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http://www.in.tu-clausthal.de/abteilungen/cig/cigroot/teaching
Visit regularly!
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Check also StudIP, which contains updated slides and
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About this lecture (1)

This MSc course is about Decision Making in Multi Agent
Systems and is held alternately by Profs. Dix and MÃ1

4 ller. We
look at decision making mainly from a game-theoretical
perspective.
The lecture can be roughly divided into four parts:

Foundations, Prof. Müller: In the first two chapters, the
agent paradigm is introduced and the notion of intelligent
agent is put forward.

Game Theory, Prof. Dix: The third chapter introduces
complete information games and the foundations of classical
game theory by various notions of equilibria.
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About this lecture (2)

MAS and Programming, Prof. Müller: In Chapters 4 and 5
we look at the foundations of Multiagent systems and how
to program them using the BDI framework.

Coalitions and decision making, Prof. Dix: Chapter 6
considers the problem of how tasks are allocated and how
coalitions are forming.

While agents are essentially self interested, a MAS needs to
collectively take decisions and therefore needs protocols to
do so. We therefore introduce decisions based on social
choice, ranking systems (Chapter 7)).
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Main References (1)

Bordini, R. and Dix, J. (2013).
Chapter 13: Programming Multi Agent Systems.
In G. Weiß (Editor), MultiAgent Systems, pages 587–639.
MIT Press.

Dix, J. and Fisher, M. (2013).
Chapter 14: Verifying Multi Agent Systems.
In G. Weiß (Editor), MultiAgent Systems, pages 641–693.
MIT Press.
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Main References (2)

Fudenberg, D. and J. Tirole (1991).
Game Theory.
MIT Press.

Shoham, Y. and Leyton-Brown, K. (2009).
Multiagent Systems - Algorithmic, Game-Theoretic, and
Logical Foundations.
Cambridge University Press.
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Lecture Overview
Foundations: MAS as a paradigm for decentralized systems.

5 lectures.
Game Theory: Introducinge equilibria (Nash’s theorem) for

complete information games.
3 lectures, 1 exercise class.

MAS and Programming: BDI framework for programming MAS.
6 lectures, 4 labs

Coalitions and decision making: Task allocation and forming of
coalitions. Social choice and voting systems.
6 lectures, 1 exercise class.

Exercises: 2 exercise classes and 4-5 labs covering theory and
practice.
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Outline

1 Overview

2 Intelligent Agents

3 Complete Information Games

4 MAS: Basic Concepts

5 Agent-Oriented Programming

6 Coalitional Games

7 Social Choice and Auctions
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1 Overview

1. Overview

1 Overview
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2 Intelligent Agents

2. Intelligent Agents

2 Intelligent Agents
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3 Complete Information Games

3. Complete Information Games

3 Complete Information Games
Examples and Terminology
Normal Form Games
Extensive Form Games
An Example from Economics
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3 Complete Information Games

Outline (1)

We illustrate the difference between classical AI and MAS. We
present several evaluation criteria for comparing protocols.

We then introduce the formal machinery of game theory
assuming we have complete information:

normal form (NF) games, where players play simultanously,

extensive form (tree form) games, where players play one
after another. Here the history plays a role and players come
up with strategies depending on the past.

We also distinguish between perfect and imperfect recall
and discuss various notions of equilibria.

Finally we consider the existence of equilibria for market
mechanisms.
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3 Complete Information Games

Classical DAI: System Designer fixes
Interaction-Protocol which is uniform
for all agents. The designer also fixes a
strategy for each agent.

Outcome

What is a the outcome, assuming that the given
protocol is followed and the agents follow the
given strategies?
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3 Complete Information Games

MAI: Interaction-Protocol is given. Each
agent determines its own strategy
(maximising its own good, via a utility
function, without looking at the global
task).

Global optimum

Find a protocol such that if each agent choses its
best local strategy, the outcome is a global
optimum.
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3 Complete Information Games
3.1 Examples and Terminology

3.1 Examples and Terminology
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3 Complete Information Games
3.1 Examples and Terminology

We need to compare protocols. Each such protocol leads to
a solution. So we determine how good these solutions are.

Social Welfare: Sum of all utilities
Pareto Efficiency: A solution xxx is Pareto-optimal, if

there is no solution x′x′x′ with:
(1) ∃∃∃ agent agagag : utagagag(x′x′x′) > utagagag(xxx)
(2) ∀∀∀ agents ag′ag′ag′ : utag′ag′ag′(x

′x′x′) ≥ utag′ag′ag′(xxx).

Individual rational: The payoff should be higher than not
participating at all.
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3 Complete Information Games
3.1 Examples and Terminology

Stability:
Case 1: Strategy of an agent depends on
the others.
The profile s∗AAA = 〈s∗111, s∗222, . . . , s∗|AAA|〉 is called a
Nash-equilibrium, iff ∀∀∀iii : s∗iii is the best
strategy for agent iii if all the others
choose
〈s∗111, s∗222, . . . , s∗i−1i−1i−1, s

∗
i+1i+1i+1, . . . , s

∗
|AAA|〉.

Case 2: Strategy of an agent does not
depend on the others.
Such strategies are called dominant.
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3 Complete Information Games
3.1 Examples and Terminology

Example 3.1 (Prisoners Dilemma, Type 1)

Two prisoners are suspected of a crime (which they both
committed). They can choose to (1) cooperate with each other
(not confessing to the crime) or (2) defect (giving evidence that
the other was involved). Both cooperating (not confessing) gives
them a shorter prison term than both defecting. But if only one of
them defects (the betrayer), the other gets maximal prison term.
The betrayer then has maximal payoff.

Prisoner 2
cooperate defect

Prisoner 1
cooperate
defect

(3,3)
(5,0)

(0,5)
(1,1)
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3 Complete Information Games
3.1 Examples and Terminology

Social Welfare: Both cooperate,
Pareto-Efficiency: All are Pareto optimal,
except when both defect.
Dominant Strategy: Both defect.
Nash Equilibrium: Both defect.
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3 Complete Information Games
3.1 Examples and Terminology

Prisoners dilemma revisited: c 	 a 	 d 	 b

Prisoner 2
cooperate defect

Prisoner 1
cooperate
defect

(a,a)
(b,c)

(c,b)
(d,d)
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3 Complete Information Games
3.1 Examples and Terminology

Example 3.2 (Trivial mixed-motive, Type 0)

Player 2
C D

Player 1
C
D

(4, 4)
(3, 2)

(2, 3)
(1, 1)
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3 Complete Information Games
3.1 Examples and Terminology

Example 3.3 (Battle of the Bismarck Sea)

In 1943 the northern half of New Guinea was controlled by
the Japanese, the southern half by the allies. The Japanese
wanted to reinforce their troops. This could happen using
two different routes: (1) north (rain and bad visibility) or (2)
south (weather ok). Trip should take 3 days.

The allies want to bomb the convoy as long as possible. If
they search north, they can bomb 2 days (independently of
the route taken by the Japanese). If they go south, they can
bomb 3 days if the Japanese go south too, and only 1 day, if
the Japanese go north.
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3 Complete Information Games
3.1 Examples and Terminology

Japanese
Sail North Sail South

Allies
Search North
Search South

2 days
1 day

2 days
3 days

Allies: What is the largest of all row minima?
Japanese: What is smallest of the column maxima?
Battle of the Bismarck sea:
largest row minimum = smallest column maximum.

This is called a saddle point.
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3 Complete Information Games
3.2 Normal Form Games

3.2 Normal Form Games
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3 Complete Information Games
3.2 Normal Form Games

Definition 3.4 (n-Person Normal Form Game)

A finite n-person normal form game is a tuple
〈AAA,Act, O, %,µµµ〉, where

AAA = {111, . . . , iii, . . . ,nnn} is a finite set of players or agents.
Act = A111 × · · · × Aiii × · · · × Annn where Aiii is the finite set
of actions available to player iii. ~a ∈ Act is called action
profile. Elements of Ai are called pure strategies.
O is the set of outcomes.
% : Act −→ O assigns each action profile an outcome.
µµµ = 〈µµµ111, . . . ,µµµiii, . . . ,µµµnnn〉 where µµµiii : O −→ R is a
real-valued utility (payoff) function for player iii.
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3 Complete Information Games
3.2 Normal Form Games

Note that we distinguish between outcomes and utilities
assigned to them. Often, one assigns utilities directly to
actions.

Games can be represented graphically using an n-dimensional
payoff matrix. Here is a generic picture for 2-player, 2-strategy
games:

Player 2

a12 a22

Player 1
a11

a21

(µµµ1(a
1
1, a

1
2),µµµ2(a

1
1, a

1
2)

(µµµ1(a
2
1, a

2
2),µµµ2(a

2
1, a

2
2)

(µµµ1(a
1
1, a

1
2),µµµ2(a

1
1, a

2
2)

(µµµ1(a
2
1, a

1
2),µµµ2(a

2
1, a

2
2)

J. Dix/J. Müller · Department of Informatics, TUC MAS and Games (MSc), SS 18 26



3 Complete Information Games
3.2 Normal Form Games

We often forget about % (thus we are making no distinction
between actions and outcomes). Thus we simply write
µµµ1(a

1
1, a

1
2) instead of the more precise µµµ1(%(〈a11, a12〉).

However, there are situations where we need to distinguish
between the two, in particular when talking about
mechanism design (in Chapter ??, and auctions (in
Chapter 7, Section ??).
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3 Complete Information Games
3.2 Normal Form Games

Definition 3.5 (Common Payoff Game)

A common payoff game (team game) is a game in which for
all action profiles ~a ∈ A1 × . . .× An and any two agents iii, jjj
the following holds: µµµiii(~a) = µµµjjj(~a).

In such games agents have no conflicting interests. Their
graphical depiction is simpler than above (the second
component is not needed).

J. Dix/J. Müller · Department of Informatics, TUC MAS and Games (MSc), SS 18 28



3 Complete Information Games
3.2 Normal Form Games

While a team game is on one side of the spectrum, there is
another type of games which is on the opposite side:

Definition 3.6 (Constant Sum Game)

A 2-player n-strategy normal form game is called constant
sum game, if there exists a constant c such that for each
action profile ~a ∈ A1 × A2: µµµ111(~a) + µµµ222(~a) = c.

We usually set wlog c = 0 (zero sum games).
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3 Complete Information Games
3.2 Normal Form Games

Constant sum games can also be visualised with a simpler
matrix, missing the second component (like common
payoff games) µµµ2(a

2
1, a

2
2) in each entry:

Player 2
C D

Player 1
C
D

4
3

2
1

Of course, we then have to state whether it is a common
payoff or a zero-sum game (they are completely different).
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3 Complete Information Games
3.2 Normal Form Games

Pure vs. mixed strategies

What we are really after are strategies.

Definition 3.7 (Pure strategy)

A pure strategy for a player is a particular action that is
chosen and then played constantly.
A pure strategy profile is just an action profile
~a = 〈a1, . . . , an〉.
Are pure strategy profiles sufficient?
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3 Complete Information Games
3.2 Normal Form Games

Example 3.8 (Rochambeau Game)

Also known as paper, rock and scissors: paper covers rock,
rock smashes scissors, scissors cut paper.

Min
P S R

Max
P
S
R

0
1
-1

-1
0
1

1
-1
0

What about pure vs mixed strategies?
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3 Complete Information Games
3.2 Normal Form Games

Definition 3.9 (Mixed Strategy for NF Games)

Let 〈AAA,Act, O, %, u〉 be normal form game. For a set X let
Π(X) be the set of all probability distributions over X.
The set of mixed strategies for player iii is the set
Siii = Π(Ai). The set of mixed strategy profiles is S1× . . .×Sn.
This is also called the strategy space of the game.

Note: Some books use
Si, with elements si, to denote the set of pure strategies,
Σi with elements σ to denote the set of mixed strategies,
u to denote utilities, and
N to denote the set of agents.
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3 Complete Information Games
3.2 Normal Form Games

The support of a mixed strategy is the set of
actions that are assigned non-zero probabilities.

What is the payoff of such strategies? We have to
take into account the probability with which an
action is chosen. This leads to the expected utility
µµµexpected.
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3 Complete Information Games
3.2 Normal Form Games

Definition 3.10 (Expected Utility for player i)

The expected utility for player iii of the mixed strategy
profile (s1, . . . , sn) is defined as

µµµexpected(s1, . . . , sn) =
∑
~a∈Act

µµµiii(%(~a))
n∏
j=1

sj(aj).

What is the optimal strategy (maximising the expected
payoff) for an agent in an 2-agent setting?
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3 Complete Information Games
3.2 Normal Form Games

Example 3.11 (Fighters and Bombers)

Consider fighter pilots in WW II. A good strategy to attack
bombers is to swoop down from the sun: Hun-in-the-sun
strategy. But the bomber pilots can put on their sunglasses and
stare into the sun to watch the fighters. So another strategy is to
attack them from below Ezak-Imak strategy: if they are not
spotted, it is fine, if they are, it is fatal for them (they are much
slower when climbing). The table contains the survival
probabilities of the fighter pilot.

Bomber Crew
Look Up Look Down

Fighter Pilots
Hun-in-the-Sun
Ezak-Imak

0.95
1

1
0
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3 Complete Information Games
3.2 Normal Form Games

Example 3.12 (Battle of the Sexes, Type 2)

Married couple looks for evening entertainment. They
prefer to go out together, but have different views about
what to do (say going to the theatre and eating in a
gourmet restaurant).

Wife
Theatre Restaurant

Husband
Theatre
Restaurant

(4,3)
(1,1)

(2,2)
(3,4)
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3 Complete Information Games
3.2 Normal Form Games

Example 3.13 (Leader Game, Type 3)

Two drivers attempt to enter a busy stream of traffic. When
the cross traffic clears, each one has to decide whether to
concede the right of way of the other (C) or drive into the
gap (D). If both decide for C, they are delayed. If both
decide for D there may be a collision.

Driver 2
C D

Driver 1
C
D

(2,2)
(4,3)

(3,4)
(1,1)
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3 Complete Information Games
3.2 Normal Form Games

Example 3.14 (Matching Pennies Game)

Two players display one side of a penny (head or tails).
Player 1 wins the penny if they display the same, player 2
wins otherwise.

Player 2
Head Tails

Player 1
Head
Tails

(1, -1)
(-1, 1)

(-1, 1)
(1, -1)

J. Dix/J. Müller · Department of Informatics, TUC MAS and Games (MSc), SS 18 39



3 Complete Information Games
3.2 Normal Form Games

Definition 3.15 (Maxmin strategy)

Given a game 〈{1, 2}, {A1, A2}, {µµµ1,µµµ2}〉, the maxmin strategy of
player iii is a mixed strategy that maximises the guaranteed payoff
of player iii, no matter what the other player−i−i−i does:

arg maxsiii min
s−i−i−i

µµµexpectediii (siii, s−i−i−i)

The maxmin value for player iii is maxsiii mins−i−i−i
µµµexpectediii (siii, s−i−i−i).

The minmax strategy for player iii is

arg minsiii max
s−i−i−i

µµµexpected−i−i−i (siii, s−i−i−i)

and its minmax value is minsiii maxs−i−i−i
µµµexpected−i−i−i (siii, s−i−i−i).
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3 Complete Information Games
3.2 Normal Form Games

Lemma 3.16

In each finite normal form 2-person game (not
necessarily constant sum), the maxmin value of one
player is never strictly greater than the minmax
value for the other.
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3 Complete Information Games
3.2 Normal Form Games

We illustrate the maxmin strategy using a 2-person
3-strategy constant sum game:

Player B

B-I B-II B-III

Player A
A-I

A-II

0

1

5
6

1
2

1
2

3
4

We assume Player A’s optimal strategy is to play strategy
A-I with probability x and
A-II with probability 1− x.

In the following we want to determine x.
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3 Complete Information Games
3.2 Normal Form Games

Thus Player A’s expected utility is as follows:
1 when playing against B-I: 0x+ 1(1− x) = 1− x,
2 when playing against B-II: 5

6
x+ 1

2
(1− x) = 1

2
+ 1

3
x,

3 when playing against B-III: 1
2
x+ 3

4
(1− x) = 3

4
− 1

4
x.

