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What Song the Syrens sang,

or what name Achilles assumed
when he hid himself among women,
though puzzling Questions,

are not beyond all conjecture.

Sir Thomas Browne
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Time and place: Monday, Tuesday 10-12.
Exercises: See schedule (7 exercises in total).

www.in.tu-clausthal.de/index.php?id=cig_logic-2018

Visit regularly!

There you will find important information about
the lecture, documents, exercises et cetera.

Organization: Tobias Ahlbrecht;
Exercise class: A. Mantel, . Schwede;
Exam: tbd
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What is this course about?

This course is about logic based formal methods and how to use
them for verification in computer science.

It rigorously defines the language and semantics of
m sentential logic (SL) and
m first-order logic (FOL).
We introduce the notion of a model, and show how hardware and

software systems can be modelled within this framework. We also
consider

m semantic entailment vs. syntactic derivability

of formulae and how these two notions are related through
correctness and completeness. Completeness is formally proved
for SL and extensively discussed for FOL (in the form of
refutation completeness).
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What is this course about? (cont.)

Both logics are applied to important verification problems:

m SL and its extension LTL for verifying linear temporal
properties in concurrent systems, and

m FOL for verifying input/output properties of programs (the
Hoare calculus).

We show how the resolution calculus for FOL leads to PROLOG,
a programming language based on FOL.

We also show that SL leads to a declarative version of PROLOG:
Answer Set Programming (ASP), that can be used to solve
problems expressible on the second level of the polynomial
hierarchy.

While ASP is not a full-fledged programming language, it can be
used for many naturally ocurring problems and it allows to model
them in a purely declarative way.
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Lecture Overview

Introduction (1 lecture)

Sentential Logic (SL) (3 lectures)
Verification I: Reactive Systems (3 lectures)
First-Order Logic (FOL) (2,5 lectures)
Verification ll: Hoare Calculus (2,5 lectures)
. From FOL to PROLOG (2 lectures)

PROLOG (3 lectures)

NoLwREWNS
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1. Introduction

Introduction
m What s AI?
m Logic: From Plato To Zuse

m Verification
m Verifying reactive systems
= Verifying programs

m References
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Content of this chapter (1):

Defining Al: There are several interpretations of
AL. They lead to scientific areas ranging
from Cognitive Science to Rational
Agents.

History: We discuss some important
philosophical ideas in the last three
millennia and touch some events that
play a role in later chapters (syllogisms
of Aristotle, Ars Magna).
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Content of this chapter (2):

Logic-Based Al since 1958: Al came into being
in 1956-1958 with John McCarthy. We
give a rough overview of its successes
and failures.

Rational Agent: The viewpoint to consider an
agent as a rationally acting entity.
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Content of this chapter (3):

Model checking: Many problems can be
modelled with finite state systems and
solved by checking whether (1) a given
model has a certain property, (2) a
theory is satisfiable or (3) a formula is
valid.

Verification: Programs are based on an infinite
state space and thus require other
methods, similar to the Hoare calculus.
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1.1 What Is AlI?
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1 Introduction
1.1 What Is AI?

“The exciting new effort to make computers
think ... machines with minds, in the full
and literal sense” (Haugeland, 1985)

“[The automation of] activities that we asso-
ciate with human thinking, activities such as
decision-making, problem solving, learning
...” (Bellman, 1978)

“The study of mental faculties through the
use of computational models”
(Charniak and McDermott, 1985)

“The study of the computations that make
it possible to perceive, reason, and act”
(Winston, 1992)

“The art of creating machines that perform
functions that require intelligence when per-
formed by people” (Kurzweil, 1990)

“The study of how to make computers do
things at which, at the moment, people are
better” (Rich and Knight, 1991)

“A field of study that seeks to explain and
emulate intelligent behavior in terms of
computational processes” (Schalkoff, 1990)
“The branch of computer science that is con-

cerned with the automation of intelligent
behavior” (Luger and Stubblefield, 1993)

Table 1: Several Definitions of Al

Prof. Dr. Jurgen Dix
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1. Cognitive science

2. ”Socrates is a man. All men are mortal. Therefore
Socrates is mortal.”
(Famous syllogisms by Aristotle.)

