
more precise p7“"“U(s;, s,). It will be clear from
context whether the argument is a profile (and
thus it is the expected utility u**ret“d) or it is the
utility of an outcome (and thus it is defined in the
underlying game with p).

What is the optimal strategy (maximising the
expected payoff) for an agent in an n-agent
setting?
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Figure 1: A saddle.
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Definition 1.18 (Notations .S )

Note that from now on, for §= (sy, ss, ..., s,,) we use the
notation s~; to denote the strategy profile
(S1,82, -+, Si—1,Si+1,- - -, Sn): the strategies of all opponents

of agent i are fixed. For a set of strategies S, we denote by
S_i={sZi| §€ S}.

For ease of notation, we also use p;(si, s”;) to denote
l"’z(<51; 82, -, n)); thUS

(81,82, 181, 80) = (si,874).

In the last vector, although the s; is written in the first entry,
we mean it to be inserted at the i’th place.
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ol Uneraty of Tectmolons 1.2 Normal Form Games
Definition 1.19 (Best Response to a Profile)
Given a strategy profile

S:i = <81, 82,3 8i—1,Si+1y-- -, 8n>,

a best response of player i to sZ; is any mixed strategy
st € Si such that

pi(st, s2i) 2 pa(si, s74)

for all strategies s; € S;.

Is a best response unique?
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Example 1.20 (Responses for Rochambeau)

How does the set of best responses look like?
Player 2 plays the pure strategy paper.
Player 2 plays paper with probability .5 and scissors
with probability .5.
Player 2 plays paper with probability 3 and scissors with
probability 3 and rock with probability :.

Observation

Is a non-pure strategy in the best response set (say a
strategy (a;, az) with probabilities (p, 1 — p), p # 0), then so
are all other mixed strategies with probabilities (p’,1 — p’)

where p #£ p' # 0.
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m Consider the set of best responses.

m Either this set is a singleton (namely when it
consists of a pure strategy), or

m the setis infinite.
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Definition 1.21 (Nash Equilibrium (NE))

A strategy profile s* = (s, s5,...,s*) is a Nash
equilibrium if for any agent 1, s is a best response
to s*. = (57,85, ..., S 1,851, -5 5p)-

What are the Nash equilibria in the Battle of sexes?
What about the matching pennies?
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1.2 Normal Form Games
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Example 1.22 (Cuban Missile Crisis, Type 4)

This relates to the well-known crisis in October 1962.

USSR
Withdrawal Maintain
(3,3) (2,4)
U.S Blockade Compromise USSR victory
’ Air strike (4, 2) (1, 1)
U.S. victory Nuclear War
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Theorem 1.23 (Nash (1950))
Every finite normal form game has a Nash equilibrium.

Corollary 1.24 (Nash implies maxmin)

In any finite normal form 2-person constant-sum game, the
Nash equilibria are exactly all pairs (s, s2) of maxmin
strategies (s, for player 1, s, for player 2).

All Nash equilibria have the same payoff: the value of the
game, that player 1 gets.
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Proof

We use Kakutani’s theorem: Let X be a nonempty subset of
n-dimensional Euclidean space, and f : X — 2%. The
following are sufficient conditions for f to have a fixed point
(i.e. an z* € X with z* € f(2*)):
X is compact: any sequence in X has a limitin X.
Xisconvex: z,y € X,a € [0,1]] = ar+ (1 —a)y € X.
B Vz : f(z)is nonempty and convex.

For any sequence of pairs (z;, ) such that z;, z; € X
and =¥ € f(x;), if lim; o (24, 2F) = (x,2*) then z* € f(z).
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Iniversity of Technolog

|
Let X consist of all mixed strategy profiles and let f be the best

response set: f((s1,...,sn)) is the set of all best responses
(s},...,s),) (where s/ is players i best response to
(81,.++,8i-1, 841, - - 5n))-

Why is that a subset of an n-dimensional Euclidean space?

A mixed strategy over k actions (pure strategies) isa k — 1
dimensional simplex (namely the one satisfying "% | p; = 1).
Therefore X is the cartesian product of n simplices. X is compact
and convex (why?).

The function f satisfies the remaining properties listed above.
Thus there is a fixed point and this fixed point is a Nash
equilibrium. O
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Theorem 1.25 (Brouwer’s Fixed Point Theorem)

Let B" be the unit Euclidean ball in R"™ and let
f: B" — B" be a continuous mapping. Then there
exists a fixed point of f: thereis a x € B" with

f(z) ==
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Reduction to the C'-differentiable case: Letr : R* -+ R
be the function
r(z) =r(x1, T2, ..., Tn) = /22 + 32+ - + 22.
Let ¢ : R” — R given by:

() = an(1/4r(x)* — 1/2r(z)?® +1/4)

on D and equal to 0 in the complement of B",
where the constant a,, is chosen such that the
integral of ¢ over R” equals 1.
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Proof (cont.)

Let f : B™ — B™ be continuous. Let ' : R™ — B™ be the extension
of f to R", for which we have

@KM TU Clausthal 1 Complete Information Games

F(z) = f(—) on R"\ B".

||
Fork € N,k # 0, put fp(z) := [gn k"¢(ky)F(z — y)dy. Show that
the restriction of f; to B” maps B" into B™. Show that the
mappings fi are continuously differentiable and approximate in
the topology of uniform convergence the mapping F. Show that
if there exists a continuous mapping f : B" — B" without fixed
points, then there will also exist a continuously differential
mapping without fixed points. It follows, that it suffices to prove
the Brouwer Fixed Point Theorem only for continuously
differentiable mappings.
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Proof (cont.)

Proof for C!-differentiable mappings:

Assume, that the continuously differentiable mapping

f: B™ — B™ has no fixed points. Let g : B” — 0B" the mapping,
such that for every point z € B" the points f(z),z, g(x) are in that
order on a line of R™. 9B" is the surface of the unit ball B™, it is
also denoted by S"~!. The mapping g is also continuously
differentiable and satisfies g(z) = = for x € 9B™. We write

g9(z) = (g1(x), g2(x),...,gn(x)) and get (for z € 9B™ and
i=1...n)g(r1,x2,...,2,) = x;. Note dgy Adga A --- Ndg, =0
since g7 + g5+ -+ g2 = 1. Then:

0 # [gndziANdza A ANdxy = [y, @1 Adza A--- Nday
= fopn g1 ANdga A ---Ndgn = [gadgi Adga A -+ Adgn
= [3.0=0
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Example 1.26 (Majority Voting)

Consider agents 1,2, 3 and three outcomes A, B, C. Agents
vote simultaneously for one outcome (no abstaining). The
outcome with most votes wins. If there is no majority, then
A is selected. The payoff functions are as follows:

p1(A) = po(B) = p3(C) = 2, pi(B) = p2(C) = p3(A) = 1 and
p11(C) = pa(A) = p3(B) = 0. What are the Nash equilibria
and what are their outcomes?
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Example 1.27 (Unique Equilibrium)

The following game has exactly one Nash equilibrium.

o cC
—~

|

no
—_
~
—
-

|

DO
~
—~
oo
— O O
~
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Definition 1.28 (Minmax value and feasible payoffs)

In a n-person normal form game (A, Act, O, o, u) we define
the minmax value of player i as follows

o ted -
v; = min max g T (84, 874, ).

i
S_i S

We call a payoff profile (ry,...,ri,...,r,) feasible if there
exist rational values a; > 0 such that for all i

f= S aan(@ where 3 az=1.

acAct acAct

Geometrically speaking, this is the (rational) convex hull of
all possible payoffs of pure action profiles.
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Feasible payoffs

What is the idea behind feasible payoffs?

m The minmax value is important, as this is the minimal
payoff in any Nash equilibrium.

m Not any feasible profile can be obtained as payoff. In
the leader game in Example 1.13 on Slide 36, the profile
(2,1 is feasible but can not be realised in one game.
What if the game is played infinitely often (or just
twice)?

m In general, convex combinations of pure-strategy
payoffs can only be obtained by correlated strategies,
not by independent randomizations.

In fact, feasible payoffs (and their convexity) will play a role
later in Section 2 on Slide 168 (Theorem 2.10). They can be
realized in repeated games.
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It is obvious that there is not always a strategy that is
strictly dominating all others (this is why the Nash
equilibrium has been introduced).

Reducing games

However, often games can be reduced and the
computation of the equilibrium considerably simplified.

A rational player would never choose a strategy that is
strictly dominated.
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Definition 1.29 (Dominating Strategy: Weakly, Strictly)

A pure strategy a; is strictly dominated for an agent i, if
there exists some other (mixed) strategy s! that strictly
dominates it, i.e. for all profiles

a’i ={a1,...,a-1,0i41,- .. ,a0,), We have

pi((sh,aZi)) = pi{a;, ai)).

We say that a pure strategy «; is weakly dominated for an
agent , if in the above inequality we have > instead of =
and the inequality is strict for at least one of the other aZ;.
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Definition 1.30 (Reduced Sets A%°, 5°)

For an arbitrary normal form game with A; the set of pure
strategies and S, the set of mixed strategies for agent i, we
define (AY := A4;, S? := S;)

Ar = {a; € A?7! | thereisno s, € S/ ' s.t
pi(si,a”i) 2 pi(ai, a”;)
foralla”; € A"}
Sro= {sesS; | §(a)=0onlyifa; € A}

)

Finally, A% := (', A? and S® is the set of all mixed
strategies si, such that there is no s, with
wi(sh,a_;) = pi(si,a”;) forallaZ; € A°°
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Some Comments to A and S

m What are the S'? They are the sets of mixed strategies
over only the pure strategies in A”.

m The A? are sets of pure strategies from which we
remove those, that are strictly dominated by certain
other mixed strategies.

m Therefore only the strategies in A are those that we
have to keep.

m Note that S7* is defined wrt. A°, not wrt. S”.

m 57 is the set of mixed strategies that are not strictly
dominated by pure action profiles from A*.

m Note that S° can be strictly smaller than the set of all
mixed strategies over A°.
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Theorem 1.31 (Solvable by Iterated Strict Dominance)

If for a finite normal form game, the sets A are all
singletons (such a game is called solvable by
iterated strict dominance), then this strategy
profile is the unique Nash equilibrium.
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Lemma 1.32 (Church-Rosser)

Given a 2-person normal form game. All strictly dominated
columns, as well as all strictly dominated rows can be
eliminated without changing the Nash equilibria (or similar
solution concepts). This results in a finite series of reduced
games. The final result does not depend on the order of
the eliminations.

Note: the last lemma is not true for weakly dominated
strategies. There, the order does matter.
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Note that we eliminate only pure strategies. Such
a strategy might be dominated by a mixed
strategy.

L [ C [ R
Ul {3,221 (3,1)
M| (1,1) | (1,1) | (2,2)
D|(0,1)] (4,2) | (0,1)

Eliminate row M.
Eliminate column R.
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This leads to
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1.2 Normal Form Games

Elimination of Weakly Dominated actions

We consider the normal form game

L | R
T |(1,1)](0,0)
M| (1,1)](2,1)
B |(0,0)|(2,1)
If we first eliminate T, and then L we get the outcome
(2,1).
If we first eliminate B, and then R we get the outcome
(1,1).
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1.3 Extensive Form Games
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1.3 Extensive Form Games

University of Technology

We have previously introduced normal form games
(Definition 1.4 on Slide 23). This notion does not allow to deal
with sequences of actions that are reactions to actions of the
opponent.

Extensive form (tree form) games

Unlike games in normal form, those in extensive form do not
assume that all moves between players are made simultaneously.
This leads to a tree form, and allows to introduce strategies,
that take into account the history of the game.

We distinguish between perfect and imperfect information
games. While the former assume that the players have complete
knowledge about the game, the latter do not: a player might not
know exactly which node it is in.
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The following definition covers a game as a tree:

Definition 1.33 (Perfect Extensive Form Games)

A finite perfect information game in extensive form is a tuple
I'=(A,Act,H, Z, o, p,0, i1, - - ., i) Where

m A is a set of n players, Act is a set of actions

Em H is a set of non-terminal nodes, Z a set of terminal nodes,
HNZ =0, HU Z form a tree,

a: H — 22t assigns to each node a set of actions,

p: H — A assigns to each non-terminal node a player who
chooses an action at that node,

B o: H xAct — H U Z assigns to each (node,action) a
successor node (hy # hy implies o(hi,a1) # o(he,a2)),

m u; - Z — R are the utility functions.
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1.3 Extensive Form Games

Such games can be visualised as trees. Here is the famous
“Sharing Game”.

Example 1.34 (Sharing Game)

The game consists of two rounds. In the first, player 1 offers
a certain share (namely (1) 2 for player 1, 0 for player 2, (2) 1
for player 1, 1 for player 2, (3) 0 for player 1, 2 for player 2).
Player 2 can only accept, or refuse. In the latter case,
nobody gets anything.
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(2,0)

no yes

(0,0) (2,0) (0,0) (1,1) (0,0) (0,2)

Figure 2: The Sharing game.
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Strategies in extensive form games

Definition 1.35 (Strategies in Extensive Form Games)

LetT" = (A,Act, H,Z, o, p,0, 11, - . ., itn,) be a finite perfect
information game in extensive form.

A strategy for playeriin I' is any function that assigns a
legal move to each history owned by 1.

The pure strategies of player i are the elements of

Hhem pm=ic(h). These are also functions: whenever player i
can do a move, it chooses one of the actions available. Thus
we can write a pure strategy as a vector (ay, ..., a,), where
ay,...,a, arei’s choices at the respective moves.
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In the sharing game, a pure strategy for player 2 is

(no,yes, no). A (better) one is (no, yes, yes).

Why don’t we introduce mixed strategies?

Best response, Nash Equlibrium

Note that the definitions of best response and Nash
equilibrium carry over (literally) to games in extensive form.

Note that in the following we are talking only about pure
strategy profiles.

Prof. Dr. Jurgen Dix - Department of Informatics, TUC Game Theory (MSc), WS 17/18 79



Mu TU Clausthal 1 Complete Information Games
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What are the NE’s in the sharing game?

(L{y,y,y)), (L (n,n,n)), (1, {n,n,y)), (1, {y,n,n)),

(L {y,n,y)), (L, {y,y,n)) are NE’s, (1,(n,y,y)) is not. Also
(2,(n,y,n)), (2,(n,y,y)) and (3, (n,n,y)) are NE’s.
{

We claim that only (1, (y,y,y)) and (2, (n,y,y)) make sense.
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Transforming extensive form games into
normal form
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Clausthal University of Technology

Lemma 1.36 (Extensive form — Normal form)

Each game T in perfect information extensive form can be
transformed to a game NF(T") in normal form (such that the
pure strategy spaces correspond).
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Proof.

A strategy profile determines a unique path from the root
() of the game to one of the terminal nodes (and hence also
a single profile of payoffs). Therefore one can construct the
corresponding normal form game NF(I") by enumerating
all strategy profiles and filling the payoff matrix with the
resulting payoffs. O
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Sharing Game in normal form

1\ 2| nnn nny nyn nyy ynn yny yyn yyy

(2,0) | (0,0) | (0,0) | (6,0) | (0,0) | (2,0) | (2,0) | (2,0) | (2,0)
(1,1) | (0,0) | (0,0) | (1,1) | (1,1) | (0,0) | (0,0) | (1,1) | (1, 1)
(0,2) ] (6,0) 1 (0,2) | (0,0) | (0,2) | (0,0) | (0,2) | (0,0) | (0, 2)
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Figure 3: A generic game.
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1.3 Extensive Form Games

Example 1.37 (Generic Game in normal form)

We consider the game in Figure 3. The pure strategies of
player 1 are {(A, E), (A, F),(B, E), (B, F)}. The pure
strategies of player 2 are {C, D}.

| C D
AE W Y
AF| X Y
BE|Z Z
BF| Z Z

Note that (B, F), (B, I') are pure strategies that have to be
considered.
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Is there a converse of Lemma 1.36?

We consider prisoner’s dilemma and try to model a game in
extensive form with the same payoffs and strategy profiles.
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In fact, it is not surprising that we do not succeed in the
general case:

Theorem 1.38 (Zermelo, 1913; Kuhn)

For each perfect information game in extensive form there
exists a pure strategy NE.

The theorem can be strengthened (Kuhn’s theorem): For each
perfect information game in extensive form there exists a
pure strategy subgame perfect NE.

In fact, this was the reason that we do not need mixed
strategies for perfect information extensive games
(question on Slide 79).

We will later introduce imperfect information games (in
extensive form): Slide 99.
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Example 1.39 (Unintended Nash equilibria)

Consider the following game in extensive form.

(0,0) (2,1)

Figure 4: Unintended Equilibrium.

Prof. Dr. Jurgen Dix - Department of Informatics, TUC Game Theory (MSc), WS 17/18 88



H:KI* TU Clausthal 1 Complete Information Games
Clausthal University of Technology

1.3 Extensive Form Games

The game depicted in Example 1.39 has two
equilibria: (A, R) and (B, L). The latter one is not
intuitive (while the first one is).

Can we refine the notion of NE and rule out this
unintended equilibrium?
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This leads to the notion of subgame perfect NE:

Definition 1.40 (Subgame Perfect NE (SPE))

Let I" be a perfect information game in extensive form.
Subgame: A subgame of G rooted at node £ is the
restriction of I to the descendants of h.

SPE: The subgame perfect Nash equilibria (SPE) of
a perfect information game I" in extensive form
are those Nash equilibria of I, that are also Nash
equilibria for all subgames I'" of T".
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m What are the SPE’s in the Sharing game (Example 1.34)?

m What are the SPE’s in the following instance of the
generic game (Example 1.37):

¢ D
AE [ (2,0) (L,1)
AF [ (0,2) (1,1)
BE | (3,3) (3,3)
BF | (3,3) (3,3)
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Theorem 1.41 (Existence of SPE (Kuhn))

For each finite perfect information game in
extensive form there exists a SPE.

The proof is by induction on the length of
histories. The SPE is therefore defined

constructively.
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1.3 Extensive Form Games

By backward induction we construct a subgame perfect NE:

m Let 4 be a terminal history and /' be the history with the
last action removed, say h = h’a. Moreover, let it be
playeri’s move in i'. Then, we define s;(/’) to be the
action which maximizes i’s payoff. We proceed like this
for all such histories A'.

m Suppose now that s is a subgame perfect NE for all
histories of a certain length, say k. Consider a history
h' = ha of length k£ + 1. As before the player whose
move it is in A’ chooses an action which maximizes its
payoff assuming that all other players follow s. We
proceed like this for all histories A'.

m The constructed strategy s is a subgame perfect NE.
U
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Example 1.42 (Centipede Game)

This is a two person game which illustrates that even the
notion of SPE can be critical.

D
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Centipede Revisited

m The Centipede game has just one SPE: All
players always choose D.

m This is rational, but humans often do not
behave like that.

m Experiments show, that humans start with
going across and do a down only towards the
end of the game.
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1.3 Extensive Form Games

Imperfect Information

m In an extensive game with perfect information, the
player does know all previous moves (and also the
payoffs that result).

® In an extensive game with imperfect information, a
player might not be completely informed about the
past history.

m Or some moves in the past may have been done
randomly, so in the future, even under the same
circumstances, other actions might be taken.
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Theldea

m An extensive game is nothing else than a tree. Thus
each node is unique and carries with it the path from
the root (the history that lead to it).

m In order to model that a player does not perfectly know
the past events, we introduce an equivalence relation
on the nodes. That two nodes are equivalent, means
that the player cannot distinguish between them.

m All nodes in one equivalence class must be assigned
the same actions: otherwise the player could
distinguish them.
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Definition 1.43 (Information set 7, Partition)

For a set W (nodes, worlds, games) and a set of agents A,
we define a partition I; of agent i € A over it (or the
information set of i) as an equivalence relation over W. Its
classes I;; are also called partition classes. Thus the
following holds.

A partition ; is a set of subsets Wiy, ... Wi, of W such that:
(M) U; Wy = W and (2) Wy N Wiy = 0 forj #7'.
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1.3 Extensive Form Games

Definition 1.44 (Extensive Games, Imperfect Inf.)

A finite imperfect information game in extensive formis a
tuple G = (A, Act, H, Z, o, p, 0, i1, - - -y fin, In, - . ., I,,) where

m (A Act,H,Z, v, p, 0, 1, - . ., by is @ perfect information
game in the sense of Definition 1.33 on Slide 75,

m [; are partitionson {h € H : p(h) =i} such that
h,h' € I ; implies a(h) = a(h').
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Example 1.45

(0,0) (1,2) (1,2) (0,0)
(Utility of the rightmost leaf node is (2,1).)
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m Player 1 can not distinguish between the nodes
connected by a dotted line.

m Therefore player 1 can not play the right move.
m It could play a mixed strategy: with probability 3 choose
L.

Now we need mixed strategies, to deal with the
uncertainty.
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Definition 1.46 (Pure strategy in Extensive Form)

Given an imperfect information game in extensive form, a
pure strategy for player iis a vector {(ay, ..., a;) with

a; € a(l;) where Iy, . . ., I;, are the k equivalence classes for
agent i. Note that this vector is just a function assigning an
action to each node owned by player i.

Can we model prisoner’s dilemma as an extensive game
with imperfect information?
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(_L'l) (_470) (Oa'4) (_37'3)
Figure 5: Prisoner’s dilemma in extensive form.

There is a pure strategy Nash equilibrium.
But we could have chosen to switch player 1 with player 2.
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NF game — Imperfect game

For pure strategies we have the following:

m Each game in normal form can be transformed into an
imperfect information game in extensive form (but
this is not one-to-one).

m Each imperfect information game in extensive form can
be transformed into a game in normal form (this is
one-to-one).

What are mixed strategies for an imperfect information
game?
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Mixed Strategy: First try.

m Let I" be an imperfect information game in extensive
form.

m Assign the normal form game (for any i) as usual, by
enumerating the pure strategies.

m Now we can take the usual set of mixed strategies in
the normal form game as the set of mixed strategies
of the original game T'.
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Behavioral Strategy: Second try.

m We consider the game from Figure 3 on Slide 84.

m Consider the following strategy for player 1. A is chosen
with probability .7, B with .3 and E with probability .4
and F with .6. Such strategies are called behavioral: at
each node, the (probabilistic) choice is made
independently from the other nodes.

m Consider the following mixed strategy for player 1.
(A, E) is chosen with probability .6 and (B, F') with
probability .4. Thus, here we have a strong correlation:
(A, F) is not possible!
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Mixed vs. Behavioral

Definition 1.47 (Mixed and Behavioral strategies)

Let G = (A, Act,H, Z,c, p, 0, i1, - - - fn, I, - .., I,) De an
imperfect information game in extensive form.

Mixed: A mixed strategy of player i is one single
probability distribution over i's pure strategies.

Behavioral: A behavioral strategy of playeri is a vector of
probability distributions P(I;;) over the set of
actions a(;;) for I;; € I;. We define by P(h)(a)
the probability P(1;;)(a) for the action a for
playeriif h € I;;.
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Mixed vs. Behavioral (2)

m The main difference is that for behavioral
strategies, at each node the probability
distribution is started freshly.

m Even if a player ends up in the same partition,
she can choose independently of her previous
choice.

m Whereas for mixed strategies, this choice is not
independent: there is just one single
distribution that relates the possible choices.
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1.3 Extensive Form Games

Are behavioral strategies more general?

We consider a one player game. At the start node, the
player can choose L or R. There result two nodes which can
not be distinguished by the player. Again, L or R can be
played and result in the four outcomes oy, 05, 03, 04.

m What is the outcome of the mixed strategy (;LL, ;RR)?

m Itis (1,0,0,3)

m No behavioral strategy results in this distribution.

m Therefore mixed strategies are not necessarily
behavioral.
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Example 1.48 (A game of imperfect recall)

We consider the following game

1.0 100,100 5,1 2,9

For mixed strategies, (R, D) is the unique NE. But for
behavioral strategies, the following mixed strategy is a

better response of player 1 to D: (5L, 103 R).
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Are mixed strategies more general? (2)

m For mixed strategies, once decided, the pure strategy is
consistently chosen. Therefore the outcome (100, 100) is
not reachable.

m This is not true for behavioral strategies, where at each
node, the probabilistic choice is done independently.

m What is the best response of player 1 to D in
behavioral strategies? Consider a mixed behavioral
strategy: choose L with probability p and R with 1 —p
A little computation shows that the maximal payoff is
obtained for p = 198
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1.3 Extensive Form Games

Behavioral vs. mixed strategies?

m We have just seen that there are mixed
strategies for which there are no behavioral
strategies with the same outcome and vice
versa.

m Therefore we introduce two concepts of Nash
equilibria on the next page.

m Is there a class of games where both concepts
are equivalent?
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Definition 1.49 (NE for Mixed/Behavioral Strategies)

A NE in mixed strategies for an extensive game G is a
mixed strategy profile s* = (s}, s5,...,s%), s.t. for any agent
i

[l@((S;‘, S*—i> > p’i(<3i7 Sii)
for all mixed strategies s, of player i.

A NE in behavioral strategies is a behavioral strategy
profile s* = (s, s3,...,s%), s.t. for any agent i:

pi((si, s%5) > mi( (s, 874)

for all behavioral strategies s, of player i.

Prof. Dr. Jurgen Dix - Department of Informatics, TUC Game Theory (MSc), WS 17/18 113



&Mﬂ 1 Complete Information Games
" 4 . laUSthal 1.3 Extensive Form Games

Definition 1.50 (Perfect Recall)

Let I' be an imperfect information game in extensive form. We say
that player i has perfect recall in T, if the following holds. If , A’
are two nodes in the same I;; (for a j), and

Ur of Technolo

ho,ao, hi, a1, ..., hy,an, hresp. hi, ag, by, al, ..., h,, a,,, h' are
paths from the root of the tree to i (resp. #’), then
n=m,

forall 0 < j <n: h; and h; are in the same partition class,
forall0 <j <mn:ifa(h;) =ithenaqa; = a}.
I'is a game of perfect recall, if all players have perfect recall.
Otherwise it is called of imperfect recall.
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A few games: Which have perfect recall?