This can be illustrated with the following picture (see
blackboard). Thus B-III does not play any role.

Thus the maxmin point is determined by setting

1− x =
1

2
+

1

3
x,

which gives x = 3
8
. The value of the game is 5

8
.

The strategy for Player B is to choose B-I with probability 1
4

and B-II with probability 3
4
.
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3 Complete Information Games
3.2 Normal Form Games

More in accordance with the minmax strategy let us compute

arg maxsi min
s−i

µµµexpectedi (s1, s2)

We assume Player A plays (as above) A-I with probability x and
A-II with probability 1− x (strategy s1. Similarly, Player B plays B-I
with probability y and B-II with probability 1− y (strategy s2).

We compute µµµexpected1 (s1, s2)

0 · x · y +
5

6
x(1− y) + 1 · (1− x)y +

1

2
(1− x)(1− y)

thus

µµµexpected1 (s1, s2) = y((−4

3
x) +

1

2
) +

1

3
x +

1

2
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3 Complete Information Games
3.2 Normal Form Games

According to the minmax strategy, we have to
choose x such that the minimal values of the
above term are maximal. For each value of x the
above is a straight line with some gradient. Thus
we get the maximum when the line does not
slope at all!

Thus x = 3
8. A similar reasoning gives y = 1

4.
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3 Complete Information Games
3.2 Normal Form Games

Theorem 3.17 (von Neumann (1928))

In any finite 2-person constant-sum game the following holds:
1 The maxmin value for one player is equal to the minmax

value for the other. The maxmin of player 1 is usually
called value of the game.

2 For each player, the set of maxmin strategies coincides
with the set of minmax strategies.

3 The maxmin strategies are optimal: if one player does not
play a maxmin strategy, then its payoff goes down.
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3 Complete Information Games
3.2 Normal Form Games

From now on we use just µµµ1(s1, s2) instead of the
more precise µµµexpected1 (s1, s2). It will be clear from
context whether the argument is a profile (and
thus it is the expected utility µµµexpected) or it is the
utility of an outcome (and thus it is defined in the
underlying game with µµµ).

What is the optimal strategy (maximising the
expected payoff) for an agent in an n-agent
setting?
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3 Complete Information Games
3.2 Normal Form Games

Figure 1: A saddle.
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3 Complete Information Games
3.2 Normal Form Games

Definition 3.18 (Notation s−i−i−i, S−i−i−i)

Note that from now on, for ~s = 〈s1, s2, . . . , sn〉 we use the
notation ~s−i−i−i to denote the strategy profile
〈s1, s2, . . . , si−1, si+1, . . . , sn〉: the strategies of all opponents
of agent iii are fixed. For a set of strategies S, we denote by
S−i−i−i = { ~s−i−i−i | ~s ∈ S}.
For ease of notation, we also use µµµiii(siii, ~s−i−i−i) to denote
µµµi(〈s1, s2, . . . , sn〉), thus

〈s1, s2, . . . , siiisiiisiii, . . . , sn〉 = 〈siiisiiisiii, ~s−i−i−i〉.

In the last vector, although the siiisiiisiii is written in the first entry,
we mean it to be inserted at the i’th place.
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3 Complete Information Games
3.2 Normal Form Games

Definition 3.19 (Best Response to a Profile)

Given a strategy profile

~s−i−i−i = 〈s1, s2, . . . , si−1, si+1, . . . , sn〉,

a best response of player iii to ~s−i−i−i is any mixed strategy
s∗iii ∈ Siii such that

µµµiii(s
∗
iii , ~s−i−i−i) = µµµiii(siii, ~s−i−i−i)

for all strategies siii ∈ Siii.

Is a best response unique?
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3 Complete Information Games
3.2 Normal Form Games

Example 3.20 (Responses for Rochambeau)

How does the set of best responses look like?
1 Player 2 plays the pure strategy paper.
2 Player 2 plays paper with probability .5 and scissors

with probability .5.
3 Player 2 plays paper with probability 1

3
and scissors with

probability 1
3

and rock with probability 1
3
.

Observation

Is a non-pure strategy in the best response set (say a
strategy (a1, a2) with probabilities 〈p, 1− p〉, p 6= 0), then so
are all other mixed strategies with probabilities 〈p′, 1− p′〉
where p 6= p′ 6= 0.
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3 Complete Information Games
3.2 Normal Form Games

Consider the set of best responses.
Either this set is a singleton (namely when it
consists of a pure strategy), or
the set is infinite.
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3 Complete Information Games
3.2 Normal Form Games

Definition 3.21 (Nash Equilibrium (NE))

A strategy profile ~s∗ = 〈s∗1, s∗2, . . . , s∗n〉 is a Nash
equilibrium if for any agent iii, s∗iii is a best response
to ~s∗−i−i−i = 〈s∗1, s∗2, . . . , s∗i−1, s

∗
i+1, . . . , s

∗
n〉.

What are the Nash equilibria in the Battle of sexes?
What about the matching pennies?
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3 Complete Information Games
3.2 Normal Form Games

Example 3.22 (Cuban Missile Crisis, Type 4)

This relates to the well-known crisis in October 1962.

USSR
Withdrawal Maintain

U. S.
Blockade
Air strike

(3, 3)
Compromise

(4, 2)
U.S. victory

(2, 4)
USSR victory

(1, 1)
Nuclear War
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3 Complete Information Games
3.2 Normal Form Games

Theorem 3.23 (Nash (1950))

Every finite normal form game has a Nash equilibrium.

Corollary 3.24 (Nash implies maxmin)

In any finite normal form 2-person constant-sum game, the
Nash equilibria are exactly all pairs 〈s1, s2〉 of maxmin
strategies (s1 for player 1, s2 for player 2).
All Nash equilibria have the same payoff: the value of the
game, that player 1 gets.
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Proof

We use Kakutani’s theorem: Let X be a nonempty subset of
n-dimensional Euclidean space, and f : X −→ 2X . The
following are sufficient conditions for f to have a fixed point
(i.e. an x∗ ∈ X with x∗ ∈ f(x∗)):

1 X is compact: any sequence in X has a limit in X.
2 X is convex: x, y ∈ X, α ∈ [0, 1]⇒ αx+ (1− α)y ∈ X.
3 ∀x : f(x) is nonempty and convex.
4 For any sequence of pairs (xi, x

∗
i ) such that xi, x∗i ∈ X

and x∗i ∈ f(xi), if limi→∞(xi, x
∗
i ) = (x, x∗) then x∗ ∈ f(x).
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Let X consist of all mixed strategy profiles and let f be the best
response set: f(〈s1, . . . , sn〉) is the set of all best responses
〈s′1, . . . , s′n〉 (where s′i is players i best response to
〈s1, . . . , si−1, si+1, . . . sn〉).

Why is that a subset of an n-dimensional Euclidean space?

A mixed strategy over k actions (pure strategies) is a k − 1
dimensional simplex (namely the one satisfying

∑k
i=1 pi = 1).

Therefore X is the cartesian product of n simplices. X is compact
and convex (why?).

The function f satisfies the remaining properties listed above.
Thus there is a fixed point and this fixed point is a Nash
equilibrium.
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Theorem 3.25 (Brouwer’s Fixed Point Theorem)

Let Bn be the unit Euclidean ball in Rn and let
f : Bn → Bn be a continuous mapping. Then there
exists a fixed point of f : there is a x ∈ Bn with
f(x) = x.
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Proof

Reduction to the C1-differentiable case: Let r : Rn → R
be the function
r(x) = r(x1, x2, . . . , xn) =

√
x21 + x22 + · · ·+ x2n.

Let φ : Rn → R given by:
φ(x) = an(1/4r(x)4 − 1/2r(x)2 + 1/4)

on D and equal to 0 in the complement of Bn,
where the constant an is chosen such that the
integral of φ over Rn equals 1.
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Proof (cont.)

Let f : Bn → Bn be continuous. Let F : Rn → Bn be the extension
of f to Rn, for which we have

F (x) = f(
x

||x||
) on Rn \Bn.

For k ∈ N, k 6= 0, put fk(x) :=
∫
Rn k

nφ(ky)F (x− y)dy. Show that
the restriction of fk to Bn maps Bn into Bn. Show that the
mappings fk are continuously differentiable and approximate in
the topology of uniform convergence the mapping F . Show that
if there exists a continuous mapping f : Bn → Bn without fixed
points, then there will also exist a continuously differential
mapping without fixed points. It follows, that it suffices to prove
the Brouwer Fixed Point Theorem only for continuously
differentiable mappings.
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Proof (cont.)

Proof for C1-differentiable mappings:

Assume, that the continuously differentiable mapping
f : Bn → Bn has no fixed points. Let g : Bn → ∂Bn the mapping,
such that for every point x ∈ Bn the points f(x), x, g(x) are in that
order on a line of Rn. ∂Bn is the surface of the unit ball Bn, it is
also denoted by Sn−1. The mapping g is also continuously
differentiable and satisfies g(x) = x for x ∈ ∂Bn. We write
g(x) = (g1(x), g2(x), . . . , gn(x)) and get (for x ∈ ∂Bn and
i = 1 . . . n) gi(x1, x2, . . . , xn) = xi. Note dg1 ∧ dg2 ∧ · · · ∧ dgn = 0
since g21 + g22 + · · ·+ g2n = 1. Then:

0 6=
∫
Bn dx1 ∧ dx2 ∧ · · · ∧ dxn =

∫
∂Bn x1 ∧ dx2 ∧ · · · ∧ dxn

=
∫
∂Bn g1 ∧ dg2 ∧ · · · ∧ dgn =

∫
Bn dg1 ∧ dg2 ∧ · · · ∧ dgn

=
∫
Bn 0 = 0
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Example 3.26 (Majority Voting)

Consider agents 1, 2, 3 and three outcomes A,B,C. Agents
vote simultaneously for one outcome (no abstaining). The
outcome with most votes wins. If there is no majority, then
A is selected. The payoff functions are as follows:
µµµ1(A) = µµµ2(B) = µµµ3(C) = 2, µµµ1(B) = µµµ2(C) = µµµ3(A) = 1 and
µµµ1(C) = µµµ2(A) = µµµ3(B) = 0 . What are the Nash equilibria
and what are their outcomes?
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Example 3.27 (Unique Equilibrium)

The following game has exactly one Nash equilibrium.
L C R

U 〈1,−2〉 〈−2, 1〉 〈0, 0〉
M 〈−2, 1〉 〈1,−2〉 〈0, 0〉
D 〈0, 0〉 〈0, 0〉 〈1, 1〉
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Minmax value and feasible payoffs

Definition 3.28 (Minmax value and feasible payoffs)

In a n-person normal form game 〈AAA,Act, O, %,µµµ〉 we define
the minmax value of player iii as follows

viii = min
s−i−i−i

max
siii

µµµexpectediii (siii, ~s−i−i−i, ).

We call a payoff profile 〈r1, . . . , riii, . . . , rn〉 feasible if there
exist rational values α~a ≥ 0 such that for all iii

riii =
∑
~a∈Act

α~aµµµiii(~a) where
∑
~a∈Act

α~a = 1.

Geometrically speaking, this is the (rational) convex hull of
all possible payoffs of pure action profiles.
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Feasible payoffs
What is the idea behind feasible payoffs?

The minmax value is important, as this is the minimal
payoff in any Nash equilibrium.
Not any feasible profile can be obtained as payoff. In
the leader game in Example 3.13 on Slide 38, the profile
〈7
2
, 7
2
〉 is feasible but can not be realised in one game.

What if the game is played infinitely often (or just
twice)?
In general, convex combinations of pure-strategy
payoffs can only be obtained by correlated strategies,
not by independent randomizations.

In fact, feasible payoffs (and their convexity) will play a role
later in Section ?? on Slide ?? (Theorem ??). They can be
realized in repeated games.
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It is obvious that there is not always a strategy that is
strictly dominating all others (this is why the Nash
equilibrium has been introduced).

Reducing games

However, often games can be reduced and the
computation of the equilibrium considerably simplified.

A rational player would never choose a strategy that is
strictly dominated.
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Definition 3.29 (Dominating Strategy: Weakly, Strictly)

A pure strategy aiii is strictly dominated for an agent iii, if
there exists some other (mixed) strategy s′iii that strictly
dominates it, i.e. for all profiles
~a−i−i−i = 〈a1, . . . , ai−1i−1i−1, ai+1i+1i+1, . . . , an〉, we have

µµµiii(〈s′iii, ~a−i−i−i〉) 	 µµµiii(〈aiii, ~a−i−i−i〉).

We say that a pure strategy aiii is weakly dominated for an
agent iii, if in the above inequality we have ≥ instead of 	
and the inequality is strict for at least one of the other ~a−i−i−i.
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Definition 3.30 (Reduced Sets A∞i , S∞i )

For an arbitrary normal form game with Ai the set of pure
strategies and Si the set of mixed strategies for agent iii, we
define (A0

i := Ai, S0
i := Si)

Ani := {ai ∈ An−1i | there is no s′i ∈ Sn−1i s.t.
µµµi(s

′
i, ~a−i) 	 µµµi(ai, ~a−i)

for all ~a−i ∈ An−1−i }

Sni := {s′ ∈ Si | s′(ai) 	 0 only if ai ∈ Ani }

Finally, A∞i :=
⋂∞
n=0A

n
i and S∞i is the set of all mixed

strategies si, such that there is no s′i with
µµµi(s

′
i, a−i) 	 µµµi(si, ~a−i) for all ~a−i ∈ A∞−i.
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Some Comments to A∞i and S∞i

What are the Sni ? They are the sets of mixed strategies
over only the pure strategies in Ani .
The Ani are sets of pure strategies from which we
remove those, that are strictly dominated by certain
other mixed strategies.
Therefore only the strategies in A∞i are those that we
have to keep.
Note that S∞i is defined wrt. A∞i , not wrt. Sni .
S∞i is the set of mixed strategies that are not strictly
dominated by pure action profiles from A∞i .
Note that S∞i can be strictly smaller than the set of all
mixed strategies over A∞i .
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Theorem 3.31 (Solvable by Iterated Strict Dominance)

If for a finite normal form game, the sets A∞i are all
singletons (such a game is called solvable by
iterated strict dominance), then this strategy
profile is the unique Nash equilibrium.
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Lemma 3.32 (Church-Rosser)

Given a 2-person normal form game. All strictly dominated
columns, as well as all strictly dominated rows can be
eliminated without changing the Nash equilibria (or similar
solution concepts). This results in a finite series of reduced
games. The final result does not depend on the order of
the eliminations.

Note: the last lemma is not true for weakly dominated
strategies. There, the order does matter.
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Note that we eliminate only pure strategies. Such
a strategy might be dominated by a mixed
strategy.

L C R
U 〈3, 2〉 〈2, 1〉 〈3, 1〉
M 〈1, 1〉 〈1, 1〉 〈2, 2〉
D 〈0, 1〉 〈4, 2〉 〈0, 1〉

1 Eliminate row M.
2 Eliminate column R.
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This leads to

L C
U 〈3, 2〉 〈2, 1〉
D 〈0, 1〉 〈4, 2〉
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Elimination of Weakly Dominated actions

We consider the normal form game

L R
T 〈1, 1〉 〈0, 0〉
M 〈1, 1〉 〈2, 1〉
B 〈0, 0〉 〈2, 1〉

1 If we first eliminate T, and then L we get the outcome
〈2, 1〉.

2 If we first eliminate B, and then R we get the outcome
〈1, 1〉.
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3.3 Extensive Form Games
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We have previously introduced normal form games
(Definition 3.4 on Slide 25). This notion does not allow to deal
with sequences of actions that are reactions to actions of the
opponent.

Extensive form (tree form) games

Unlike games in normal form, those in extensive form do not
assume that all moves between players are made simultaneously.
This leads to a tree form, and allows to introduce strategies,
that take into account the history of the game.