(1) Informal description ~~
(2) Formal description ~~
(3) Problem solution

(2) is often problematic due to under-specification

(3) is deduction (correct inferences): only enumerable,
but not decidable
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1 Introduction
1.1 What Is AI?

3. Turing Test:
http://cogsci.ucsd.edu/ asaygin/tt/ttest.html

http://www.loebner.net/Prizef/loebner-prize.html
m Standard Turing Test
m Total Turing Test

In 2000 a computer with 10 memory-units could
be programmed such that it can chat with a

human for 5 minutes and pass the Turing Test
with a probability of 30 %.
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4. In item 2. correct inferences were mentioned.

Often not enough information is available
in order to act in a way that makes sense (to
act in a provably correct way).

~~ Non-monotonic logics.

The world is in general under-specified. It is
also impossible to act rationally without correct
inferences: reflexes.
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The year 1943:

McCulloch and W. Pitts drew on three sources:
physiology and function of neurons in the
brain,
propositional logic due to Russell/Whitehead,
Turing’s theory of computation.

Model of artificial, connected neurons:

m Any computable function can be computed by some
network of neurons.

m All the logical connectives can be implemented by
simple net-structures.
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The year 1956:

Two-month workshop at Dartmouth organized by
McCarthy, Minsky, Shannon and Rochester.

Combine knowledge about automata theory,
neural nets and the studies of intelligence (10
participants)

Prof. Dr. Jurgen Dix Clausthal, SS 2018 18



sz
50
]

Juction
tls AI?

ntre

el TU Clausthal |
Newell und Simon show a reasoning program,
the Logic Theorist, able to prove most of the
theorems in Chapter 2 of the Principia
Mathematica (even one with a shorter proof).

But the Journal of Symbolic Logic rejected a paper
authored by Newell, Simon and Logical Theorist.

Newell and Simon claim to have solved the
venerable mind-body problem.
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The year 1958: Birthyear of Al | |
The term
Artificial Intelligence i<

proposed as the name of the new

discipline.

McCarthy joins MIT and develops:
Lisp, the dominant Al programming language
Time-Sharing to optimize the use of computer-time
Programs with Common-Sense.

Advice-Taker: A hypothetical program that can be seen
as the first complete Al system. Unlike others it
embodies general knowledge of the world.
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The years 1960-1966:

McCarthy concentrates on
knowledge-representation and reasoning in
formal logic (~ Robinson’s Resolution, ~~ Green’s
Planner, ~» Shakey).

Minsky is more interested in getting programs to
work and focusses on special worlds, the
Microworlds.
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Clausthal University of Technology

Blocksworld is the most famous microworld.
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From the 70’ies to the 90’ies

’73: PROLOG (Colmerauer, Kowalski)
74 Relational databases, SQL (Codd)
81-91: Fifth generation project (Japan)

’91: Dynamic Analysis and Replanning
Tool (DART) paid back DARPA’s
investment in AL during the last 30

years.
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From the 90’ies until today

‘93

'97

'98:

'07:

"10:

"16:

"7:

Prof. Dr. Jurgen Dix

Nine Men‘s Morris (“Muihle”) solved (Gasser
(ETH)). #: 1010

IBM’s Deep Blue wins against Kasparow. #: 10%.

NASA’s remote agent program: Deep Space 1.
Many modules have been model-checked.

Checkers (“Dame”) solved: Chinook by |.
Schaeffers. #: 10%.

IBM’s Watson winning Jeopardy
http://www-05.1ibm. com/de/pov/watson/

Google’s AlphaGo winning 4: 1 against Lee

Sedol in a professional Go match.