1.3 Extensive Form Games
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1.3 Extensive Form Games
Clausthal University of Technology

Do they model the same situation?
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Perfect Recall: Behavioral strategies suffice?

Theorem 1.51 (Behavioral = Mixed (Kuhn, 1953))

Let T be a game of perfect recall (perfect or imperfect
information). Then for any mixed strategy of agent i there is a
behavioral one such that both strategies induce the same
probabilities on outcomes for all fixed strategy profiles of the
other agents.

Corollary 1.52

In a game of perfect recall, it suffices to compute the Nash
equilibria based on behavioral strategies.
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SPE: What about subperfect equilibria (analogue of
Definition 1.40 on Slide 90 for imperfect games?

First try: In each information set, we have a set of
subgames (a forest). Why not asking that a
strategy should be a best response in all
subgames of that forest?
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Example 1.53 (A Game with no SPE’s)

(0,1000) (0,0) (1,0) (3,1)
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m Nash equilibria: (L,U) and (R, D). Can we see them as
subgame perfect?

®m In one subtree, U dominates D, in the other D
dominates U.

m But (R, D) seems to be the unique choice: both
players can put themselves into the others place and
reason accordingly.

m Requiring that a strategy is best response to all
subtrees might be too strong.
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Ways out

There are two prominent refinements of SPE’s.

m One is the trembling hand perfect
equilibrium. It is defined for normal form, and
extensive form games.

m The other the sequential equilibrium is defined
for extensive form games of perfect recall.
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1.3 Extensive Form Games
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We use a belief system p: functions which assign to each

information set /;; a probability measure over nodes in I;;.
1(1;;)(h) is the probability that player i assigns to history £,
provided that I;; is being reached.

So, a belief system captures the probability of being in a
specific node of an information set.

Given a behavioral strategy profile 3 which is completely

mixed (i.e. assigns non-zero probability to all actions), a
belief system 1 can be uniquely assigned to 5.
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1.3 Extensive Form Games

Definition 1.54 (Sequential Equilibrium)

A (behavioral) strategy profile g* = (87, 05;,...,0;) is a
sequential equilibrium of an extensive form game I if there
exist probability distributions 1(h) for each information set
I; such that

(8%, 1) = lim, o (8", u™) for some sequence where " is
completely mixed (where 1" is uniquely determined by
8",

for any I; of agent i and any alternative strategy f; of
agenti: pi (6 | h, u(h)) = (6, B=) | h, u(h)).

The first assumption (consistency) is of a rather technical
nature to enable the consistent definition of expectations in
case of behavioral strategies which assign probability 0 to
actions.
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Theorem 1.55 (Sequential Equilibrium)

For each imperfect information game in extensive
form with perfect recall there exists a
sequential equilibrium.

For perfect information games, each SPE is a
sequential equilibrium but not vice versa.
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1.4 An Example from Economics
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1.4 An Example from Economics

A theory for efficiently allocating goods and
resources among agents, based on market
prices.

Goods: Givenn > 0 goods gi,..., g, (coffee, mirror sites,
parameters of an airplane design). We assume
g; # g;j for ¢ # j but within each g; everything is
indistinguishable.

Prices: The market has prices p = [p1,p2, ..., 0] € R™: p;
is the price of the good :.
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Consumers: Consumer i has p;(x) encoding its preferences
over consumption bundles x; = [z;1, ..., x;,],
where z;, € RT is consumer i’s allocation of
good g. Each consumer also has an initial
endowment e; = [e;1, ..., €;,]" € R.

Producers: Use some commodities to produce others:
Vi = W1, -, Yjn)', Where y;, € R is the amount of
good g that producer j produces. ¥j is a set of
such vectors y.
Profit of producer j: p x y;, where y; € Yj.
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1.4 An Example from Economics

Profits: The profits are divided among the
consumers (given predetermined
proportions Ay): Ay is the fraction of
producer j that consumer i owns
(stocks). Profits are divided according to
Ayj.
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Definition 1.56 (General Equilibrium)

(p*,x*,y*) is in general equilibrium, if the following holds:

|. The markets are in equilibrium:
Sx=Yat Yy
i i j
Il. Producerj maximises profit wrt. the market
y; = arg max{yjeyj}p* X Y;
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lll. Consumer i maximises preferences
according to the prices

X,;'k = arg maX{XieRi| cond; } l‘l’i(xi)
where cond; stands for
p* X x5 < p* X ej + Zj A1'.]'1:)>|< X Yj-
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Theorem 1.57 (Pareto Efficiency)

Each general equilibrium is pareto efficient.

Theorem 1.58 (Coalition Stability)

Each general equilibrium with no producers is
coalition-stable: no subgroup can increase their utilities by
deviating from the equilibrium and building their own
market.
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Theorem 1.59 (Existence of an Equilibrium)

Let the sets Y; be closed, convex and bounded above. Let p; be
continuous, strictly convex and strongly monotone. Assume
further that at least one bundle x; is producible with only
positive entries x;;.

Under these assumptions a general equilibrium exists.
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Meaning of the assumptions

Formal definitions: ~~ blackboard.

Convexity of Y;: Economies of scale in production do not
satisfy it.

Continuity of the p;: Not satisfied in bandwidth allocation
for video conferences.

Strictly convex: Not satisfied if preference increases when
one gets more of this good (drugs, alcohol,
dulce de leche).
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In general, there exist more than one equilibrium.

Theorem 1.60 (Uniqueness)

If the society-wide demand for each good is non-decreasing
in the prices of the other goods, then a unique equilibrium
exists.

This condition is called gross substitutes property and
comes in many variants.

Positive example: increasing price of meat forces people to
eat potatoes (pasta).

Negative example: increasing price of bread implies that
the butter consumption decreases.
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How to find market equilibria?

We describe an algorithm using steepest descent.

Theorem 1.61

The price tatonnement algorithm, explained on the next few
pages, converges to a general equilibrium if for all p that
are not proportional to an equilibrium vector p*, the following
holds:

Z( ) —ei) Zyl

i
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Price tatonnement process (1)

m This is a decentralized algorithm that performs steepest
descent (can be improved by Newton-method).

m The main part is a price adjustor, that suggests a price
and receives production plans from the producers and
consumption plans from the consumers.

m Based on these plans, a new price is calculated and the
cycle starts again.

m Producerj takes the current price and develops a
production plan maximizing its profit. This plan is sent
to the adjustor.

m Consumer i takes the current price and production
plans from the producers and develops a consumption
plan maximizing its utility given budget constraints.
This plan is sent to the adjustor.
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Price tatonnement: The adjustor

forg=1tondo
pg <1
end for
forg=1tondo
Ay + a positive number
end for
repeat
Broadcast p to consumers and producers.
Receive a production plan y; from each producerj.
Broadcast the plans y; to consumers.
Receive a consumption plan x; from each consumer i.
forg=1tondo
Py < Py + Ag(X2;(wig — €ig) = 35 jg)
end for
until | 37, (zig —eig) — 32 yjq [S eforalll <g<n
Inform consumers and producers that an equilibrium has been
reached.
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Price tatonnement: Consumeri

repeat
Receive p from the adjustor.
Receive a production plan y; for all j from the adjustor.
Announce to the adjustor a consumption plan x; that
maximizes i’s utility given the budget constraint (see
Condition lll on Slide 130).

until Informed by adjustor that equilibrium has been

reached.

Exchange and consume.
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Price tatonnement: Producer)

repeat
Receive p from the adjustor.
Receive a production plan for all j from the adjustor.
Announce to the adjustor a production plan y; € Y]
that maximizes p x y;
until Informed by adjustor that equilibrium has been
reached.
Exchange and produce.
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2. Repeated Games

Repeated Games
m Examples and Motivation
m Finitely Repeated Games
m Infinite Horizon Games
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Outline

What happens if a game is not played once, but several
times or even infinitely often? We consider repeated games
with observed actions. One of the famous results is
Axelrod’s observations on the iterated prisoners dilemma.

m We first consider finitely repeated games. They do not
behave intuitively, but can be treated with backward
induction.

m Infinite-horizon games are much more intuitive, but
require more technical details.
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2.1 Examples and Motivation

m Often games are not just played once. They
are repeated finitely often (until consensus is
reached).

m Sometimes, infinitely repeated games can be
used to define equilibria.

m In repeated games, it makes sense to make its
choices dependent on the previous game (or
the whole history).
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Bargaining

We assume two agents 1,2, each with a utility function
wi : Z — R. If the agents do not agree on a result r a fixed
fallback rsapack is taken.

Example 2.1 (Sharing 1 Pound)

How to share 1 Pound? Let rqpack = 0.

Agent 1 offers p (0 < p < 1). Agent 2 agrees!
Such deals are individually rational and each one is a Nash
equilibrium!

How can we change this unwanted outcome?
Either we impose certain axioms (see Slide 159) or we view
it as a game: strategic bargaining.
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Repeated Bargaining

Figure 6: The bargaining éame.
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Lemma 2.2 (Trivial Bargaining)

Each strategy profile

x

1 offers (x,1 — z), agrees to (y,1 —y) fory > x
2 offers (x,1 — x), agrees to (y,1 —y) iff1l —y >1—=x

is a NE: agreement is reached in the first round.
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Strategic Bargaining

Example revisited: Sharing 1 Pound Sterling.

Protocol with finitely many steps: The last
offerer just offers e. This should be accepted, so
the last offerer gets 1 — ¢ (see also the Centipede
game on Slide 94).

This is again unsatisfiable.
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2.1 Examples and Motivation

Ways out:
Consider infinite games (~
Subsection 2.3).
Keep finite games, but:

Add a discountfactor 4: in round n, only
the §"~'th part of the original value is
available.

Bargaining costs: bargaining is not for
free—fees have to be paid.
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Backward Induction

Example 2.3 (Fair offers)

There are four agents (ordered by 1, 2, 3 and 4) and 1 Mio
Euros to be distributed between them. The protocol is as
follows. Agent 1 makes an offer to all agents. Then either a
strict (nonstrict) majority agrees and the game is over, or
there is no agreement. In this latter case, agent 1 is out (she
gets nothing), and the next agent makes an offer to the rest.
And so on.

What should Agent 1 offer so that agreement is reached
in the first round (assuming all agents act rational)?
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Model of finitely repeated games (1)

m Afinite n-person normal form game (A, Act, O, g, i),
where all 4; are finite, is also called a stage game. It
might be played finitely many times (finite horizon,
which is known to all agents), or even infinitely many
times (infinite horizon).

m We view such a repeated game as an imperfect
information game in extensive form (see Figure 7 on
Slide 155). Thus the strategy space of the finitely
repeated game is defined.

m More formally, a mixed behavioral strategy in the
finitely repeated game is a sequence of mappings from
the set of all possible period-t histories to mixed actions
s € 5;.

m These strategies cannot depend on the opponents’
randomizing probabilities s_;, but only on the past
values of a_;: the probabilities are not known.
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2.2 Finitely Repeated Games

Model of finitely repeated games (2)

m The payoff function of the finite horizon game can be
defined as the sum of the payoffs of the stage games
in each round. Better: average over time periods or
to introduce a discount factor: see Definition 2.12 on

Slide 178.

m We can now consider NE’s of such a finitely repeated
game.

m Note that we defined player i's minmax value v;:
vy = min,_, max,, pu{"*"“(s_i,s;) in Definition 1.28 on
Slide 62.
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2.2 Finitely Repeated Games
Example 2.4 (Iterated Prisoners Dilemma)

After each round, the players know what the other player
played. So a strategy can take past plays into account.

Figure 7: Iterated Prisoners Dilemma.
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Clausthal University of Technology 2.2 Finitely Repeated Games

Lemma 2.5 (NE for iterated prisoners dilemma)

In the finitely repeated version of the prisoners dilemma, the
only Nash equilibrium is the subgame perfect equilibrium
where both players always defect.
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Axelrod’s tournament

m What is the best strategy when prisoner’s dilemma is
repeatedly played?

m Tit for tat: Cooperate in the first step, and then do
what the other player did in the previous step.

m It turned out, that tit for tat is not only simple and easy
to calculate (only the last move is considered) but also
extremely powerful.

m Several experiments have shown that.
m Even counter strategies to tit for tat are difficult to find.

m Robert Axelrod: The Evolution of Cooperation, New
York: Basic Books, 1984.
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Backward Induction (2)

m Isn’t Lemma 2.5 contradicting Axelrod’s
result?

m What if the finite horizon is not known to the
players, so the game could end at any round?
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Axioms on Bargaining

We consider again Example 2.1 on Slide 146 and state the

following axioms on the global solution

pr = (), ma(r)).

Invariance: Absolute values of the utility functions do not
matter, only relative values.

Symmetry: Changing the agents does not influence the
solution.

Irrelevant Alternatives: If Z is made smaller but r* still
remains, then »* remains the solution.

Pareto: The players can not get a higher utility than
pr = (), p2(r)).
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Clausthal University of Technology 2.2 Finitely Repeated Games

Theorem 2.6 (Unique solution)

The four axioms above determine a unique solution. This
solution is given by

r* = arg max,{(u (r) — m ("fanback)) < (#2(r) — p2(Tfanback)) }-
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Strategic bargaining for finite games

Suppose § = 0.9. Then the outcome depends on the
number of rounds.

H Round \ 1’s share \2’5 share \ Total value \ Offerer H

n—3 0.819 0.181 0.974 2
n—2 0.91 0.09 0.973 1
n—1 0.9 0.1 0.97—2 2

n 1 0 0.97 1 1
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@H‘u T[\{mg}a}{sﬁtpal 2.2 Finitely Repeated Games
Bargaining Costs

Agent 1 pays ¢, agent 2 pays c;.
Protocol: After each round, the roles change and the fee is
subtracted (¢; from 1, ¢, from 2). Therefore the game is

finite.

Theorem 2.7

(1) ¢c1 = cy: Any split is a SPE.

(2) c¢1 < c: Only one SPE: Agent 1 gets all.

(3) c1 > c3: Only one SPE: Agent 1 gets ¢,, agent 2 gets
1— .
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2.2 Finitely Repeated Games

(1) is obvious.

(2) Assume agent 2 offered 7 in round ¢. Then in round
t — 1 agent 1 had offered 1 — (7 + ¢2). Thus in round
t — 2 agent 2 would have offered = + ¢, — ¢; and kept
1—m—(c2—c¢1). Soinround ¢t — 2k, agent 2 would keep
1 — 7 — k(¢ — ¢1). But this would go to —cc, so agent 2
accepts 0 upfront.

(3) This follows from (2): After the first round, agent 2 is in
the role of agent 1. But to reach the second round,
agent 2 would have to pay c,. So agent 2 is willing to
pay agent 1 its (i.e. agent 2’s) fees. So agreement is
reached in the first round (no bargaining fees).

]
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An Infinite Extensive Game

Example 2.8 (Bargaining)

Two players, 1 and 2, bargain about how to split goods worth
initially wy = 1 EUR. After each round without agreement, the
worth of the goods reduces by discount rates 6; (for player 1) and
92 (for player 2). So, after ¢ rounds, the goods are worth only

(6t 65). Subsequently, 1 (if ¢ is even) or 2 (if ¢ is odd) makes an
offer to split the goods in proportions (x,1 — x), and the other
player accepts or rejects it. If the offer is accepted, then 1 takes
x6t, and 2 gets (1 — z)d%; otherwise the game continues.
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2.2 Finitely Repeated Games

Finite Set of payoffs: Making the game finite.

m In order to obtain a finite set of payoffs, we assume that
the goods are split with finite precision represented
by a rounding functionr : Rf — R{.

m We assume from the rounding function r that there is
¢ > 0 such that the following holds: (1) r(z) < z, (2)
r(z) > x — ¢, (3) r is monotonically increasing, and (4)
r(e) = 0.

m So, after ¢ rounds, the goods are in fact worth
(r(6%), (%)), and if the offer is accepted, then 1 takes
r(zdt), and 2 gets r((1 — x)d%).
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Problem: Nash equilibria in sequential games
might exist in the first stages, but not
later.

Solution: We consider SPE's: Nash equilibria that
remain Nash equilibria in every possible
subgame, see Definition 1.40 on
Slide 90.
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@Hﬁ T[\{Mg‘l\?}“}ﬁtgal 2.2 Finitely Repeated Games
Bargaining Revisited
What about SPE’s in Example 2.8?
Because of the finite precision, there is a minimal round T’
with 7(6/ ') = 0 fori =1 ori = 2. For simplicity, assume
thati =2 and agent 1 is the offerer in 7" (i.e., T'is even).

Lemma 2.9 (Bargaining made finite)

For bargaining with a rounding function, there exists exactly
one SPE. The goods are split (x,1 — k) and agreement is
reached in the first round:

1— (0,8,)2

o0, 0027

R = (1 — 52)
We assume also that the e in the rounding function satisfies
€ <| 61 = 52 |
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2.2 Finitely Repeated Games

Theorem 2.10 (Benoit and Krishna, 1987)

Suppose that for each player i there is a static equilibrium in
which i has a payoff that is strictly greater than its minmax
value min, , max,, p™” eCted(s_i, si).

We are interested in the set of NE payoffs of the T-period
game (averaged over T)). What happens with this set, when T
goes to co?

The sets converge to the set of feasible, individually

rational payoffs.

Note that we have defined and discussed the minmax-value
and feasible payoffs on Slide 62.
The theorem talks about payoffs, not about NE’s.
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2.2 Finitely Repeated Games

m Clearly, if all players play their minmax strategies, they
get their minmax value.

m In the following we construct strategy profiles where
each agent gets strictly more than its minmax value.
By playing such a cycle many times, we can get any
feasible payoff.

m In the first phase, agents play suboptimal, but in the
terminal phase, they get their rewards.

m If one agent deviates, then the others punish her by
minmaxing her for the rest of the game.

m In the second phase, the reward phase, each agent
gets strictly more than its minmax value for many
rounds (this ensures that each feasible IR payoff will be
reached).
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Proof (cont.)

m Let v be a feasible, strictly IR payoff. We want to find equilibria and
payoffs that are “close” to v (within e range).

B Let o*(i) be a static equilibrium for agent i in which its payoff is
strictly greater than its minmax value. We construct two phases. In
the first phase all players will play suboptimal. The all get the
reward for that in the second phase, the R-cycle.

m We construct first the reward phase where first player 1’s o*(1) is
played, then player 2’s a*(2) etc. This cycle is repeated itself
R-many times, where R € N is arbitrary (to be adjusted later). We
call it the R-cycle.

m Any terminal R-cycle is a NE path in any subgame of length R x n.
The average payoff for each player is strictly better than its minmax
value in each such R-cycle.

O
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Proof (cont.)

m How can we ensure, that a player is cooperating, i.e.
accepting a non-optimal payoff, namely the minmax
value vy, in the first phase?

m If a player deviates, she is getting in that round a better
payoff, but will be punished by all other players: they
simply minmax her in all remaining rounds (and
cooperate among them).

m 50 we choose R large enough, so that accepting just v;
in some rounds plus the terminal R-cycle gives a better
payoff than deviating and being minmaxed for the rest
of the game.

]
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Proof (cont.)

m We are now designing the first phase. Given € > 0, we
choose 7' large enough, so that there exist sets of pure
actions {a;(i),...,a; (i)} for each player i with the
following property: the phase of length 7' — R x n,
where all agents play deterministically these actions,
has average payoffs that are within e-range of v.

m Now we are ready to play both phases. Our strategy is
to deterministically play, as long as there are still more
than R x n rounds left, the pure actions, then the
terminal R-cycle.
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Clausthal University of Technology 2.2 Finitely Repeated Games

Proof (cont.)

m Deviating in this first phase does not pay off
(minmaxing the deviating player). So these strategies
areaNEaslongasT > R x n.

m The average payoffs are within 2e-range of v for

maxg pi (@) —vi
T>RXnx =
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2.3 Infinite Horizon Games
Clausthal University of Technology

2.3 Infinite Horizon Games
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2.3 Infinite Horizon Games

Strategic bargaining for infinite games

éﬂﬁ TU Clausthal 2 Repeated Games

We introduce 4; factor for agent 1, 4, factor for agent 2.

Theorem 2.11 (Unique solution for infinite games)

In a discounted infinite round setting, there exists a unique
subgame perfect Nash equilibrium:

Agent 1 gets 5%

Agent 2 gets the rest.
Agreement is reached in the first round.
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Round 1’s share 2’s share offerer
t—2 1—(52(1—517_1'1) 1
t—1 1-601m 2

t T 1

Let 777 the maximal undiscounted share that agent 1 can
possibly get in any subgame perfect Nash equilibrium when she
is offering. We can now get back two rounds and get

1 — d2(1 — 0171). Setting both equal gives us the result. O
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m The last theorem is about infinite games.

m On Slide 165, we have introduced a finite
precision rounding function to get a finite set
of payoffs.

m Obviously, this assumption makes the entire
game finite.

m So we get an analogue of Theorem 2.11 for
finite games.
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2.3 Infinite Horizon Games

Model of infinitely repeated games (1)

How to define an infinitely repeated game? Again, we
consider a fixed stage game (A, Act, O, o, ).

Definition 2.12 (Average and discounted reward)

Let ri(l), 7{2), ... denote an infinite sequence of payoffs for

player i and let § be a discount factor 0 < ¢§ < 1.
We define the average reward of player i as

1 .

15,00
k—o0 k 3 '
Jj=1

lim sup

We define the future discounted reward of playeri as

(e.9]
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Model of infinitely repeated games (2)
In the following, we consider the discount-factor version.

Given a fixed stage game (A, Act, O, o, u) and a discount
factor § < 1.

m In each period ¢ certain actions a, . .., a;, are played:
denoted by a*.

m At = (a%... a" 1) is the sequence of all realized actions
until ¢.

m H* is the space of all possible period-¢ histories.

m Pure strategy of i in the infinite game: a; is a
sequence of mappings a! (for each period t) from H*
into A;. In each period t a pure strategy «; is chosen.

m Mixed (behavioral) strategy in the infinite game: s; is
a sequence of mappings s! (for each period t) from H*
into mixed actions S;. In each period ¢ a mixed strategy
s; is chosen.
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2.3 Infinite Horizon Games

Model of infinitely repeated games (3)

m We also use a and s for the pure action profile, resp. the
mixed strategy profile. Similarly we use a’ and s’ for the
t period.

m The only proper subgames are the period-t games.

m What is player i trying to maximize? Its discounted
payoff.

m But this depends on the possible histories H*.

m And these histories depend on the strategy profile s.

m So we need to know something about how the infinite
histories, depending on s, are distributed. So the
expectation Eg will play a role.
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Model of infinitely repeated games (4)

Definition 2.13 (The game G(9))

Player i’s intention is to maximize the value

[e.9]

P = By (1-0) 3 o'mi(si ()

t=0

m Why the factor (1 — §)?

m Because ) 6" = 155 ~» normalization.
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Model of infinitely repeated games (5)

We have defined the payoff of an infinitely repeated game.
Therefore we can now reason about the strategy spaces of
repeated games.

m Let o* be a NE of the stage game (above we called this
static equilibrium).

m Then the strategies “each player i plays o from now
on” are a subgame-perfect equilibrium.

m If there are m static equilibria of the stage game, then
any mapping from time periods ¢ to any such NE
(meaning that this NE is played at time t) leads to a
subgame-perfect equilibrium as well.

m Why not playing a static best response at all?
~ the future!!
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2.3 Infinite Horizon Games

In Definition 1.28 on Slide 62 we defined the notion of
minmax value and discussed it for the stage game. Its
importance for repeated games is because of the following

Lemma 2.14 (Minmax value is guaranteed)

In the infinitely repeated game G(5), player i's payoff is at
least its minmax value in all Nash equilibria (regardless of
the discount factor ¢).

Feasible payoffs are convex outcomes of the stage game.
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2.3 Infinite Horizon Games

m Question: Suppose we have a better payoff profile
(ri,...7i,...,mn) (i.e. all r; are strictly greater than their
minmax values) for a stage game (A, Act, O, o, ).

m Is there an infinitely repeated game with a Nash
equilibrium that has exactly this payoff profile?

m The answer is yes, if the profile is feasible.

m Any feasible, individually rational payoff can be
obtained (if one is patient enough).
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2.3 Infinite Horizon Games

Folk Theorem for infinitely repeated games

Theorem 2.15 (Folk Theorem)

For every feasible payoff profile 7 that is strictly individually
rational for each player, there exists a §' < 1 such that for all
§ €]0’,1[ there is a Nash equilibrium of the infinitely
repeated game G(d) with payoff profile 7.
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@KW TU ‘Clallsthal 2 Repeated Games

m The last theorem does not speak about strategy profiles
characeterizing Nash equilibria. It only talks about the
payoffs.

m It says that the payoffs obtained in the infinitely
repeated game are exactly those that can be obtained in
the stage game using mixed strategies.
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2.3 Infinite Horizon Games

m We have already seen in Lemma 2.14 that each player
gets at least its minmax value,

m We construct an equilibrium that meets the given
payoff profile by cycling the games accordingly.

m Any agent deviating (getting perhaps a better outcome
in the current game) will be punished for this behavior
by the other agents (which will play their minmax
startegies against him.)

This is exactly mimicking the proof of Theorem 2.10 given
on Slides 169 pp. H
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University of Technolog,

Proof (cont.)

m For simplicity, we assume that such a payoff profile
can be obtained by a pure action profile a. If this is not
the case, we take a public randomization with expected
value 7. The rest of the proof can be easily adapted.

m Strategy for player i is as follows.

m Play a; in the beginning and continue until

m either @ was played in the last round,

m or the profile played in the last round differed from a in at
least two components.

m If in some previous round, i was the only deviating from a,
then each player plays m} for the remaining part of the game.

]
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2.3 Infinite Horizon Games

Proof (cont.)