We distinguish between perfect and imperfect information
games. While the former assume that the players have complete
knowledge about the game, the latter do not: a player might not
know exactly which node it is in.
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The following definition covers a game as a tree:

Definition 3.33 (Perfect Extensive Form Games)

A finite perfect information game in extensive form is a tuple
Γ = 〈AAA,Act, H, Z, α, ρ, σ, µ1, . . . , µn〉 where

AAA is a set of n players, Act is a set of actions

H is a set of non-terminal nodes, Z a set of terminal nodes,
H ∩ Z = ∅, H ∪ Z form a tree,

α : H → 2Act assigns to each node a set of actions,

ρ : H → AAA assigns to each non-terminal node a player who
chooses an action at that node,

σ : H ×Act → H ∪ Z assigns to each (node,action) a
successor node (h1 6= h2 implies σ(h1, a1) 6= σ(h2, a2)),

µi : Z → R are the utility functions.
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Such games can be visualised as trees. Here is the famous
“Sharing Game”.

Example 3.34 (Sharing Game)

The game consists of two rounds. In the first, player 1 offers
a certain share (namely (1) 2 for player 1, 0 for player 2, (2) 1
for player 1, 1 for player 2, (3) 0 for player 1, 2 for player 2).
Player 2 can only accept, or refuse. In the latter case,
nobody gets anything.
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Figure 2: The Sharing game.
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Strategies in extensive form games

Definition 3.35 (Strategies in Extensive Form Games)

Let Γ = 〈AAA,Act, H, Z, α, ρ, σ, µ1, . . . , µn〉 be a finite perfect
information game in extensive form.
A strategy for player iii in Γ is any function that assigns a
legal move to each history owned by iii.
The pure strategies of player iii are the elements of
Πh∈H,ρ(h)=iiiα(h). These are also functions: whenever player iii
can do a move, it chooses one of the actions available. Thus
we can write a pure strategy as a vector 〈a1, . . . , ar〉, where
a1, . . . , ar are iii’s choices at the respective moves.
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In the sharing game, a pure strategy for player 2 is
〈no, yes,no〉. A (better) one is 〈no, yes, yes〉.
Why don’t we introduce mixed strategies?

Best response, Nash Equlibrium

Note that the definitions of best response and Nash
equilibrium carry over (literally) to games in extensive form.

Note that in the following we are talking only about pure
strategy profiles.
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What are the NE’s in the sharing game?

〈1, 〈y, y, y〉〉, 〈1, 〈n,n,n〉〉, 〈1, 〈n,n, y〉〉, 〈1, 〈y,n,n〉〉,
〈1, 〈y,n, y〉〉, 〈1, 〈y, y,n〉〉 are NE’s, 〈1, 〈n, y, y〉〉 is not. Also
〈2, 〈n, y,n〉〉, 〈2, 〈n, y, y〉〉 and 〈3, 〈n,n, y〉〉 are NE’s.

We claim that only 〈1, 〈y, y, y〉〉 and 〈2, 〈n, y, y〉〉 make sense.
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Transforming extensive form games into
normal form

Lemma 3.36 (Extensive form ↪→ Normal form)

Each game Γ in perfect information extensive form can be
transformed to a game NF(Γ) in normal form (such that the
pure strategy spaces correspond).
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Proof.

A strategy profile determines a unique path from the root
∅ of the game to one of the terminal nodes (and hence also
a single profile of payoffs). Therefore one can construct the
corresponding normal form game NF(Γ) by enumerating
all strategy profiles and filling the payoff matrix with the
resulting payoffs.
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Sharing Game in normal form

1\ 2 nnn nny nyn nyy ynn yny yyn yyy
(2, 0) (0, 0) (0, 0) (0, 0) (0, 0) (2, 0) (2, 0) (2, 0) (2, 0)
(1, 1) (0, 0) (0, 0) (1, 1) (1, 1) (0, 0) (0, 0) (1, 1) (1, 1)
(0, 2) (0, 0) (0, 2) (0, 0) (0, 2) (0, 0) (0, 2) (0, 0) (0, 2)
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Figure 3: A generic game.
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Example 3.37 (Generic Game in normal form)

We consider the game in Figure 3. The pure strategies of
player 1 are {〈A,E〉, 〈A,F 〉, 〈B,E〉, 〈B,F 〉}. The pure
strategies of player 2 are {C,D}.

C D
AE W Y
AF X Y
BE Z Z
BF Z Z

Note that 〈B,E〉, 〈B,F 〉 are pure strategies that have to be
considered.
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Is there a converse of Lemma 3.36?
We consider prisoner’s dilemma and try to model a game in
extensive form with the same payoffs and strategy profiles.
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In fact, it is not surprising that we do not succeed in the
general case:

Theorem 3.38 (Zermelo, 1913; Kuhn)

For each perfect information game in extensive form there
exists a pure strategy NE.
The theorem can be strengthened (Kuhn’s theorem): For each
perfect information game in extensive form there exists a
pure strategy subgame perfect NE.

In fact, this was the reason that we do not need mixed
strategies for perfect information extensive games
(question on Slide 81).
We will later introduce imperfect information games (in
extensive form): Slide 101.
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Example 3.39 (Unintended Nash equilibria)

Consider the following game in extensive form.

2

1

(0, 0) (2, 1)

(1, 2)L R

A B

Figure 4: Unintended Equilibrium.
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The game depicted in Example 3.39 has two
equilibria: 〈A,R〉 and 〈B,L〉. The latter one is not
intuitive (while the first one is).

Can we refine the notion of NE and rule out this
unintended equilibrium?
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This leads to the notion of subgame perfect NE:

Definition 3.40 (Subgame Perfect NE (SPE))

Let Γ be a perfect information game in extensive form.
Subgame: A subgame of G rooted at node h is the

restriction of Γ to the descendants of h.
SPE: The subgame perfect Nash equilibria (SPE) of

a perfect information game Γ in extensive form
are those Nash equilibria of Γ, that are also Nash
equilibria for all subgames Γ′ of Γ.
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What are the SPE’s in the Sharing game (Example 3.34)?
What are the SPE’s in the following instance of the
generic game (Example 3.37):

C D
AE 〈2, 0〉 〈1, 1〉
AF 〈0, 2〉 〈1, 1〉
BE 〈3, 3〉 〈3, 3〉
BF 〈3, 3〉 〈3, 3〉
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Theorem 3.41 (Existence of SPE (Kuhn))

For each finite perfect information game in
extensive form there exists a SPE.

The proof is by induction on the length of
histories. The SPE is therefore defined
constructively.
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Proof.

By backward induction we construct a subgame perfect NE:
Let h be a terminal history and h′ be the history with the
last action removed, say h = h′a. Moreover, let it be
player iii’s move in h′. Then, we define siii(h′) to be the
action which maximizes iii’s payoff. We proceed like this
for all such histories h′.
Suppose now that s is a subgame perfect NE for all
histories of a certain length, say k. Consider a history
h′ = ha of length k + 1. As before the player whose
move it is in h′ chooses an action which maximizes its
payoff assuming that all other players follow s. We
proceed like this for all histories h′.
The constructed strategy s is a subgame perfect NE.
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Example 3.42 (Centipede Game)

This is a two person game which illustrates that even the
notion of SPE can be critical.
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Centipede Revisited

The Centipede game has just one SPE: All
players always choose D.
This is rational, but humans often do not
behave like that.
Experiments show, that humans start with
going across and do a down only towards the
end of the game.
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Imperfect Information

In an extensive game with perfect information, the
player does know all previous moves (and also the
payoffs that result).
In an extensive game with imperfect information, a
player might not be completely informed about the
past history.
Or some moves in the past may have been done
randomly, so in the future, even under the same
circumstances, other actions might be taken.
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The Idea

An extensive game is nothing else than a tree. Thus
each node is unique and carries with it the path from
the root (the history that lead to it).
In order to model that a player does not perfectly know
the past events, we introduce an equivalence relation
on the nodes. That two nodes are equivalent, means
that the player cannot distinguish between them.
All nodes in one equivalence class must be assigned
the same actions: otherwise the player could
distinguish them.
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Definition 3.43 (Information set Iiii, Partition)

For a set W (nodes, worlds, games) and a set of agents AAA,
we define a partition Iiii of agent iii ∈ AAA over it (or the
information set of iii) as an equivalence relation over W . Its
classes Iijijij are also called partition classes. Thus the
following holds.
A partition Iiii is a set of subsets Wiii1, . . .Wiiis of W such that:
(1)
⋃

iiiWijijij = W and (2) Wijijij ∩Wiiijjj′ = ∅ for jjj 6= jjj′.

J. Dix/J. Müller · Department of Informatics, TUC MAS and Games (MSc), SS 18 100



3 Complete Information Games
3.3 Extensive Form Games

Definition 3.44 (Extensive Games, Imperfect Inf.)

A finite imperfect information game in extensive form is a
tuple G = 〈AAA,Act, H, Z, α, ρ, σ, µ1, . . . , µn, I1, . . . , In〉 where
〈AAA,Act, H, Z, α, ρ, σ, µ1, . . . , µn〉 is a perfect information
game in the sense of Definition 3.33 on Slide 77,
Iiii are partitions on {h ∈ H : ρ(h) = iii} such that
h, h

′ ∈ Iiii,jjj implies α(h) = α(h
′
).
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Example 3.45

(Utility of the rightmost leaf node is (2, 1).)
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Player 1 can not distinguish between the nodes
connected by a dotted line.
Therefore player 1 can not play the right move.
It could play a mixed strategy: with probability 1

2
choose

l.

Now we need mixed strategies, to deal with the
uncertainty.
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Definition 3.46 (Pure strategy in Extensive Form)

Given an imperfect information game in extensive form, a
pure strategy for player iii is a vector 〈a1, . . . , ak〉 with
ajjj ∈ α(Iijijij) where Iiii1, . . . , Iiiik are the k equivalence classes for
agent iii. Note that this vector is just a function assigning an
action to each node owned by player iii.

Can we model prisoner’s dilemma as an extensive game
with imperfect information?
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Figure 5: Prisoner’s dilemma in extensive form.

There is a pure strategy Nash equilibrium.
But we could have chosen to switch player 1 with player 2.
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NF game ↪→ Imperfect game

For pure strategies we have the following:
Each game in normal form can be transformed into an
imperfect information game in extensive form (but
this is not one-to-one).

Each imperfect information game in extensive form can
be transformed into a game in normal form (this is
one-to-one).

What are mixed strategies for an imperfect information
game?
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Mixed Strategy: First try.

Let Γ be an imperfect information game in extensive
form.
Assign the normal form game (for any iii) as usual, by
enumerating the pure strategies.
Now we can take the usual set of mixed strategies in
the normal form game as the set of mixed strategies
of the original game Γ.
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Behavioral Strategy: Second try.

We consider the game from Figure 3 on Slide 86.
Consider the following strategy for player 1. A is chosen
with probability .7, B with .3 and E with probability .4
and F with .6. Such strategies are called behavioral: at
each node, the (probabilistic) choice is made
independently from the other nodes.
Consider the following mixed strategy for player 1.
〈A,E〉 is chosen with probability .6 and 〈B,F 〉 with
probability .4. Thus, here we have a strong correlation:
〈A,F 〉 is not possible!
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Mixed vs. Behavioral

Definition 3.47 (Mixed and Behavioral strategies)

Let G = 〈AAA,Act, H, Z, α, ρ, σ, µ1, . . . , µn, I1, . . . , In〉 be an
imperfect information game in extensive form.

Mixed: A mixed strategy of player iii is one single
probability distribution over iii’s pure strategies.

Behavioral: A behavioral strategy of player iii is a vector of
probability distributions P (Iiiij) over the set of
actions α(Iiiij) for Iiiij ∈ Iiii. We define by P (h)(a)
the probability P (Iiiij)(a) for the action a for
player iii if h ∈ Iiiij.
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Mixed vs. Behavioral (2)

The main difference is that for behavioral
strategies, at each node the probability
distribution is started freshly.
Even if a player ends up in the same partition,
she can choose independently of her previous
choice.
Whereas for mixed strategies, this choice is not
independent: there is just one single
distribution that relates the possible choices.
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Are behavioral strategies more general?

We consider a one player game. At the start node, the
player can choose L or R. There result two nodes which can
not be distinguished by the player. Again, L or R can be
played and result in the four outcomes o1, o2, o3, o4.

What is the outcome of the mixed strategy 〈1
2
LL, 1

2
RR〉?

It is 〈1
2
, 0, 0, 1

2
〉

No behavioral strategy results in this distribution.
Therefore mixed strategies are not necessarily
behavioral.
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Example 3.48 (A game of imperfect recall)

We consider the following game

s
s s

1

2

©©©©©©©©©©

HHHHHHHHHH
·

·
·

·
·

T
T
T
T
T

·
·

·
·

·

T
T
T
T
T

L R

U D
L R

1,0 100,100 5,1 2,2

For mixed strategies, 〈R,D〉 is the unique NE. But for
behavioral strategies, the following mixed strategy is a
better response of player 1 to D: ( 98

198
L, 100

198
R).
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Are mixed strategies more general? (2)

For mixed strategies, once decided, the pure strategy is
consistently chosen. Therefore the outcome 〈100, 100〉 is
not reachable.
This is not true for behavioral strategies, where at each
node, the probabilistic choice is done independently.
What is the best response of player 1 to D in
behavioral strategies? Consider a mixed behavioral
strategy: choose L with probability p and R with 1− p.
A little computation shows that the maximal payoff is
obtained for p = 98

198
.
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Behavioral vs. mixed strategies?

We have just seen that there are mixed
strategies for which there are no behavioral
strategies with the same outcome and vice
versa.
Therefore we introduce two concepts of Nash
equilibria on the next page.
Is there a class of games where both concepts
are equivalent?
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Definition 3.49 (NE for Mixed/Behavioral Strategies)

A NE in mixed strategies for an extensive game G is a
mixed strategy profile s∗ = 〈s∗1, s∗2, . . . , s∗n〉, s.t. for any agent
iii:

µµµiii(〈s∗iii , s∗−i−i−i〉 ≥ µµµiii(〈siii, s∗−i−i−i〉

for all mixed strategies siii of player iii.

A NE in behavioral strategies is a behavioral strategy
profile s∗ = 〈s∗1, s∗2, . . . , s∗n〉, s.t. for any agent iii:

µµµiii(〈s∗iii , s∗−i−i−i〉 ≥ µµµiii(〈siii, s∗−i−i−i〉

for all behavioral strategies siii of player iii.
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Definition 3.50 (Perfect Recall)

Let Γ be an imperfect information game in extensive form. We say
that player iii has perfect recall in Γ, if the following holds. If h, h′

are two nodes in the same Iiiij (for a j), and
h0, a0, h1, a1, . . . , hn, an, h resp. h′0, a

′
0, h
′
1, a
′
1, . . . , h

′
m, a

′
m, h

′ are
paths from the root of the tree to h (resp. h′), then

1 n = m,

2 for all 0 ≤ j ≤ n: hj and h′j are in the same partition class,

3 for all 0 ≤ j ≤ n: if α(hj) = iii then aj = a′j .

Γ is a game of perfect recall, if all players have perfect recall.
Otherwise it is called of imperfect recall.
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A few games: Which have perfect recall?

1 1 1

1

1

1c
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Do they model the same situation?

1

1

o2o1

o3

1

o3o1 o2
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Perfect Recall: Behavioral strategies suffice?

Theorem 3.51 (Behavioral = Mixed (Kuhn, 1953))

Let Γ be a game of perfect recall (perfect or imperfect
information). Then for any mixed strategy of agent iii there is a
behavioral one such that both strategies induce the same
probabilities on outcomes for all fixed strategy profiles of the
other agents.

Corollary 3.52

In a game of perfect recall, it suffices to compute the Nash
equilibria based on behavioral strategies.
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SPE: What about subperfect equilibria (analogue of
Definition 3.40 on Slide 92 for imperfect games?

First try: In each information set, we have a set of
subgames (a forest). Why not asking that a
strategy should be a best response in all
subgames of that forest?