#: 1017,

https://de.wikipedia.org/wiki/AlphaG

Google’s AlphaZero as a program learning

arbitrary games by itself. Even Chess, as one..i ss01s 2


http://www-05.ibm.com/de/pov/watson/
https://de.wikipedia.org/wiki/AlphaG
https://de.wikipedia.org/wiki/AlphaZero
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1.2 Logic: From Plato To Zuse

Prof. Dr. Jurgen Dix Clausthal, SS 2018 25



@Hf* ,"[‘U ‘Cl‘a USU]al 1.2 Logic: Fr0|nIP‘\r;LthTicL)KZli::e]
450 BC : Plato, Socrates, Aristotle

Sokr.: "What is characteristic of piety which
makes all actions pious?”

Aris.: "Which laws govern the rational part of
the mind?”

800 : Al Chwarizmi (Arabia): Algorithm
1300 : Raymundus Lullus: Ars Magna
1646—-1716: G. W. Leibniz:

Materialism, uses ideas of Ars Magna to build
a machine for simulating the human mind

Prof. Dr. Jurgen Dix Clausthal, SS 2018 26
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'[“‘g ‘Cl‘austhal 1 Introduction
1805 : Jacquard: Loom

1815-1864: G. Boole:
Formal language,
Logic as a mathematical discipline

1792-1871: Ch. Babbage:
Difference Engine: Logarithm-tables
Analytical Engine: with addressable memory,
stored programs and conditional jumps
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Figure 1.1: Reconstruction of Babbage’s difference engine.
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1848-1925 : G. Frege: Begriffsschrift
2-dimensional notation for PL1

n‘hTSqTA—n<b
(o 4+ I'=by)

b<B
n>0
Q——a—A4=>b

T m+P_m
b <B

Figure 1.2: A formula from Frege’s Begriffsschrift.
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1862-1943:

1872-1970:

1906-1978:

1912-1954:

Prof. Dr. Jurgen Dix

1 Introduction
1.2 Logic: From Plato To Zuse

D. Hilbert:
Famous talk 1900 in Paris: 23 problems
23rd problem: The Entscheidungsproblem

B. Russell:
1910: Principia Mathematica
Logical positivism, Vienna Circle (1920-40)

K. Godel:

Completeness theorem (1930)
Incompleteness theorem (1930/31)
Unprovability of theorems (1936)

A. Turing:

Turing-machine (1936)
Computability

Clausthal, SS 2018 30
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@IHB TU ‘Clausthal 1.2 Logic: From Plato To Zuse
1938/42: First operational programmable computer: Z 1
Z 3 by K. Zuse (Deutsches Museum)
with floating-point-arithmetic.
Plankalkiil: First high-level programming language

—— —

Figure 1.3: Reconstruction of Zuse’s Z3.
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1940  : First computer "Heath Robinson” built to
decipher German messages (Turing)
1943 ”Collossus” built from vacuum tubes

1940-45: H. Aiken: develops MARK I, 11, 111.
ENIAC
First general purpose electronic computer

1952  :IBM: IBM 701, first computer to yield profit
(Rochester et alii)
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Clausthal University of

1948: First stored program computer (The Baby)
Tom Kilburn (Manchester)
Manchester beats Cambridge by 3 months

Ction

Bttt o W 1

e O Il"" 1
== .

2 e
Ur= _Mlla d

i
|
e Wi
AT 1 - L3
& v
W] RrR e )

Figure 1.4: Reconstruction of Kilburn’s baby.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 33



g - - 1 Introduction
au Sthd l 1.2 Logic: From Plato To Zuse

! TU Cl

First program run on The Baby in 1948:
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Figure 1.5: Reconstruction of first executed program on The Baby.
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1.3 Verification
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Model Checking Technique
Errors are expensive: Ariane 5 missile crash, ...
Model checking provides means to detect such erros!