Is it possible for player i to deviate and gain a higher
payoff?
m She can indeed gain a bit more in one round, namely
max, pi(@).
m But because all others will minmax her for the rest of the
game, she obtains only her minmax value (forever).

m Therefore, if 1 deviates in round ¢, then she obtains at
most

(1= 8" + 0 (1 — 0) max pi (@) + 6oy
m which is less than v; for § > §;,
m where ¢; is defined by (1 — 6;) max, p; (@) + 0ivy = v;. (6 is
smaller than 1 because v; > v;.
O
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University of Technolog,

m Is the NE constructed in the last proof subgame
perfect?

= No!

m Punishments might also be costly (for the punishers).

m Repeated quantity setting oligopoly: Too much output
~~ price drop.

m Prices might be below punished players average costs,
even below own costs (of punishers).
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Perfect Folk Theorem for infinitely repeated
games

Theorem 2.16 (Perfect Folk Theorem
(Fudenberg/Maskin 1986))

We assume that the dimension of the set V' of feasible payoffs
equals the number of players. For every feasible payoff profile
7 that is strictly individually rational for each player, for any
v € V with v > v; for all agents i, there exists a ' < 1 such
that for all 6 €]¢’, 1] there is a subgame perfect Nash
equilibrium of the infinitely repeated game G(9) with
payoff profile 7.
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3. Coalitional Games

Coalitional Games
m Coalition Formation in CFG’s
m General Contract Nets
m Classes of Games
m The Core and its refinements
m Payoff Division: Shapley value and Banzhaf Index
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What happens if agents decide to team up and work
together to solve a problem more efficiently? We consider

m abstract coalition formation for characteristic
function games (CFG);

m algorithms for searching the coalition structure graph;

m the task allocation problem and present different types
of contracts between agents (no IR-contract leads to
the global optimum, even if all types are allowed), and

m how to distribute the profit among the agents: core of
a CFG and Shapley value.
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3.1 Coalition Formation in CFG’s
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Definition 3.1 (Characteristic Function Game (CFG))

A characteristic function game is a tuple (A, v) where A is
a finite set (of agents) and v : 2* — R{; S > v(9).
We assume v()) = 0 and call v(S) the value of coalition S.

Thus the value is independent of the nonmembers. But

Positive Externalities: Overlapping goals.
Nonmembers perform actions and move the world
closer to the coalition’s goal state.

Negative Externalities: Shared resources.
Nonmembers may use up the resources.
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Coalition Structure

Definition 3.2 (Coalition Structure CS)

A coalition structure CS over the set A is any partition
{C,....C*}ofAie. |J,CY =Aand C'NCI = Pfori # j.
We denote by CS), the set of all coalition structures CS over
the set M C A.

Finally, we define the social welfare of a coalition structure
CS by

v(CS) = Y v(C).

CeCs
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Definition 3.3 (Coalition Formation in CFG’s)

Coalition Formation in CFG’s consists of:

Forming CS: formation of coalitions such that within each
coalition agents coordinate their activities.

Solving Optimisation Problem: For each coalition in a CS
the tasks and resources of the agents have to be
pooled. Maximise monetary value.

Payoff Division: Divide the value of the generated solution
among agents.
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Maximising Social Welfare

Maximise the social welfare of the agents A by finding a
coalition structure
CS* = arg maxcsecs,v(CS),

where

v(CS) = ) v(9).

SeCs

How many coalition structures are there?
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A lot: Q(|A\I%‘). Enumerating is feasible for |A| < 15.

1050 ;
—— Number of coalition structures
10° L -~ Number of coalitions i
—
min
1030 L |
1020 L H
10° - et
10° === ) . L
0 10 20 30 40 50

Number of agents

Figure 8: Number of Coalition (Structures).
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Approximation of v(CS).

How can we approximate v(CS)?

Choose set N C CSa and pick the best coalition
seen so far:

CS} = arg maxcsenv(CS).
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Figure 9: Coalition Structure Graph CSa.
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We want our approximation as good as possible.

|
We want to find a small k£ and a small N such that

v(CS")
s(Cshy =k

k is the bound (best value would be 1) and N is the part of
the graph that we have to search exhaustively.
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We consider 3 search algorithms:
MERGE: Breadth-first search from the top.
SPLIT: Breadth first from the bottom.
Coalition-Structure-Search (CSS1): First the bottom 2 levels
are searched, then a breadth-first search from
the top.

|
MERGE might not even get a bound, without looking at all
coalitions.

SPLIT gets a good bound (k = |A|) after searching the
bottom 2 levels (see below). But then it can get slow.

CSS1 combines the good features of MERGE and SPLIT.
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Theorem 3.4 (Minimal Search to get a bound)

To bound k, it suffices to search the lowest two levels of the
CS-graph. Using this search, the bound k = |A| can be taken.
This bound is tight and the number of nodes searched is 2/*-1.

No other search algorithm can establish the bound |A]
while searching through less than 241-! nodes.
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Proof.
There are at most |A| coalitions included in CS*. Thus

CS") <|A <|A CS) = |Afv(CS:
v(CS") < |A|max v(S5) < |A| max v(CS) = |Alv(CSy)

Number of coalitions at the second lowest level: 2* — 2.

Number of coalition structures at the second lowest level:
1A —2)y=2A1-1.

Thus the number of nodes visited is: 22-1. ]
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What exactly does the last theorem mean? Let n,,;,, be the
smallest size of N such that a bound & can be established.

Positive result: s approaches 0 for |A| — oo.

Negative result: To determine a bound k, one needs to

search through exponentially many coalition
structures.
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Algorithm (CS-Search-1)

The algorithm comes in 3 steps:
Search the bottom two levels of the CS-graph.
Do a breadth-first search from the top of the graph.
Return the CS with the highest value.

This is an anytime algorithm.
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Theorem 3.5 (CS-Search-1 up to Layer I)

With the algorithm CS-Search-1 we get the following bound
for k after searching through layer [:

{ ['%] if|[Al]=h—1 mod hand |A| =1 mod 2,
L%J otherwise.

where h = 4.1 LW%J +2.

Thus, for I = |A| (check the top node), k switches from |A|

A
to A,
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Experiments
6-10 agents, values were assigned to each coalition using
the following alternatives
values were uniformly distributed between 0 and 1;
values were uniformly distributed between 0 and |A|;
values were superadditive;
values were subadditive.
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Figure 10: MERGE.
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Figure 11: SPLIT.
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Figure 12: CS-Search-1.
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Figure 13: Subadditive Values.
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Figure 14: Superadditive Values.
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Figure 15: Coalition values chosen uniformly from [0, 1].
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3 Coalitional Games
3.1 Coalition Formation in CFG’s

Figure 16: Coalition values chosen uniformly from [0, | S|].
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Figure 17: Comparing CS-Search-1 with SPLIT.
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Is CS-Search-1 the best anytime algorithm?

The search for best & for n’ > n is perhaps not the same
search to get best k for n.

CS-Search-1 does not use any information while
searching. Perhaps k£ can be made smaller by not only
considering v(CS) but also v(.5) in the searched CS'.
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3.2 General Contract Nets
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How to distribute tasks?
m Global Market Mechanisms. Implementations use a
single centralised mediator.
m Announce, bid, award -cycle. Distributed Negotiation.
We need the following:

Define a task allocation problem in precise terms.

Define a formal model for making bidding and
awarding decisions.
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Definition 3.6 (Task-Allocation Problem)

A task allocation problem is given by
a set of tasks 7T’
a set of agents A,

a cost function cost; : 27" — R U {co} (stating the costs
that agent i incurs by handling some tasks), and

the initial allocation of tasks
(Tznzt Tv|7;\1|zt>
where T' = | J;ca Timit, Tinit T“”t () fori # 3.
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@KH TU Claqsthal 3 Coalitional Games

Definition 3.7 (Accepting Contracts, Allocating Tasks)

A contractee q accepts a contract if it gets paid more than
the marginal cost of handling the tasks of the contract

Moadd(TcontTact |Tq ) =def COStq (Tcontract U Tq)
—costy (T5).

A contractor r is willing to allocate the tasks T<""<* from
its current task set 7. to a contractee, if it has to pay less than
it saves by handling them itself:

M Cremove (TcontTact |71r) — f cost, (T;*)
—COStr(Tr _ Tcontract) .
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Definition 3.8 (The Protocol)

Agents suggest contracts to others and make their decisions
according to the above M C% and M Cremove sets.

Agents can be both contractors and contractees. Tasks can
be recontracted.

m The protocol is domain independent.

m Can only improve at each step: Hill-climbing in the
space of all task allocations. Maximum is social
welfare: — 3, _, cost;i(T3).

m Anytime algorithm!
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Figure 18: TSP as Task Allocation Problem.
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Definition 3.9 (O-, C-, S-, M- Contracts)

A contract is called of type

O (Original): only one task is moved: (T; ;, p; ;), |T;.;| = 1.

C (Cluster): a set of tasks is moved: (T; ;, p; ;), |15, = 1

S (Swap): if a pair of agents swaps a pair of tasks:
(Tig Tiis Py Piads | Tigl = [Tl = 1

M (Multi): if more than two agents are involved in an
atomic exchange of tasks: (T, p), both are
|A| x |A| matrices. At least 3 elements are
non-empty, |7; ;| < 1.
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3.2 General Contract Nets

Lemma 3.10 (O-Path reaches Global Optimum)

A path of O-contracts always exists from any task allocation to

the optimal one. The length of the shortest such path is at
most |T|.

Does that solve our problem? (Lookahead)
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Definition 3.11 (Task Allocation Graph)

The task allocation graph has as vertices all possible task
allocations (i.e. |A|I"") and directed edges from one vertex to
another if there is a possible contract leading from one to
the other.

For O-contracts, searching the graph using breadth-first
search takes how much time?
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Lemma 3.12 (Allocation graph is sparse)

We assume that there are at least 2 agents and 2 tasks. We
consider the task allocation graph for O contracts. Then
the fraction

number of edges
number of edges in the fully connected graph

converges to 0 both for |T'| — oo as well as |A| — oo
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Lemma 3.13 (No IR-Path to Global Optimum)

There are instances where no path of IR O contracts exists
from the initial allocation to the optimal one. The length of the
shortest IR path (if it exists) may be greater than |T|.

But the shortest IR path is never greater than

AT = (JA] - 1)IT].

Problem: local maxima.

A contract may be individually rational but the task
allocation is not globally optimal.
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Clausthal University of Technology

Lemma 3.14 (No Path)

There are instances where no path of C-contracts (IR or not)
exists from the initial allocation to the optimal one.
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A task allocation is called k-optimal if no beneficial

C-contract with clusters of £ tasks can be made between
any two agents.

Let m < n. Does
m m optimality imply n optimality;
m n optimality imply m optimality?
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Lemma 3.15 (No Path)

There are instances where no path of S-contracts (IR or not)
exists from the initial allocation to the optimal one.

Lemma 3.16 (No Path)

There are instances where no path of M-contracts (IR or not)
exists from the initial allocation to the optimal one.
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Lemma 3.17 (Reachable allocations for S contracts)

We assume that there are at least 2 agents and 2 tasks. We
consider the task allocation graph for S contracts. Given
any vertex v the fraction

number of vertices reachable from v
number of all vertices

converges to 0 both for |T'| — oo as well as for |A| — oo.
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S contracts preserve the number of tasks of each agent. So
any vertex has certain allocations ,, . .., ¢ for the agents.
How many allocations determined by this sequence are
thelrelz? There are exactly |T'|! many. This is to be divided by
|AJITT. O
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Theorem 3.18 (All Types necessary)

For each of the 4 types there exist task allocations where no IR
contract with the remaining 3 types is possible, but an IR
contract with the fourth type is.
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Consider O contracts (as fourth type). One task and 2
agents: Ty = {t,}, T» = 0.

c1(0) =0,c1({t1}) = 2,¢2(0) = 0,c2({t1}) = 1. The O contract
of moving t; would decrease global cost by 1. No C-, S-, or
M-contract is possible.

To show the same for C or S contracts, two agents and two
tasks suffice.

For M-contracts 3 agents and 3 tasks are needed. O
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Theorem 3.19 (O-, C-, S-, M- = Global Optima)

There are instances of the task allocation problem where no IR
sequence from the initial task allocation to the optimal
one exists using O-, C-, §-, and M- contracts.

Proof.

Construct cost functions such that the deal where agent 1
gives one task to agent 2 and agent 2 gives 2 tasks to agent 1
is the only one increasing welfare. This deal is not possible
with O-, C-, S-, or M-contracts. H
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Corollary 3.20 (O-, C-, S-, M- = Global Optima)

There are instances of the task allocation problem where no IR
sequence from the initial task allocation to the optimal one
exists using any pair or triple of O-, C-, S-, or M- contracts.
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Definition 3.21 (OCSM Nets)

A OCSM-contract is a pair (T, p) of |A| x |A| matrices. An
element 73 ; stands for the set of tasks that agent i gives to
agentj. p;; is the amount that i pays toj.

m How many OCSM contracts are there?
m How much space is needed to represent one?
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Theorem 3.22 (OCSM-Nets Suffice)

Let |A| and |T| be finite. If a protocol allows OCSM-contracts,
any hill-climbing algorithm finds the globally optimal task
allocation in a finite number of steps without
backtracking.
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Proof.

An OCSM contract can move from any task allocation to any
other (in one step). So moving to the optimum is IR. Any
hill-climbing algorithm strictly improves welfare. As there
are only finitely many allocations, the theorem follows. [
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Theorem 3.23 (OCSM-Nets are Necessary)

If a protocol does not allow a certain OCSM contract, then
there are instances of the task allocation problem where no
IR-sequence exists from the initial allocation to the optimal
one.
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If one OCSM contract is not allowed, then the task allocation
graph contains two vertices without an edge. We let the
initial and the optimal allocation be these two vertices. We
construct it in such a way, that all adjacent vertices to the
vertex with the initial allocation have lower social welfare.
So there is no way out of the initial allocation. O
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[?] consider the multiagent version of the TSP problem and
apply different sorts of contracts to it.

|
Several salesmen visit several cities on the unit square. Each
city must be visited by exactly one salesman. They all have
to return home and want to minimise their travel costs.

salesman = agent, task = city
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m Experiments with up to 8 agents and 8 tasks. Initial allocation
randomly chosen.

m Ratio bound (welfare of obtained local optimum divided by
global optimum) and mean ratio bound (over 1000 TSP
instances) were computed (all for fixed number of agents
and tasks). Global optimum was computed using IDA*.

m A protocol consisting of 5 infervals is considered. In each
interval, a particular contract type was considered (and all
possible contracts with that type): 1024 different sequences.

m In each interval a particular order for the agents and the tasks
is used. First all contracts involving agent 1. Then all
involving agent 2 etc. Thus it makes sense to have
subsequent intervals with the same contract type.
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Order No. Sequence Social Welfare

15

OCOCO
00CCO
OCCOC
00COC
OCO0C
S0COC
S0CCO
COCOC
0COCC
MCOCO
OCCCO
MOCCO
MOCOC
MCCOC
COCCO

1.03113
1.03268
1.03276
1.03279
1.03413
1.03488
1.03536
1.03755
1.03857
1.03945
1.03954
1.03988
1.04001
1.04304
1.04407

Table 1: The best Contract sequences.
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Order No. Sequence Social Welfare
1 OCOCO 1.03113
2 O0CCO 1.03268
3 OCCoC 1.03276
4 00COC 1.03279

375 C-local 1.13557
565 O-local 1.2025
579 00000 1.21298
696 CCCcee 1.23515
1021 CSSSS 1.61181
1022 CMMMM 1.65965
1023 MMMMM 1.76634
1024 SSSSS 1.89321

Table 2: Best, average and worst Contracts.
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Figure 19: Ratio bounds (second graph is zoomed in).
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Figure 20: Ratio bounds for the 4 best and single type sequences.
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Best protocol is 3.1% off the optimum.

12 best protocols are between 3% and 4% off the
optimum.

Single type contracts do not behave well.

More contracts are tried and performed in the second
interval (compared with the first).

The more mixture between contract types, the higher
the social welfare.
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3.3 Classes of Games
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3.3 Classes of Games

Idea: Consider a protocol (to build coalitions) as a
game and consider Nash-equilibrium.

Problem: Nash-Eq is too weak!

Definition 3.24 (Strong Nash Equilibrium)

A profile is in strong Nash-Eq if there is no subgroup that
can deviate by changing strategies jointly in a manner that
increases the payoff of all its members, given that
nonmembers stick to their original choice.

This is often too strong and does not exist.
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Definition 3.25 (Monotone Games)

A CFG (A,v) is called monotone, if
v(C) <v(D),
for every pair of coalitions C, D C A such that C C D.
Many games have this property, but there may be
communication/coordination costs. Or some players hate

others and do not want to be in the same coalition.
The next slide introduces a strictly stronger condition.
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Definition 3.26 (Superadditive Games)

A CFG (A,v) is called superadditive, if
v(SUT) >v(S) +v(T),
where S, T CAand SNT = (.

Lemma 3.27

Coalition formation for superadditive games is trivial.

All games are superadditive.
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|
The conjecture is wrong, because the coalition process is
not for free:
communication costs, penalties, time limits.

Definition 3.28 (Subadditive Games)

A CFG (A, v) is called subadditive, if
v(SUT) S v(S)+v(T),
where S, T CAand SNT = 0.

Coalition formation for subadditive games is trivial.
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Superadditive Cover

Definition 3.29 (Superadditive Cover)

Given a game GG = (A, v) that is not superadditive, we can
transform it to a superadditive game G* = (A, v*) as follows

v*(C) := mazcsecs v(CS)

This game is called the superadditive cover of G.
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Convex Games

Definition 3.30 (Convex Game)

A CFG (A, v) is convex, if for all coalitions T, S with T C §
and each playeri € A\ S:

v(SU{i}) —v(S) = v(T'U{i}) —o(T)

m Convex games are superadditive.
m Superadditive games are monotone.
m The other directions do not hold.
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Example 3.31 (Treasure of Sierra Madre Game)

There are n people finding a treasure of many gold pieces in
the Sierra Madre. Each piece can be carried by two people,
not by a single person.

Example 3.32 (3-player majority Game)

There are three people that need to agree on something. If
they all agree, there is a payoff of 1. If just 2 agree, they get a
payoff of a (0 < a < 1). The third player gets nothing.
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Example 3.33 (Parliament)
Suppose there are four parties and the result of the elections
is as follows:
A: 45 %,
B: 25 %,
C: 15 %,
D: 15 %.
We assume there is a 100 Mio Euro spending bill, to be
controlled by (and distributed among) the parties that win.

Version 1: Simple majority wins (> 50%).
Version 2: Any majority over 80% wins.

How do the v(5) look like in the last three examples?
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Definition 3.34 (Payoff Vector)

A payoff vector for a CFG and a coalition
structure CS is a tuple (z, ..., x,) such that

z > 0and A 2 = w(A),
Note that the last condition is only supposed to

hold for all coalitions in the given coalition
structure.

If Y iccxi = v(C) would mean that a coalition
gets more than its value, that is not possible.
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3.4 The Core and its refinements
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Consider a CFG that is not necessarily superadditive (so the

grand coalition does not necessarily form). Assume that a
certain coalition structure CS forms.

Definition 3.35 (Core of a CFG)

The core of a CFG is the set of all pairs (CS, (z1,...,z,))
of coalition structures (CS € CS,) and payoff vectors such
that the following holds:

VSCA: ) z>v(S)

ieS

Here, the condition is supposed to hold for all 5. We do not
want any set of agents to form a new coalition. It ensures
that only the grand coalition forms.

If > icq i < v(S), then these agents would form a coalition and
get a higher payoff than in CS.
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When the grand coalition forms, we can simplify the last
definition.

Definition 3.36 (Core of Superadditive Games)

The core of a supperadditive CFG is the set of all payoff
vectors (x1, ..., xz,) such that the following holds:

VSCA: Y i >v(S)

ies
Thus the core corresponds to the strong Nash equilibrium

mentioned in the beginning.

What about the core in the above examples?
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Lemma 3.37

If (CS,(x1,...,x,)) is in the core of a CFG (A, v), then
v(CS) > v(CS’) for all coalition structures CS' € CSa.

Proof.
We can write v(CS) = >, ) %1 = Y vees 2(C7) and

v(CS') = > o v(C).
Because of the definition of the core, z(C") > v(C") for all C”
and therefore v(CS) > v(C"). O
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Theorem 3.38 (Core and superadditive cover)

Let a CFG G = (A, v) be given (not necessarily
superadditive). Then G has a non-empty core if
and only if its superadditive cover G* has a
non-empty core.

Proof ~~ exercise
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Theorem 3.39 (Convex games and their cores)

Each convex CFG G = (A,v) has a non-empty core.

Proof.

Let 7 be a permutation of A and let S, (i) be the set of all
predecessors of ¢ wrt. 7.

We claim that for z; := v(S, (i) U {i}) — v(S,(i)), the core of
G contains (xq,...,x,).

It is easy to show that all z; are greater or equal to 0 and that
they all sum up to the value of the game (~~ exercise). [
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(Proof of Theorem 3.39, cont.)

Assume there is a coalition C' = {iy,...,is} such that
v(C) > z(C). Wlog we assume 7(i1) < ... < m(is). Obviously

v(C) =v({ir}) —v(0) +v({ir,i2}) —v({ir}) + ... +0(C) —v(C\ {is})

Because of convexity (apply convexity to T} := {i1,...,4;—1} and
S;j:={1,2,...,i; — 1}) forall j:

v(T; U {i;}) —v(T)) <o(S; U{iz}) —v(S)) =z

Adding these pairs up, we getv(C) < z(C), which is a
contradiction.
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3.5 Payoff Division: Shapley value
and Banzhaf Index
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We now assume w.l.o.g. that the grand coalition forms.
The payoff division should be fair between the agents,
otherwise they would leave the coalition.

Definition 3.40 (Dummies, Interchangeable)

Agent i is called a dummy, if for all coalitions S with i & S:
v(SU{i}) —v(5) =v({i}).

Agents i and j are called interchangeable, if
for all coalitions S withi € Sandj ¢ S:

v(S\{i}U{j}) =v(S)
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Marginal Contribution
The marginality axiom, introduced by Young in the 80’ies,

concentrates on the marginal contributions of a player in
two different games.

Definition 3.41 (Marginal Contribution in two games)

We consider two CFG games over the same coalition
structure, with values v and w. We say that agent i is
marginally indifferent between v and w, if its marginal
contributions in all coalitions is the same in both games: for
all S CA\{i}

v(SU{i}) —v(S) = w(SU{i}) —w(9).
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Axioms for Payoff Division

Efficiency: >, , zi = v(A).
Symmetry: Ifiandj are interchangeable, then z; = ;.
Dummies: For all dummies i: z; = v({i}).
Additivity: For any two games v, w:
PO = 2?4+ 2,
where v @ w denotes the game defined by
(v@®w)(S) =v(S) +w(S).
Marginality: If an agent i is marginally indifferent
between two games v, w, then it should get the
same payoff in both of them:

v _w
T =y .
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Theorem 3.42 (Shapley-Value: 1st Characterisation)

For a CFG G = (A, v) there is only one payoff division
satisfying the first four axioms. It is called the Shapley
value of agent i and is defined by

21(€)) =|A—1|! Y (AI=1S| = DIIS|!(w(S U {i}) —v(S5))

SCA\{i}

Theorem 3.43 (Shapley-Value: 2nd Characterisation)

For a CFG G = (A, v) there is only one payoff division
satisfying the efficiency, symmetry and marginality. It is
the Shapley value.
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The expected gain can be computed by taking a random
joining order and computing the Shapley value.

m (JA] — S)!is the number of all possible joining orders of
the agents (to form a coalition).

m There are |S|! ways for S to be built before i’s joining.
There are (JA| — |S| — 1)! ways for the remaining agents
to form S (after i).

B (v(SU{i}) —v(95)) isi’s marginal contribution when
added to set S.

m The Shapley value sums up the marginal contributions
of agent i averaged over all joining orders.

Prof. Dr. Jurgen Dix - Department of Informatics, TUC Game Theory (MSc), WS 17/18 274



@KW 3 Coalitional Games
u TU‘ Clal‘ls}thal 3.5 Payoff Division: Shapley value and Banzhaf Index
Clausthal University of Technology

We have shown in Theorem 3.39 that convex
games have non-empty cores. In fact, we can
show a stronger statement.

Theorem 3.44 (Shapley and Core for convex games)

In each convex game, at least the Shapley value is
contained in the core.
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Definition 3.45 (Banzhaf Index)

Fora CFG G = (A,v) the Banzhaf Index of agenti is

BO) = xS WSULED - v(S))

SCA\{i}

The Banzhaf Index satisfies all axioms but efficiency.
The following normalised Banzhaf index 7;(G) is also often

considered:
: (G
m(G) = ale)

S @)
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4. Social Choice and Auctions

Social Choice and Auctions
Classical Voting Systems
Formal model for social choice
Social Choice Functions

Social Choice Correspondences
Social Welfare Functions
Results based on partial orders
Auctions
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Outline (1)
We deal with voting systems and discuss
m some classical approaches;

m an abstract framework to describe arbitrary voting
mechanisms: social choice theory, and

m Arrow's theorem and some variants thereof in this
framework.

We also consider auctions (deals between two agents).
They constitute one of the most important frameworks for
resource allocation problems between selfish agents. They
can be seen as an important application of mechanism
design, dealt with in Chapter 6.
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4.1 Classical Voting Systems
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4.1 Classical Voting Systems

Voting procedure

Agents give input to a mechanism: The outcome is taken as
a solution for the agents.

Non-ranking voting: Each agent votes for exactly one
candidate. Winners are those with a majority of
votes.

Approval voting: Each agent can cast a vote for as many
candidates as she wishes (at most one for each
candidate). Winners are those with the highest
number of approval votes.