J. Dix/J. Müller · Department of Informatics, TUC MAS and Games (MSc), SS 18 120



3 Complete Information Games
3.3 Extensive Form Games

Example 3.53 (A Game with no SPE’s)
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Nash equilibria: (L,U) and (R,D). Can we see them as
subgame perfect?
In one subtree, U dominates D, in the other D
dominates U .
But (R,D) seems to be the unique choice: both
players can put themselves into the others place and
reason accordingly.
Requiring that a strategy is best response to all
subtrees might be too strong.
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Ways out

There are two prominent refinements of SPE’s.
One is the trembling hand perfect
equilibrium. It is defined for normal form, and
extensive form games.
The other the sequential equilibrium is defined
for extensive form games of perfect recall.
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We use a belief system µ: functions which assign to each
information set Iij a probability measure over nodes in Iij.
µ(Iij)(h) is the probability that player iii assigns to history h,
provided that Iij is being reached.

So, a belief system captures the probability of being in a
specific node of an information set.

Given a behavioral strategy profile β which is completely
mixed (i.e. assigns non-zero probability to all actions), a
belief system µ can be uniquely assigned to β.
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Definition 3.54 (Sequential Equilibrium)

A (behavioral) strategy profile β∗ = 〈β∗1 , β∗2 , . . . , β∗n〉 is a
sequential equilibrium of an extensive form game Γ if there
exist probability distributions µ(h) for each information set
Iiii such that

1 (β∗, µ) = limn→∞(βn, µn) for some sequence where βn is
completely mixed (where µn is uniquely determined by
βn),

2 for any Iiii of agent iii and any alternative strategy β ′iii of
agent iii: µiii(β∗ | h, µ(h)) ≥ µiii((β

′
, β−iii) | h, µ(h)).

The first assumption (consistency) is of a rather technical
nature to enable the consistent definition of expectations in
case of behavioral strategies which assign probability 0 to
actions.
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Theorem 3.55 (Sequential Equilibrium)

For each imperfect information game in extensive
form with perfect recall there exists a
sequential equilibrium.
For perfect information games, each SPE is a
sequential equilibrium but not vice versa.
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A theory for efficiently allocating goods and
resources among agents, based on market
prices.

Goods: Given n > 0 goods g1, . . . , gn (coffee, mirror sites,
parameters of an airplane design). We assume
gi 6= gj for i 6= j but within each gi everything is
indistinguishable.

Prices: The market has prices p = [p1, p2, . . . , pn] ∈ Rn: pi
is the price of the good i.
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Consumers: Consumer iii has µiiiµiiiµiii(x) encoding its preferences
over consumption bundles xiii = [xi1, ..., xin]t,
where xig ∈ R+ is consumer iii’s allocation of
good g. Each consumer also has an initial
endowment eiii = [ei1, ..., ein]t ∈ R.

Producers: Use some commodities to produce others:
yjjj = [yj1, ..., yjn]t, where yjg ∈ R is the amount of
good g that producer jjj produces. YjjjYjjjYjjj is a set of
such vectors y.
Profit of producer jjj: p× yjjj, where yjjj ∈ YjjjYjjjYjjj.
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Profits: The profits are divided among the
consumers (given predetermined
proportions ∆ijijij): ∆ijijij is the fraction of
producer jjj that consumer iii owns
(stocks). Profits are divided according to
∆ijijij.
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Definition 3.56 (General Equilibrium)

(p∗,x∗,y∗) is in general equilibrium, if the following holds:

I. The markets are in equilibrium:∑
i

x∗iii =
∑
iii

eiii +
∑
jjj

y∗jjj

II. Producer jjj maximises profit wrt. the market
y∗iii = arg max{yjjj∈YjjjYjjjYjjj}p

∗ × yjjj
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III. Consumer iii maximises preferences
according to the prices

x∗iii = arg max{xiii∈Rn
+Rn
+Rn
+ | condiii } µiiiµiiiµiii(xiii)

where condiii stands for
p∗ × xiii ≤ p∗ × eiii +

∑
jjj ∆ijijijp

∗ × yjjj.

J. Dix/J. Müller · Department of Informatics, TUC MAS and Games (MSc), SS 18 132



3 Complete Information Games
3.4 An Example from Economics

Theorem 3.57 (Pareto Efficiency)

Each general equilibrium is pareto efficient.

Theorem 3.58 (Coalition Stability)

Each general equilibrium with no producers is
coalition-stable: no subgroup can increase their utilities by
deviating from the equilibrium and building their own
market.
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Theorem 3.59 (Existence of an Equilibrium)

Let the sets YjYjYj be closed, convex and bounded above. Let µiµiµi be
continuous, strictly convex and strongly monotone. Assume
further that at least one bundle xi is producible with only
positive entries xil.

Under these assumptions a general equilibrium exists.
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Meaning of the assumptions

Formal definitions:  blackboard.
Convexity of YjYjYj: Economies of scale in production do not

satisfy it.
Continuity of the µiµiµi: Not satisfied in bandwidth allocation

for video conferences.
Strictly convex: Not satisfied if preference increases when

one gets more of this good (drugs, alcohol,
dulce de leche).
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In general, there exist more than one equilibrium.

Theorem 3.60 (Uniqueness)

If the society-wide demand for each good is non-decreasing
in the prices of the other goods, then a unique equilibrium
exists.

This condition is called gross substitutes property and
comes in many variants.

Positive example: increasing price of meat forces people to
eat potatoes (pasta).

Negative example: increasing price of bread implies that
the butter consumption decreases.
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How to find market equilibria?

We describe an algorithm using steepest descent.

Theorem 3.61
The price tâtonnement algorithm, explained on the next few
pages, converges to a general equilibrium if for all p that
are not proportional to an equilibrium vector p∗, the following
holds:∑

iii

(xiii(p)− eiii)−
∑
jjj

yjjj(p)  0
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Price tâtonnement process (1)

This is a decentralized algorithm that performs steepest
descent (can be improved by Newton-method).
The main part is a price adjustor, that suggests a price
and receives production plans from the producers and
consumption plans from the consumers.
Based on these plans, a new price is calculated and the
cycle starts again.
Producer jjj takes the current price and develops a
production plan maximizing its profit. This plan is sent
to the adjustor.
Consumer iii takes the current price and production
plans from the producers and develops a consumption
plan maximizing its utility given budget constraints.
This plan is sent to the adjustor.
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Price tâtonnement: The adjustor
for g = 1 to n do

pg ← 1
end for
for g = 1 to n do

λg ← a positive number
end for
repeat

Broadcast p to consumers and producers.
Receive a production plan yj from each producer jjj.
Broadcast the plans yj to consumers.
Receive a consumption plan xi from each consumer iii.
for g = 1 to n do

pg ← pg + λg(
∑

i(xig − eig)−
∑

j yjg)
end for

until |
∑

i(xig − eig)−
∑

j yjg |� ε for all 1 ≤ g ≤ n
Inform consumers and producers that an equilibrium has been
reached.

J. Dix/J. Müller · Department of Informatics, TUC MAS and Games (MSc), SS 18 139



3 Complete Information Games
3.4 An Example from Economics

Price tâtonnement: Consumer iii

repeat
Receive p from the adjustor.
Receive a production plan yj for all jjj from the adjustor.
Announce to the adjustor a consumption plan xi that
maximizes iii’s utility given the budget constraint (see
Condition III on Slide 132).

until Informed by adjustor that equilibrium has been
reached.
Exchange and consume.

J. Dix/J. Müller · Department of Informatics, TUC MAS and Games (MSc), SS 18 140



3 Complete Information Games
3.4 An Example from Economics

Price tâtonnement: Producer jjj

repeat
Receive p from the adjustor.
Receive a production plan for all jjj from the adjustor.
Announce to the adjustor a production plan yjjj ∈ Yjjj
that maximizes p× yjjj

until Informed by adjustor that equilibrium has been
reached.
Exchange and produce.
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6 Coalitional Games
Coalition Formation in CFG’s
General Contract Nets
Classes of Games
The Core and its refinements
Payoff Division: Shapley value and Banzhaf Index
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Outline

What happens if agents decide to team up and work
together to solve a problem more efficiently? We consider

abstract coalition formation for characteristic
function games (CFG);
algorithms for searching the coalition structure graph;
the task allocation problem and present different types
of contracts between agents (no IR-contract leads to
the global optimum, even if all types are allowed), and
how to distribute the profit among the agents: core of
a CFG and Shapley value.
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Definition 6.1 (Characteristic Function Game (CFG))

A characteristic function game is a tuple 〈AAA, vvv〉 where AAA is
a finite set (of agents) and vvv : 2AAA → R+

0 ;S 7→ vvv(S).
We assume vvv(∅) = 0 and call vvv(S) the value of coalition S.

Thus the value is independent of the nonmembers. But

1 Positive Externalities: Overlapping goals.
Nonmembers perform actions and move the world
closer to the coalition’s goal state.

2 Negative Externalities: Shared resources.
Nonmembers may use up the resources.
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Coalition Structure

Definition 6.2 (Coalition Structure CS)

A coalition structure CS over the set AAA is any partition
{C1, . . . , Ck} of AAA, i.e.

⋃k
j=1C

j = AAA and Ci ∩Cj = ∅ for i 6= j.
We denote by CSCSCSM the set of all coalition structures CS over
the set M ⊆ AAA.
Finally, we define the social welfare of a coalition structure
CS by

vvv(CS) :=
∑
C∈CS

vvv(C).
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Definition 6.3 (Coalition Formation in CFG’s)

Coalition Formation in CFG’s consists of:
Forming CS: formation of coalitions such that within each

coalition agents coordinate their activities.
Solving Optimisation Problem: For each coalition in a CS

the tasks and resources of the agents have to be
pooled. Maximise monetary value.

Payoff Division: Divide the value of the generated solution
among agents.
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Maximising Social Welfare

Maximise the social welfare of the agents AAA by finding a
coalition structure

CS∗ = arg maxCS∈CSCSCSAAAvvv(CS),

where

vvv(CS) :=
∑
S∈CS

vvv(S).

How many coalition structures are there?
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A lot: Ω(|AAA|
|AAA|
2 ). Enumerating is feasible for |AAA| < 15.

Figure 6: Number of Coalition (Structures).
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Approximation of vvv(CS).

How can we approximate vvv(CS)?

Choose set N ⊆ CSCSCSAAA and pick the best coalition
seen so far:

CS∗N = arg maxCS∈Nvvv(CS).
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Figure 7: Coalition Structure Graph CSCSCSAAA.
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We want our approximation as good as possible.

We want to find a small k and a small N such that

vvv(CS∗)

vvv(CS∗N)
≤ k.

k is the bound (best value would be 1) and N is the part of
the graph that we have to search exhaustively.
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We consider 3 search algorithms:
MERGE: Breadth-first search from the top.

SPLIT: Breadth first from the bottom.
Coalition-Structure-Search (CSS1): First the bottom 2 levels

are searched, then a breadth-first search from
the top.

MERGE might not even get a bound, without looking at all
coalitions.

SPLIT gets a good bound (k = |AAA|) after searching the
bottom 2 levels (see below). But then it can get slow.

CSS1 combines the good features of MERGE and SPLIT.

J. Dix/J. Müller · Department of Informatics, TUC MAS and Games (MSc), SS 18 157



6 Coalitional Games
6.1 Coalition Formation in CFG’s

Theorem 6.4 (Minimal Search to get a bound)

To bound k, it suffices to search the lowest two levels of the
CS-graph. Using this search, the bound k = |AAA| can be taken.
This bound is tight and the number of nodes searched is 2|AAA|−1.

No other search algorithm can establish the bound |AAA|
while searching through less than 2|AAA|−1 nodes.
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Proof.
There are at most |AAA| coalitions included in CS∗. Thus

vvv(CS∗) ≤ |AAA|max
S

vvv(S) ≤ |AAA| max
CS∈N

vvv(CS) = |AAA|vvv(CS∗N)

Number of coalitions at the second lowest level: 2AAA − 2.

Number of coalition structures at the second lowest level:
1
2
(2AAA − 2) = 2AAA−1 − 1.

Thus the number of nodes visited is: 2AAA−1.
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6 Coalitional Games
6.1 Coalition Formation in CFG’s

What exactly does the last theorem mean? Let nmin be the
smallest size of N such that a bound k can be established.

Positive result: nmin

partitions of AAA approaches 0 for |AAA| −→ ∞.

Negative result: To determine a bound k, one needs to
search through exponentially many coalition
structures.
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6 Coalitional Games
6.1 Coalition Formation in CFG’s

Algorithm (CS-Search-1)

The algorithm comes in 3 steps:
1 Search the bottom two levels of the CS-graph.
2 Do a breadth-first search from the top of the graph.
3 Return the CS with the highest value.

This is an anytime algorithm.
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6 Coalitional Games
6.1 Coalition Formation in CFG’s

Theorem 6.5 (CS-Search-1 up to Layer l)

With the algorithm CS-Search-1 we get the following bound
for k after searching through layer l:{
d |AAA|
h
e if |AAA| ≡ h− 1 mod h and |AAA| ≡ l mod 2,

b |AAA|
h
c otherwise.

where h =def b |AAA|−l2
c+ 2.

Thus, for l = |AAA| (check the top node), k switches from |AAA|
to |AAA|

2
.
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6 Coalitional Games
6.1 Coalition Formation in CFG’s

Experiments

6-10 agents, values were assigned to each coalition using
the following alternatives

1 values were uniformly distributed between 0 and 1;
2 values were uniformly distributed between 0 and |AAA|;
3 values were superadditive;
4 values were subadditive.
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6.1 Coalition Formation in CFG’s

Figure 8: MERGE.
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6.1 Coalition Formation in CFG’s

Figure 9: SPLIT.
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6.1 Coalition Formation in CFG’s

Figure 10: CS-Search-1.
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6.1 Coalition Formation in CFG’s

Figure 11: Subadditive Values.
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Figure 12: Superadditive Values.
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6.1 Coalition Formation in CFG’s

Figure 13: Coalition values chosen uniformly from [0, 1].
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6.1 Coalition Formation in CFG’s

Figure 14: Coalition values chosen uniformly from [0, |S|].
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6.1 Coalition Formation in CFG’s

Figure 15: Comparing CS-Search-1 with SPLIT.
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6 Coalitional Games
6.1 Coalition Formation in CFG’s

1 Is CS-Search-1 the best anytime algorithm?
2 The search for best k for n′ > n is perhaps not the same

search to get best k for n.
3 CS-Search-1 does not use any information while

searching. Perhaps k can be made smaller by not only
considering vvv(CS) but also vvv(S) in the searched CS′.
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6.2 General Contract Nets

6.2 General Contract Nets
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6 Coalitional Games
6.2 General Contract Nets

How to distribute tasks?

Global Market Mechanisms. Implementations use a
single centralised mediator.
Announce, bid, award -cycle. Distributed Negotiation.

We need the following:
1 Define a task allocation problem in precise terms.
2 Define a formal model for making bidding and

awarding decisions.
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6 Coalitional Games
6.2 General Contract Nets

Definition 6.6 (Task-Allocation Problem)

A task allocation problem is given by
1 a set of tasks T ,
2 a set of agents AAA,
3 a cost function costiii : 2T −→ R ∪ {∞} (stating the costs

that agent iii incurs by handling some tasks), and
4 the initial allocation of tasks

〈T init111 , . . . , T init|AAA| 〉,
where T =

⋃
iii∈AAA T

init
iii , T initiii ∩ T initjjj = ∅ for iii 6= jjj.
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6 Coalitional Games
6.2 General Contract Nets

Definition 6.7 (Accepting Contracts, Allocating Tasks)

A contractee qqq accepts a contract if it gets paid more than
the marginal cost of handling the tasks of the contract

MCadd(T contract|Tqqq) =def costqqq(T contract ∪ Tqqq)
−costqqq(Tqqq).