Formal model

wait, wait
pn.s/r,pn.x/ro

wait,wait
pusih,push

S
3
wait,wait
pu.x/h/m.xh(\

wait, push

Problem STt ?
(e.g. moh:le phone) pos; ' pos, m ': <<{17 2}>> OoOoT
(Safety) Propert:
(e.g. deyadlocll()frei) Let's model ckeck...
Computational
p= <<{1’ 2}»[] OT/ Complexity?
\ Logical (formal)

specification
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1.3 Verification

m Model checking refers to the problem to
determine whether a given formula ¢ is
satisfied in a state ¢ of model M.

m Local model checking is the decision problem
that determines membership in the set

{(M,q,0) eMOD x L | M, q = ¢},
where
m Lis alogical language,
m MOD is a class of (pointed) models for £ (i.e. a tuple
consisting of a model and a state), and

B |= is a semantic satisfaction relation compatible with £ and
MOD.
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Example 1.1 (Concurrency)

We assume the following three processes which run
independently and parallel and share the integer variable z.

Inc  while t do if <200 then z:=2+1 fi do
Dec while t do if >0 then z:=2-1 fi do
Reset while t do if z==200 then z:=0 fi do

Does this ensure that the value of = is always between
(possibly including) 0 and 200?
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Example 1.2 (Deadlock: Dining philosophers)

Five philosophers are sitting at a round table with a bowl of
rice in the middle. They can just do three things: (1)
thinking, (2) eating and (3) waiting to do (1) or (2). The
problem is that they can eat only by using two chopsticks
and eating rice out of the bowl.

But between two adjacent philosophers there is only one
chopstick. Therefore, at any pointin time, only two
philosophers can eat concurrently.

If they all take the chopstick on their left, a deadlock
occurs.

What is a fair synchronization so that there is no
deadlock and no philosopher is starving?

How can this be modelled and the two properties
formally verified?
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Clausthal University of

Dining philosophers

Stickg

Figure 1.6: Dining philosophers.
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I University of Technology

Example 1.3 (What does program P(z) calculate?)
The input, x, ranges over integers.

y:=1

z:=0;

while z # x {
z:=z+1;
yi=y-z

}
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Mu I[J UClraHSt‘hal 1.3 Verification

Example 1.4 (What do these programs calculate?)

int foo1(int n) { int foo2(int n) {

local int k, int j; local int k, int j;

k :=0; k :=0;

J=1 J=1

while (k # n){ while (k # n){
k:=k+1; k:=k+1;
Ji=2%] Ji=2+]

} return(j) } } return(j) }
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1.4 References
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m This lecture covers several areas, from classical logic, via
classical verification techniques to the programming
language PROLOG.

m There exist many good textbooks for all these areas.

m However, each has its own particular viewpoint and
therefore introduces the notions in a different way. In
particular concerning logic, many other, equivalent,
approaches are possible.

m A theorem in our approach can be a definition in
another and vice versa.

m To solve the exercises, strictly stick to the exposition
on the slides, and what has been lectured until then.
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2. Sentential Logic (SL)

Sentential Logic (SL)
m Motivation
m Syntax and Semantics

m Some examples
= Sudoku
= Wumpus in SL
m A Puzzle

m Hilbert Calculus
m Resolution Calculus
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2 Sentential Logic (SL)

Content of this chapter (1):

Logic:

Examples:

Prof. Dr. Jurgen Dix

Logics can be used to describe the world and
how it evolves. We start with propositional logic
as the fundamental basis. All important notions
(model, theory, validity, deducibility,
derivability, calculus, model checking,
counterexamples) are rigorously introduced and
are the basis for first-order logic.

We illustrate the use of SL with three examples:
The game of Sudoku, the Wumpus world and
one of the weekly puzzles in the newspaper Die
Zeit. Finding a solution for these problems is
reduced to computing models of a certain
theory.
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Content of this chapter (2):

Calculi for SL: While it is nice to describe the world, we

Prof. Dr. Jurgen Dix

also want to draw conclusions about it.
Therefore we have to derive new information
and deduce statements, that are not explicitly
given, but somehow contained in the
description. We introduce a Hilbert-type
calculus and the notion of proof in a purely
syntactical way.