Ranking voting: Each agent expresses his full preference
over the candidates. Computing the winning
can be complicated.
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Candldates and Voters

From now on we assume there is a fixed set of alternatives
(candidates, outcomes) O, in addition to the set of agents
A, the elements of which we call now voters.

Definition 4.1 (Beat and tie)

We say that a candidate o beats another candidate o’ (in
direct comparison) if the number of voters that strictly
prefer o to o is strictly greater than the number of voters
that strictly prefer o to o.

If both numbers are equal, we say that o ties o’ (in direct
comparison).

Often e.g. in the french elections, runoff systems are
considered: two candidates are singled out in the first
round, one of which is then selcted in the second round.

Prof. Dr. Jurgen Dix - Department of Informatics, TUC Game Theory (MSc), WS 17/18 281



@KW 4 Social Choice and Auctions
[} TU‘ ClaU§thal 4.1 Classical Voting Systems
Clausthal University of Technology

Definition 4.2 (Condorcet- winner, -Set)

A candidate o is a Condorcet winner if o beats any other
candidate o’ (o' # o).

A candidate o is a weak Condorcet winner if o beats or
ties any other candidate o’ (o' # 0).

The Condorcet set is the set of weak Condorcet
winners.

Note that sometimes the Condorcet winner is
called strict Condorcet winner.
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Condorcet helps

W@ O TN
> > N|w

N
N > =

Figure 22: A Tie, but Condorcet helps.
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Condorcet does not help

1]2]3]
T[A[B]|C
2B C|A
3/C|A|B

Figure 23: Strict Condorcet rules out all candidates.

Comparing A and B: majority for A.
Comparing A and C: majority for C.
Comparing B and C: majority for B.
Desired Preference ordering: A>B > C> A
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Another interesting set is the following

Definition 4.3 (Smith set)

The Smith set is the smallest, non-empty set

S C O of candidates such that for each candidate
o € S and each candidate o’ ¢ S the following
holds: o beats o'.

There is a strong relation between the Condorcet
set and the Smith set. This will be treated in
more detail in the exercise class.
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Approval Voting

Definition 4.4 (Winner in Approval Voting)

A winner in approval voting is any candidate that received
at least as many votes as any other candidate.

Can we model the situation in Figure 23 in approval voting?

Lemma 4.5 (Approval Voting and Condorcet)

In approval voting, at least one of the winners is a weak
Condorcet winner.
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Variants of Borda

Definition 4.6 (Borda Protocol: Standard and Nauru)

In standard Borda, each voter gives its best candidate |O)|
points, the second best gets |O| — 1 points, etc.

In Nauru Borda, any first preference as assigned 1 point,
any second just 1/2, any third just 1/3 and so on.

After all votes have been cast, they are summed up, across
all voters. Winners are those with the highest count.

Originally, Jean-Charles de Borda wanted his system to
determine a single winner. He also assumed all voters are
honest.
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Truncated Ballots

What, if voters do not want to express full preference on
all candidates: truncated ballots.

Nauru: All candidates must be ranked.
Kiribati: Rank only a subset (but this subset completely),
and all others get 0 points.
Modified BC: Points given depend on the number of
candidates ranked (in each individual ballot).

Problem with Kiribati: Tactical voting. Bullet votes are
more effective than fully ranked ballots.

Ties between candidates

Later we introduce weak orders: although they are total,
they allow for ties (candidates among which the voter is
indifferent).
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W|nner turns loser and loser turns winner.

Agent Preferences
1 A-B»=C»D
2 B-=C»D»A
3 C-D=A>B
4 A-B>=C=D
5 B-=C»D=A
6 C-D~A>B
7 A=B>=C»D
Borda count | C' wins: 20, B: 19, A: 18, D loses: 13
szf':ofj‘i“gt A wins: 15, B: 14, C' loses: 13

Figure 24: Winner turns loser and vice versa.

Prof. Dr. Jurgen Dix - Department of Informatics, TUC Game Theory (MSc), WS 17/18 289



! TU Clausthal 4 Sodial Choice and Auctions

Absolute Majority, but not elected

Example 4.7 (Nauru/Standard Borda, Plurality Voting)

11234
51T voters  A|C| B |D
Svoters |C|B|D|A
23voters B|C| D | A
21 voters D|C| B | A

Who wins and who should win???

Plurality voting:
Standard Borda:
Nauru Borda:
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Borda and Tactical Voting
Example 4.8 (Compromising and Burying)

We assume four cities M, N, K, and C want to become the
capital of the state. M has most voters but is far away from
the others. N, K, and C are close to the centre of the state.

| 1][2]3]4]
2%M) M| N|C] K
26% (N) [N | C | K| M
7% @K | K|C|N[M
15%(C) | C | K [N | M

Borda would elect N. How could voters of K change their
poll to ensure C'is chosen and not N?
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Binary protocol:

Take any two candidates and determine the
winner. The winner enters the next round, where
it is compared with one of the remaining
candidates.

Which ordering should we use?
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35% of agents have preferences C - D >~ B >~ A
33% of agents have preferences A > C >~ D >~ B
32% of agents have preferencesB -~ A >~ C > D

C ABCCDC CDBDBDACDADBDDbCDBDADB

Figure 25: Four different orderings and four alternatives.

Last ordering:
D wins, but all agents prefer C over D.
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Coomb's method: Each voter ranks all candidates in linear
order. If there is no candidate ranked first by a
majority of all voters, the candidate which is
ranked last (by a majority) is eliminated. The last
remaining candidate wins.

d'Hondt's method: Each voter cast his votes. Seats are
allocated according to the quotient 5+L1 (V the
number of votes received, s the number of seats
already allocated).
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Nanson's method: Compute the Borda scores of all
candidates and eliminate the candidate with the
lowest Borda score (using some tie breaking
mechanism). Then, proceed in the same way
with the remaining candidates, recomputing the
Borda score.

1

Proportional Approving voting: Each voter gives points 1, 3,
3, - .-, + for her candidates (she can choose as
many or few as she likes). The winning

candidates are those, where the sum of all
points is maximal (across all voters).
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4.2 Formal model for social choice
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Ballots of the voters

How should a general model for voting look like? What are fair
elections based on it?

Before determining such a model we need to answer the question

How should voters express their intentions?

Voters often have preferences over candidates: “A” is better than
“B”, but “C” is better than both of them. Only if “C” is not a
candidate, | would vote for “B”. What are properties of such an
ordering?

First try: Here are two “obvious” properties.
transitive: If “A” is better than “B” and “B” is better than “C”,
than “A” should be considered better than “C”.
no cycles: A voter should not be able to express that “A” is a
strictly better candidate than “B” and, at the same
time, “B” is strictly better than “A”.
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Ballots of the voters (2)

Thus we could expresss the ballot of an agent as a dag, a directed

acyclic graph. .
N
AN L
B B
T T
A A
Figure 26: Two Examples of dags.

In all voting systems considered in Subsection 4.1, the voters’
ballot can be modelled with dags.

Dags are just strict partial orders: irreflexive and transitive
binary relations. Most ballots are even based on linear orders (no
indifference between any pair of candidates).

Cycles might make sense for non-strict orderings (a cycle might
model that all elements in it are of equal standing).
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Ballots of the voters (3)
~ We use binary relations for the ballot of an agent.

m A set of agents, O set of possible outcomes.
(O could be A, a set of laws, or a set of candidates).

Preferences based on binary orderings

The preference order or ranking of agent i is described by
a binary relation

< COxO0.

m Which properties should we assume from such a binary
relation?
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Some Terminology on Posets

Here are some important properties of binary relations <:

Reflexivity: Forall z: x < .

Transitivity: Forall z,y,2:ifz <y, y < zthenz < 2.

Antisymmetry: Forall z: z <y and y < z implies x = y.
Totality: Forall z,y: eitherx =y, orz < yory < z.

Irreflexivity: Forall z: notz < .

Asymmetry: If z < y then noty < z.

A (non-strict) partial order, denoted by < or < or < or < or
<, is any relation satisfying reflexivity, transitivity and
antisymmetry.

A strict partial order, denoted by = or < or < or 5, is any
relation satisfying irreflexivity, and transitivity (and therefore
also asymmetry).

Often, one simply writes < or < to denote a strict order.
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Ballots of the voters (4)

What are the right properties for <;?
m To express dags: irreflexive, transitive (both impy
asymmetry) (strict partial orders ).
We could also use non-strict partial orders <, which are in
one-to-one correspondence via:

m < is the reflexive closure of <,
m 5 is the irreflexive kernel of <.

How to express ties?

A partial order allows for incomparability: a and b might
simply not be ordered at all (in the first graph on Slide 298
elements C and E are tied). Voters have more freedom
when they are allowed not to order candidates.
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Mu TU Clausthal 4.2 Formal model for social choice
Ballots of the voters (5)

m Second try: We could also consider total (or
linear) orders: they are transitive and strictly
total (for all a # b either a<;b or b<;a).

In that case, ties are not allowed: voters
have to take a decision for each pair of
candidates. So voters have less possibilities
to express their ballot.
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Ballots of the voters = Weak Orders

Orderings inbetween partial and total orders are the following:

Definition 4.9 (Weak Order, (0))

Any binary relation = satisfying fransitivity and totality (for all
a,b: aZborbZa)is called a weak order (total preorder).

We denote by 2 (O) the set of all such binary relations over O (we
omit O if it is clear from context).

While weak orders rank all pairs of candidates, they allow ties: itis
perfectly possible that there are pairs a # b with a3b and b3a.

Thus a and b are indifferent: the weak order treats them as
equivalent. This can not happen with linear partial orders,
because they are antisymmetric.

Using partial orders, such ties have to be modelled as
incomparable. However, note the subtle differences between the
two concepts.
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Ballots of the voters = Weak Orders (cont.)
Any weak order induces a strict weak order <;:
m a=;biff aZiband not b3ia: “i strictly prefers b over a”.

=< is irreflexive and transitive, but not total anymore.

So we allow elements to be “equivalent” (or indifferent):
B a~;b: aZiband bZia. “iis indifferent between a and b”.

However, not any strict partial order can be obtained as
a strict weak order.

Attention
It is important not to confuse = and ~.
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Dag, weak orders, strict weak order

Here we illustrate the use of dags compared with weak
orders.

W

C/D\E <‘D> <‘I‘3‘>
N/
S

€

Figure 27: Equivalent modelings as dag (left), as weak order (middle),
and as strict weak order.
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Mu TU Clausthal 4 Social Choice and Auctions

Definition 4.10 (Preference Profile)

A preference profile for agents 1,...,|A|is a
tuple

A
Zn,..,3a) € LM (=TI D)

We often write 5 for (Z1,...,3a)) if the set of
agents is clear from context.

So the weak orders 3; do allow for ties (although
they are total). They are also called preferences
or rankings.
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m Often, not all subsets of O are votable, only a subset
V C 29\ {0}. The simplest scenario is for V = {O}.
Each v € V represents a possible “set of candidates”. The
voting model then has to select some of the elements of v.

m Each agent votes independently of the others. But we also
allow that only a subset is considered. Let therefore be

The set U represents the set of agents (and their preferences over
the candidates) participating at the election and casting their
votes.
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Election systems

In the following sections we introduce three
different election systems. The characterization of
the voters preferences is different in all of them:
Social choice functions: Voters express their
preferences by strict total orders <.
Social choice correspondences: Voters express
their preferences by strict total orders <.
Social welfare functions: Voters express their
preferences by weak orders 3.
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Clausthal University o

Election Systems

We have now a good idea about how to model the voters and
their preferences. How about the outcome of an election?
Social Choice Function (SCF): We define any
C*":VxU = O;(v,%) = o
as an election. The outcome is one single winner.
Social Choice Correspondence (SCC): We define any
WV xU — 29 (v,3) = v/
as an election. The outcome is a set of winners.
Social Welfare Function (SWF): This approach views a
U = ;3 = 3
as an election: The outcome is a weak order, which
determines the winners of the election (the maximal
(or top) elements, for example.)
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Dictators

In the next sections we show that under reasonable
conditions on the election systems, there simply does not
exist a fair election. More specifically we show results of the
form

Dictators always exist

For each of the election systems defined, under reasonable
assumptions on the election process, there is only a
dictatorship possible.

What are the most preferred elements of 3?
B itop(Z)={0€ 0|V €0:030 = dZ0}
B bot(2)={0€ 0|V €0:030 =030}
For a strict total order <, top(<) and bot(<) are singletons.
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Dictators (2)
Informally, a dictator is an agent i, such that whatever the

profile of all voters < looks like, the result of the election is
always the one that agent i puts forward.

Let now U C [T, L(V) be given.
Social Choice Function: A dictator is an agent i if
forall < : top(=<il,) = {C*(v,<)}
Social Choice Correspondence: A dictator is an agent i if

forall < : top(<il],) € W*(v,=<)

Social Welfare Function: A dictator is an agent i if
forall Z: forallo,o €0, 0<id = 0<"0d
where <" is the strict version of the weak order
(21, Zjan)

Prof. Dr. Jurgen Dix - Department of Informatics, TUC Game Theory (MSc), WS 17/18 311



! TU Clausthal R Ryl
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4.3 Social Choice Functions
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Mu TUH’Clal‘J‘S‘t‘hal 4.3 Social Choice Functions

This section: ballots are strict total orders <.

Definition 4.11 (Social choice function (SCF))

A social choice function is any function
C*:VxU— O;v,%) = o

where o € v.

A SCF returns exactly one “winner”. E.g. plurality
voting where ties are broken in a predefined way
(e.g. lexicographic ordering).
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Clausthal University of Technology

Definition 4.12 (Unanimity, Monotonicity)

A SCF C* satisfies
surjectivity: forany v € V and outcome o € v there is a profile <
such that C*(v, <) = o.
unanimity: for any profile <, v € V and outcome o € v:
Ifforall 1 <i<|A|: o= top(=<i|,) then C*(v,=<) = o,
Unanimity implies surjectivity.
strong monotonicity: forany <, v € V and o = C*(v,<) € v:
if <’ is a different profile such that
forall o’ # o and i: “o'<;0 implies o'<%0”,
then C*(v, <) = o.
Strong monotonicity means: any additional support for a
winning alternative, should only benefit that alternative.
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Example 4.13 (Plurality with runoff)

This is the system used in the french elections. Assume that

6 voters support B<C <A
5 voters support C<A<DB
6 voters support A< B=<C

Under plurality with runoff, A and C make it to the second
round, where A wins with 11 to 6.

Suppose 2 voters of the last group change their preferences
and behave like the first group. Thus there is additional
support for A.

But now, A and B make it to the second round, where B
beats A with 9 to 8.
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Theorem 4.14 (May (1952))

If there are only two candidates, there is a SCF which is not
dictatorial but yet satisfies unanimity and strong
monotonicity.

An example of such a SCF is simple majority voting, called
plurality voting when there are more than two candidates.

In fact, we get a complete characterization if we assume two
more, very natural properties expressing that a choice
function should by symmetric wrt. (1) individuals
(anonymity) , and (2) alternatives (neutrality). As this result
holds in the general case for correspondences, we refer to
Slide 331.
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In an exercise, you have to show that surjectivity together
with strong monotonicity implies unanimity.

Theorem 4.15 (Muller-Satterthwaite (1977))

If there are at least 3 candidates, then any SCF satisfying
surjectivity and strong monotonicity must be dictatorial.

What about plurality voting?

Suppose we fix a oix € O, and define a SCF by mapping any
ranking profile to osi«. Is that SCF strongly monotone? Is it
non-dictatorial? Is it unanimous? What sort of properties
does it not satisfy?
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Decisive sets

An important proof technique is that of decisive sets.
Intuitively, a set of agents G is decisive on a pair (p, o), if p
cannot be a winner, if all agents in G put p below o. Note:
this is among all <.

Definition 4.16 (Decisive sets G C )

Aset G C A is called decisive for the pair (p,0) € O?, if
forall <: “foralli € G: p=<;0” implies C*(0,=) #p.

Definition 4.17 (Independence)

A SCF C* satisfies the Independence property, if the
following holds: If C*(O, 2) = o, then C*(0,<’) # p for all
p # o and all <’ with “for all i: p=;o iff p<Lo”.
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Contraction-Lemma
Two observations are important:
m The grand coalition A is decisive on any pair (p, o) (this
follows from surjectivity and strong monotonicity).
~ Exercise.
m Asingleton set {d} is decisive on any pair (p, o) if and
only if d is a dictator.

Contraction-Lemma

Let G C A with | G |> 2 be decisive on all pairs (p, 0) € O?
and G = G, UG, (meaning G NGy =0 and G = G, U Gy).
Then G, or G is decisive on all pairs (p,0) € O

If we can prove the contraction lemma under some
assumptions, then this implies that there is a dictator (using
our two observations above).
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Theorem of Muller-Satterthwaite (1977) (1)

Proof of Theorem 4.15.

m Claim: G C A is decisive on any pair (p',0') € O?, if the
following holds: G = {i € A : p<; o} s.t. their ranking
ensures C*(O, <) # p. ~ whiteboard.

m We then show that strong monotonicity implies
independence. Hint: Given a profile < consider the

following profile <” and apply strong monotonicity
(twice): “o={'0'” iff: 0<;0" and o, 0’ are in each <’ ranked
among the two top places (o, o' are the two outcomes in
the independence property).

m Then we show the Contraction-Lemma (in the proof we
need the independence property).

]
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Theorem of Muller-Satterthwaite (1977) (2)

Proof (cont.)

We prove the Contraction lemma. So
G = G U Gy is given. We construct a ranking
profile < as follows.

m foralli € Gy: ¢=ip=io,

m for alli € Gs: 0=<iq=ip,

mforallie A\ G: p=<io=igq,

m all other o’ € O are ranked below o, p, ¢ by all

agents i.
Because G is decisive on all pairs, ¢ can not be
the winner. So either o or p is the winner. ]
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Theorem of Muller-Satterthwaite (1977) (3)

Proof (cont.)

pis the winner: Only those in G, rank o below p.
Therefore G5 is decisive (using our
Claim on Slide 320).

o is the winner: Only those in G rank ¢ below o.
Independence implies that ¢ looses
against o in each profile in which exactly
the agents from G, rank ¢ below o.
Therefore (G, is decisive.

[]
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Manipulation

Can voters hide their true preferences and use another
ballot to achieve better results?

Example 4.18 (Plurality Voting)

49 9%:
20 %:
20 %:
11 %:

Nader
Bush
Nader
Bush

=
<
=%

<

Gore
Nader
Bush
Gore

=<
=<
=<

=<

4 Social Choice and Auctions
4.3 Social Choice Functions

Bush
Gore
Gore
Nader

If the last group of voters change their preferences by
putting their favorite at the end, then they achieve a better
result overall! (Compare with Example 4.8 on Slide 291.)

Can we find choice functions where such manipulations
are not possible?
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Strategy-Proofness
Earlier, in Definition 1.18 on Slide 47 we have introduced the

notation using —i to denote a profile without agenti’s
entry. We are using this notation here as well.

Definition 4.19 (Strategy-Proofness)

A social choice function C* is called strategy-proof, if there
is no agent i and profile (<_;, <}) such that

C*(0,2)=:iC*(0, (=<, <L)
We compare the profile (<;,...,<i_1,<i,...,=<a), in which

agent i misrepresents her true preference <;, with the real
profile (<1,...,<i—1,<i,...,=<A)-
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Theorem of Gibbard and Satterthwaite

Lemma 4.20

Strategy-proofness implies strong monotonicity.

Proof.

We assume that a SCF is not strongly monotone and show that it is not
strategy-proof. So we assume there is 0 # o’ and <, <’ s.t.

m C*(0,=) =o0,and C*(0,=') = o, and
m forallie A, forall p € O\ {o}: p<ioimplies p<}o.

We are now modifying < as follows. Fori=1,2,...,n we replace
successively <; by <}, until the winner of the new action profile under
C* is no more o but somebody else (which must happen, because at the
end it is o’). Letj be this agent.

Because we can adapt our assumption to this new situation, we
assume wlog that <, <’ differ only at the entry j. So wlog we can use
the notation o’ as in our assumption. O
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Theorem of Gibbard and Satterthwaite (2)

Proof (cont.)

Case 1: “o'<50”. Ifj’s true preferences are as in <,
then it pays off forj to vote as in <; (to
ensure o is winning, and not o’.) So it is
not strategy-proof.

Case 2: “not o'<50”. Then “not o<;0”, therefore
0=;0'. If) s true preferences are as in <;,
then it pays off for j to vote as in <; (to
ensure o’ is winning, and not 0). So it is
not strategy-proof.

[]
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Theorem of Gibbard and Satterthwaite (3)

Theorem 4.21 (Gibbard-Satterthwaite (1973/1975))

If there are at least 3 candidates, then any SCF
satisfying surjectivity and strategy-proofness
must be dictatorial.

Using Lemma 4.20 this is just a corollary to
Theorem 4.15.

Note that we could replace surjectivity by the
stronger unanimity.
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4.4 Social Choice
Correspondences
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4.4 Social Choice Correspondences
Clausthal University of Technolo

This section: ballots are strict total orders <. We also
assume V' = O in order to simplify notation.

Definition 4.22 (Social choice correspondence)

A social choice correspondence is any function
WU — 29:2 — v
where v # ().
A correspondence returns a nonempty set of winners.
The Borda rule is a typical example of a correspondence.

Impossibility results similar to Theorem 4.15 are rare. The
most important one is due to Duggan and Schwartz: See
Theorem 4.28 on Slide 337 .
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Definition 4.23 (Positive responsiveness)

A SCC W satisfies
positive responsiveness: for any profile =,0€0:
if o € W*(=<) then W*(=<') = {0}, provided that <’ is
a different profile such that for all o’ # 0 # 0" and i
the following holds:
o'<ioimplies o'<}o, and o'<;0" iff o'<.0".
Intuitively, this property means that if o is among the winners and
at least one voter raises o up, then o should become the sole
winner. This is very intuitive in case there are only two candidates!
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Anonymity and neutrality

Definition 4.24 (Anonymity and Neutrality)

W* satisfies anonymity if for all permutations = on
{1,... |Al}:

W*(<1,...,%a)) = W (=) - - -, =<r(A]))
W* satisfies neutrality if for all permutations 7 on O
m(W*())) = W*(x (<)),

where 7(=) is defined componentwise and 7(<;) is defined
in the obvious way: o (<;) o iff: (o) =i w(d).

Which properties satisfies the SCC that always declares

m all candidates as winners;
m the two top choices of plurality voting as winners?
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Only two candidates: 0| =2

Theorem 4.25 (May (1952))

Assume there are only two candidates, |O] = 2. A
SCC W* satisfies anonymity, neutrality, and
positive responsiveness if and only if W* is
simple majority voting.

Assume there are only 2 candidates and 2 voters,
and we are considering a social choice function
C* (not a correspondence). ~ Then the choice

function can not satisfy both anonymity and
neutrality.
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Weak Mbnotonicity

There is a weaker version of the responsiveness
condition, namely weak monotonicity, when we
replace

“W*(2) = {0}” by 0 € W*(Z)

m Does Theorem 4.25 hold for weak
monotonicity instead of positive
responsiveness?
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Optimistic and pessimistic voters

Strategy-proof in Definitions 4.27 and 4.47 rules
out manipulability by untruthful voting: by
misrepresenting their true preferences, voters
should not be able to get overall better results.

Social choice correspondences determine sets of
winners (not just single winners).

~» We need to rank such sets.
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4.4 Social Choice Correspondences

Optimistic and pessimistic voters (2)

Definition 4.26 (Optimist and pessimists)

An agent i is an optimist, if she ranks X higher than Y,
whenever top(<ily) <i top(=<i|x)-

An agent i is a pessimist, if she ranks X higher than Y,
whenever bot(=<i|y) <i bot(=<i|x).
By slightly abusing notation, we also write Y <; X.

As we are considering strict linear orders, top and bottom
elements are always unique.

But even in the case of weak orders all maximal elements
(and all minimal elements) are indifferent to each other, so
both definitions are well-defined (see Slide 304).
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4.4 Social Choice Correspondences

Strategy-Proofness for correspondences

Definition 4.27 (Strategy-Proofness)

A social choice correspondence W* is called

strategy-proof, if there is no agent i, profile < and ranking
<4 such thatforallv e V

W* (R, =)< W (24, <)

We compare the profile (<;,...,<i_1,<},...,<a), in which
agent i misrepresents her true preference <;, with the real
profile (<1,...,<i—1,<i,...,<A)-

Note that we consider the relation
WH((=_i, <1)) =i W*((Z_;, <4)) only for optimistic or
pessimistic voters i (see Definition 4.26).
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Theorem 4.28 (Duggan/Schwartz (2000))

We assume that there are at least 3 candidates.
Then any SCC that is nonimposed (for each o € O
there is < s.t. W*(X) = {o}) and strategy-proof
for both optimistic and pessimistic voters is
dictatorial.

What is the importance of the nonimposed

property?
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The proof is based on several lemmas. It has striking similarity to
the proof of Gibbard/Satterthwaite. Important concepts are down
monotonicity and dictating sets (corresponding to decisive sets).

Definition 4.29 (Down-monotonicity)

Suppose we have a profile < where W*(=<) is a singleton
and the following holds: If we modify < by letting one
agent move a losing alternative down one spot (obtaining
profile <’), then W*(2) = W*(</).

Then we call W* down-monotone for singleton winners.

Lemma 4.30

A SCC W+ satisfying strategy-proofness for both
optimistic and pessimistic voters also satisfies
down-monotonicity for singleton winners.
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Definition 4.31 (Dictating Sets , p o)

Let G C A a group of agents and p,o € O. We denote by

» G0 the fact that W*(2) # {p} for all profiles < in which
all agents from G rank o above p.

Aset G C A is called dictating for W*, if pG" o holds for all
pairs (p,0).

Lemma 4.32

Suppose G C A, p,o € O, and pG  o. Let o # o # p and
G=GUGs. *
Then we have o G} oor pGsy 0.
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Lemma 4.33

If W* is down-monotonic for singleton winners and
nonimposed, then the set of all agents is a dictating set.