A contractor rrr is willing to allocate the tasks T contract from
its current task set Trrr to a contractee, if it has to pay less than
it saves by handling them itself:

MCremove(T contract|Trrr) =def costrrr(Trrr)
−costrrr(Trrr − T contract).
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6 Coalitional Games
6.2 General Contract Nets

Definition 6.8 (The Protocol)

Agents suggest contracts to others and make their decisions
according to the above MCadd and MCremove sets.
Agents can be both contractors and contractees. Tasks can
be recontracted.

The protocol is domain independent.
Can only improve at each step: Hill-climbing in the
space of all task allocations. Maximum is social
welfare: −

∑
iii∈AAA costiii(Tiii).

Anytime algorithm!
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6.2 General Contract Nets

Figure 16: TSP as Task Allocation Problem.
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6 Coalitional Games
6.2 General Contract Nets

Definition 6.9 (O-, C-, S-, M- Contracts)

A contract is called of type
O (Original): only one task is moved: 〈Ti,j, ρi,j〉, |Ti,j| = 1.
C (Cluster): a set of tasks is moved: 〈Ti,j, ρi,j〉, |Ti,j| 	 1.
S (Swap): if a pair of agents swaps a pair of tasks:

〈Ti,j, Tj,i, ρi,j, ρj,i〉, |Ti,j| = |Tj,i| = 1.
M (Multi): if more than two agents are involved in an

atomic exchange of tasks: 〈T, ρ〉, both are
|A| × |A|matrices. At least 3 elements are
non-empty, |Ti,j| ≤ 1.
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6 Coalitional Games
6.2 General Contract Nets

Lemma 6.10 (O-Path reaches Global Optimum)

A path of O-contracts always exists from any task allocation to
the optimal one. The length of the shortest such path is at
most |T |.

Does that solve our problem? (Lookahead)
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6.2 General Contract Nets

Definition 6.11 (Task Allocation Graph)

The task allocation graph has as vertices all possible task
allocations (i.e. |A||T |) and directed edges from one vertex to
another if there is a possible contract leading from one to
the other.
For O-contracts, searching the graph using breadth-first
search takes how much time?
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6.2 General Contract Nets

Lemma 6.12 (Allocation graph is sparse)

We assume that there are at least 2 agents and 2 tasks. We
consider the task allocation graph for O contracts. Then
the fraction

number of edges
number of edges in the fully connected graph

converges to 0 both for |T | → ∞ as well as |AAA| → ∞
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6.2 General Contract Nets

Lemma 6.13 (No IR-Path to Global Optimum)

There are instances where no path of IR O contracts exists
from the initial allocation to the optimal one. The length of the
shortest IR path (if it exists) may be greater than |T |.
But the shortest IR path is never greater than
|A||T | − (|A| − 1)|T |.

Problem: local maxima.

A contract may be individually rational but the task
allocation is not globally optimal.
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6.2 General Contract Nets

Lemma 6.14 (No Path)

There are instances where no path of C-contracts (IR or not)
exists from the initial allocation to the optimal one.
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6 Coalitional Games
6.2 General Contract Nets

k-optimal

A task allocation is called k-optimal if no beneficial
C-contract with clusters of k tasks can be made between
any two agents.

Let m � n. Does
m optimality imply n optimality;
n optimality imply m optimality?
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6.2 General Contract Nets

Lemma 6.15 (No Path)

There are instances where no path of S-contracts (IR or not)
exists from the initial allocation to the optimal one.

Lemma 6.16 (No Path)

There are instances where no path of M-contracts (IR or not)
exists from the initial allocation to the optimal one.
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6.2 General Contract Nets

Lemma 6.17 (Reachable allocations for S contracts)

We assume that there are at least 2 agents and 2 tasks. We
consider the task allocation graph for S contracts. Given
any vertex v the fraction

number of vertices reachable from v

number of all vertices

converges to 0 both for |T | → ∞ as well as for |AAA| → ∞.
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6.2 General Contract Nets

Proof.

S contracts preserve the number of tasks of each agent. So
any vertex has certain allocations t1, . . . , t|AAA| for the agents.
How many allocations determined by this sequence are
there? There are exactly |T |! many. This is to be divided by
|A||T |.
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6.2 General Contract Nets

Theorem 6.18 (All Types necessary)

For each of the 4 types there exist task allocations where no IR
contract with the remaining 3 types is possible, but an IR
contract with the fourth type is.
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6.2 General Contract Nets

Proof.

Consider O contracts (as fourth type). One task and 2
agents: T1 = {t1}, T2 = ∅.
c1(∅) = 0, c1({t1}) = 2, c2(∅) = 0, c2({t1}) = 1. The O contract
of moving t1 would decrease global cost by 1. No C-, S-, or
M-contract is possible.

To show the same for C or S contracts, two agents and two
tasks suffice.

For M-contracts 3 agents and 3 tasks are needed.
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6.2 General Contract Nets

Theorem 6.19 (O-, C-, S-, M- ; Global Optima)

There are instances of the task allocation problem where no IR
sequence from the initial task allocation to the optimal
one exists using O-, C-, S-, and M- contracts.

Proof.

Construct cost functions such that the deal where agent 1
gives one task to agent 2 and agent 2 gives 2 tasks to agent 1
is the only one increasing welfare. This deal is not possible
with O-, C-, S-, or M-contracts.
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6.2 General Contract Nets

Corollary 6.20 (O-, C-, S-, M- ; Global Optima)

There are instances of the task allocation problem where no IR
sequence from the initial task allocation to the optimal one
exists using any pair or triple of O-, C-, S-, or M- contracts.
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6.2 General Contract Nets

Definition 6.21 (OCSM Nets)

A OCSM-contract is a pair 〈TTT ,ρρρ〉 of |AAA| × |AAA|matrices. An
element Tiii,jjj stands for the set of tasks that agent iii gives to
agent jjj. ρiii,jjj is the amount that iii pays to jjj.

How many OCSM contracts are there?
How much space is needed to represent one?
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6.2 General Contract Nets

Theorem 6.22 (OCSM-Nets Suffice)

Let |AAA| and |T | be finite. If a protocol allows OCSM-contracts,
any hill-climbing algorithm finds the globally optimal task
allocation in a finite number of steps without
backtracking.
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6 Coalitional Games
6.2 General Contract Nets

Proof.

An OCSM contract can move from any task allocation to any
other (in one step). So moving to the optimum is IR. Any
hill-climbing algorithm strictly improves welfare. As there
are only finitely many allocations, the theorem follows.
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6.2 General Contract Nets

Theorem 6.23 (OCSM-Nets are Necessary)

If a protocol does not allow a certain OCSM contract, then
there are instances of the task allocation problem where no
IR-sequence exists from the initial allocation to the optimal
one.
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6.2 General Contract Nets

Proof.

If one OCSM contract is not allowed, then the task allocation
graph contains two vertices without an edge. We let the
initial and the optimal allocation be these two vertices. We
construct it in such a way, that all adjacent vertices to the
vertex with the initial allocation have lower social welfare.
So there is no way out of the initial allocation.
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6.2 General Contract Nets

[?] consider the multiagent version of the TSP problem and
apply different sorts of contracts to it.

Several salesmen visit several cities on the unit square. Each
city must be visited by exactly one salesman. They all have
to return home and want to minimise their travel costs.

salesman = agent, task = city
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6 Coalitional Games
6.2 General Contract Nets

Experiments with up to 8 agents and 8 tasks. Initial allocation
randomly chosen.
Ratio bound (welfare of obtained local optimum divided by
global optimum) and mean ratio bound (over 1000 TSP
instances) were computed (all for fixed number of agents
and tasks). Global optimum was computed using IDA∗.
A protocol consisting of 5 intervals is considered. In each
interval, a particular contract type was considered (and all
possible contracts with that type): 1024 different sequences.
In each interval a particular order for the agents and the tasks
is used. First all contracts involving agent 1. Then all
involving agent 2 etc. Thus it makes sense to have
subsequent intervals with the same contract type.
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6.2 General Contract Nets

Table 1: The best Contract sequences.
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6.2 General Contract Nets

Table 2: Best, average and worst Contracts.
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6.2 General Contract Nets

Figure 17: Ratio bounds (second graph is zoomed in).
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6.2 General Contract Nets

Figure 18: Ratio bounds for the 4 best and single type sequences.
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6.2 General Contract Nets

Figure 19: Contracts performed and tried.
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6 Coalitional Games
6.2 General Contract Nets

1 Best protocol is 3.1% off the optimum.
2 12 best protocols are between 3% and 4% off the

optimum.
3 Single type contracts do not behave well.
4 More contracts are tried and performed in the second

interval (compared with the first).
5 The more mixture between contract types, the higher

the social welfare.
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6 Coalitional Games
6.3 Classes of Games

Idea: Consider a protocol (to build coalitions) as a
game and consider Nash-equilibrium.

Problem: Nash-Eq is too weak!

Definition 6.24 (Strong Nash Equilibrium)

A profile is in strong Nash-Eq if there is no subgroup that
can deviate by changing strategies jointly in a manner that
increases the payoff of all its members, given that
nonmembers stick to their original choice.

This is often too strong and does not exist.
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6.3 Classes of Games

Definition 6.25 (Monotone Games)

A CFG 〈AAA, vvv〉 is called monotone, if

vvv(C) ≤ vvv(D),

for every pair of coalitions C,D ⊆ AAA such that C ⊆ D.

Many games have this property, but there may be
communication/coordination costs. Or some players hate
others and do not want to be in the same coalition.
The next slide introduces a strictly stronger condition.
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6.3 Classes of Games

Definition 6.26 (Superadditive Games)

A CFG 〈AAA, vvv〉 is called superadditive, if

vvv(S ∪ T ) ≥ vvv(S) + vvv(T ),

where S, T ⊆ AAA and S ∩ T = ∅.

Lemma 6.27
Coalition formation for superadditive games is trivial.

Conjecture

All games are superadditive.
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6.3 Classes of Games

The conjecture is wrong, because the coalition process is
not for free:
communication costs, penalties, time limits.

Definition 6.28 (Subadditive Games)

A CFG 〈AAA, vvv〉 is called subadditive, if

vvv(S ∪ T ) � vvv(S) + vvv(T ),

where S, T ⊆ AAA and S ∩ T = ∅.

Coalition formation for subadditive games is trivial.
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6.3 Classes of Games

Superadditive Cover

Definition 6.29 (Superadditive Cover)

Given a game G = 〈AAA, vvv〉 that is not superadditive, we can
transform it to a superadditive game G∗ = 〈AAA, vvv∗〉 as follows

vvv∗(C) := maxCS∈CSCSCSCvvv(CS)

This game is called the superadditive cover of G.
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6.3 Classes of Games

Convex Games

Definition 6.30 (Convex Game)

A CFG 〈AAA, vvv〉 is convex, if for all coalitions T, S with T ⊆ S
and each player iii ∈ AAA \ S:

vvv(S ∪ {iii})− vvv(S) ≥ vvv(T ∪ {iii})− vvv(T )

Convex games are superadditive.
Superadditive games are monotone.
The other directions do not hold.
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6.3 Classes of Games

Example 6.31 (Treasure of Sierra Madre Game)

There are n people finding a treasure of many gold pieces in
the Sierra Madre. Each piece can be carried by two people,
not by a single person.

Example 6.32 (3-player majority Game)

There are three people that need to agree on something. If
they all agree, there is a payoff of 1. If just 2 agree, they get a
payoff of α (0 ≤ α ≤ 1). The third player gets nothing.
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6.3 Classes of Games

Example 6.33 (Parliament)

Suppose there are four parties and the result of the elections
is as follows:

1 A: 45 %,
2 B: 25 %,
3 C: 15 %,
4 D: 15 %.

We assume there is a 100 Mio Euro spending bill, to be
controlled by (and distributed among) the parties that win.

Version 1: Simple majority wins ( 50%).
Version 2: Any majority over 80% wins.

How do the vvv(S) look like in the last three examples?
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6.3 Classes of Games

Definition 6.34 (Payoff Vector)

A payoff vector for a CFG and a coalition
structure CS is a tuple 〈x1, . . . , xn〉 such that

1 xiii ≥ 0 and
∑|AAA|

iii=1 xiii = vvv(AAA),
2 ∀C ∈ CS :

∑
iii∈C xiii ≤ vvv(C).

Note that the last condition is only supposed to
hold for all coalitions in the given coalition
structure.

If
∑

iii∈C xiii  vvv(C) would mean that a coalition
gets more than its value, that is not possible.
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6 Coalitional Games
6.4 The Core and its refinements

Consider a CFG that is not necessarily superadditive (so the
grand coalition does not necessarily form). Assume that a
certain coalition structure CS forms.
Definition 6.35 (Core of a CFG)

The core of a CFG is the set of all pairs 〈CS, 〈x1, . . . , xn〉〉
of coalition structures (CS ∈ CSCSCSAAA) and payoff vectors such
that the following holds:

∀S ⊆ AAA :
∑
iii∈S

xiii ≥ vvv(S)

Here, the condition is supposed to hold for all S. We do not
want any set of agents to form a new coalition. It ensures
that only the grand coalition forms.
If
∑

iii∈S xiii � vvv(S), then these agents would form a coalition and
get a higher payoff than in CS.
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6.4 The Core and its refinements

When the grand coalition forms, we can simplify the last
definition.
Definition 6.36 (Core of Superadditive Games)

The core of a supperadditive CFG is the set of all payoff
vectors 〈x1, . . . , xn〉 such that the following holds:

∀S ⊆ AAA :
∑
iii∈S

xiii ≥ vvv(S)

Thus the core corresponds to the strong Nash equilibrium
mentioned in the beginning.

What about the core in the above examples?
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6.4 The Core and its refinements

Lemma 6.37
If 〈CS, 〈x1, . . . , xn〉〉 is in the core of a CFG 〈AAA, vvv〉, then
vvv(CS) ≥ vvv(CS′) for all coalition structures CS′ ∈ CSCSCSAAA.

Proof.

We can write vvv(CS) =
∑

iii∈AAA xiii =
∑

C′∈CS′ x(C ′) and
vvv(CS′) =

∑
C′∈CS′ vvv(C ′).

Because of the definition of the core, x(C ′) ≥ vvv(C ′) for all C ′

and therefore vvv(CS) ≥ vvv(C ′).
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6.4 The Core and its refinements

Theorem 6.38 (Core and superadditive cover)

Let a CFG G = 〈AAA, vvv〉 be given (not necessarily
superadditive). Then G has a non-empty core if
and only if its superadditive cover G∗ has a
non-empty core.

Proof exercise
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6.4 The Core and its refinements

Theorem 6.39 (Convex games and their cores)

Each convex CFG G = 〈AAA, vvv〉 has a non-empty core.

Proof.

Let π be a permutation of AAA and let Sπ(i) be the set of all
predecessors of i wrt. π.
We claim that for xi := vvv(Sπ(i) ∪ {i})− vvv(Sπ(i)), the core of
G contains 〈x1, . . . , xn〉.
It is easy to show that all xi are greater or equal to 0 and that
they all sum up to the value of the game ( exercise).
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(Proof of Theorem 6.39, cont.)
Assume there is a coalition C = {i1, . . . , is} such that
vvv(C)  x(C). Wlog we assume π(i1) ≤ . . . ≤ π(is). Obviously

vvv(C) = vvv({i1})− vvv(∅) + vvv({i1, i2})− vvv({i1}) + . . .+ vvv(C)− vvv(C \ {is})

Because of convexity (apply convexity to Tj := {i1, . . . , ij−1} and
Sj := {1, 2, . . . , ij − 1}) for all j:

vvv(Tj ∪ {ij})− vvv(Tj) ≤ vvv(Sj ∪ {ij})− vvv(Sj) = xij

Adding these pairs up, we get vvv(C) ≤ x(C), which is a
contradiction.
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6 Coalitional Games
6.5 Payoff Division: Shapley value and Banzhaf Index

We now assume w.l.o.g. that the grand coalition forms.
The payoff division should be fair between the agents,
otherwise they would leave the coalition.