While Hilbert-type calculi are easily motivated,
they cannot be efficiently implemented.
Robinson’s resolution calculus is much more
suited and will be later extended to FOL.
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2.1 Motivation
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Folklore (1)

We all know the laws of Boole in algebra (Boolean Algebra)

AN(BUC) = (ANB)U(ANCQO)
AU(BNC) = (AUB)N(AUQ)
(AN B) = U
(AU B) = N
A = A
AU(BNA) = A
A

U

0

U

|
& o

AN(BUA) =
AUA =
ANA =
0 =
U = 0
Expressions formed using U,N,, (,), U, () are called Boolean
expressions (U is the universe). ~- blackboard 2.1
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@Ku l U (JlaUSthal 2.1 Motivation

Folklore (2)

m Can we show, using these laws, that each
Boolean expression (formed using A, B, C, . ..
and N, U, (,), ) can be written as an
intersection of unionsof A, A, B, B.C,C...?

m Can we show, using these laws, that each
Boolean expression (formed using A, B, C, . ..
and N, U, (,), ) can be written as a union of
intersections of A, A, B,B,C,C...?

~+ blackboard 2.2
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Folklore (3)

With the correspondence

we immediately get valid formulae in SL.

S=C D

corresponds to
corresponds to
corresponds to
corresponds to
corresponds to
corresponds to

~ blackboard 2.3

Prof. Dr. Jurgen Dix

<~
A\

V
false
true

2 Sentential Logic (SL)
2.1 Motivation
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2.1 Motivation

Example 2.1 (Tweety and Friends)

We want to throw a party for Tweety, his friend Gentoo and
Tux. But they have different circles of friends and dislike
some. Tweety tells you that he would like to see either his
friend the King or not to meet Gentoo’s Adelie. But Gentoo
proposes to invite Adelie or Humboldt or both. Tux,
however, does not like Humboldt and the King too much, so
he suggests to exclude at least one of them.

m Can we represent this using sentential logic?
m What do we gain by doing that?
m Exactly how many solutions are there?
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Propositional Symbols

k means invite The King —k means exclude The King
a means invite Adelie —a means exclude Adelie
h means invite Humboldt —h means exclude Humboldt

Problem Formalized

Tweety: k V —a means “invite The King or exclude Adelie”, but
not both: =(k A —a),

Gentoo: aV h means “invite Adelie or Humboldt or both”,

Tux: —h v =k means “exclude Humboldt or The King or both”.

Resulting Formula

Can we make the following formula true?
@party (kv —a) A=(kA=a)A(aVvh)A(=hv-k)
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2 Sentential Logic (SL)
2.1 Motivation

There seems to be only one method of solution:
to check all possibilities.

wparty © (k\V=a) A=(k A=a) A (aVh)A(=hV=k)
k a h|kvVv-a|-(kA-a) Vh | =hV =k || pparty
T 1 1 1 1 1 0 0
T 1 O 1 1 1 1 1
1 0 1 0 1 1 0 0
1 0 O 1 0 0 1 0
0O 1 1 0 1 1 1 0
010 0 1 1 1 0
0 0 1 1 1 1 1 1
0 0O 1 1 0 1 0

Prof. Dr. Jurgen Dix
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2.1 Motivation

m Therefore there are exactly fwo solutions.

m We can also deduce, that either Humboldt or
both The King and Adelie can be invited.
Later we call the rows in the table models (or
valuations).

Truth tables have 2" rows, where n is the number
of propositional constants. In the worst case, all
have to be checked (or maybe not??7??7727).
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Clausthal Un

Overview

syntax — no meaning in real world semantics — gives meaning
real world
valuation
propositional symbols vl — {t, f}
\
e \
H — {p,q, .. .} \ uniquely tliu)e
\ defines Y
\ b4

Io cal connectives

11
/\,\/,_‘,—> _,

extended valuation - false

\

i propositional formulae

p—(qAT)

P d|PAQ
v t t t
A valuation correspondstoarowina ~— " - t f f
truth table (assignment of variables) iy
An extended valuation corresponds to a ,l_) f t f
complete row in a truth table. [ - > | f f f