Lemma 4.34

We assume SCC W* satisfies strategy-proofness for both
optimistic and pessimistic voters.

m Let G be a dictating set. If it is the disjoint union of sets G,
and G, then one of these sets is dictating too.

m There is an agent whose maximal element is the unique
winner, whenever W*(=) is a singleton.
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4.5 Social Welfare Functions
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In this section agents ballots are weak orders Z. We also use
0=;0’ to denote “0=20" and not o’ 20”: o' is strictly greater than o.

Definition 4.35 (Social welfare function)

A social welfare function is any function

*:U — L;(ﬁl,...,j‘/ﬂ) — =*

~y

For each V' C 29\ {0} the function f* w.r.t. U induces a choice

correspondence C<<17“.,<‘A|> as follows:

. B Vv — V
RS Tdef ) 4y top(=*|v)

Each tuple ;3 determines the election for all possible v € V.
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ity of Technology

What are desirable properties for £*?

m Weak Pareto Efficiency:
forallo,0’ € O: (Vi € A:0=<;0) implies 0<*0'.
m Independence of Irrelevant Alternatives (ITA):

forall 0,0 € O:
B (Vi€eA: o0=i0 iff 0<i0) = (0=*0d iff 0=""0),
B (VicA: 0'<10 iff 03L0) = (02* 0 iff 03" 0)))
B (MieA: o~o iff oni0) = (0~* 0 iff o ~ 0'))

ITA expresses that the social ranking of two alternatives
does only depend on the relative individual rankings of
these alternatives.

Note that this implies in particular
(VieA: Zilo = Zil)
=
Vo,0 € v, Vo' € Vs.t.v Cv': (0=*|y 0 iff 0=, 0)
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m Shouldn’t we also require in the pareto

efficiency condition that
(Vi€ A:02:0) implies 03707

The answer is no, the stated condition, weak
pareto efficiency, is perfectly sufficient for
proving Arrows theorem. The stronger
condition, called pareto efficiency, is not
needed. Note that for strict linear orders, there
is no such distinction.
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Example 4.36 (Which champagne is the best?)

Suppose you go out for dinner and you want to start with a
champagne.

m The waiter gives you the choice between a Blanc de
Blancs or a Blanc de Noirs (both grands crus from
respectable houses)

m You choose a Blanc de Blancs.

m Then the waiter returns and mentions that they also
have a Rosé.

m "Oh, in that case, I take a Blanc de Noirs."

In this example, an irrelevant alternative (the Ros€) does
matter.
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Plurality Vote

The simple plurality vote protocol does not satisfy the ITA.

We consider 7 voters (A = {1,2,...,7})and O = {A, B,C, D},
V ={{4,B,C,D},{A, B,C}}. The columns in the following table represent
two different preference orderings of the voters (black and red).

L[ = (=) [ =2 (R2) [=3(=3) | =4 (Ra) [ =5 (25) [ =6 (R6) | =7 (=7) ]
L @1 @ (1 M1 @O (2 (2|2 (2) |2 (2
2 () |2 3|2 )2 @ |t @O |1 1|1 1)
3.4 (3 () 3 (33 ) [3 ) |3 ) [3 ()
4 ()[4 (1) 4 ()[4 ()[4 ()[4 (1) |4 (1)
Let <* be the solution generated by < and <* the solution generated by the <.
Then we have fori=1,...,7: B=<; A iff B<; A, but B<* Aand A<* B. The
latter holds because on the whole set O, for <* A gets selected 4 times and B
only 3 times, while for <* A gets selected only 2 times but B gets still selected 3
times. The former holds because we even have <i|;4 5,c} = <il{a,5,c}-

The introduction of the irrelevant (concerning the relative ordering of A and B)
alternative D changes everything: the original majority of A is split and
drops below one of the less preferred alternatives (B).

S| Q| |

4
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Theorem 4.37 (Arrow (1951))

We assume that there are at least two
voters and three candidates (|O| > 3). If
the SWF £* satisfies Weak Pareto
Efficiency and ITA, then there always
exists a dictator.
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Proof (of Arrows theorem).

The proof is the third proof given by John Geanakoplos
(1996) and based on the following

Lemma 4.38 (Strict Neutrality)

We assume Pareto Efficiency and ITA and consider two
pairs of alternatives a,b and «, 3. Suppose each voter strictly
prefersatoborbtoa,ie. foralli: a<;borb=;a. Suppose
further that each voter has the same preference for a, 3 as she
has for a, b.

Then either a <*b and a<* f or b<*a and [ <* .
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A simple corollary is the following:

Corollary 4.39 (Extremal Lemma)

Let the social welfare function t* satisfy Pareto
Efficiency and ITIA. Let o € O and suppose each
voter i puts o either on the very top (unique top
element wrt. =;) or to the very bottom (unique
bottom element wrt. =;).

Then o is either a unique bottom or a unique top
element of 2*.
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Proof (of the lemma).

We assume wlog that (a, b) is distinct from («, 5) and that
b =* a (we have to show the preference is strict).

We construct a different profile (34, ..., Z{a)) obtained as
follows (for each i):
m If a # o, we change =; by moving « just strictly above a.
m If b # 8, we change =; by moving £ just strictly below b.

This can be done by maintaining the old preferences
between a and /3 (as preferences between a and b are strict).
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|
By pareto efficiency, we have a <" o (for o # a)
and 3 <"" b (for 3 # b).
By lIA, we have b 2" a. Using transitivity, we get
B="a.
By 1lA again, we also get 5 <* a (because a<'; [ iff
a=if3).
We now reverse the roles of (a,b) with («, §) and
apply IlA again to get b <* a. O]
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|
The proof of Arrows theorem is by considering two
alternatives a, b and the profile where a <; b for all agents 1.
By pareto efficiency, a <* b. Note that this reasoning is
true for all rankings with the same relative preference
between a and b.

We now consider a sequence of profiles (<!, ... ,<fA‘) (from
l=0,...,|A|, starting with the one described above (I = 0)),
where in step [, we let all agents numbered < [ change their
profile by moving a strictly above b (leaving all other
rankings untouched). In fact, only one agent, number 1
changes its ranking in step [.
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|
We consider the rankings <!* obtained from <.

There must be one step, let’s call it d, where
a <% b but b<?" a (because of pareto efficiency
and strict neutrality).

Again: this reasoning is true not just for one
profile (<, ..., <[4), but for all such profiles
with the same relative ranking of a and b.

We claim that d is a dictator.
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Take any pair of alternatives o, 3 and assume wlog 5 <«
(otherwise the following argument works as well for o <43 ).

d is a dictator, when we can show 3<%* .

|
Take ¢ & {«, 5} (because |O| > 3) and consider the new profile
(<{,...,=(n) obtained as follows from (<} ..., <[4)):
m for 1 <i < d: we put c on top of each <{.
m for d: we put c inbetween a and §.
m for d £ i < |A]: we put c to the bottom of each <{.

We are changing the profile (<{, ..., 4&0 by moving c around in
a very particular way.

We apply strict neutrality to the pair (¢, 5) and (a, b). Because
both pairs have the same relative ranking in (<1, ..., <(a)), we

*
have g<%"c.
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Now we consider the new profile (<7, .
follows from (<{,..., <)

m for 1 <i 5 d: we put ¢ to the bottom of each <.
m for d: we put c in between « and 5.
m ford 51 < |A|: we put ¢ to the top of each <{.

.., =) obtained as

We now apply strict neutrality to the pair (o, ¢) and (a, b).
Because both pairs have the same relative ranking in
(=1,...,=a)), we have c<*"a.

By transitivity: 3<% a.
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Ways out (of Arrow's theorem):
Choice function is not always defined.
Independence of alternatives is dropped.
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4.6 Results based on partial orders
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Basic Definition: SCT on partial orders

Up to now we considered ballots consisting of
linear orders (total orders) or weak orders (total
preorders). There are also some results based on
the more general partial orders (or dags).

Definition 4.40 (Incomplete order)

An incomplete order (I0) = is a preorder: a
binary relation which is reflexive and transitive.
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As before, we can use an |O to define strict preference as
well as indifference, but also incomparability (must not
be confused with indifference!).

m a=;biff aZib and not bZia (i strictly prefers a over b)

B a~ib iff aZ;b and bZia (1 is indifferent between a and b)

m ax;b iff not aZib and not b=2;a (i considers a and b
incomparable)

Which axiomatic property distinguishes ~ from x?

Definition 4.41 (Strict 10)

A strict incomplete order (SI0) is a 10 = such that for all
distinct alternatives o and o', we have that not o~0'.
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What are the most preferred elements of X?
mtop(Z)={0€ 0|V €0:0#0d = —(0=0)}
mhot(Z)={0€O |V €O :0#d = —(d=<0)}

Definition 4.42 (Restricted 10)

A 10 Z is called restricted, denoted by rlO, if all top
elements or all bottom elements are indifferent.
Formally,

m forall 0,0 € top(Z), o~0, or
m orallo,o € bot(3), o~0'.

The sets 10(0), SIO(0), and r10(0).

Given a set of alternatives O we write /0(0), SIO(0O), and
rIO(0) to refer to the set of all incomplete, strict
incomplete, and restricted incomplete orders over O.
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We now define SCF’s, SCC’s and SWF’s over 10. To simplify
the presentation, we leave out the set V' of votable
candidates, assuming that all alternatives from O are also
votable.

Social Choice Function over SIO:

C*: SIO(0) — 0;=< = o
Social Choice Correspondence:

W*: SIO(0) — 29,2 — o/
Social Welfare Function over IO:

f*:10(0) — 10(0); (Z1,---.2a) — =°

~y
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Soual Welfare Functions on 10

Unanimity: for all outcomes a,b € O and all

2 €10(0), ifa=ibforalli € A, then
also a<*b.

lIA: if for any two profiles =, € I0(0O) and
all a,b € O, if Z; and Z; define the same
ordering on a and b for each i € A, then
=<*and (Z')* define the same ordering
on a and b.
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Strong dictator: Agenti is a strong dictator, if
f*(2) = Zi, forevery 10 2.

Dictator: An agentiis adictator, if
a=ibimplies a<*b, for every 10 3.
Weak dictator: An agentiis a weak dictator, if

a<;b implies a<*b or ax*b, for every 10
<

~°
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In the following we consider variants of Arrow’s
theorem. We need to distinguish between the
different variants of dictators, as the next result
shows:

Proposition 4.43

There is a SWF over 10 with at least two agents and
at least two outcomes which is ITA, unanimous,
and has no dictator.

Exercise: Find such a SWF.
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4.6 Results based on partial orders

Theorem 4.44 (Arrow’s theorem for 10)

Suppose there are at least two agents and three
outcomes. If the SWF £* : IO(O) — rIO(O) is
unanimous and satisfies ILA then there is weak
dictator.

The proof is similar to the proof of Arrow’s
theorem, adapted to the case of restricted
incomplete orders.
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Social Choice Correspondences on SIO

Ontoness: A SCF over SIO’s is onto if for any a € O there is
an < € SIO(0) such that {a} = W*(<).
Unanimity: A SCF over SIO’s is unanimous if forany a € O
and < € SIO(0) with {a} = top(=<;) for each
i€ A, then W*(<) = {a}.
Monotonicity: A SCF over SIO’s is monotonic if for all pairs
of orderings <, <" € SIO(O) it holds that:
m ifa € W*(<)andforeveryb e O andi €A,
(b=ia or bx;a) implies (b<'ia or bx';a), then
a € W*(<'); and
m if A= W*(<)andforeverya € A, and any
otherb € O, and i € A, (b<;a implies b<';a)
and (bx;a implies (b<'ia or bx';a)), then
A=W*).
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Also for social choice correspondences we distinguish
between three types of dictators.

Strong dictator: An agentiis a strong dictator over SIO, if
W*(<) = top(=;) for all profiles <.
Dictator: An agentiis a dictator over SIO, if
W*(<) C top(=<) for all profiles <.

Weak dictator: An agentiis a weak dictator over SIO, if
W*(<) N top(=<4) # 0 for all profiles <.
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Again, in the case of (standard) dictators, we have
the following positive result:

Proposition 4.45

There is a social choice correspondence over SIO
which is monotonic, unanimous, and has no
dictator.

Exercise: Find such a SWF.
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4.6 Results based on partial orders

The generalization of Muller-Satterthweite’s
theorem for weak dictators still holds:

Theorem 4.46 (Generalization: M-S’s theorem for SIO)

Suppose there are at least two agents and three
outcomes. If the social choice correspondence
over SIO is unanimous and monotonic then
there is at least one weak dictator.
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Strategy-Proofeness over SIO

We consider social choice correspondences over SIO.

Definition 4.47 (Strategy Proofness)

A SCC W* over SIOs is strategy proof (over SIO’s), if for all
agentsiandall <, <" € SIO(O) with <_; = <'_; and
W*(<) # W*(<') we have that:
forall a € W*(<)\W*(<') and for all
b e W*(<) N W*(<') we have b<;a or ax;b,
forall b € W*(<')\W* (<) we have that

forall a € W*(<), b<ia or ax;b, and
there is an a € W*(=<) such that b<;a.
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Lemma 4.48

If a SCC over S10O is strategy-proof and onto then
it is unanimous and monotonic.
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4.6 Results based on partial orders

Theorem 4.49 (Generalization: G-S for SIO)

Suppose there are at least two agents and three outcomes. If a
SCCover SIO is strategy-proof and onto then there is at
least one weak dictator.

By Lemma 4.48, a SCC which is strategy-proof and onto is
also unanimous and monotonic. Thus, by Theorem 4.46
there is a weak dictator. H

Note, over strict total orders, the Theorem is equivalent to
Theorem 4.21.
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Remarks

m We have presented the main impossibility
results from social choice theory over
incomplete orders:

m Arrow’s theorem,
m Muller-Satterthwaite’s theorem, and
m Gibbard-Satterthwaite’s theorem.

m The main fundamental (negative)
impossibility theorems remain also in the
case of incomplete orders.
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4.7 Auctions
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|
While voting binds all agents, auctions are always deals
between 2.

Types of auctions:
first-price open cry: (English, japanese auction), as usual.

first-price sealed bid: bidding without knowing the other
bids.

dutch auction: (descending auction) the seller lowers the
price until it is taken (flower market).

second-price sealed bid: (Vickrey auction) Highest bidder
wins, but the price is the second highest bid!
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4.7 Auctions

Three different auction settings:

private value (IPV): Value depends only on the
bidder (cake).

common value (CV): Value depends only on
other bidders (treasury bills).

correlated value: Partly on own’s values, partly
on others.
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What is the best strategy in Vickrey auctions?

Theorem 4.50 (Private-value Vickrey auctions)

The dominant strategy of a bidder in a Private-value Vickrey
auction is to bid the true valuation.

Therefore it is equivalent to English auctions (which are
equivalent to Dutch auctions).
Vickrey auctions are used to
m allocate computation resources in operating systems,
m allocate bandwidth in computer networks,
m control building heating.
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Are first-price auctions better for the
auctioneer than second-prize auctions?

4 Social Choice and Auctions
4.7 Auctions

Theorem 4.51 (Expected Revenue)

All 4 types of protocols produce the same expected revenue
to the auctioneer (assuming (1) private value auctions, (2)

values are independently distributed and (3) bidders are
risk-neutral).
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Expected revenue for agents taking risks.

For non risk-neutral agents, there is a difference in the
expected revenue for second price versus first price
auctions:

risk-neutral = =
risk-averse | Jap. Engl.
risk-seeking = =

2nd 1st | = | Dutch

v A
1l
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4.7 Auctions

Why are second price auctions not so popular
among humans?

Lying auctioneer.
When the results are published,
subcontractors know the true valuations

and what the winner saved. So they might
want to share the profit.
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Inefficient Allocation
Auctioning heterogenous, interdependent items.

Example 4.52 (Task Allocation)

Two delivery tasks ¢4, to. Two agents.

1.0

Agent 1 Agent 2 t
S R 2

05 ‘ 05
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Inefficient Allocation (cont.)

The global optimal solution is not reached by auctioning
independently and truthful bidding.

t1 goes to agent 2 (for a price of 2) and ¢, goes to agent 1
(for a price of 1.5).

Even if agent 2 considers (when bidding for t,) that she
already got ¢, (so she bids

cost({ty,t2}) — cost({t;}) = 2.5 — 1.5 = 1) she will getit only
with a probability of 0.5.
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~ blackboard.

Therefore:

m It pays off for agent 1 to bid more for ¢; (up to 1.5 more
than truthful bidding).

m It does not pay off for agent 2, because agent 2 does not
make a profit at ¢, anyway.

m Agent 1 bids 0.5 for ¢; (instead of 2), agent 2 bids 1.5.
Therefore agent 1 gets it for 1.5. Agent 1 also gets ¢,
for 1.5.
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Lying at Vickrey
Does it make sense to counterspeculate at
private value Vickrey auctions?

Vickrey auctions were invented to avoid
counterspeculation.

But what if the private value for a bidder is
uncertain?

The bidder might be able to determine it, but she
needs to invest some costs.
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Example 4.53 (Incentive to counterspeculate)

Suppose bidder 1 does not know the (private-) value v, of
the item to be auctioned. To determine it, she needs to
invest cost. We assume that v; is uniformly distributed:

U1 € [0, 1]

For bidder 2, the private value v, of the item is fixed:

0 < vy < 1. So her dominant strategy is to bid v,.

Should bidder 1 try to invest cost to determine her
private value? How does this depend on knowing v»?
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~ blackboard.

Answer: Bidder 1 should invest cost if
and only if

1
vy > (2cost)z.
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4.8 References
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5. Incomplete Information Games

Incomplete Information Games
m Examples and Motivation
m Bayesian Games
m Bayesian Nash equilibrium
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Outline

We consider incomplete knowledge, where players are not
sure about which game they are actually playing: Bayesian
games. The players do not know the payoffs of the other

players, which makes it difficult to come up with strategies.

m We first motivate the (quite involved) definition of
Bayesian games.

m Then we define the Bayes-Nash equilibrium.

m Finally we consider variants of the Bayes-Nash
equilibrium (mixed equilibria).
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5.1 Examples and Motivation
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m What if the players do not know the payoff?
m What, if they do not even know the game they are
playing?
It turns out that both cases above are essentially identical!
Such games are called Bayesian games or incomplete

knowledge games (do not mix up with imperfect
knowledge).
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5.1 Examples and Motivation

Example 5.1 (Uncertainty about payoffs)

Agent 1 (firm) is about to decide whether to build a new
plant. There are incurring costs for this. Agent 2 (opponent)
is about to buy the firm of agent 1. But agent 2 is not sure
about the incurring costs for agent 1. Buying is good for
agent 2 if and only if agent 1 does not build.

Buy Don’t Buy Don’t
Build | (0,—1) (2,0) (3,—1) (5,0)
Don’t | (2,1) (3,0) (2,1) (3,0)
1’s costs are high 1’s costs are low

Agent 1 knows the costs, agent 2 does not.

Agent 1 has a clear dominant strategy: Don’t, if costs are
high, Build, if costs are low.
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Example 5.2

Same example as before, but some payoffs are different.

Buy Don’t Buy Don’t

Build | (0,—1) (2,0) (1.5,—1) (3.5,0)
Don’t| (2,1) (3,0) (2,1) (3,0)
1’s costs are high 1’s costs are low

Now, agent 1 has a clear dominant strategy only if costs
are high: Don’t. If costs are low, there is no dominant
strategy anymore.
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Analy5|s of the game (1)

Player 1: Let x be the probability of player 1 for building
(she builds only when her costs are low).
Player 2: Let y be the probability of player 2 for buying
(player 2 does know nothing about the actual
costs incurring for player 1).
Costs high or low: Let p be the probability that the
building costs for player 1 are high.
Equilibrium (z,y): We need to find pairs (x, y) that are
stable in the following sense: z is best for player
1 and y is best for player 2, given probability p.
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Analy5|s of the game (2)

We compute the expected utilities for both players: how
does player 1 reason, how does player 27

m For player 1: Build is strictly better when y < 1, Don’t is
strictly better when y < % For y = .5 the expected
utilities are identical. Player 1 knows the costs, but
does not disclose them.

m For player 2: if costs are high, expected utility is just y. If
costs are low, itis y(1 — 2z). So player 2 is maximizing
the value of yp +y(1 —2z)(1 —p) = y(1—|—2x(p 1)). This

value is 0 forx = 2(11 o itis < 0fora < 2(1 yand itis
2 Oforz > 557—. Player 2 does not know the costs,

therefore probablllty p comes in.
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Analy5|s of the game (3)

m (0,1) is an equilibrium, independently of p.
m (1,0) is an equilibrium iff p < 0.5.

B (575, 3) is a (mixed) equilibrium iff p < 0.5.
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Assumptions

Uncertainty: Only about the payoffs, not about the
strategy spaces, number of players, actions
available etc.

Common-prior: Agents have all sorts of beliefs about other
agents, about their beliefs about other agents
etc. This can be very difficult to model. We
make the common-prior assumption, explained
on the next slide.
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Common-prior assumption

The common-prior assumption is the simplifying
assumption, that the probability distribution is fixed and
known to the agents in advance. In Example 5.1, the
probability distribution underlying p (whether the building
costs are high or not) is uniform and known to both players.
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5.2 Bayesian Games

The uncertainty assumption is not restrictive.

m Suppose player 1 does not know whether her opponent
has two or three actions available:

L R L R S

U|(1,2)](3,4) |or|U|(1,2)](3,4)]| (9,10)

D | (5,6)(7,8) D |(5,6)](7,8)(11,12)

m Then we define the following padded game in such a
way, that the Nash equilibria are the same and the
uncertainty is only in the payoffs:

L R S

U (1,2)](3,4) | (9,—100)

D (5,6) | (7,8) | (11, —100)

Therefore: wlog we assume the same number of agents

and the same strategy space for all agents.
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Bayesian Game: Informal

A Bayesian game for n agents consists of (1) a set G of n-person
games that differ in their payoffs, (2) a probability distribution
over these games (the common-prior), and (3) a set of n
partitions ;. ..., I, of G. I; is the set of potential games that
agent i considers possible (can’t distinguish, are equivalent for
her etc.).

A partition I; is a set of subsets G;1, ..., G;s of G such that: (1)
Uj Gij=W and (2) Gij N Gij’ = (forj # 4.

I; is the information that agent i has about the game. i does not
know which game is being played, but it considers all games in

one equivalence class (one of the G;;) as indistinguishable.
Therefore a strategy is determined per partition class.
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5.2 Bayesian Games

Definition 5.3 (n-Person Bayesian Game)

A finite n-person Bayesian game is a tuple (A, G, P, I),
where
mA={1,...1,...,n} is afinite set of players.
m G is a set of n-person normal form games, each of
which has the same action profiles

Act=A; x ... x A; x ... x A, where A; is the set of
actions available to player i.

m P is a probability distribution over the set G of all
games (the set of all distributions is denoted by I1(G)).

m[={I,...,1,}is aset of partitions of G.
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Figure 28: A Bayesian game consisting of zero sum games
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Strategies for Bayesian Games

What is a strategy for agent i in a Bayesian game? Clearly, a
strategy must be compatible with the information the
agent has about the game, i.e. it is a function from the set of
partition classes into the set of (mixed) strategies of the
normal form games in G:

Si - Ii — H(Al)
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5.3 Bayesian Nash equilibrium

Definition 5.4 (Bayesian-Nash Equilibrium)

Given a Bayesian game (A, G, P, I) a strategy profile
s* = (s}, s5,...,85)isa Bayesmn -Nash equilibrium if for
each agent i the following holds

s; € argmax, (¢ Y > plTr (st s) Plglr)

rel; geG

expected :

B is the expected utility function for agent i in game g.
(g|r) is the probability for game g under the assumption
that the game is in r (conditional probability).
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Example 5.5 (Bayesian game made of zero-sum games)

121 12,2
LA B ik C D |
I b [1T0 1 b [1]3 1[0] |
LI 3 1 21 al0] |
. p=02 p=01 ! p=01 =0 ||
= P G n
; L [3]2 i [0]1 270 |
L2 o3 11 b3 314 |
i p=0.1 p=0.1 o p=20.25 p=0.15 |
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5.3 Bayesian Nash equilibrium

What are the equilibria in the game depicted in
Example 5.5?

m The players have 4 different strategies: two partition
classes and again 2 for the 2 x 2 games. Let player 1’s
strategies for the underlying games be U and D and
players 2’s strategies L and R.

m Then they have to choose which strategies to play in
their two partition classes. Thus player 1 can play UU,
UD, DU, or DD: the first symbol stands for Iy;, the
second for I;5.

m Analogously, we get LL, LR, RL, or RR for player 2.

What is the reduced 4 x 4 normal form game?
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LL LR RL RR
Uu 1.3 145 1.1 1.25
Ub 1.8 1.65 1.8 1.65
DU 11 0.7 2.0 1.95
DD 1.5 115 2.8 2.35

Figure 29: Associated normal form game

Exercise: Show how to obtain these values.
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Reduced game: The unique NE in Figure 29 is
(UD, LR).