Definition 6.40 (Dummies, Interchangeable)

Agent iii is called a dummy, if for all coalitions S with iii 6∈ S:

vvv(S ∪ {iii})− vvv(S) = vvv({iii}).

Agents iii and jjj are called interchangeable, if
for all coalitions S with iii ∈ S and jjj 6∈ S:

vvv(S \ {iii} ∪ {jjj}) = vvv(S)
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6.5 Payoff Division: Shapley value and Banzhaf Index

Marginal Contribution
The marginality axiom, introduced by Young in the 80’ies,
concentrates on the marginal contributions of a player in
two different games.

Definition 6.41 (Marginal Contribution in two games)

We consider two CFG games over the same coalition
structure, with values vvv and www. We say that agent iii is
marginally indifferent between vvv and www, if its marginal
contributions in all coalitions is the same in both games: for
all S ⊆ AAA \ {iii}

vvv(S ∪ {iii})− vvv(S) = www(S ∪ {iii})−www(S).
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6.5 Payoff Division: Shapley value and Banzhaf Index

Axioms for Payoff Division

Efficiency:
∑

iii∈AAA xiii = vvv(AAA).
Symmetry: If iii and jjj are interchangeable, then xiii = xjjj.
Dummies: For all dummies iii: xiii = vvv({iii}).
Additivity: For any two games vvv,www:

xv⊕wv⊕wv⊕w
iii = xvvviii + xwwwiii ,

where v ⊕ wv ⊕ wv ⊕ w denotes the game defined by
(v ⊕ wv ⊕ wv ⊕ w)(S) = vvv(S) +www(S).

Marginality: If an agent iii is marginally indifferent
between two games vvv,www, then it should get the
same payoff in both of them:

xvvviii = xwwwiii .
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6.5 Payoff Division: Shapley value and Banzhaf Index

Theorem 6.42 (Shapley-Value: 1st Characterisation)

For a CFG G = 〈AAA, vvv〉 there is only one payoff division
satisfying the first four axioms. It is called the Shapley
value of agent iii and is defined by

φiii(G) =
1

|AAA|!
∑

S⊆AAA\{iii}

(|AAA| − |S| − 1)!|S|!(vvv(S ∪ {iii})− vvv(S))

Theorem 6.43 (Shapley-Value: 2nd Characterisation)

For a CFG G = 〈AAA, vvv〉 there is only one payoff division
satisfying the efficiency, symmetry and marginality. It is
the Shapley value.
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6 Coalitional Games
6.5 Payoff Division: Shapley value and Banzhaf Index

The expected gain can be computed by taking a random
joining order and computing the Shapley value.

(|AAA| − S)! is the number of all possible joining orders of
the agents (to form a coalition).
There are |S|! ways for S to be built before iii’s joining.
There are (|AAA| − |S| − 1)! ways for the remaining agents
to form S (after iii).
(vvv(S ∪ {iii})− vvv(S)) is iii’s marginal contribution when
added to set S.
The Shapley value sums up the marginal contributions
of agent iii averaged over all joining orders.

J. Dix/J. Müller · Department of Informatics, TUC MAS and Games (MSc), SS 18 228



6 Coalitional Games
6.5 Payoff Division: Shapley value and Banzhaf Index

We have shown in Theorem 6.39 that convex
games have non-empty cores. In fact, we can
show a stronger statement.

Theorem 6.44 (Shapley and Core for convex games)

In each convex game, at least the Shapley value is
contained in the core.
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6.5 Payoff Division: Shapley value and Banzhaf Index

Definition 6.45 (Banzhaf Index)

For a CFG G = 〈AAA, vvv〉 the Banzhaf Index of agent iii is

βiii(G) =
1

2|AAA|−1

∑
S⊆AAA\{iii}

(vvv(S ∪ {iii})− vvv(S))

The Banzhaf Index satisfies all axioms but efficiency.
The following normalised Banzhaf index ηiii(G) is also often
considered:

ηiii(G) :=
βiii(G)∑
iii∈AAA βiii(G)

vvv(AAA).
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7 Social Choice and Auctions

Outline (1)

We deal with voting systems and discuss
some classical approaches;
an abstract framework to describe arbitrary voting
mechanisms: social choice theory, and
Arrow’s theorem and some variants thereof in this
framework.

We also consider auctions (deals between two agents).
They constitute one of the most important frameworks for
resource allocation problems between selfish agents. They
can be seen as an important application of mechanism
design, dealt with in Chapter ??.
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7 Social Choice and Auctions
7.1 Classical Voting Systems

Voting procedure

Agents give input to a mechanism: The outcome is taken as
a solution for the agents.

Non-ranking voting: Each agent votes for exactly one
candidate. Winners are those with a majority of
votes.

Approval voting: Each agent can cast a vote for as many
candidates as she wishes (at most one for each
candidate). Winners are those with the highest
number of approval votes.

Ranking voting: Each agent expresses his full preference
over the candidates. Computing the winning
can be complicated.
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7.1 Classical Voting Systems

Candidates and Voters
From now on we assume there is a fixed set of alternatives
(candidates, outcomes) O, in addition to the set of agents
AAA, the elements of which we call now voters.

Definition 7.1 (Beat and tie)

We say that a candidate o beats another candidate o′ (in
direct comparison) if the number of voters that strictly
prefer o to o′ is strictly greater than the number of voters
that strictly prefer o′ to o.
If both numbers are equal, we say that o ties o′ (in direct
comparison).

Often e.g. in the french elections, runoff systems are
considered: two candidates are singled out in the first
round, one of which is then selcted in the second round.
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7.1 Classical Voting Systems

Definition 7.2 (Condorcet- winner, -Set)

1 A candidate o is a Condorcet winner if o beats any other
candidate o′ (o′ 6= o).

2 A candidate o is a weak Condorcet winner if o beats or
ties any other candidate o′ (o′ 6= o).

3 The Condorcet set is the set of weak Condorcet
winners.

Note that sometimes the Condorcet winner is
called strict Condorcet winner.
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7.1 Classical Voting Systems

Condorcet helps

1 2 3
111 A B C
222 B C A
333 C B A

Figure 20: A Tie, but Condorcet helps.
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Condorcet does not help

1 2 3
111 A B C
222 B C A
333 C A B

Figure 21: Strict Condorcet rules out all candidates.

Comparing A and B: majority for A.
Comparing A and C: majority for C.
Comparing B and C: majority for B.
Desired Preference ordering: A > B > C > A
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7.1 Classical Voting Systems

Smith Set
Another interesting set is the following

Definition 7.3 (Smith set)

The Smith set is the smallest, non-empty set
S ⊆ O of candidates such that for each candidate
o ∈ S and each candidate o′ 6∈ S the following
holds: o beats o′.

There is a strong relation between the Condorcet
set and the Smith set. This will be treated in
more detail in the exercise class.
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7.1 Classical Voting Systems

Approval Voting

Definition 7.4 (Winner in Approval Voting)

A winner in approval voting is any candidate that received
at least as many votes as any other candidate.

Can we model the situation in Figure 21 in approval voting?

Lemma 7.5 (Approval Voting and Condorcet)

In approval voting, at least one of the winners is a weak
Condorcet winner.
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7.1 Classical Voting Systems

Variants of Borda
Definition 7.6 (Borda Protocol: Standard and Nauru)

In standard Borda, each voter gives its best candidate |O|
points, the second best gets |O| − 1 points, etc.

In Nauru Borda, any first preference as assigned 1 point,
any second just 1/2, any third just 1/3 and so on.

After all votes have been cast, they are summed up, across
all voters. Winners are those with the highest count.

Originally, Jean-Charles de Borda wanted his system to
determine a single winner. He also assumed all voters are
honest.
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Truncated Ballots
What, if voters do not want to express full preference on
all candidates: truncated ballots.

Nauru: All candidates must be ranked.
Kiribati: Rank only a subset (but this subset completely),

and all others get 0 points.
Modified BC: Points given depend on the number of

candidates ranked (in each individual ballot).
Problem with Kiribati: Tactical voting. Bullet votes are
more effective than fully ranked ballots.

Ties between candidates

Later we introduce weak orders: although they are total,
they allow for ties (candidates among which the voter is
indifferent).
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Winner turns loser and loser turns winner.

Agent Preferences
111 A � B � C � D
222 B � C � D � A
333 C � D � A � B
444 A � B � C � D
555 B � C � D � A
666 C � D � A � B
777 A � B � C � D

Borda count C wins: 20, B: 19, A: 18, D loses: 13
Borda count
without D A wins: 15, B: 14, C loses: 13

Figure 22: Winner turns loser and vice versa.
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Absolute Majority, but not elected

Example 7.7 (Nauru/Standard Borda, Plurality Voting)

1 2 3 4
51 voters A C B D
5 voters C B D A

23 voters B C D A
21 voters D C B A

Who wins and who should win???

1 Plurality voting:
2 Standard Borda:
3 Nauru Borda:
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Borda and Tactical Voting

Example 7.8 (Compromising and Burying)

We assume four cities M, N, K, and C want to become the
capital of the state. M has most voters but is far away from
the others. N, K, and C are close to the centre of the state.

1 2 3 4
42 % (M) M N C K
26 % (N) N C K M
17 % (K) K C N M
15 % (C) C K N M

Borda would elect N . How could voters of K change their
poll to ensure C is chosen and not N?
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7.1 Classical Voting Systems

Binary protocol: Pairwise comparison.

Take any two candidates and determine the
winner. The winner enters the next round, where
it is compared with one of the remaining
candidates.

Which ordering should we use?
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7.1 Classical Voting Systems

35% of agents have preferences C � D � B � A
33% of agents have preferences A � C � D � B
32% of agents have preferences B � A � C � D

C A

A

B C

B

B

C D

D

C A

A

D

C D

C

B D

B

C

B D

D

A B

A

A

C D

C

A D

A

A

B D

B

D C

C

B

C D

C

B D

B

C

A D

A

B D

B

A

Figure 23: Four different orderings and four alternatives.

Last ordering:
D wins, but all agents prefer C over D.

J. Dix/J. Müller · Department of Informatics, TUC MAS and Games (MSc), SS 18 247



7 Social Choice and Auctions
7.1 Classical Voting Systems

Coomb’s method: Each voter ranks all candidates in linear
order. If there is no candidate ranked first by a
majority of all voters, the candidate which is
ranked last (by a majority) is eliminated. The last
remaining candidate wins.

d’Hondt’s method: Each voter cast his votes. Seats are
allocated according to the quotient V

s+1
(V the

number of votes received, s the number of seats
already allocated).
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7.1 Classical Voting Systems

Nanson’s method: Compute the Borda scores of all
candidates and eliminate the candidate with the
lowest Borda score (using some tie breaking
mechanism). Then, proceed in the same way
with the remaining candidates, recomputing the
Borda score.

Proportional Approving voting: Each voter gives points 1, 1
2
,

1
3
, . . . , 1

n
for her candidates (she can choose as

many or few as she likes). The winning
candidates are those, where the sum of all
points is maximal (across all voters).
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7 Social Choice and Auctions
7.2 Formal model for social choice

Ballots of the voters
How should a general model for voting look like? What are fair
elections based on it?

Before determining such a model we need to answer the question

How should voters express their intentions?

Voters often have preferences over candidates: “A” is better than
“B”, but “C” is better than both of them. Only if “C” is not a
candidate, I would vote for “B”. What are properties of such an
ordering?

First try: Here are two “obvious” properties.
transitive: If “A” is better than “B” and “B” is better than “C”,

than “A” should be considered better than “C”.
no cycles: A voter should not be able to express that “A” is a

strictly better candidate than “B” and, at the same
time, “B” is strictly better than “A”.
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7.2 Formal model for social choice

Ballots of the voters (2)
Thus we could expresss the ballot of an agent as a dag, a directed
acyclic graph.

A

D

C

B

E

A

D

C

B

E

F

Figure 24: Two Examples of dags.
In all voting systems considered in Subsection 4.1, the voters’
ballot can be modelled with dags.

Dags are just strict partial orders: irreflexive and transitive
binary relations. Most ballots are even based on linear orders (no
indifference between any pair of candidates).

Cycles might make sense for non-strict orderings (a cycle might
model that all elements in it are of equal standing).
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7.2 Formal model for social choice

Ballots of the voters (3)
 We use binary relations for the ballot of an agent.

AAA set of agents, O set of possible outcomes.
(O could be AAA, a set of laws, or a set of candidates).

Preferences based on binary orderings≺≺≺iii

The preference order or ranking of agent iii is described by
a binary relation
≺≺≺iii ⊆ O ×O.

Which properties should we assume from such a binary
relation?
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7.2 Formal model for social choice

Some Terminology on Posets
Here are some important properties of binary relations ≺:
Reflexivity: For all x: x ≺ x.
Transitivity: For all x, y, z: if x ≺ y, y ≺ z then x ≺ z.
Antisymmetry: For all x: x ≺ y and y ≺ x implies x = y.

Totality: For all x, y: either x = y, or x ≺ y or y ≺ x.
Irreflexivity: For all x: not x ≺ x.
Asymmetry: If x ≺ y then not y ≺ x.

A (non-strict) partial order, denoted by � or 4 or ≤ or 6 or
5, is any relation satisfying reflexivity, transitivity and
antisymmetry.
A strict partial order, denoted by � or � or � or �, is any
relation satisfying irreflexivity, and transitivity (and therefore
also asymmetry).
Often, one simply writes ≺ or < to denote a strict order.
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7.2 Formal model for social choice

Ballots of the voters (4)
What are the right properties for≺≺≺iii?

To express dags: irreflexive, transitive (both impy
asymmetry) (strict partial orders �).
We could also use non-strict partial orders 5, which are in
one-to-one correspondence via:

5 is the reflexive closure of �,
� is the irreflexive kernel of 5.

How to express ties?

A partial order allows for incomparability: a and b might
simply not be ordered at all (in the first graph on Slide 252
elements C and E are tied). Voters have more freedom
when they are allowed not to order candidates.
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Ballots of the voters (5)

Second try: We could also consider total (or
linear) orders: they are transitive and strictly
total (for all a 6= b either a≺≺≺iiib or b≺≺≺iiia).

In that case, ties are not allowed: voters
have to take a decision for each pair of
candidates. So voters have less possibilities
to express their ballot.
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Ballots of the voters = Weak Orders
Orderings inbetween partial and total orders are the following:

Definition 7.9 (Weak Order, L(O))

Any binary relation--- satisfying transitivity and totality (for all
a, b: a---b or b---a ) is called a weak order (total preorder).
We denote by L(O) the set of all such binary relations over O (we
omit O if it is clear from context).

While weak orders rank all pairs of candidates, they allow ties: it is
perfectly possible that there are pairs a 6= b with a---b and b---a.

Thus a and b are indifferent: the weak order treats them as
equivalent. This can not happen with linear partial orders,
because they are antisymmetric.

Using partial orders, such ties have to be modelled as
incomparable. However, note the subtle differences between the
two concepts.
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Ballots of the voters = Weak Orders (cont.)
Any weak order induces a strict weak order≺≺≺iii:

a≺≺≺iiib iff a---iiib and not b---iiia: “iii strictly prefers b over a”.

≺≺≺iii is irreflexive and transitive, but not total anymore.

So we allow elements to be “equivalent” (or indifferent):

a∼∼∼iiib: a---iiib and b---iiia. “iii is indifferent between a and b”.

However, not any strict partial order can be obtained as
a strict weak order.

Attention

It is important not to confuse = and∼∼∼.
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Dag, weak orders, strict weak order
Here we illustrate the use of dags compared with weak
orders.

A

D

C

B

E

A

D

C

B

E

A

D

C

B

E

Figure 25: Equivalent modelings as dag (left), as weak order (middle),
and as strict weak order.
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Definition 7.10 (Preference Profile)

A preference profile for agents 1, . . . , |AAA| is a
tuple

〈---------1, . . . ,---------|AAA|〉 ∈ L|AAA| (:=
∏|AAA|

iii=1 L)

We often write ~-~-~- for 〈---------1, . . . ,---------|AAA|〉 if the set of
agents is clear from context.