Figure 2.7: Syntax and Semantics for SL
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2.2 Syntax and Semantics
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Syntax: Language L =L (Prop)

The sentential (propositional) language is built upon

propositional constants: [J, py, p2, p3, . . . (Ccountably
many). We also use a,b,c,...,p,q,r,.... The
symbol O has a special meaning: it stands for
falsity, the statement that is always false. This
will become clear when we define the semantics
of SL.

logical connectives: — (unary), Vv (binary), and

grouping symbols: (,) for unique readability.

Often, for concrete applications, we consider only a finite, nonempty set
of propositional constants and refer to it as Prop (e.g. Prop = {a, p,q}).
However, the symbol O is always present, we do not include it in the set
‘Prop.

Logical connectives are used to construct complex formulae

from the propositional constants.
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Definition 2.2 (Sentential Language L(Prop))

Given a set Prop, the signature, the sentential (or
propositional) language L(Prop) over Prop
determines the set leib’mp) of £ (Prop) formulae
defined by

ex=01]p| (=p) | (¢Ve)
where p € Prop.

Note that this only makes sense for finite Prop. However, by adding
symbols 0 and 1, one can easily produce infinitely many propositional

symbols p1gp101 Using finitely many grammar rules.

~ blackboard 2.4
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2.2 Syntax and Semantics

We assume that Prop is fixed and omit it if clear from context: so
we write FmIZ" instead of Fmlyy,,\ to denote the set of all
SL-formulae over Prop. We freely omit parentheses in formulae for
better readability.

What about other connectives? They are defined as macros.

Definition 2.3 (SL connectives as macros)

We define the following syntactic constructs as macros:

T =4 (00)
eAY =ar (2((m9) V(—9)))
=Y =4 ((0p) V)
poY =4 (= PV)A W =)

~> blackboard 2.5

Prof. Dr. Jurgen Dix Clausthal, SS 2018 63



iy - . 2 Sentential Logic (SL)
] ([ ‘[‘J‘ %lausthal 2.2 SyI:traxuanld Ser?]lgntics
Semantics

What should it mean that a £ (Prop)-formula ¢ is
true? Intuitively, we want the following:

T is always t
[ is always f
—pist iff ¢isf
oVyist iff ¢ory (orboth)aret
o Nyist iff both pand aret
p—ist iff eitherpisforyist
o ist iff ¢ andy are both t, or both f
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m Transitions systems (see next chapter)
consist of a set of states and actions
(transitions) between these states.

m States are determined by what holds true in
them.

m A state will be uniquely determined by the
facts that are true in it.

m These facts are exactly the elements in Prop:
the propositional constants.

m Therefore, we need to fix the truth values of
the propositional constants.
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Definition 2.4 (Valuation, truth assignment)

A valuation (or truth assignment) for a language
L(Prop) is a mapping v : Prop — {1, f} from the
set of propositional constants into the set {t, f}.

A valuation fixes the values of individual propositional
constants.

We are particularly interested in the truth of complex
formulae like (p v q) Ar.

Semantics

The process of mapping a set of £-formulae into {t, f} is
called semantics.
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It suffices to state the semantics for the basic connectives.

Definition 2.5 (Semantics v |= ¢, 0)

Let v be a valuation. We define inductively the notion of a formula
¢ € FmiZip,, being frue or satisfied by v (notation: v = ):

v = [ does not hold,

v = p if, by definition, v(p) = tand p € Prop,

v =~ if, by definition, not v = ¢,

v = @ V9 if, by definition, v = g orv =1

We denote a set of £ (Prop)-formulae by T'. Given a set

T C FmIZL(Pmp) we write v = T' if, by definition, v |= ¢ for all
¢ € T. We use v [~ ¢ instead of “not v |= ¢”.

Thus we have uniquely extended a valuation v to a mapping ©
from Fmlzy,,  into the set {t, f}.