Bayesian game: Therefore the Bayesian-Nash
Equilibrium of the original game is
(U, L).
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Another Definition of Bayesian Game

ﬂ:ﬂf} TU Clausthal 5 Incomplete Information Games

m We can also define a Bayesian game by introducing an
additional agent (God, Nature) that does all the
probabilistic choices beforehand.

m God is the first player and then all the original players
come in.

m We have thus reduced a Bayesian game to an extensive
game with imperfect information: see Figure 30.
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Figure 30: Bayesian Game in Extensive Form with Nature-Agent
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Iniversity of Technolog

Example 5.6 (Another Bayesian Game)

IQ:[ IE!:Q
| MP 1 PD |
20|02 2,2 | 0,3
g |t " !
: 0,2 | 2,0 " 3,0 1.1 !
i p=103 ¥ p=01 i
i Coord " BoS i
L 2.2 |00 i 21 oo
Iya |i i i
i 0,0 | 1,1 1 0,0 | 1,2 i
p=02 p=04
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Nature

(2,0) (0,2) (0,2) (2,0) (2,2) (0,3) (3,0) (1,1) (2,2) (0,0) (0,0) (1,1) (2,1) (0,0) (0,0) (1,2)
Figure 31: Bayesian Game of Example 5.6 with Nature-Agent

How does the induced NF game look like?
~+ blackboard.
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Bayesian Game using Types

Definition 5.7 (Bayesian Game using types and utilities)

A Bayesian game is a tuple (A, Act, ©, P, u), where
m A=/{1,...,i,...,n}is afinite set of players or agents;
mAct=A; x--- x A; x--- x A, where A4; is the finite set

of actions available to playeri. @ € Act is called action
profile. Elements of A; are called pure strategies;

mO=0;x...x0,,0,is the type space of agent i;
m P:0~ [0,1] is a common prior over types, and

W=, .. Mi,..., o) Wherep; : Act x©® — Risa
real-valued utility (payoff) function for player i.
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5.3 Bayesian Nash equilibrium

Comparison of Definitions 5.3 and 5.7

m Definition 5.7 is closer in spirit to the original
formulation of a NF game (Definition 1.4 on Slide 23).

m The utilities are explicitly mentioned (and not hidden as
in Definition 5.3, namely in the set of games G).

m The information sets are now encoded in the types.

m The type space encodes the information of the agents
that is not common knowledge.

m But there is the common-prior on the type space that is
common knowledge (as it was for the information sets).

m The set of outcomes is not needed as we define the
utility directly on the action profile and the types.

How to formulate Example 5.6 in this framework?
~+ blackboard.
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Strategies and Equilibria

Pure strategy: «; : ©; — Act;. This is similar to
imperfect-information extensive form
games (mapping from information sets
to actions).

Mixed strateqgy: s; € S;, probability distribution
over pure strategies. Notation: s;(a;|0;)
is the probability, that agentj plays
action a; when using strategy s;, given
that agentj’s type is indeed 6;.
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5.3 Bayesian Nash equilibrium
Expected Utility

For Bayesian games, the expected utility can be defined in
various ways and leads to (1) ex post expected utility
(where all agent’s types are known to each other), (2) ex
interim expected utility (where an agent knows only her
own types), (3) ex ante expected utility (where an agent
does not know anybodys type).

We use the last utility and, based on it, we define the best
response set and then the Bayes-Nash equilibrium.
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Ex ante expected utility

Definition 5.8 (Ex ante expected utility)

Given a Bayesian game (A, Act, ©, P, u), where the
strategies of agents are given by mixed-strategy profiles s,
agent i’s expected ex ante utility is defined by

ps* ante(S) _ deep(e)zﬁe/\ct (HjEASj(aj |9j))ll'i(6_i, 0)
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Bayes-Nash Equilibrium

Definition 5.9 (Best Response Set)

In a Bayesian game, the set BR;(s_;) of best responses of
agent i to the mixed-strategy profile s_; is the set

BRi(s_i) = argmax, g i ""(s}, 51)
1

Definition 5.10 (Bayesian Nash Equilibrium)

In a Bayesian game, a Bayesian Nash equilibrium is a mixed
strategy profile s satisfying for all i € A:

si € BRi(s-4)
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6. Mechanism Design

A Mechanism Design
m Examples and Motivation
m MD for Voting procedures
m Quasilinear preferences
m The Vickrey-Clarke-Groves Mechanism
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Outline

In previous chapters we considered particular games and defined
equilibria for them. We also defined voting mechanisms/auctions
and noted that agents could lie in order to achieve their goals. In
this chapter we consider the question how should a mechanism
be designed so as to maximize the principal's expected utility,
even if the agents do not act truthfully? This area is called
Mechanism Design (MD).

So we design the rules of the game to maximize our utility, even if
all agents act in pure self-interest.

m Well-known examples are the various types of auctions.

m We first consider MD for voting procedures. The
Gibbard/Satterthwaite theorem is similar to Arrow’s
theorem and deals with non-manipulable voting systems.

m Then we consider MD for Bayesian games. But we only
consider solutions for the case of a single agent.
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6.1 Examples and Motivation

Lying and manipulation

m What if agents vote ftactically? l.e. they know the voting
design and do not vote fruthfully, but such that their
preferred choice is elected after all?

m s it possible to come up with an implementation of a
social choice function (or correspondence) that can not
be manipulated?
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6 Mechanism Design
6.1 Examples and Motivation

You are babysitting 4 kids (Will, Liam, Vic and Ray). They can
chose among (a: going to the video arcade, b: playing
baseball, c: going for a leisurely car ride). The kids give their

true preferences as follows:

Will | Liam | Vic | Ray
1 b b a C
2 a a C a
3 C C b b

Majority voting, breaking ties alphabetically.
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gy

Suppose Ray hates playing basketball but knows that his
fellows do like it. How can he vote to avoid ending up
playing basketball?

Note that the other kids do not disclose their preferences,
but Ray might know them.

Attention: Other kids may have other preferences, so
choosing “a” is not a dominant strategy for Ray.

How can we avoid such tactical behaviour?
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Definition 6.2 (Mechanism)

A mechanism wrt. a set of agents A and a set of outcomes O
is a pair (Act, M) where
Act = A; x ... x A, where A; is the set of actions
available to agent .
M : Act — II(O), where II(O) is the set of all probability
distributions over the set of outcomes.

@H‘u 'lu ClaU§thal 6 Mechanism Design

This is a very general definition: it allows arbitrary actions.
What about our babysitter example?
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Relation between a mechanism and a game?

Remember Definition 1.4. For the case that
M((a1,...,anp))(o) € {0,1} for all action profiles and
outcomes o, we can view M as a function p as in
Definition 1.4: M((a1,...,aa|))(0) = 1 becomes
M((al, R aw)) = 0. Then

Mechanisms and games

If 1 is a utility profile and (Act, M) is a mechanism wrt. A
and O, then (A, Act,O, M, u) is a |A|-person normal form
game.
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Mechanism vs. Social Choice Function

What is the difference between a social choice function and
a mechanism?

m Social choice function is often considered to be
truthful: itis based on the real preferences.

m A mechanism is an implementation (or not!) of a social
choice function.

m MD is also called inverse game theory or incentive
engineering.
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Utilities and preferences

m Suppose we are given a utility function
Hi - O — R.

m Then we can define a weak preference by
01 = 09 iff /1,1(01) < [Li(Og).

m In the following we often use the notation
C*(p) for a social choice function C*, when we
mean the induced preference order.
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6.2 MD for Voting procedures

Definition 6.3 (Mechanism/Implementation)

Let A and O be fixed and a social choice function C* be
given.

We say that a mechanism (Act, M) implements the function
C* in dominant strategies, if for all utility profiles p the
game (A, Act, O, M, p) has an equilibrium in dominant
strategies and for any such equilibrium (s, s3,...,s") we
have:

M((‘SI’ 33 aoc 737*z>) = C*(“)
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Implementation in dominant strategies

What about our example? Is there a mechanism
implementing our social choice function in dominant

strategies?

Exercise

What if we redefine the last definition in terms of
Nash-equilibria? Is there a mechanism implementing our
social choice function in Nash-equilibria?
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This definition builds on the first definition of a Bayesian
game (Definition 5.3 on Slide 403).

Definition 6.4 (Bayes-Nash Implementation)

Let A and O be fixed. Let U be the set of all utility profiles p over
O. Let G be the set of games (A, Act,O, M, u) foru € U. Let P be
a probability distribution on U and let I = {13, ..., I,} be a set of
partitions, one for each agent. Finally, let a social choice function
C* be given.

We say that a mechanism (Act, M) implements the function
C* in Bayes-Nash equilibria wrt. P and I, if there exists a
Bayes-Nash equilibrium of the Bayesian game (A, G, P, I),
such that for each game g € G and each action profile
(ay,...,a,) € Act that can arise in g, it holds that

M((ar,.. . an)) = C*(u).
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For a Bayesian game defined using types, a
slightly modified notation is used, but it is
nevertheless equivalent: everything can be
defined using all three definitions of Bayesian
games.

We define a Bayesian game setting as a tuple
(A,0,0,P pu): i.e. like a Bayesian game in the
sense of Definition 5.7 on Slide 416 but without
the set of actions and instead a set of outcomes O.
This is because the actions are used in the
mechanism: each action profile is mapped to a
probability distribution on the outcomes.
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Definition 6.5 (Mechanism for Bayesian game setting)

A mechanism for a Bayesian game setting
(A,0,0,P, ) is a pair (Act, M) where
Act = Ay x ... X A, where 4; is the set of
actions available to agent i.
M : Act — I1(O), where II(O) is the set of all
probability distributions over the set of
outcomes.

A mechanism is deterministic, if for every action
profile @ there is a o € O with M(a)(0) = 1.

Prof. Dr. Jurgen Dix - Department of Informatics, TUC Game Theory (MSc), WS 17/18 439



! TU Clausthal ool
Definitions for Baysian games with types

Given a Bayesian game setting (A, 0,0, P, u) and a social

choice function C* over A, O, we say that a mechanism

(Act, M)

implements C* in dominant strategies, if for any profile i
the game has an equilibrium in dominant
strategies and in any such equilibrium a* we
have: M(a*) = C*(ji).

implements C* in Bayes-Nash equilibrium, if there exists
Bayesian-Nash equilibrium of the game (of
incomplete information) (A, Act,©, P, ) such
that for each 6§ € © and each profile @ € Act that
can arise given type 6 in this equilibrium:
M(a) = C*(@(-, 0)).
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There are situations, where one does not want to reveal the
true preferences. Lying might pay off: not only to get the
desired result, but also to ensure that critical information is
not disclosed.
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Often, mechanisms are used that are much more restricted.

Definition 6.6 (Direct Mechanism)

A direct mechanism wrt. a set of agents A and a set of
outcomes O is a mechanism (Act, M) with

A; = {pi : i are utility functions }.

But: agents may lie and not reveal their true utilities.
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6.2 MD for Voting procedures

Truthful or strategy-proof mechanism

A mechanism is truthful (or strategy-proof) in dominant
strategies, if for any utility profile, in the resulting game it is
a dominant strategy for each agent to announce its true
utility function.

Theorem 6.7 (Revelation)

If there exists an implementation of a social choice rule in
dominant strategies, then there is also a direct and
truthful mechanism implementing the same function.

The same theorem is also true for implementation in Nash
equilibria (with the same proof).
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6.2 MD for Voting procedures

Proof.

The proof is simple: one simply builds-in the lying-part into
the procedure. That is, one lets the procedure do what is
best for oneself. O

So which social choice functions can be implemented in
dominant strategies?

Remember Theorem 4.21. Strategy-proofness is exactly
dominant-strategy truthful (and we can restrict to truthful
mechanisms because of the revelation principle), therefore
we have to relax some conditions in the theorem.
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6.3 Quasilinear preferences
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Ways out of Gibbard-Satterthwaite

We relax the conditions in three ways
m agents can no more express any preferences,
m we do not assume ontoness any more, and
m we ook at implementation in Bayesian-Nash
equilibrium.

In fact, these relaxations enable us to deal with the class of
Groves-mechanisms, in particular with the
Vickrey-Clarke-Groves (VCG) mechanism.
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Quasilinearity

Remember Slide 434, where utilities induce preferences.

Definition 6.8 (Quasilinear Utility Functions)

Agents have quasilinear preferences (or utility functions),
when the following holds:

Outcome: there is a finite set X such that O = X x R",
Utility: pi((x,p),0) = ui(x,0) — fi(pi), where v; is any
function from X — R and f; is any strictly
monotonically increasing function from R — R.

X can be seen as nonmonetary outcomes (allocation of an
object, selection of a candidate), 7 represents the payments
of each agent i to the mechanism (e.g.auctioneer).
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Risk Attitudes

What are restrictions we should impose on the
functions f;?

m They could be linear, which corresponds to
risk-neutral.

m They could be sublinear, which corresponds to
risk-averse.

m They could be superlinear, which corresponds
to risk-seeking.
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Direct Quasilinear Mechanism

Definition 6.9 (Quasilinear mechanism)

A mechanism in a quasilinear setting for a Bayesian game
setting (A, X x R",0, P, pu) is a triple (Act, x, p) where

Act = A; x ... x A, where A; is the set of actions
available to agent i.

X : Act — II(X), where TI(X) is the set of all probability
distributions over choices,

o : Act — R” is a mapping to payments for the agents.

A direct quasilinear mechanism is a pair (x, p), where for
eachi: A; = ©,, i.e. each agent reveals his own type.

x is also called choice rule and g is called payment rule.
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Valuatlons

We assume that for all agents i, for all outcomes o € O and
for all pairs of joint types 6, 6" € © for which 6; = €., it holds
that pi(0,0) = pui(o,0"). This condition is called conditional
utility independance. It ensures that the utilities of agents
only depend on their own types.

For z € X the value vi(z) := pi(x, 6;) is called i’s valuation
of z. Itis the maximal amount agent i is willing to pay to
make sure the mechanism designer implements the choice
x. By v; we denote agent i’s declaration of its valuation to a
direct mechanism.

v and v denote the profiles for all agents. v_; is the vector of
all agents other than i.
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Truthfulness and Efficiency

Definition 6.10 (Truthfulness)

A quasilinear mechanism ist truthful, if it is direct and for all
agents i and all v;: the equilibrium strategy of agent i is the
strategy u; = v;.

Definition 6.11 (Efficiency)

A quasilinear mechanism is efficient, if in equilibrium a
choice z is selected such that for all v and all z':

Zvi(as) > Zvi(as').

A choice is selected by the mechanism, that maximizes the
sum of the utilities of all agents.
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6.4 The Vickrey-Clarke-Groves
Mechanism
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Definition 6.12 (Groves Mechanisms)

A Groves mechanism is a direct quasilinear mechanism
(x, p), for which

X(0) = argmax, > ()

i

Groves mechanisms are dominant-strategy truthful
implementations of a social welfare maximizing social
choice function.
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VCG Mechanism

In Groves mechanisms, the functions h; are arbitrary.
However, particular choices lead to particular special
mechansims with interesting properties.

Definition 6.13 (Clarke Tax)

The payment functions are set to hi(0-) = >;_; 9 (x(0-1)).
Note this does not depend on the agent’s own declaration
0y

With this setting, the resulting particular Groves mechanism
is called Vickrey-Clarke-Groves mechanism.
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V|ckrey -Clarke-Groves

m The Clarke tax charges agent i the sum of all other
agent’s utilities as if i had not participated.

m The second sum pays each agent the sum of every other
agents utility for the mechanisms choice.

Transportation network with selfish agents: ~~ blackboard
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7. From Classical to Temporal Logics

From Classical to Temporal Logics
Sentential Logic (SL)

m First-Order Logic (FOL)

m How to deal with time?

m Linear Time Logic (LTL)
u
u

Branching Time Logic (CTL)
References
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m We recapitulate very briefly sentential (also called
propositional) (SL) and first-order logic (FOL).

m As an example of FOL, we consider FO(<): monadic
FOL of linear order.

m Then we present LTL, a logic to deal with linear time (no
branching).

m While LTL is equivalent to FO(<), LTL is a more compact
formalism and can be easily extended.
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Outline (cont.)

m CTL* is an extension of LTL to branching time.

m CTL is an interesting fragment of CTL*, incomparable
with LTL, but with interesting computational properties.

m While LTL is defined over path formulae, CTL is defined
over state formulae.

m CTL* is defined over both sorts of formulae.

m We present a criterion to decide whether a CTL* formula
is equivalent to a LTL formula.
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/7.1 Sentential Logic (SL)
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Syntax of SL

Definition 7.1 (Sentential Logic Ls;, Lang. £ C Lg)

The language Ls, of propositional (or sentential) logic consists
of

B p,q,7,T1,T2,...%n,.... acountable set AT of SL-constants,
m -, V: the sentential connective (= is unary, V is binary),
m (, ): the parentheses to help readability.

In most cases we consider only a finite set of SL-constants. They
define a language £ C Ls;. The set of £L-formulae F'ml, is defined
inductively.
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Macros
T o= pvop pAY = —(mpV )
f' - =Y = —pV
1 T

o = (=)A= @)
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Definition 7.2 (Semantics, Valuation, Model)

A valuation v for a language £ C Lg is a mapping from the
set of SL-constants defined by £ into the set {true, false}.

Each valuation v can be uniquely extended to a function
v : Fml; — {true,false} so that:

_ | true, if o(p) = false,
- B = { false, if o(p) = true.

_ [ true, if 9(¢) =toruo(y) = true,
= (V)= { false, else
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Definition (continued)

Thus each valuation v uniquely defines a v. We call ©
L-structure.

A structure determines for each formula if it is true or false.
If a formula ¢ is true in structure o we also say A, is a model
of ¢. From now on we will speak of models, structures and
valuations synonymously.

Semantics

The process of mapping a set of £-formulae into
{true, false} is called semantics.
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Definition 7.3 (Model, Theory, Tautology (Valid))

A formula ¢ € F'mli,; holds under the valuation v if
0(p) = true. We also write v = ¢ or simply v = . v isa
model of .

A theory is a set of formulae: T C Fmli,. v satisfies T if
v(p) = true forall p € T. We write v =T.

A L-formula ¢ is called £-tautology (or simply called
valid) if for all possible valuations v in £ v |= ¢ holds.

From now on we suppress the language £ when obvious
from context.
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Truth Tables

Truth tables are a conceptually simple way of
working with PL (invented by Wittgenstein in
1918).

plagl-p|pVag | pAqgip—q|pg
tit] f| t t t t
flt| t| t f t f
t|f| f t f f f
flf| t f f t t
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Fundamental Semantical Concepts

m Ifitis possible to find some valuation v that makes ¢ true,
then we say ¢ is satisfiable.

m If v = for all valuations v then we say that ¢ is valid and
write |= ¢ . ¢ is also called tautology.

m A theory is a set of formulae: ® C Lpy.

m Atheory @ is called consistent if there is a valuation v with
v = .

m Atheory @ is called complete if for each formula ¢ in the
language, ¢ € P or ~p € ¢ .

Two simple examples

Consider the two formulae p A =b and a V —a.

m Are they satisfiable or valid?
m Are they both consistent? What if we add b?
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Consequences

Given a theory ¢ we are interested in the
following question: Which facts can be derived
from ®? We can distinguish two approaches:
semantical consequences, and
syntactical inference.

m Let ® be a theory and ¢ be a formula. We say
that ¢ is a semantical consequence of @ if for
all valuations v:

v = ® implies v = .
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7.2 First-Order Logic (FOL)
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Predicate logic

In addition to the propositional language (on which the
modal language is built as well), the first-order language
(FOL) contains variables, function-, and predicate
symbols.

Definition 7.4 (Variable)

A variable is a symbol of the set Var. Typically, we denote
variables by z¢, x4, . . ..

Example 7.5

@ := o1 (P (fo (20), 21) A Py (f7))

Prof. Dr. Jurgen Dix - Department of Informatics, TUC Game Theory (MSc), WS 17/18 469



7 From Classical to Temporal Logics

@KH TUH’CM}J‘S"(QM 7.2 First-Order Logic (FOL)
Functions

Definition 7.6 (Function symbols)

Let k£ € Ny. The set of k-ary function symbols is denoted by
Func®. Elements of Func* are given by fF, f¥.... Such a
symbol takes k arguments. The set of all function symbols is

defined as

Func = U]—"unck
k

A 0-ary function symbol is called constant.
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Predicates

Definition 7.7 (Predicate Symbols)

Let & € Ny. The set of k-ary predicate symbols (or relation
symbols) is given by Pred”. Elements of Pred” are denoted
by PF, Py.... Such a symbol takes k arguments. The set of
predicate symbols is defined as

Pred = U Pred”

k

A 0-ary predicate symbol is called (atomic) proposition.
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Syntax

7 From Classical to Temporal Logics
7.2 First-Order Logic (FOL)

The first-order language with equality Lpoy, is built from
terms and formulae.

In the following we fix a set of variables, function-, and
predicate symbols.

Definition 7.8 (Term)
A term over Func and Var is inductively defined as follows:

Each variable from Var is a term.

If t,,...t, are terms then f*(¢;,... ;) is a term as well,
where f* is an k-ary function symbol from Func”.
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Definition 7.9 (Language)

The first-order language with equality
Lror(Var, Func, Pred) is defined by the following grammar:

@u=Pty,... . ts) || oV |Tz(p) [ t=r

where P* € Pred” is a k-ary predicate symbol and ¢4, ..., t;
and ¢, r are terms over Var and Func.
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Definition 7.10 (Macros)

We define the following syntactic constructs as macros
(P € Pred®):

1 = PA-P

T = -1
AP = 2(mp V)
p—=Y = opVY
e = (o)A (Y — @)
Vz(p) = —Jz(-p)
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Notation

m We will often leave out the index k in f* and PF indicating
the arity and just write f; and P;.

m Variables are also denoted by u, v, w, ...

m Function symbols are also denoted by f, g, A, ...

m Constants are also denoted by a, b, ¢, ..., cp,c1,. ..

m Predicate symbols are also denoted by P, Q, R, . ..

m We will use our standard notation p for O-ary predicate
symbols and also call them (atomic) propositions.

Attention

For linear temporal logic, we only need unary predicates
(monadic logic) and we do not need any function symbols at all.
So our terms are exactly the variables.
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Semantics

Definition 7.11 (Model, Structure)

A model or structure for FOL over Var, Func and Pred is given by
M = (U, I) where

U is a non-empty set of elements, called universe or domain
and

I'is called interpretation. It assigns to each function symbol
f* € Func® a function I(f*) : U¥ — U, to each predicate
symbol P* € Pred" arelation I(P*) C U¥; and to each
variable z € Var an element I(x) € U.

We write:
IM(PF) for I(PF),
IM(f*) for I(f*), and
M(x) for I(x).
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Note that a structure comes with an interpretation I, which
is based on functions and predicate symbols and
assignments of the variables. But these are also defined in
the notion of a language. Thus we assume from now on
that the structures are compatible with the underlying
language: The arities of the functions and predicates must
correspond to the associated symbols.
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Example 7.12

p = Q) VVz(P(z,9(2)) V Iz(Vy(P(f(2),y) A Q(a)))
mU=R
m /(a): {0} — R, ) — 7 constant functions,
mI(f):I(f)=sin: R —-RandI(g) =cos: R =R,
mI(P)={(r,s) eR*:r <s}and I(Q) = [3,0) CR,
m/(z)=7%,1(y)=1and I(z) = 3.
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Definition 7.13 (Value of a Term)

Let £ be a term and 9t = (U, /) be a model. We define
inductively the value of ¢ wrt 91, written as 9i(¢t), as follows:

M (x):= I(x) foravariable t = z,
M) = I(fF)OM(t1), ..., M(tr)) ift = fE(te,..., ).
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Definition 7.14 (Semantics)

Let Mt = (U, 1) be amodel and ¢ € Lro.. ¢ is said to be
true in 901, written as M = o, if the following holds:

M = Pr(ty, ... tx) iff (1), ..., M(tx)) € M(PF)

M = - iff not M = ¢

MEeVY iffMEpor M=y

M = Jw(p) iff M/ = o for some a € U where 9l*/4
denotes the model equal to M but M*/(z) = a.

M =t =r iff M(t) = M(r)
Given a set X C Lo, we write Mt = X iff M = ¢ for all
Y E .
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Example: FO(<)

Monadic first-order logic of order, denoted by FO(<), is
first-order logic with the only binary symbol < (except
equality, which is also allowed) and, additionally, any
number of unary predicates. The theory assumes that < is
a linear order with least element, but nothing else.

A typical model is given by

N = (Ny, <N, pN pN o PNy
where <™ is the usual ordering on the natural numbers and
PN C Np.

The sets P determine the timepoints where the property
P, holds.
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What can we express in FO(<)?

Can we find formulae expressing that
m a property r is true infinitely often?

m whenever r is true, then s is true in the next timepoint?

m ris true at all even timepoints and —r at all odd
timepoints?
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7.3 How to deal with time?

LT propertles of transition systems

Transition systems are abstractions from systems
in the real world. We would like to

m reason about particular computations of a TS;

m reason about all possible executionsina TS,

m formulate inferesting properties sucha TS
should satisfy.

Main notion: a path in a TS. Itis a sequence of
states starting in an initial state. It corresponds to
an execution of the TS.
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7.3 How to deal with time?

Definition 7.15 (Transition system)

A transition system TS is a tuple (S, Act,—, I, Prop, )
where

m Sis a set of states, denoted by s, s, .. .,

m Act is a set of actions, denoted by o, 3,7, ...,

B — C S x Act x Sis a transition relation,

m / C Sis the set of initial states,

m Prop is a set of atomic propositions, and

m 7 :S — 27 s a labelling (or valuation).
A TS is finite if, by definition, S, Act and Prop are all finite.
This is in accordance with L£g;. States are what we called
models. A labelling corresponds to a set of valuations. The

new feature is that we can move between states by means
of actions: instead of (s, o, s') we write s -~ 5.
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7.3 How to deal with time?

Transitions systems without terminal nodes

From now on, we assume wlog that all transition systems do not
have any terminal nodes. In case a TS has terminal nodes, we
could simply add for each such node a new action and a new state
(with an arrow pointing to itself) and extend the TS appropriately.

Definition 7.16 (Path )\ (of a TS))

Apath A : Ny — Sina TS is a sequence of states
starting with an initial state such that this
sequence corresponds to a run of the TS.
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Paths versus traces

Often, we are not so much interested in the states as such,
only what is true in them, i.e. which propositions from Prop
are true: 7(s;).

Definition 7.17 (Trace of \ of a TS)
The trace of a path A : Ny — Sin a TS with Prop is the
following infinite sequence

T(A0)7T(A(1))7(A(2)) ... 7(A(1)) . ..