So the weak orders---------iii do allow for ties (although
they are total). They are also called preferences
or rankings.
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Often, not all subsets of O are votable, only a subset
V ⊆ 2O \ {∅}. The simplest scenario is for V = {O}.
Each v ∈ V represents a possible “set of candidates”. The
voting model then has to select some of the elements of v.

Each agent votes independently of the others. But we also
allow that only a subset is considered. Let therefore be

U ⊆
|AAA|∏
iii=1

L(V ).

The set U represents the set of agents (and their preferences over
the candidates) participating at the election and casting their
votes.
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Election systems

In the following sections we introduce three
different election systems. The characterization of
the voters preferences is different in all of them:
Social choice functions: Voters express their

preferences by strict total orders≺≺≺≺≺≺≺≺≺.

Social choice correspondences: Voters express
their preferences by strict total orders≺≺≺≺≺≺≺≺≺.

Social welfare functions: Voters express their
preferences by weak orders---------.
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Election Systems
We have now a good idea about how to model the voters and
their preferences. How about the outcome of an election?
Social Choice Function (SCF): We define any

C∗∗∗ : V × U → O; (v, ~≺~≺~≺) 7→ o

as an election. The outcome is one single winner.
Social Choice Correspondence (SCC): We define any

W∗∗∗ : V × U → 2O; (v, ~≺~≺~≺) 7→ v′

as an election. The outcome is a set of winners.
Social Welfare Function (SWF): This approach views a

f∗∗∗ : U → L; ~-~-~- 7→ -∗-∗-∗
as an election: The outcome is a weak order, which
determines the winners of the election (the maximal
(or top) elements, for example.)
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Dictators
In the next sections we show that under reasonable
conditions on the election systems, there simply does not
exist a fair election. More specifically we show results of the
form

Dictators always exist

For each of the election systems defined, under reasonable
assumptions on the election process, there is only a
dictatorship possible.

What are the most preferred elements of---?

top(---) = {o ∈ O | ∀o′ ∈ O : o---o′ ⇒ o′---o}
bot(---) = {o ∈ O | ∀o′ ∈ O : o---o′ ⇒ o---o′}

For a strict total order≺≺≺, top(≺≺≺) and bot(≺≺≺) are singletons.
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Dictators (2)
Informally, a dictator is an agent iii, such that whatever the
profile of all voters ~≺~≺~≺ looks like, the result of the election is
always the one that agent iii puts forward.
Let now U ⊆

∏|AAA|
iii=1 L(V ) be given.

Social Choice Function: A dictator is an agent iii if
for all ~≺~≺~≺ : top(≺≺≺≺≺≺≺≺≺iii|v) = {C∗∗∗(v, ~≺~≺~≺)}

Social Choice Correspondence: A dictator is an agent iii if
for all ~≺~≺~≺ : top(≺≺≺≺≺≺≺≺≺iii|v) ⊆ W∗∗∗(v, ~≺~≺~≺)

Social Welfare Function: A dictator is an agent iii if
for all ~-~-~- : for all o, o′ ∈ O, o≺≺≺≺≺≺≺≺≺iii o

′ ⇒ o≺≺≺* o′

where≺≺≺* is the strict version of the weak order
f∗∗∗(〈---1, . . . ,---|AAA|〉)
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This section: ballots are strict total orders≺≺≺.

Definition 7.11 (Social choice function (SCF))

A social choice function is any function

C∗∗∗ : V × U → O; (v, ~≺~≺~≺) 7→ o

where o ∈ v.
A SCF returns exactly one “winner”. E.g. plurality
voting where ties are broken in a predefined way
(e.g. lexicographic ordering).
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Definition 7.12 (Unanimity, Monotonicity)

A SCF C∗∗∗ satisfies

surjectivity: for any v ∈ V and outcome o ∈ v there is a profile ~≺~≺~≺
such that C∗∗∗(v, ~≺~≺~≺) = o.

unanimity: for any profile ~≺~≺~≺, v ∈ V and outcome o ∈ v:

If for all 1 ≤ iii ≤ |AAA| : o = top(≺≺≺iii|v) then C∗∗∗(v, ~≺~≺~≺) = o,

Unanimity implies surjectivity.

strong monotonicity: for any ~≺~≺~≺, v ∈ V and o = C∗∗∗(v, ~≺~≺~≺) ∈ v:
if ~≺′~≺′~≺′ is a different profile such that

for all o′ 6= o and iii: “o′≺≺≺iiio implies o′≺′≺′≺′iiio”,
then C∗∗∗(v, ~≺′~≺′~≺′) = o.

Strong monotonicity means: any additional support for a
winning alternative, should only benefit that alternative.
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Example 7.13 (Plurality with runoff)

This is the system used in the french elections. Assume that

6 voters support B≺≺≺C≺≺≺A
5 voters support C≺≺≺A≺≺≺B
6 voters support A≺≺≺B≺≺≺C

Under plurality with runoff, A and C make it to the second
round, where A wins with 11 to 6.

Suppose 2 voters of the last group change their preferences
and behave like the first group. Thus there is additional
support for A.

But now, A and B make it to the second round, where B
beats A with 9 to 8.
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Theorem 7.14 (May (1952))

If there are only two candidates, there is a SCF which is not
dictatorial but yet satisfies unanimity and strong
monotonicity.

An example of such a SCF is simple majority voting, called
plurality voting when there are more than two candidates.

In fact, we get a complete characterization if we assume two
more, very natural properties expressing that a choice
function should by symmetric wrt. (1) individuals
(anonymity) , and (2) alternatives (neutrality). As this result
holds in the general case for correspondences, we refer to
Slide 285.
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In an exercise, you have to show that surjectivity together
with strong monotonicity implies unanimity.

Theorem 7.15 (Muller-Satterthwaite (1977))

If there are at least 3 candidates, then any SCF satisfying
surjectivity and strong monotonicity must be dictatorial.

What about plurality voting?

Suppose we fix a ofix ∈ O, and define a SCF by mapping any
ranking profile to ofix. Is that SCF strongly monotone? Is it
non-dictatorial? Is it unanimous? What sort of properties
does it not satisfy?
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Decisive sets
An important proof technique is that of decisive sets.
Intuitively, a set of agents G is decisive on a pair (p, o), if p
cannot be a winner, if all agents in G put p below o. Note:
this is among all ~≺~≺~≺.

Definition 7.16 (Decisive sets G ⊂ AAA)

A set G ⊂ AAA is called decisive for the pair (p, o) ∈ O2, if
for all ~≺~≺~≺: “for all iii ∈ G: p≺≺≺iii o” implies C∗∗∗(O, ~≺~≺~≺) 6= p .

Definition 7.17 (Independence)

A SCF C∗∗∗ satisfies the Independence property, if the
following holds: If C∗∗∗(O, ~≺~≺~≺) = o, then C∗∗∗(O, ~≺′~≺′~≺′) 6= p for all
p 6= o and all ~≺′~≺′~≺′ with “for all iii: p≺≺≺iiio iff p≺′≺′≺′iiio”.
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Contraction-Lemma
Two observations are important:

The grand coalition AAA is decisive on any pair (p, o) (this
follows from surjectivity and strong monotonicity).
 Exercise.
A singleton set {ddd} is decisive on any pair (p, o) if and
only if ddd is a dictator.

Contraction-Lemma

Let G ⊆ AAA with | G |≥ 2 be decisive on all pairs (p, o) ∈ O2

and G = G1 ∪̇G2 (meaning G1 ∩G2 = ∅ and G = G1 ∪G2).
Then G1 or G2 is decisive on all pairs (p, o) ∈ O2.

If we can prove the contraction lemma under some
assumptions, then this implies that there is a dictator (using
our two observations above).
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Theorem of Muller-Satterthwaite (1977) (1)

Proof of Theorem 7.15.

Claim: G ⊂ AAA is decisive on any pair (p′, o′) ∈ O2, if the
following holds: G = {iii ∈ AAA : p≺≺≺iii o} s.t. their ranking
ensures C∗∗∗(O, ~≺~≺~≺) 6= p.  whiteboard.
We then show that strong monotonicity implies
independence. Hint: Given a profile ~≺~≺~≺ consider the
following profile ~≺′′~≺′′~≺′′ and apply strong monotonicity
(twice): “o≺′′iii≺′′iii≺′′iii o′” iff: o≺≺≺iiio

′ and o, o′ are in each≺′′iii≺′′iii≺′′iii ranked
among the two top places (o, o′ are the two outcomes in
the independence property).
Then we show the Contraction-Lemma (in the proof we
need the independence property).
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Theorem of Muller-Satterthwaite (1977) (2)

Proof (cont.)

We prove the Contraction lemma. So
G = G1 ˙∪G2 is given. We construct a ranking
profile ~≺~≺~≺ as follows.

for all iii ∈ G1: q≺≺≺iiip≺≺≺iiio,
for all iii ∈ G2: o≺≺≺iiiq≺≺≺iiip,
for all iii ∈ AAA \G: p≺≺≺iiio≺≺≺iiiq,
all other o′ ∈ O are ranked below o, p, q by all
agents iii.

Because G is decisive on all pairs, q can not be
the winner. So either o or p is the winner.
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Theorem of Muller-Satterthwaite (1977) (3)

Proof (cont.)

p is the winner: Only those in G2 rank o below p.
Therefore G2 is decisive (using our
Claim on Slide 274).

o is the winner: Only those in G1 rank q below o.
Independence implies that q looses
against o in each profile in which exactly
the agents from G1 rank q below o.
Therefore G1 is decisive.
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Manipulation
Can voters hide their true preferences and use another
ballot to achieve better results?

Example 7.18 (Plurality Voting)

49 %: Nader ≺≺≺ Gore ≺≺≺ Bush
20 %: Bush ≺≺≺ Nader ≺≺≺ Gore
20 %: Nader ≺≺≺ Bush ≺≺≺ Gore
11 %: Bush ≺≺≺ Gore ≺≺≺ Nader

If the last group of voters change their preferences by
putting their favorite at the end, then they achieve a better
result overall! (Compare with Example 7.8 on Slide 245.)

Can we find choice functions where such manipulations
are not possible?
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Strategy-Proofness
Earlier, in Definition 3.18 on Slide 49 we have introduced the
notation using−i−i−i to denote a profile without agent iii’s
entry. We are using this notation here as well.

Definition 7.19 (Strategy-Proofness)

A social choice function C∗∗∗ is called strategy-proof, if there
is no agent iii and profile 〈~≺~≺~≺−i−i−i,≺′≺′≺′iii〉 such that

C∗∗∗(O, ~≺~≺~≺)≺≺≺iiiC
∗∗∗(O, 〈~≺~≺~≺−i−i−i,≺′≺′≺′iii〉)

We compare the profile 〈≺≺≺111, . . . ,≺≺≺i−1i−1i−1,≺′≺′≺′iii, . . . ,≺≺≺AAA〉, in which
agent iii misrepresents her true preference≺≺≺iii, with the real
profile 〈≺≺≺111, . . . ,≺≺≺i−1i−1i−1,≺≺≺iii, . . . ,≺≺≺AAA〉.
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Theorem of Gibbard and Satterthwaite
Lemma 7.20

Strategy-proofness implies strong monotonicity.

Proof.
We assume that a SCF is not strongly monotone and show that it is not
strategy-proof. So we assume there is o 6= o′ and ~≺~≺~≺, ~≺′~≺′~≺′ s.t.

C∗∗∗(O, ~≺~≺~≺) = o, and C∗∗∗(O, ~≺′~≺′~≺′) = o′, and

for all iii ∈ AAA, for all p ∈ O \ {o}: p≺≺≺iiio implies p≺′≺′≺′iiio.

We are now modifying ~≺~≺~≺ as follows. For iii = 111,222, . . . ,nnn we replace
successively≺≺≺iii by≺′≺′≺′iii, until the winner of the new action profile under
C∗∗∗ is no more o but somebody else (which must happen, because at the
end it is o′). Let jjj be this agent.
Because we can adapt our assumption to this new situation, we
assume wlog that ~≺~≺~≺, ~≺′~≺′~≺′ differ only at the entry jjj. So wlog we can use
the notation o′ as in our assumption.
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Theorem of Gibbard and Satterthwaite (2)

Proof (cont.)

Case 1: “o′≺′jjj≺
′
jjj≺′jjjo”. If jjj’s true preferences are as in≺′jjj≺

′
jjj≺′jjj,

then it pays off for jjj to vote as in≺≺≺jjj (to
ensure o is winning, and not o′.) So it is
not strategy-proof.

Case 2: “not o′≺′jjj≺
′
jjj≺′jjjo”. Then “not o′≺≺≺jjjo”, therefore

o≺≺≺jjjo
′. If jjj’s true preferences are as in≺≺≺jjj,

then it pays off for jjj to vote as in≺′jjj≺
′
jjj≺′jjj (to

ensure o′ is winning, and not o). So it is
not strategy-proof.
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Theorem of Gibbard and Satterthwaite (3)

Theorem 7.21 (Gibbard-Satterthwaite (1973/1975))

If there are at least 3 candidates, then any SCF
satisfying surjectivity and strategy-proofness
must be dictatorial.
Using Lemma 7.20 this is just a corollary to
Theorem 7.15.

Note that we could replace surjectivity by the
stronger unanimity.
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7.4 Social Choice
Correspondences
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This section: ballots are strict total orders≺≺≺. We also
assume V = O in order to simplify notation.

Definition 7.22 (Social choice correspondence)

A social choice correspondence is any function

W∗∗∗ : U → 2O; ~≺~≺~≺ 7→ v

where v 6= ∅.
A correspondence returns a nonempty set of winners.

The Borda rule is a typical example of a correspondence.

Impossibility results similar to Theorem 7.15 are rare. The
most important one is due to Duggan and Schwartz: See
Theorem 7.28 on Slide 291 .
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Definition 7.23 (Positive responsiveness)

A SCC W∗∗∗ satisfies

positive responsiveness: for any profile ~≺~≺~≺, o ∈ O:
if o ∈W∗∗∗(~≺~≺~≺) then W∗∗∗(~≺′~≺′~≺′) = {o}, provided that ~≺′~≺′~≺′ is
a different profile such that for all o′ 6= o 6= o′′ and iii

the following holds:

o′≺≺≺iiio implies o′≺′≺′≺′iiio, and o′≺≺≺iiio
′′ iff o′≺′≺′≺′iiio′′.

Intuitively, this property means that if o is among the winners and
at least one voter raises o up, then o should become the sole
winner. This is very intuitive in case there are only two candidates!
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Anonymity and neutrality

Definition 7.24 (Anonymity and Neutrality)

W∗∗∗ satisfies anonymity if for all permutations π on
{1, . . . , |AAA|}:

W∗∗∗(〈≺≺≺≺≺≺≺≺≺1, . . . ,≺≺≺≺≺≺≺≺≺|AAA|〉) = W∗∗∗(〈≺≺≺≺≺≺≺≺≺π(1), . . . ,≺≺≺≺≺≺≺≺≺π(|AAA|)〉)

W∗∗∗ satisfies neutrality if for all permutations π on O

π(W∗∗∗(~≺~≺~≺))) = W∗∗∗(π(~≺~≺~≺)),

where π(~≺~≺~≺) is defined componentwise and π(≺≺≺≺≺≺≺≺≺iii) is defined
in the obvious way: o π(≺≺≺≺≺≺≺≺≺iii) o

′ iff: π(o)≺≺≺≺≺≺≺≺≺iii π(o′).

Which properties satisfies the SCC that always declares
all candidates as winners;
the two top choices of plurality voting as winners?
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Only two candidates: |O| = 2

Theorem 7.25 (May (1952))

Assume there are only two candidates, |O| = 2. A
SCC W∗∗∗ satisfies anonymity, neutrality, and
positive responsiveness if and only if W∗∗∗ is
simple majority voting.