~s blackboard 2.6
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Truth Tables

Truth tables are a conceptually simple way of
working with SL (invented by Peirce in 1893 and
used by Wittgenstein in 1910’ies (and in TLP)).

pld|-p|PVag|pAd|p—q|pq
tit] f| t t t t
flt|] t| t f t f
t | f| f t f f f
fl|f| t | f f t t
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2.2 Syntax and Semantics

Definition 2.6 (Model, Theory, Tautology (Valid))

If v = ¢, we also call v (or v) a model of . We write
MOD(T) for all models of a theory T

MOD(T) =gef {v: v ET}

A theory is any set T C Fml3p,,).-
v satisfies T' if, by definition, v = p forall p € T

A L-formula ¢ is called £-tautology (or simply called
valid) if it is satisfied in all models: for all models v it
holds that v = .

We suppress the language £ when obvious from context.
~+ blackboard 2.7
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Tweety revisited (1)

In Example 2.1 we can now state the following:

m The language we consider is Prop = {a, k, h}.

m The valuation v which makes k, a, h all true
defines a structure which is not a model of the
formula ¢party.

m The valuation which makes k, a true and h
false, is a model of ¢party-

B ¢party Can also be seen as the theory Tharty
consisting of the four formulae k Vv —a,
—(k A —a), aVh,and =h Vv —k.

m The formula ¢party is not a tautology, but k — k
is one.
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Definition 2.7 (Consequence Set Cn(7T'), entailment)

A formula ¢ follows (semantically) from T (or is
entailed from T) if for all models v of T

(i.,e. v =T) also v = ¢ holds. We denote this by
T E .

We call

Cnﬁ( ) —def {SO € leﬁ (Prop) : T IZ 90}

or simply Cn(T), the semantic consequence
operator.

We also say o can be deduced from T.
~» blackboard back to 2.7
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Duallty of MOD and Cn
Both Cn and MOD are defined on theories (sets of
formulae). But the definition of Cn can easily be extended
to also deal with sets of models. For a set M consisting
solely of models, we define

Cn(M) =4 {p € FmIZL(Pmp) cv = pforallv e M}.

MOD is obviously dual to Cn:

m Cn(MOD(T)) = Cn(T),
m MOD(Cn(T)) = MOD(T).
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Tweety revisited (2)

Considering again Example 2.1 how does
Cng(Tparty) look like?
m Itis infinite.
m It contains all tautologies.
m It contains (k Aa A =h) V h.
m s Cng(Tpary) = Cne({(k AaA—=h)Vh})?
mls
Cn(Toarty) = Cne({(kAaA=h)V(=kA—=aAh)})?
m So there are different axiomatisations of
CnL‘(Tparty)-
How to decide which are equivalent?
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Duality
The duality principle is an important property in
algebra and logic. It can be stated as follows.

Theorem 2.8 (Duality Principle)
We consider formulae ¢, over Prop built using
only —, Vv, A\, 0, T. For such a formula ¢, let D(p) be
the formula obtained by switching v and A, and [
and T.
Then the following are equivalent:

m ¢ is equivalent to v

m D(¢) is equivalent to D(v)).

~ blackboard 2.8
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S 2.2 Syntax and Semantics
Conjunctive/disjunctive Normal form

We consider formulae ¢ built over Prop from only —, v, A, .

Using the simple boolean rules, any formula ¢ can be written as a
conjunction of disjunctions (conjunctive normal form)

no m;

AV e

i=1j=1
The ¢; ; are just prop. constants or negated prop. constants from
‘Prop.
Definition 2.9 (Clauses, literals)

Constants and negated constants (—p) are called literals.
Disjunctions \/7"; ¢;; built from literals ¢; ; are called clauses.

~+ blackboard 2.9
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2.2 Syntax and Semantics

Theorem 2.10 (Conjunctive/disjunctive normal form)

Any formula over Prop built using only —,V/, A, can be equivalently
transformed into one with the same constants of the form

n m;

/\ \/ Gi g5

i=1j=1
(the ¢; ; are, possibly negated, constants from Prop, the empty
disjunction is identified with 0): conjunctive normal form.