(m(A(42)) is the set of all propositions that are true in state A(7)).
We call this also an w-word over 2777,

The set of all traces of a TS is the set of the traces of all paths
from TS: itis denoted by Traces(TS).
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Runs orwpaths?

We want to define what it means that
two transition systems behave the same.

We take the set of runs of a TS as the defining
behaviour.

Often the actions do not play any role, only
the states do. Then we could take the set of
paths of a TS as the defining behaviour.

Both possibilities rely on the internal behaviour,
that we might not be able to determine.
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7.3 How to deal with time?

Runs or ypaths? (cont.)

Often one cannot distinguish between certain
states, we only know what is true in them (and
that depends on the language Prop).

Therefore we choose from now on the
observable behaviour to describe a TS: the
set of traces as the defining behaviour of a
TS.

Die Grenzen meiner Sprache bedeuten die
Grenzen meiner Welt.

L. Wittgenstein, TLP, Satz 5.6
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Definition 7.18 (Equivalence of transition systems)

Let TS; and TS, be two transition systems over
Prop and let A C Prop. We say that

TS, and TS, are A-equivalent, if, by definition,
Traces(TS;)|a= Traces(TS,)|4,

TS, is a correct implementation of TS,, if, by
definition, Traces(TS;) C Traces(TS,).
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Example 7.19 (Two transition systems TS;, TS,)

What are the paths, traces of them?

515285, s1528%. {p,a{pH{a}", {p,a{pH{}*

515285, s15455. {p, a{pH{a}*, {p,ar{p}{}*.
Both transition systems have the same set of

traces. Is there any difference between
them?
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7.3 How to deal with time?

Properties of transition systems

m "Whenever p holds, a state with q is
reachable.”

m Obviously this is true in TS; but notin TS,.
m Later: this cannot be expressed in LTL.

m Any property that is solely based on the set
of ftraces of a TS can not distinguish between
TSl and T52

m But still many useful properties can be
defined: linear time (LT) properties.

m The former two transition systems cannot be
distinguished by any LT-property.
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7.3 How to deal with time?

Properties of transition systems

Definition 7.20 (LT properties)

Given a set Prop, a LT property over Prop is any
subset of (277)«,

A transition system TS satisfies such a property, if
all its traces are contained in it.

m A LT property is a, possibly infinite, set of
infinite words.

Attention

{p,q}{p}{q}* really means the infinite word
{p,al{pH{a}t...{a}..., not{pH{p}H{a}...{a}..
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@H‘u T[\{Mg}?}%?,tpal 7.3 How to deal with time?
Properties of transition systems

We also use {{p,q}, {p}}{p}{q}* to denote the set of words
that either start with {p,q} or with {p}.

Example 7.21

When p then q two steps farther ahead.

It is never the case that p and g. This is important for
mutual exclusion algorithms: one wants to ensure that
never two processes are at the same time in their critical
section.

When p then eventually q. When a message has been
sent, it will eventually be received.
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Example 7.22 (Sets of paths)

DDA Dm | DD

{a} {r} {r} {r} {a@} {a¥ {r} {r} {r}
O OROROL @» ORNOMOL OO
{r} {a} {r} {r} {r} {q} {a} {r} {r}
EOMORORON @» OO O OB O
{rr {r} {a¥ {rr {r} {r} {a} {a} {rr

etc. etc.

The first infinite set of paths M, can be denoted more
succinctly by {p}*{q}{p}* and the second, M, by
{p}*{aH{a}{p}* (we are using the Kleene * as in regular
expressions). These expressions are called w regular
expressions.
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Which properties does M, satisfy?

m At some time q is true and then always p holds.

W g is true exactly once.

m pis always true with one single exception,
when q is true.

m g is true exactly once (and in that state p is
not true), and before and after that, only p
holds true. This will be expressed as a LTL
formula shortly.

Can M, be represented as a (finite) transition
system at all?
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Theorem 7.23 (Traces and LT-properties)

Let TS, and TS, be two transition systems over Prop.
Then the following are equivalent:

m Traces(TS;) C Traces(TS,)

m for all LT properties M: if TS, satisfies M, so
does TS;.

Corollary 7.24

TS, and TS, satisfy the same LT properties if and
only if Traces(TS,) = Traces(TS,).
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@H‘u :ll\{ug‘l\‘a(‘t‘lﬁ‘tpal 7.3 How to deal with time?
More interesting properties

For the formal specification and verification of
concurrent and distributed systems, the following
useful concepts can be formally, and concisely,
specified as LT properties (and later also using
temporal logics):

m safety properties,

m liveness properties,

m fairness properties.
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Safety Propertles

Many safety properties are quite simple, they are just
conditions on the states and called invariants. They have
the form (A; c 2777)

M = {AoA;... A;...: foralli: A; | ¢}
for a propositional formula .

Examples are
m mutual exclusion properties: —crit; V —crity,
m deadlock freedom: —waity V ...V —waits. Deadlock
freedom does not imply a fair distribution, i.e. —waitg
can always hold.

Others require conditions on finite fragments, for example
a traffic light with three phases requiring an orange phase
immediately before a red phase. This is not an invariant.
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Safety Propertles (cont.)

Definition 7.25 (Safety property)

A LT property Mgy is called a safety property, if
for all words \ € (27%{9)‘*’ \ Mt there exists a finite
prefix (a bad prefix) A of A such that

Mae N {N : X € (27°7) Xis a finite prefix of \'} =

So itis a condition on a finite initial fragment:
no extended word resulting from such a bad
prefix is allowed.
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7.3 How to deal with time?
Liveness Properties

Definition 7.26 (Liveness property)

A LT property M is a liveness property, if the set
of finite prefixes of the elements of M is identical
to (27°P)*, l.e. each finite prefix can be extended
to an infinite word that satisfies the property.

m Each process will eventually enter its critical
section.

m Each process will enter its critical section
infinitely often.

m Each waiting process will eventually enter its
critical section.
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7.3 How to deal with time?
Liveness Properties (cont.)

Starvation freedom in the dining philosophers is
a typical example: each philosopher is getting her
sticks infinitely often.

Starvation freedom: For all timepoints ¢, if there
is a waiting process at time ¢, then the process
gets into its critical section eventually.
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Safety versus Liveness

m Are safety properties also liveness properties?
Vice versa?

m There is only one property that is both:
(2PP)« i.e. the trivial property that contains
all paths.

Theorem 7.27 (LT properties as intersections)

Each LT-property can be represented as the
intersection of a safety with a liveness property.

But there are LT properties that are neither safe
nor live.
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7.3 How to deal with time?
Fairness Properties

Definition 7.28 (Fairness property)

A LT property is a fairness property, if one of the
following applies:

Each process gets its turn infinitely often
provided that

unconditional: (no restrictions)
strong: it is enabled infinitely often,

weak: itis continuously enabled from a certain
time on.
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Clausthal University of Technology

LT properties used in practice

safety and liveness property
( 2AP ) w
I

safety properties _ -~ liveness properties

— - - -~ neither liveness
nor safety properties

invariants

Figure 32: Overview LT-properties
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Clausthal University of Technology

/7.4 Linear Time Logic (LTL)
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: . 7.4 Linear Time Logic (LTL)
Typical temporal operators

Xy @ is true in the neXt moment in time

Gy ¢ is true Globally: in all future moments

Fo @ is true Finally: eventually (in the future)

U @ is true Until at least the moment when
becomes true (and this eventually happens)

G((—passport V —ticket) — X—board_flight)

send(msg, rcvr) —  Freceive(msg, rcvr)
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Safety: Something bad will not happen,
something good will always hold.
G-bankrupt,
GfuelOK,
Usually: G—.. ..

Liveness: Something good will happen.
Frich,
power_on — Fonline,
Usually: F.. ..
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@Kﬂ TU ‘ClaLlSthal 7.4 Linear Time Logic (LTL)

Fairness: Combinations of safety and liveness:
FG—dead or
G(request_taxi — Farrive_taxi).
Strong fairness: “If something is
requested then it will be
allocated”:

G(attempt — Fsuccess),

GFattempt — GFsuccess.

Scheduling processes, responding to
messages, no process is blocked forever,

etc.
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Definition 7.29 (Language L,;; [Pnueli, 1977])

The language L, 1, (Prop) is given by all formulae generated
by the following grammar, where p € Prop is a proposition:

pu=p|p|leVe|eldp|Xe.

The additional operators
m F (eventually in the future) and
m G (always from now on)

can be defined as macros :

]
Fo=(-O)Up and Gy = -F-¢p

The standard Boolean connectives T, A, —, and < are
defined in their usual way as macros.
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Models of Lin

The semantics is given over paths, which are infinite
sequences of states from S, and a standard labelling
function 7 : S — P(Prop) that determines which
propositions are true at which states.

Definition 7.30 (Path \ = ¢yq1¢2q3 .. .)

m A path X over a set of states S is an infinite sequence of
states. We can view itas a mapping Ny, — S. The set of
all sequences is denoted by S*.

A[i] denotes the ith position on path A (starting from
i =20)and

m \[i,00] denotes the subpath of ) starting from i
(A5, 00] = A[JA\[i + 1] ...).
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w

A= q0q1G2q3 - .- €S

Definition 7.31 (Semantics of £,;;)

Let A be a path and 7 be a labelling function over S. The
semantics of LTL, =™, is defined as follows:

m )\, 7 =T p if, by definition, p € 7(\[0]) and p € Prop;
m )\, 7 =T —p if, by definition, not A\, T ¢ (we write
AT @);
m )\, 7 T oV if, by definition, A\, 7 E™ o or
)\, T I:LTL w’

m A\, 7 BT Xo if, by definition, \[1, 00, =Tt ¢; and

m )\ 7 =T U if, by definition, there is an i € Ny such
that \[i, oc], 7 = ¢ and A[j, oc], m Tt p forall 0 < j < .
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Other temporal operators

.
A, m = Fy if, by definition, A[i, co], ™ = ¢ for some
1 € Np;
A, = Gy if, by definition, \[i, o], 7 |= ¢ for all
1 € Ny ;

[DE AN

Prove that the semantics does indeed match the
definitions;

m Fy is equivalent to (—=[J)U ¢, and

m Gy is equivalent to —F—.
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Validity, satisfiability

satisfiable: a LTL formula is satisfiable, if, by
definition, there is a model for i,

valid: a LTL formula is valid, if, by definition, it
is true in all models,

contradictory: a LTL formula is contradictory,
if, by definition, there is no model for it.
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Clausthal University of Technology

posy  pos; Ppos> posy  PoOS;  Posy

0oo —>‘—>'—>'——> @ @ coo

A, m = Fpos;

N = A1, 00|, 7 | posy
pos; € m(A\'[0])
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4‘. al U of Technolo

POsy  pos; Pos? posp  POS1  Posy

000 _> 000

A\, m |= GFpos; if and only if

A0, 0], ™ = Fpos; and
A[l, 0], ™ = Fpos; and
A[2, 0], m = Fpos; and

Prof. Dr. Jurgen Dix - Department of Informatics, TUC Game Theory (MSc), WS 17/18 516



QKW l U Clausthal 7 From Classical to Temporal Logics

7.4 Linear Time Logic (LTL)

Paths and infinite sets of paths

m Paths are infinite entities, and so are infinite
sets of them.

m They are both theoretical constructs.

m In order to work with them we need a finite
representation:

m namely fransition systems (also called
pointed Kripke structures).
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7 From Classical to Temporal Logics
7.4 Linear Time Logic (LTL)

We reconsider the paths Ao, A1, ..., A\,
Example 7.22 on Slide 495:

—(o—C— (D)~ *@* mqA-pAXG(pA—q)
{a} {r} {r} {r}

—()—~C—~(—~(~ @» m p A Xq A XXGp

{r} {@} {r} {p}

OmOnOnO0 *@* = p A Xp A XXq

{r} {r} {q} {rr

. from

etc.

Can we distinguish between them (using LTL)?
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Indistinguishable paths

While any two paths can be distinguished by appropriate
LTL formulae, these formulae get more and more
complicated: operators need to be nested.

m The first two paths can be distinguished by just
propositional logic, no LTL connectives are needed.
m But the second and third cannot: we need X.

m For the third and fourth we need a nesting XX.

By induction over the structure of ¢

Given any LTL formula ¢, there is a i, € N such that for all
i,j >0t N E@ifand only if A\; = o.
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A set of paths (2)

m Can we find a LTL formula, or a set of LTL
formulae, that characterize exactly the
whole set of paths?

m So what holds true in all of these paths?

m pU g. But this is also true in other paths not
listed above.

m (p A —q)U (q A —p). Again, this is also true in
other paths.

m(pA—q)U(gA-pAXG(pA—q)). That is it.
This describes exactly the set of paths above.
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Another set of paths (1)

We reconsider the second set of paths from
Example 7.22 on Slide 495:

- g A Xg A XXG(p A )

—()—~C—~(—~( @» m pAXgAXXgAXXXGp

{r} {a} {q¥ {rr

— (o~ Co—~(D)~(o~ @ m etc.

{r} {r} {a} {a}

etc.

What holds true in exactly these paths?
(P A =q)U (q A —p A X(qA—p) AXXG(p A —q))
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LTL formulae and transition systems: TS = ¢

m Up to now we have defined LTL formulae only
for paths.

m For a transition system TS, we say thatan LTL
formula is true in a state s, if itis true in all
runs resulting from that state.

m A LTL formula is true in the whole transition
system, if it is frue in all runs resulting from
the initial states.
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LTL formulae and transition systems: TS = ¢

Definition 7.32 (TS and LTL formulae: TS |= ¢)

Leta TS and a LTL formula ¢ be given.

m ALTL formula ¢ is true in a state s of TS, if,
by definition, it is true in all runs resulting
from s.

m A LTL formula ¢ is true in TS, if, by
definition, it is true in all runs resulting from
all initial states.
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LTL formulae and transition systems

Example 7.33 (LTL formulae)

{p}

{rg} {p.q} {p} @ @ o
0 (22)

Which formulae hold true?
TS:: TS; = Gp, TS: = X(p A q),
TS i~ G(qg — G(pAq)),
but TS; = G(q — (pAq)))
TSQI T52 b& Fp and T52 % _|Fp
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From system to behavioral structure

System Computational str.

pos,

0s
pos, pos,

(@ “)
V\_/
p082 pOS1
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Clausthal University of Technology

From computational to behavioral structure

Computational str. Behavioral str.

(1)

(@ @

pos, pos,

The behavioral structure is usually infinite! Here, it is an
infinite tree. We say it is the ¢o-unfolding of the model.
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Example 7.34 (LTL indistinguishable transition systems)

{0} U

TSl . TSQI I

Both systems can be distinguished by the property
“a state where p holds can be reached”.

m Each trace of TS, is also one of TS;: each LTL formula
true in TS, is also true in TS,.
m So the above property cannot be expressed in LTL.
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LT-Properties and their expressibility

m The example on the preceding slide shows that a
certain property is not a LT property.

m This does not mean that the two transition systems
cannot be distinguished.

m In fact the formula X—p is true in TS, but not in TS;.

m The traces of the two systems are also different, so both
define different LT properties.
Are there TS; and TS, that define different LT-properties
but cannot be distinguished by any set of £,;, formulae?

Yes. L,;, formulae express exactly “x-free w-regular
properties”, a strict subset of “w-regular properties”, which
is itself a strict subset of LT-properties.
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LT-Properties and their expressibility (cont.)

We consider again Example 7.19 with the two
transition systems TS; and TS..
{q}

The property whenever p a state with q can
be reached distinguishes them.

Can this property be expressed in LTL?

No, because both have the same set of
traces.
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Some Exercises

Example 7.35 (Formalizing properties in LTL)
Formalise the following properties as LTL
formulae over Prop = {p}

p should never occur.

p should occur exactly once.

At least once p is directly be followed by —p.
p is true at exactly all even states.
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Some Exercises (cont.)

Compare the foIIowing two transition systems:
{p} {p}

{r}

Formalise the following as a LTL formula: p is true
at all even states (the odd states do not matter).

Example 7.36 (Evenness)

Does p A G(p — XXp) work?
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Satlsflablllty of LTL formulae

A formula is satisfiable, if there is a model

(i.e. path) where it holds true. Can we restrict the
structure of such paths? l.e. can we restrict to
simple paths, for example paths that are periodic?

m If this is the case, then we might be able to
construct counterexamples more easily, as
we need only check very specific paths.

m It would be also useful to know how long the
period is and within which initial segment
of the path it starts, depending on the length
of the formula ¢.
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Satisfiability of LTL formulae (cont.)

Theorem 7.37 (Periodic model theorem

[Sistla and Clarke, 1985])

A formula ¢ € LTL is satisfiable if and only if there
is a path X which is ultimately periodic, and the
period starts within 2'+1¥l steps and has a length
which is < 4114l
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/7.5 Branching Time Logic (CTL)
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Branch‘ing Time

m CTL, CTL*: Computation Tree Logics.

m Reasoning about possible computations of a
system.

m Time is branching: We want all possible
computations included!

m Models: states (time points, situations),
transitions (changes). (~ Kripke models).

m Paths: courses of action, computations.
(~ LTL)
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m Path quantifiers: A (for all paths), E (there is a
path);

m Temporal operators: X (nexttime), F (finally),
G (globally) and U (until);

m CTL: each temporal operator must be
immediately preceded by exactly one path
quantifier;

m CTL": no syntactic restrictions.
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Example 7.38 (Branching Time)

p

qp

Y

Whenever p holds at some timepoint, then there is a path
where g holds in the next step and there is (another) path
where —q holds in the next step. And this holds along all
paths (there are three infinite paths).

Prof. Dr. Jurgen Dix - Department of Informatics, TUC Game Theory (MSc), WS 17/18 537



@KW 7 From Classical to Temporal Logics
" irl\{ug‘l\‘a(l‘%ﬁthal 7.5 Branching Time Logic (CTL)

Definition 7.39 (L. [Emerson and Halpern, 1986])

The language L1 . (Prop) is given by all formulae generated
by the following grammar:

pu=ploplevelBy

where

yu=@ |y |yVy |y Uy | Xy

and p € Prop. Formulae ¢ (resp. 7) are called state (resp.
path) formulae.

We use the same abbreviations as for £,;;:

|
A, 7 | Foiff A[i, 00], 7 |= ¢ for some i € Ny ;
A7 | Gy iff A[i, 00], 7 = ¢ forall i € Ny ;
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m The L;.-formula EFy, for instance, ensures that there
is at least one path on which ¢ holds at some (future)
time moment.

m The formula AFGy states that ¢ holds almost
everywhere . More precisely, on all paths it always
holds from some future time moment.

B L --formulae do not only talk about temporal patterns
on a given path, they also quantify (existentially or
universally) over such paths.

m The logic is complex! For practical purposes, a fragment
with better computational properties is often
sufficient.
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Definition 7.40 (L [Clarke and Emerson, 1981])

The language L. (Prop) is given by all formulae generated
by the following grammar, where p € Prop is a proposition:

pu=p|op|eVe|El@Up) | EXp | EGe.

We introduce the following macros:
mFo=TUy,
B AXp = —-EX—p,
m AGy = —-EF—y, and
m ApU ) = ... Exercisel
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For example, AGEXp is a L;-formula whereas AGFp is not.

Example 7.41 (CTL* or CTL?)
Are the following CTL* or CTL formulae? What do they
express?

EFAXshutdown

EFXshutdown

AGFrain

AGAFrain (Is it different from (3)?)

EFGbroken

A AG(p — (EXq A EX—q))
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The precise definition of Kripke structures is given in the next
section. To understand the following definitions it suffices to note
that:
m Given a set of states S (each is a propositional model), a
Kripke model 9t is simply a tuple (S,R) where R C S x Sisa
binary relation.

B ¢1 R (also written (q1,¢2) € R or R(q1, ¢2)) means that state
q> is reachable from state ¢; (by executing certain actions).

m The relation R is serial: for all ¢ there is a ¢’ such that qR¢’.
This ensures that our paths are infinite.

m Given a state ¢ in a Kripke model, by A(¢) we mean the set of
all paths determined by the relation R starting in ¢:
4,491,925 - - -G, - - - Where qRq1 , ..., ¢iRqiz1, - - -
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Definition 7.42 (Semantics =)

Let M be a Kripke model, ¢ € Sand A € A. The semantics
of Lq.- and L -formulae is given by the satisfaction
relation =T for state formulae by

m M, ¢ =T piff \[0] € n(p) and p € Prop;
M, q }:CTL* - iff M, g I#CTL* ©;
D, g T oV aiff M, g ETY por M, q T 4

m M, g EC™Y Ep iff there is a path A € A(q) such that
M ET ¢
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|
and for path formulae by:

m LA ECTY o iff O, A[0] BTV o

m O, A Yy iff O, A ECTY

m A ST v G fF O, A =Yy or A ECTY

B\ ST Xy iff 90T, A[1, 00] €TV ; and

m M, )\ ECTY U §iff there is an i € Ny such that
M, A[i, 00] ECTY 5 and M, A[j, oo] E=CTE ~ for all
0< 5 <.

Is this complicated semantics over paths really necessary
for CTL?
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7.5 Branching Time Logic (CTL)

State based semantics for CTL

m Mg =T iffg e m(p);

m M, g T g i, g T g

M, T vy i, g T or M, g Ty

m 9, q T EXy iff there is a path )\ € A(g) such that

AL ET

B, q ST EGy iff there is a path \ € A(g) such that
M, A[i] =€ o for every i > 0;

m O, g ST EpUp  iff there is a path A\ € A(g) such that

A[i] ECT o for some i > 0, and 9, \[j] =Tt o for all
0< 5 <.
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LTL as subset of CTL*

LTL is interpreted over infinite chains (infinite words), but not
over (serial) Kripke structures (which are branching).

m To consider LTL as a subset of CTL*, one can just add the
quantifier A in front of a LTL formula and use the semantics
of CTL*. For infinite chains, this semantics coincides with
the LTL semantics.

m The theorem of Clarke und Draghiescu gives a nice
characterization of those CTL* formulae that are equivalent
to LTL formulae. Given a CTL* formula ¢, we construct ¢’ by
just removing all path operators and putting A in front of it.
Then

¢ is equivalent to a LTL formula
iff
¢ and ¢ are equivalent under the semantics of CTL*.
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Theorem of Clarke und Draghiescu

Theorem 7.43 (Clarke und Draghiescu)

Given a CTL* formula ¢, we construct ¢ by simply
removing all path operators. Then the following
are equivalent:

m o is equivalent to a LTL formula,
m ¢ and Ag are equivalent in CTL*.
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Appllcatlon of Clarke and Draghiescu

We consider the LTL formula GFp. Viewed as a CTL* formula
it becomes AGFp. But this is equivalent (in CTL*) to AGAFp,
a CTL formula.

Now we consider the CTL formula EGEFp. It is not
equivalent to any LTL formula. This is because

EGEFp and AGFp
are not equivalent in CTL*: a counterexample is

p
W
The first formula holds, the second does not.
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LTL as subset of CTL* (2)

m How do LTL and CTL compare?

m The CTL formula AG(p — (EXq A EX—q)) describes
Kripke structures of the form in Example 7.38. No LTL
formula can describe this class of Kripke structures.

m The LTL formula AF(p A Xp) can not be expressed by a
CTL formula. Check why neither AF(p A AXp) nor
AF(p A EXp) are equivalent. Similarly, the LTL formula
AFGp can not be expressed by a CTL formula.

m There is a syntactic characterisation of formulae
expressible in both CTL and LTL. Model checking in this
class can be done more efficiently. We refer to
[Maidl 2000].
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Example 7.44 (Robots and Carriage)

m Two robots push a carriage from
= opposite sides.

m Carriage can move clockwise or
'\ anticlockwise, or it can remain in the
a same place.
s‘w% >/ /m 3 positions of the carriage.
- m We label the states with propositions
posg, posy, pos,, respectively, to allow
for referring to the current position

of the carriage in the object
language.

posy

Figure 33: Two
robots and a carriage.
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pos,

pos0

pos, pos, A

pos, pos,

Figure 34: Two robots and a carriage: A schematic view (left) and a
transition system 9%, that models the scenario (right).

Prof. Dr. Jurgen Dix - Department of Informatics, TUC Game Theory (MSc), WS 17/18 551



éu’u

7 From Classical to Temporal Logics
" 4 a H lalﬁls‘t‘hal 7.5 Branching Time Logic (CTL)

(\ | mo, q0 ):CTL EFpOS:[: In state qo,
@ POs, there is a path such that the
carriage will reach position 1
sometime in the future.

(\ /)l The same is not true for all paths,
@ so we also have:
V\_/
pos, pos;, Mo, o %CTL AFpos;.

It becomes more interesting if abilities of agents are
considered ~~ ATL.
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Example: Rocket and Cargo

Example 7.45 (Rocket and Cargo)

A cargo is moved between destinations by a rocket.

m The rocket can be moved between London (proposition
roL) and Paris (proposition roP).

m The cargo can be in London (cal), Paris (caP), or inside
the rocket (caR).

m The rocket can be moved only if it has its fuel tank full
(fuelOK).

m When it moves, it consumes fuel, and nofuel holds after
each flight.
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Example: Rocket and Cargo (cont.)

roL — EFroP

AG(roL V roP)

roL — AX(roP — nofuel)
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Example: Rocket and Cargo (cont.)
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m In our logics, we assumed a serial accessibility relation: no
deadlocks are possible.

m One can also allow states with no outgoing transitions. In
that case, in the semantical definition of E on Slide 543 one
has to replace “there is a path” by "there is an infinite path
or one which can not be extended".

m Similar modifications are needed in the definition of CTL.

m One can also add to each state with no outgoing transitions a
special transition leading to a new state that loops into itself.

Expressibility

How to express that there is no possibility of a deadlock?

AGXT (~ CTL*) AGEXT (~ CTL)
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A Venn diagram showing typical formulae in the respective
areas.