Assume there are only 2 candidates and 2 voters,
and we are considering a social choice function
C∗∗∗ (not a correspondence).  Then the choice
function can not satisfy both anonymity and
neutrality.
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Weak Monotonicity

There is a weaker version of the responsiveness
condition, namely weak monotonicity, when we
replace

“W∗∗∗(~≺′~≺′~≺′) = {o}” by o ∈W∗∗∗(~≺′~≺′~≺′)

Does Theorem 7.25 hold for weak
monotonicity instead of positive
responsiveness?
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Optimistic and pessimistic voters

Strategy-proof in Definitions 7.27 and ?? rules
out manipulability by untruthful voting: by
misrepresenting their true preferences, voters
should not be able to get overall better results.

Social choice correspondences determine sets of
winners (not just single winners).

 We need to rank such sets.
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Optimistic and pessimistic voters (2)

Definition 7.26 (Optimist and pessimists)

An agent iii is an optimist, if she ranks X higher than Y ,
whenever top(≺≺≺iii|Y )≺≺≺iii top(≺≺≺iii|X).

An agent iii is a pessimist, if she ranks X higher than Y ,
whenever bot(≺≺≺iii|Y )≺≺≺iii bot(≺≺≺iii|X).

By slightly abusing notation, we also write Y≺≺≺iiiX.

As we are considering strict linear orders, top and bottom
elements are always unique.
But even in the case of weak orders all maximal elements
(and all minimal elements) are indifferent to each other, so
both definitions are well-defined (see Slide 258).
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Strategy-Proofness for correspondences

Definition 7.27 (Strategy-Proofness)

A social choice correspondence W∗∗∗ is called
strategy-proof, if there is no agent iii, profile ~≺~≺~≺ and ranking
≺′≺′≺′iii such that for all v ∈ V

W∗∗∗(〈~≺~≺~≺−i−i−i,≺≺≺iii〉)≺≺≺iiiW
∗∗∗(〈~≺~≺~≺−i−i−i,≺′≺′≺′iii〉)

We compare the profile 〈≺≺≺111, . . . ,≺≺≺i−1i−1i−1,≺′≺′≺′iii, . . . ,≺≺≺AAA〉, in which
agent iii misrepresents her true preference≺≺≺iii, with the real
profile 〈≺≺≺111, . . . ,≺≺≺i−1i−1i−1,≺≺≺iii, . . . ,≺≺≺AAA〉.
Note that we consider the relation
W∗∗∗(〈~≺~≺~≺−i−i−i,≺≺≺iii〉)≺≺≺iiiW

∗∗∗(〈~≺~≺~≺−i−i−i,≺′≺′≺′iii〉) only for optimistic or
pessimistic voters iii (see Definition 7.26).
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Theorem 7.28 (Duggan/Schwartz (2000))

We assume that there are at least 3 candidates.
Then any SCC that is nonimposed (for each o ∈ O
there is ~≺~≺~≺ s.t. W∗∗∗(~≺~≺~≺) = {o}) and strategy-proof
for both optimistic and pessimistic voters is
dictatorial.
What is the importance of the nonimposed
property?
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The proof is based on several lemmas. It has striking similarity to
the proof of Gibbard/Satterthwaite. Important concepts are down
monotonicity and dictating sets (corresponding to decisive sets).

Definition 7.29 (Down-monotonicity)

Suppose we have a profile ~≺~≺~≺ where W∗∗∗(~≺~≺~≺) is a singleton
and the following holds: If we modify ~≺~≺~≺ by letting one
agent move a losing alternative down one spot (obtaining
profile ~≺′~≺′~≺′), then W∗∗∗(~≺~≺~≺) = W∗∗∗(~≺′~≺′~≺′).
Then we call W∗∗∗ down-monotone for singleton winners.

Lemma 7.30
A SCC W∗∗∗ satisfying strategy-proofness for both
optimistic and pessimistic voters also satisfies
down-monotonicity for singleton winners.

J. Dix/J. Müller · Department of Informatics, TUC MAS and Games (MSc), SS 18 292



7 Social Choice and Auctions
7.4 Social Choice Correspondences

Definition 7.31 (Dictating Sets GGG, pGGGo)

Let GGG ⊆ AAA a group of agents and p, o ∈ O. We denote by
pGGG

W∗∗∗
o the fact that W∗∗∗(~≺~≺~≺) 6= {p} for all profiles ~≺~≺~≺ in which

all agents from GGG rank o above p.
A set GGG ⊆ AAA is called dictating for W∗∗∗, if pGGGW∗∗∗

o holds for all
pairs (p, o).

Lemma 7.32
Suppose GGG ⊆ AAA, p, o ∈ O, and pGGGW∗∗∗

o. Let o 6= o′ 6= p and
GGG = GGG1∪̇GGG2.
Then we have o′GGG

W∗∗∗

1 o or pGGG
W∗∗∗

2 o
′.
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Lemma 7.33
If W∗∗∗ is down-monotonic for singleton winners and
nonimposed, then the set of all agents is a dictating set.

Lemma 7.34
We assume SCC W∗∗∗ satisfies strategy-proofness for both
optimistic and pessimistic voters.

Let GGG be a dictating set. If it is the disjoint union of sets GGG1

and GGG2, then one of these sets is dictating too.
There is an agent whose maximal element is the unique
winner, whenever W∗∗∗(~≺~≺~≺) is a singleton.
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7.5 Social Welfare Functions
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7.5 Social Welfare Functions

In this section agents ballots are weak orders---. We also use
o≺≺≺iiio

′ to denote “o---o′ and not o′---o”: o′ is strictly greater than o.

Definition 7.35 (Social welfare function)

A social welfare function is any function

f∗∗∗ : U → L; (---1, . . . ,---|AAA|) 7→ -∗-∗-∗

For each V ⊆ 2O \ {∅} the function f∗∗∗ w.r.t. U induces a choice
correspondence C〈---1,...,---|AAA|〉 as follows:

C〈---1,...,---|AAA|〉 =def

{
V −→ V
v 7→ top(-∗-∗-∗|v)

Each tuple ~--- determines the election for all possible v ∈ V .
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What are desirable properties for f∗∗∗?

Weak Pareto Efficiency:
for all o, o′ ∈ O: (∀iii ∈ AAA : o≺≺≺iii o

′) implies o≺≺≺∗≺≺≺∗≺≺≺∗o′.
Independence of Irrelevant Alternatives (IIA):
for all o, o′ ∈ O:

(∀iii ∈ AAA : o≺≺≺iii o
′ iff o≺′≺′≺′iii o′) ⇒ (o≺≺≺∗≺≺≺∗≺≺≺∗ o′ iff o≺≺≺′∗≺≺≺′∗≺≺≺′∗ o′),

(∀iii ∈ AAA : o---iii o
′ iff o-′-′-′iii o′) ⇒ (o---∗---∗---∗ o′ iff o---′∗---′∗---′∗ o′))

(∀iii ∈ AAA : o∼∼∼iii o
′ iff o∼′∼′∼′iii o′) ⇒ (o∼∼∼∗∼∼∼∗∼∼∼∗ o′ iff o∼′∼′∼′∗∼′∼′∼′∗∼′∼′∼′∗ o′))

IIA expresses that the social ranking of two alternatives
does only depend on the relative individual rankings of
these alternatives.

Note that this implies in particular
(∀iii ∈ AAA : ---iii|v =-′-′-′iii|v)

⇒
∀o, o′ ∈ v, ∀v′ ∈ V s.t. v ⊆ v′ : (o≺≺≺∗≺≺≺∗≺≺≺∗|v′ o′ iff o≺≺≺′∗≺≺≺′∗≺≺≺′∗|v′ o′)
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Shouldn’t we also require in the pareto
efficiency condition that

(∀iii ∈ AAA : o---iii o
′) implies o---∗---∗---∗o′ ?

The answer is no, the stated condition, weak
pareto efficiency, is perfectly sufficient for
proving Arrows theorem. The stronger
condition, called pareto efficiency, is not
needed. Note that for strict linear orders, there
is no such distinction.
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Example 7.36 (Which champagne is the best?)

Suppose you go out for dinner and you want to start with a
champagne.

The waiter gives you the choice between a Blanc de
Blancs or a Blanc de Noirs (both grands crus from
respectable houses)
You choose a Blanc de Blancs.
Then the waiter returns and mentions that they also
have a Rosé.
“Oh, in that case, I take a Blanc de Noirs.”

In this example, an irrelevant alternative (the Rosé) does
matter.
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Plurality Vote
The simple plurality vote protocol does not satisfy the IIA.

We consider 7 voters (AAA = {111,222, . . . ,777}) and O = {A,B,C,D},
V = {{A,B,C,D}, {A,B,C}}. The columns in the following table represent
two different preference orderings of the voters (black and red).

≺≺≺≺≺≺≺≺≺1 (≺≺≺≺≺≺≺≺≺1) ≺≺≺≺≺≺≺≺≺2 (≺≺≺≺≺≺≺≺≺2) ≺≺≺≺≺≺≺≺≺3 (≺≺≺≺≺≺≺≺≺3) ≺≺≺≺≺≺≺≺≺4 (≺≺≺≺≺≺≺≺≺4) ≺≺≺≺≺≺≺≺≺5 (≺≺≺≺≺≺≺≺≺5) ≺≺≺≺≺≺≺≺≺6 (≺≺≺≺≺≺≺≺≺6) ≺≺≺≺≺≺≺≺≺7 (≺≺≺≺≺≺≺≺≺7)

A 1 (2) 1 (2) 1 (1) 1 (1) 2 (2) 2 (2) 2 (2)
B 2 (3) 2 (3) 2 (2) 2 (2) 1 (1) 1 (1) 1 (1)
C 3 (4) 3 (4) 3 (3) 3 (3) 3 (3) 3 (3) 3 (3)
D 4 (1) 4 (1) 4 (4) 4 (4) 4 (4) 4 (4) 4 (4)

Let≺≺≺∗≺≺≺∗≺≺≺∗ be the solution generated by ~≺≺≺≺≺≺≺≺≺ and≺≺≺∗≺≺≺∗≺≺≺∗ the solution generated by the ~≺≺≺≺≺≺≺≺≺.
Then we have for iii = 1, . . . , 7: B≺≺≺≺≺≺≺≺≺iii A iff B≺≺≺≺≺≺≺≺≺iii A, but B≺≺≺∗≺≺≺∗≺≺≺∗A and A≺≺≺∗≺≺≺∗≺≺≺∗B. The
latter holds because on the whole set O, for≺≺≺∗≺≺≺∗≺≺≺∗ A gets selected 4 times and B
only 3 times, while for≺≺≺∗≺≺≺∗≺≺≺∗ A gets selected only 2 times but B gets still selected 3
times. The former holds because we even have≺≺≺≺≺≺≺≺≺iii|{A,B,C} =≺≺≺≺≺≺≺≺≺iii|{A,B,C}.
The introduction of the irrelevant (concerning the relative ordering of A and B)
alternative D changes everything: the original majority of A is split and
drops below one of the less preferred alternatives (B).
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Theorem 7.37 (Arrow (1951))

We assume that there are at least two
voters and three candidates (|O| ≥ 3). If
the SWF f∗∗∗ satisfies Weak Pareto
Efficiency and IIA, then there always
exists a dictator.
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Proof (of Arrows theorem).

The proof is the third proof given by John Geanakoplos
(1996) and based on the following

Lemma 7.38 (Strict Neutrality)

We assume Pareto Efficiency and IIA and consider two
pairs of alternatives a, b and α, β. Suppose each voter strictly
prefers a to b or b to a, i.e. for all iii: a≺≺≺iii b or b≺≺≺iii a. Suppose
further that each voter has the same preference for α, β as she
has for a, b.

Then either a≺∗≺∗≺∗ b and α≺∗≺∗≺∗ β or b≺∗≺∗≺∗ a and β≺∗≺∗≺∗ α.
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A simple corollary is the following:

Corollary 7.39 (Extremal Lemma)

Let the social welfare function f∗∗∗ satisfy Pareto
Efficiency and IIA. Let o ∈ O and suppose each
voter iii puts o either on the very top (unique top
element wrt.---iii) or to the very bottom (unique
bottom element wrt.---iii).
Then o is either a unique bottom or a unique top
element of-∗-∗-∗.
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Proof (of the lemma).

We assume wlog that (a, b) is distinct from (α, β) and that
b-∗-∗-∗ a (we have to show the preference is strict).

We construct a different profile 〈---′1, . . . ,---′|AAA|〉 obtained as
follows (for each iii):

If a 6= α, we change---iii by moving α just strictly above a.
If b 6= β, we change---iii by moving β just strictly below b.

This can be done by maintaining the old preferences
between α and β (as preferences between a and b are strict).
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By pareto efficiency, we have a≺′∗≺′∗≺′∗ α (for α 6= a)
and β≺′∗≺′∗≺′∗ b (for β 6= b).
By IIA, we have b-′∗-′∗-′∗ a. Using transitivity, we get
β≺′∗≺′∗≺′∗ α.
By IIA again, we also get β≺∗≺∗≺∗ α (because α≺′≺′≺′iiiβ iff
α≺≺≺iiiβ).

We now reverse the roles of (a, b) with (α, β) and
apply IIA again to get b≺∗≺∗≺∗ a. �
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The proof of Arrows theorem is by considering two
alternatives a, b and the profile where a≺ iii≺ iii≺ iii b for all agents iii.
By pareto efficiency, a≺∗≺∗≺∗ b. Note that this reasoning is
true for all rankings with the same relative preference
between a and b.

We now consider a sequence of profiles 〈≺≺≺l111, . . . ,≺≺≺l|AAA|〉 (from
l = 0, . . . , |AAA|, starting with the one described above (l = 0)),
where in step l, we let all agents numbered ≤ l change their
profile by moving a strictly above b (leaving all other
rankings untouched). In fact, only one agent, number lll
changes its ranking in step l.
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We consider the rankings≺l∗≺l∗≺l∗ obtained from ~≺≺≺l.
There must be one step, let’s call it ddd, where
a≺d−1∗≺d−1∗≺d−1∗ b but b≺d∗≺d∗≺d∗ a (because of pareto efficiency
and strict neutrality).

Again: this reasoning is true not just for one
profile 〈≺≺≺l111, . . . ,≺≺≺l|AAA|〉, but for all such profiles
with the same relative ranking of a and b.

We claim that ddd is a dictator.
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Take any pair of alternatives α, β and assume wlog β≺≺≺dd α
(otherwise the following argument works as well for α≺≺≺dd β ).

ddd is a dictator, when we can show β≺d∗≺d∗≺d∗α.

Take c 6∈ {α, β} (because |O| ≥ 3) and consider the new profile
〈≺≺≺′111, . . . ,≺≺≺′|AAA|〉 obtained as follows from 〈≺≺≺d111, . . . ,≺≺≺d|AAA|〉:

for 1 ≤ iii � d: we put c on top of each≺≺≺diii.
for d: we put c inbetween α and β.

for d � iii ≤ |AAA|: we put c to the bottom of each≺≺≺d!iii.

We are changing the profile 〈≺≺≺d111, . . . ,≺≺≺d|AAA|〉 by moving c around in
a very particular way.

We apply strict neutrality to the pair 〈c, β〉 and 〈a, b〉. Because
both pairs have the same relative ranking in 〈≺≺≺′111, . . . ,≺≺≺′|AAA|〉, we
have β≺d∗≺d∗≺d∗c.
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Now we consider the new profile 〈≺≺≺′′111, . . . ,≺≺≺′′|AAA|〉 obtained as
follows from 〈≺≺≺d111, . . . ,≺≺≺d|AAA|〉:

for 1 ≤ iii � d: we put c to the bottom of each≺≺≺diii.
for d: we put c in between α and β.
for d � iii ≤ |AAA|: we put c to the top of each≺≺≺diii.

We now apply strict neutrality to the pair (α, c) and (a, b).
Because both pairs have the same relative ranking in
〈≺≺≺′′111, . . . ,≺≺≺′′|AAA|〉, we have c≺d∗≺d∗≺d∗α.

By transitivity: β≺d∗≺d∗≺d∗α. �
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Ways out (of Arrow’s theorem):
1 Choice function is not always defined.
2 Independence of alternatives is dropped.
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