A(F(pnrXp))
" W
AG (EF q)

A(pUq) AG(EFq)
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7.6 References
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8. Strategic Logics

B Strategic Logics

Alternating-Time Temporal Logic (ATL)
Perfect vs. imperfect recall

Imperfect Information

Perfect Recall Revisited

Perfect Recall Revisited

Defining Equilibria in ATLP
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m We introduce ATL, Alternating Time Temporal Logic: a
blend of temporal logic and game theory.

m Like CTL, ATL comes in two variants: ATL and ATL*.
m Appropriate models for ATL are concurrent game
structures.

m We introduce four variants of ATL along two different
axes:

m perfect vs imperfect information, and
m perfect vs imperfect recall.
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8.1 Alternating-Time Temporal
Logic (ATL)
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Alternating-time Temporal Logics
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m ATL, ATL* [Alur et al. 1997]

m Temporal logic meets game theory
m Modeling abilities of multiple agents
m Main idea: cooperation modalities

(A))¢: coalition A has a collective strategy to bring
about ¢

Bringing about is understood in the game-theoretical
sense: There is a winning strategy.
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8.1 Alternating-Time Temporal Logic (ATL)

The syntax is given as for the computation-tree logics.

Definition 8.1 (Language L ,;;-[Alur et al., 1997])

The language L ,+, - is given by all formulae generated by the
following grammar:

pu=p|-p|eVel|{A)y where
yi=p | |yVy Uy | Oy,

A C Agt, and p € Prop. Formulae ¢ (resp. ~) are called state
(resp. path) formulae.

Notation: () instead of X

Note that we are now using the symbol “()” instead of “X”
as it is more custom when dealing with ATL.
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8.1 Alternating-Time Temporal Logic (ATL)

The language L, restricts £, in the same way as L,
restricts L.:

Each temporal operator must be directly preceded by a
cooperation modality.

Definition 8.2 (Language L, [Alur et al., 1997])

The language L ,+, is given by all formulae generated by the
following grammar:

pu=plopleVel| (A) Oe| (AN0e | (Aol ¢
where A C Agt and p € Prop.

Notation: [J instead of G

Note that we are using now the symbol “C]” instead of “G”
as it is more custom when dealing with ATL.
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The language L, restricts £, but extends L7, It allows
for Boolean combinations of path formulae.

Definition 8.3 (Language L .)

The language L, . is given by all formulae generated by
the following grammar:

pu=plopleVe (A,  vi=v vV Ov | U .
where A C Agt and p € Prop.
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ATL Models: Concurrent Game Structures

m Agents, actions, transitions, atomic propositions
m Atomic propositions + interpretation
m Actions are abstract

posgy

wait,wait
= Pk

wait,push

pos, wait,wait j ]
s wait,wait
<> 2 47 push,push O push,push

pos, push,wait pos,
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Definition 8.4 (Concurrent Game Structure)

A concurrent game structure is a tuple
M = (Agt, S, m, Act, d, o), where:
m Agt: a finite set of all agents;
m S: a set of states;
m 7 : S — P(Prop): a valuation of propositions;
m Act: afinite set of (atomic) actions;

m d: Agt x S — P(Act) defines actions available to an
agent in a state;

m o: a deterministic transition function that assigns
outcome states ¢’ = o(q, ay, . . ., o) to states and tuples
of actions.
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Recall and information

A strategy of agent a is a conditional plan that specifies
what a is going to do in each situation.

|
Two types of “situations”: Decisions are based on

m the current state only (~~ memoryless strategies)
Sq i S — Act.

m on the whole history of events that have happened
(~ perfect recall strategies)

Sq 1 ST — Act.
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|
We also distinguish between agents with

m perfect information (all states are distinguishable).

m imperfect information (some state are
indistinguishable).
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Perfect Information Strategies

Definition 8.5 (IR- and Ir-strategies)

m Aperfect information perfect recall strategy for agent a
(IR-strategy for short) is a function

Sq : ST — Act such that s,(qoq1 - - - gn) € da(qn)-
The set of such strategies is denoted by »IR.

m A perfect information memoryless strategy for agent a
(Ir-strategy for short) is given by a function

Sq 1 S — Act where s,(q) € dq(q).
The set of such strategies is denoted by >I".

i (resp. I) stands for imperfect (resp. perfect) information and r (resp.
R) for imperfect (resp. perfect) recall. [Schobbens, 2004]
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Some Notation
The following holds for all kind of strategies:
m A collective strategy for a group of agents
A=A{a,...,a,} C Agtis aset
sa={s.|a€A}
of strategies, one per agent from A.

B sa|,, we denote agent ¢'s part of the collective
strategy s, sale = 54 N 2.

m sy = () denotes the strategy of the empty coalition.
m ¥, denotes the set of all collective strategies of A.
| E - ZAgt
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Outcome of a strategy

out(q, s4)= set of all paths that may occur
when agents A execute s, from state ¢ onward.

Definition 8.6 (Outcome)

A=qoq1 ... €S € out(q,sa) C S¥iff

9 =4q
foreachi=1,... thereisatuple (o] ',....a} ') € Act* such
that
m o) ! €dy(gi—1) foreach a € Agt,
m o' =s4la(q0q1 ... qi—1) foreach a € 4, and
| O(Qi—la Ozi_l, o 7a;’€—1) = q-

For an Ir-strategy replace “salq(qoq1 - - - gi—1)” by “sala(qi—1)".
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Definition 8.7 (Perfect information semantics)

M, q Fixp iff pis in w(q);
MagbExeVy iffDqE=xporI, gy

M, q =ix (A)® iff there is a collective Ix-strategy s such
that, for each path \ € out(q,s4), we have
m, )\ |:|x @.

M, A ):Ix OQO iff om, >‘[1a OO] ):lx ¥s

M, Fix O iff 901, \[i, o] =ix o for some i > 0;

M, A\ =i O iff 9, A[i, 00] =ix  forall i > 0;

M =i Uy iff M A[i,00] =ik ¢ for some @ > 0, and
M, A, oo] Eix ¢ forall 0 < j <.

Note that temporal formulae and Boolean connectives are
handled as before.
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Example: Robots and Carriage

wait, wait
push,push(\

posg — (1)[0—pos;

/WWA

wait,wait ) wait, walt
push,push O q push,push

pos, push,wait pos1
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Definition 8.8 (ATL,, ATL/, ATL;,, ATL, ATL")

We define ATL,,, ATL,,, and ATL;, as the logics (LatLs Fr12)s
(Laqs Fre)and (L g, =r.) where z € {r, R}, respectively.
Moreover, we use ATL (resp. ATL*) as an abbreviation for

ATLg (resp. ATL}R).

As usual, a logic is given by the set of all valid formulae.
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8.2 Perfect vs. imperfect recall
Clausthal University of Technology

8.2 Perfect vs. imperfect recall
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Theorem 8.9

For Ly, the perfect recall semantics is equivalent to the
memoryless semantics under perfect information, i.e.,
M, q = @ iffM, q =i . That is

ATL; = ATLR.

Proof idea.

The first “non-looping part” of each path has to satisfy a formula.
~ Exercise O
The property has been first observed in [Schobbens, 2004] but it

follows from [Alur et al. 2002] in a straightforward way.

Both semantics are different for £ ;..
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8.2 Perfect vs. imperfect recall
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Example: Robots and Carriage (2)

wait,wait pos, halt
push,pus a
@ P q;b haltpusho wai
Posy .

pos, Poss wait,wait
push,push C\

wait,wait
wait,push push,push
\’_/
pos, push,wait pos,

What about (1, 2))(Opos; A Ohalt)?

M, q0 = r{(1,2))(Oposy A Ohalt)
M, qo = ir((1,2))(Oposi A Ohalt)
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8.2 Perfect vs. imperfect recall
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Example 8.10 (ATL}; # ATL},)

There is one agent, a, with two actions available in ¢; and
just one in g,.

1 1
o 2

o = {a(Op A OO p)
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IR-Tree Unfolding

m An interesting point is the comparison between memory and
no memory.

m Can agents really achieve more (in terms of validities) if
they have memory available?

m Suppose we want to show that ATL;. C ATL,; i.e., more
properties of games are valid if perfect recall strategies are
considered.

m For this purpose, we show that every [R-satisfiable formula is
also Ir-satisfiable.

m Then, the claim follows: Suppose ¢ € ATL; and ¢ ¢ ATL;,. By
the latter, - is IR-satisfiable hence also Ir-satisfiable.
Contradiction!

How can we show that IR-satisfiability implies Ir-satisfiability?
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8.2 Perfect vs. imperfect recall

m Suppose (91, q) IR-satisfies . Then, we show that there is a
pointed model (9, ¢) which satisfies the same formulae and
in which memoryless and perfect-recall strategies coincide.

m Which properties must 9t have so that both kind of
strategies have the same expressive power?

Definition 8.11 (Tree-like CGS)

Let Mt be a CGS. M is called tree-like iff, by definition, there is a
state g (the root) such that for every ¢ there is a unique history
leading from ¢ to q.

Proposition 8.12 (Recall invariance for tree-like CGS)

For every tree-like CGS 9, state q in M, and ATL*-formula ¢, we
have: M, q =, ¢ iff M, q =, »

Can we always obtain such a tree-like “version” of a model?
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Clausthal University o

For each model, we can construct an equivalent tree-like
model: Fix a state and unfold the model to an infinite tree.

(a7

) (g (@)
tO=02n
@

@ o
Q o
Q o

Note: states correspond to finite histories.
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8.2 Perfect vs. imperfect recall

Definition 8.13 (Perfect information tree unfolding)

Let M = (Agt, S, II, 7, Act,d,0) be a CGS and ¢ be a state in it. The
(perfect information) tree unfolding of the pointed model (91, q)
denoted T'(9M, q) is defined as (Agt, S’, Prop, ', Act,d’, 0’) where

m 8= ALV(g),
m d'(a,h) := d(a,last(h)),
m o' (h,d) := hoo(last(h),d), and
m 7' (h) := w(last(h)).
The node ¢ in the unfolding is called root of T'(90t, q).

Theorem 8.14

For every CGS 9, state q in 9, and ATL*-formula ¢ we have:

M, q =g @iff T(M,q),q =y wiffT(M,q),q =, ¢
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8.2 Perfect vs. imperfect recall

We now compare perfect vs. imperfect memory.

Proposition 8.15
ATLr. C ATLg, (In fact: ATL, C ATL}

Membership: If =, ¢ then Treemodels =, ¢ then
Treemodels =1r ¢ then =1k ¢
Strict inclusion:

M, qo Frr (a) (Op1AOP2) <> (a) O((P1A(a) Op2)V(p2A(@) Op1))-

p1 = clean
p2> = delivered

clean delivered
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8.3 Imperfect Information
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Mw l U ClaUSthal 8.3 Imperfect Information
Imperfect information

How can we reason about agents/extensive
games with imperfect information?

We combine ATL* and epistemic logic.

m We extend CGSs with indistinguishability
relations ~,C S x S, one per agent. The
relations are assumed to be equivalence

relations.

m We interpret ((A)) epistemically
(~ Eir and =ir)
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8.3 Imperfect Information

Definition 8.16 (CEGS)

A concurrent epistemic game structure (CEGS)
is a tuple

M = (Agt, S, I, 7, Act, d, 0, {~| a € Agt})
with
m (Agt, S, 11, 7, Act,d, 0) a CGS and

m ~,C S x S equivalence relations
(indistinguishability relations).
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Example: Robots and Carriage

wait,wait
push, push(\

wait,wait
push,push C\

pos, push,wait pos,

What about ((Agt)) O pos; in ¢y?
M, qo = iri{Agt)) O pos
M, qo = ir((Agt)) O posy
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8.3 Imperfect Information

The last example shows that although there is a strategy,
the agents do not know it (because of imperfect
information).

Problem:

Strategic and epistemic abilities are not independent!

((A)® = A can bring about ¢

It should at least mean that A are able to identify and
execute the right strategy!

|
Executable strategies = uniform strategies
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Definition 8.17 (Uniform strategy)

Strategy s, is uniform iff it specifies the same choices for
indistinguishable situations :

m Memoryless strategies:
if ¢ ~q ¢’ then s,(q) = sa(¢)-
m Perfect recall:
if A=, X then = s,(\) = so(N),
where \ ~, \ iff A[i] ~, N[i] for every i.

|
A collective strategy is uniform iff it consists only of uniform
individual strategies.
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Imperfect Information Strategies

Definition 8.18 (IR- and Ir-strategies)

m Aimperfect information perfect recall strategy for agent a
(iR-strategy for short) is a uniform /R-strategy.

m A imperfect information memoryless strategy for agent a
(ir-strategy for short) is a uniform Ir-strategy.

The outcome is defined as before.
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Imperfect Information Semantics

The imperfect information semantics is defined as before,
only the clause for

|
M, q =i (A) g iff there is a collective Ix-strategy s, such
that, for each path X\ € out(q, s4), we have M, \ i .

is replaced by (z € {r, R} and ~4:= U,c 4 ~,.)

|
M, ¢ Eix (A) g iff there is a uniform ix-strategy
sa such that, for each path A € (J, cout(q', s4), we have

ma)‘ |:iX 2

g~ Aq
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8.3 Imperfect Information

Remark 8.19

This definition models that “everybody in A knows that ¢”.

&mﬁ TU Clausthal 8 Strategic Logics

The fixed-point characterization does not hold anymore!

Theorem 8.20

The following formulae are not valid for ATL;,:
B (A)0e < A {A) O (A)0p
B (Aol < 02V (1 A(A) O (AN el ).

Proof: ~~ Exercise.
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We construct a counterex-
ample for

(1)0p < p Vv (1) O (1)0p @ e
4

M, q1 Fir (1)) Op iff
not (s € Xy VA € U cy,.00) 0ul(q; 5)3i € No : DN, A[i] [=ir p)

M, a1 Firp V(1) O (1)0p
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Comparing ATL;, vs. ATL;,

Incomplete vs. perfect information.

ATLi» C ATLzr

Inclusion: Every CGS can be seen as a special CEGS
M, qo i (shot V {a)) O ((a))Oshot) — ((a))Oshot
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8.3 Imperfect Information
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Proposition 8.22

ATLr C ATL1r
M, qs ~ir (a)Oshot — (shot V ((a) O (a))Oshot)
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Clausthal University of Technolo

iR-Tree Unfolding

The tree unfolding for the i-semantics is more
sophisticated. Consider the following model and the
formula (a)) O (a)) O (a)) O shot. How can an i R-tree
unfolding look like?
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Afirst approach is to connect separate unfoldings of the
indistinguishable states by epistemic links.

Figure 35: Two separate unfoldings connected by an epistemic link. We
use number iqis . .. to refer to the history ¢;, q;, - - ..

What about the formula {(a)) O {(a)) O {a)) O shot?
The iR-tree unfoldings is shown on the next slide.
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8 Strategic Logics
8.3 Imperfect Information
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Prof. Dr. Jurgen Dix - Department of Informatics, TUC

Game Theory (MSc), WS 17/18 601



&mﬁ TU Clausthal 8 Strategic Logics

8.3 Imperfect Information

Now we can state our main result for i R-tree unfoldings.

Theorem 8.23

For every CEGS 9N, state q in 9, and ATL*-formula o, it holds
that

M, q b=, @ iff T,(M,q),q =, 0 iff T,(M,q),q =, ».

Summary

If a formula is IR-, or i R-satisfiable then it also is Ir-, or
ir-satisfiable, respectively.
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Obijective vs. subjective ability

There is another notion of ability for imperfect information,
we denote it by i,. What we did up to now is denoted by i

@KH 'lU ‘Clausthal 8 Strategic Logics

m Subjective ability (iy): All paths from all
indistinguishable states are taken into account.

m Objective ability (i,): Only paths from the (actual)
current state are considered.

subjective

objective

Prof. Dr. Jurgen Dix - Department of Informatics, TUC Game Theory (MSc), WS 17/18 603



8.3 Imperfect Information

&mﬁ TU Clausthal 8 Strategic Logics

Definition 8.24 (Subjective epistemic outcome,

xy-outcome)

(a) The (subjective) epistemic outcome out®(q, s4) is
defined as
out®(q,s4) = U out(q',s4).
q~aq
(b) Let x € {is,i,, [} and y € {r, R} The xy-outcome
out™(q, s ») is defined as follows:

o ) out®(q,s4) ifx =i
ou ,54) =
&oa out(q,sa) else.
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8.3 Imperfect Information

Remark 8.25 (Strategies and semantics)

In order to ensure a uniform notation, we introduce
xy-strategies for x € {is,i,, I} and y € {r, R} as follows:
IR: s,:ST — Act such that s,(qo - - - qn) € d(a,qn);
Ir: as IR with the additional constraint s(hq) = s(h'q)
for all histories h (or, alternatively, s, : S — Act
such that s,(q) € d(a,q) for all q);
i,r, i;r: like Ir, with the additional constraint that ¢ ~, ¢
implies s,(hq) = s.(hq') for all histories h;
i,R, i;R: like IR, with the additional constraint that h ~, I/
implies s,(h) = s,(I).
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8.3 Imperfect Information

Definition 8.26 (Imperfect information semantics)

M, q Fxy (A iff
m there is a collective xy-strategy sa
m such that, for each path \ € out™ (¢, s4),
m we have M, \ =y, @

where = € {i,,is}, y € {r, R} and ~4:= Uyca ~,.

Analogously to Definition 8.27, we define the following sets:
ATL, ., ATL; )

Definition 8.27 (ATL, ,, ATL;

1sX?

We define the following logics:

m ATL,, is the set of valid sentences over (L, . =,.)
m ATL), is the set of valid sentences over (L, ., =)

where y € {i,.i,} and = € {r, R}, respectively.
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How does the picture look?

objective subjective

language

ATL;, # ATL};
ATLjg = ATL,
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KKK .mine

8.4 Perfect Recall Revisited
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Comparing ATL, , vs. ATL;,

Proposition 8.28

ATLiOr - ATLIr

=

M, ¢, Fir (shot V (a)) O {a) Oshot) — (a))Oshot
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Comparing ATL,; g vs. ATLg

Objective incomplete information vs. perfect information
under perfect recall.

By the same reasoning as above:

Corollary 8.29

ATL; r € ATl
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PRREH .mlne ===

8.5 Perfect Recall Revisited
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i,R-Tree Unfolding

We have already considered the tree unfolding for the
is-semantics above (where we did not distinguish between
subjective and objective).

In the case of incomplete information for objective
semantics, we only have to take into account epistemic
relations in the tree:

L Ngiog(f)ﬁ,q) % iff h ~" p/

Theorem 8.30
For every CEGS 90, state q in 9, and ATL*-formula ¢ we have:
M,q @ iff TL(M,q),q ., ¢ iff T,(M,9),q ., ¢
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If a formulais /R-, i,R- or i;R-satisfiable then it also
is Ir-, i,r- or igr-satisfiable, respectively.
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Remark 8.31 (Important Validities and Invalidities)

m (a))0p < pV (@) O (a)Op

m Invalid in all variants with imperfect information.
m Valid for perfect information.

m (a))(Op1 A Op2) ¢ (a)O((pr A () Op2) V (p2 A (@) Op1))

m Invalid for imperfect information
m Valid for perfect information and perfect recall

B (@) O-p < (Agt)Up

m Invalid for imperfect information
m Valid for perfect information.
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Overview of the Results

m “All” semantic variants
are different on the
level of general
properties; before our
study, it was by no
means obvious.

m Strong pattern of
subsumption (memory
and information)

m Very natural (not
obvious before).

m Non-validities are
intferesting.

Prof. Dr. Jurgen Dix - Department of Informatics, TUC

8 Strategic Logics
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ATL
W)
ATL;,
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ATLr = ATL,,
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ATL; r VAT Li.r
)\ incomparable )\

ATL; " CURATL;
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8.6 Defining Equilibria in ATLP
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@Kﬂ IL‘J‘(Jla‘L‘lS‘thal 8.6 Defining Equilibria in ATLP
Aim
We would like to
. reason about rational behavior of agents.

. have a logic that can use & describe solution
concepts.

. compare different game theoretic solution
concepts.
For this section we refer to [Bulling et al., 2008]
for further details.
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Plausibility concept

ATL: Reasoning about  possible behaviors.

((A)): Agents A have a collective strategy to enforce ¢
against any response of their opponents.

ATLP: Reasoning about behaviors.

P1 ((A))p: Agents A have a plausible collective strategy to
enforce ¢ against any plausible response of their opponents.

Playing undominated strategies is plausible,...
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The Base Logic: £59s¢

Definition 8.32 (£5%5%¢)

The language £5%¢ is defined over nonempty sets:
m Prop of propositions, p € Prop,
m Agt of agents, a € Agt, A C Agt, and
m Q of basic plausibility terms, w € Q2.

pu=pl-plone| (A) Oe| (ANOe | (A)eU o |
Pl 40 | (set-pl w)yp
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The Logic £b%e

P15 : Assuming plausible play of B

is true iff
A can enforce v if
agents in B play only plausible strategies

Which strategies are plausible?
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Plausibility Terms

Q2: Set of basic plausibility terms, w €
Hard-wired sets of strategies:

wyg: Nash equilibria How to activate
wpo : Pareto optimal strategies them?

|
(set-pl w) : Sets plausible strategies to [w] C X

And where do the terms come from?
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Concurrent game structures with plausibility
M = (Agt, S, Prop, 7, Act,d, 6, Y, 2, [-])
m T C Y set of (plausible) strategy profiles
Example: T = {(head, head)}

B Q= {w;,ws, ... }: set of plausibility terms

Example: wyg stands for all Nash equilibria

m[]:S— (Q— P()): plausibility mapping, it assigns a
set of strategy profiles to each state and plausibility term

Example: [wyEg], = {(head, head), (tail, tail)}
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Semantics of Lanp
Let P C X be a set of strategy profiles.

Y 4(P): strategy profiles of A that are consistent with P.

Restricting A’s strategies wrt P

EA(P) = {SAEZA|E|tEP (t[A]:SA)}
P(s4): plausible strategy profiles of Agt that agree on s4.

Restricting A’s opponents strategies wrt P

P(s4) = {t € P| t{A] = s4}

t[A]: restriction of ¢t € ¥ to the strategy profile of A.
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Outcome of a strategy

Outcome = Paths that may occur when agents A perform s4

]
out(q,sa, P) =

{qul ... € St | q=qo N\ dt € P(SA) Vi € N (qH_l = (5(qi,t(qi)))}

|
The outcome is given wrt to a set of (plausible) strategy profiles
P, restricting the opponents choices!
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tail, head

money;

money>
money>

out(qo, heady, ) = {q0q2q092 - - -, Q1901 - - - }
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Semantics of Lanp

We use a satisfaction relation =p annotated with a set of
strategy profiles.

P: strategies currently considered available

M, q=p (A) O g iff Isa € ZA(P) VA € out(q, sa, P)
M, A1) Ep @

N, q =p Ply iff M, q =y ¢
N, q=pPho iff M, ql=s ¢

M, q =p (set-pl w)e iff MY, g =p ¢ where the new model
M is equal to M but the “new” set T of
plausible strategy profiles is set to [w],.
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Example: A Penny Game
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How to describe strategies?

Plausibility terms: abstract labels, no structure!
Idea: Formulas that describe plausible strategies!

Select all s st s is better than any other strategy s’
Complex plausibility terms w:

oNoidoy ... Vo, o(o,01,...04)
~— —

Property that o should fulfille£8%¢(QU{o,01,...,0n })

Example: wpom = 0.Vo' (o better than o’)

How to determine whether a strategy is good?

Prof. Dr. Jurgen Dix - Department of Informatics, TUC Game Theory (MSc), WS 17/18 628



@KW T A 8 Strategic Logics
2 1 lJH (JlaUSthal 8.6 Defining Equilibria in ATLP

Clausthal University of Technology

General Solution Concepts

Agents have preferences: 7= (ni,...,nx)
n;: ATL path formulas Example: 72 = Omoney;

money; money>

moneys
No payoffs needed as for classical solution concepts!
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CGSP +preferences ~» Normal form game

Each CGSP with preferences corresponds to a normal form
game.

m\n2ll swn | Swe | s | su |
Spr || 1,11 0,0 0,1 | 0,1
~ | Sy |1 0,0 | 0,11]0,11]0,1
s;m 1 0,1 ]0,1]1,1]0,0
s |1 0,1 ]10,110,010,1

money; money;
money»
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Characterlzmg Solution Concepts

BR](0) = (set-pl o[Agt\{a}])Pl((a)n. — (set-pl o)(B)na)
NE"(0) = N BRI(o)

acAgt
SPN(o) = (0)ONET(0)

PO"(0) = Yo Pl( /\ ((set-pl o) {(D)n, — (set-pl o) {(D)n,) Vv

acAgt

\/ ((set-pl o) (@)1 A ~(set-pl ') (B))1a)-

acAgt
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8.6 Defining Equilibria in ATLP

Characterizing Solution Concepts (2)

All these characterizations correspond to their
game-theoretical counterparts.

Example

All plays:
M, go [= ~{{az)) O money,

Both agents play a Nash equilibrium strategy:
M, qo = (set-pl 0. NE"(0))P1{(as)) O money,
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Kk
I TU ClaUSthal 8.6 Defining Equilibria in ATLP

ATLP with ATLI based plausibility
specifications

We can also define quantitative temporalized versions:
BRI, NET, SPNT, where T = (O, 0, ¢ and states are
labeled with propositions which represent payoffs.

We then have the following theorem:

Theorem 8.33

Let T be an extensive game (with a finite set of proposition),
and MM(I") a CGS corresponding to I'. Then

M), = NE®(a) (resp. SPN(a)) iff o is NE (resp. a
subgame-perfect NE) in T'.
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The Full Language: £,
Plausibility terms:
oNoydoy .. Yo,
where
€ Lags
=P What about nesting (set-pl -) operators?

(set-pl ... (set-pl ... (set-pl...)...)...)
» We get a hierarchy of logics:

|
L5t k nestings

— 1 k
Lynp = limg 00 Lypp
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