Dually, any formula can be transformed into one of the form

n m;

\/ /\ Gigs

i=1j=1

(the ¢; j are, possibly negated, constants from Prop, the empty
conjunction is identified with T): disjunctive normal form.
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Normal forms

What are the normal forms of the
following formulae?

mp,

m —p,

Hp—p,

m]

| —|—|(p — —|D>.
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Clauses
Normal form
Instead of working on arbitrary formulae, it is
sometimes easier to work on finite sets of
clauses.

This is without loss of generality (wlog): all
formulae can be equivalently represented as a
set (conjunction) of clauses.

This approach is much more suited for
implementing a calculus (theorem proving) and
we discuss it in detail in Subsection 2.5 from
Slide 143 on.
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2.2 Syntax and Semantics

Lemma 2.11 (Properties of Cn(T))

The semantic consequence operator has the
following properties:

|l 7'-expansion: T' C Cn(T),
B Monotony: T C T" = Cn(T) C Cn(T"),
Closure: Cn(Cn(T)) = Cn(T).
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2.2 Syntax and Semantics

To entail (or deduce) something from a theory is
important. But it is equally important to know
that something is not entailed from a theory
(i.e it does not follow from it): we emphasize
this importance in the next lemma.

Lemma 2.12 (¢ ¢ Cn (T), countermodel)
o & Cn(T) ifand only if there is a model v with

vETand v = —o.
This model is often referred to as a countermodel
for .

~+ blackboard 2.10

Prof. Dr. Jurgen Dix Clausthal, SS 2018 80



Mu TU Clausthal 2 Sentential Logic (SL)

2.2 Syntax and Semantics

Definition 2.13 (Completeness of a Theory 7")

T is called complete if for each formula
P € lef;b)mp): T = porT = —p holds.

m Do not mix up this last condition with the property of a
valuation (model) v: each model is complete in the
above sense.

m A complete theory gives us a perfect description of
the world (or state) we are in: we know everything!

m In most cases, however, our knowledge is incomplete.

m An incomplete theory leaves open many possibilities:
many complete extensions of it, namely exactly the
models of it.
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2.2 Syntax and Semantics

Lemma 2.14 (Ex Falso Quodlibet)

The following are equivalent:
m T" has a model,

u Cn( ) 7é FmIE (Prop)*
Russel story: Derive from “7 = 8” that you are the

pope.
~ blackboard 2.11
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Tweety revisited (3)
We discuss the following statements.

m Is the theory Cn;(Tparyy) complete, does it
have a model?

m What about the theory Cn;({A, A — B,—~B})?

m Does each theory with a model posess a
maximal extension that still has a model?

m How many such extensions are there for Tparty?

m Is there a theory T such that Cn(7T") = (? What
about Cn(0)?
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S 2.2 Syntax and Semantics
Who killed Tuna, the cat?

Example 2.15 (Tuna the cat)

There are two people, Jack and Bill. There is also a
cat, called Tuna, and a dog with no name, owned
by Bill. Tuna has been killed by either Jack or Bill,
but it is not known by whom precisely.

All we know is that animal lovers do not kill

animals and that dog owners are animal lovers.
So who killed Tuna?
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Who killed Tuna, the cat? (2) |

How can we formalize this story in SL? We need
to choose Prop appropriately.
m We need to express that Tuna is a cat: catryp,.

m Either Jack or Bill killed Tuna: killer_of _Tunagy,
killer_of_Tuna k.

m dog_ownergj;, dog_owner j,ck.

m animal_loverg;;, animal_lover j;c.

What about dog_ownerr,n,, catgi)?
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Who killed Tuna, the cat? (3)

Our theory T consists of:

B catryna-

m killer_of _Tunag;, V killer_of _Tuna ek,
—(killer_of _Tunag;; A killer_of_Tunajack)

m dog_ownerg;).

m dog_ownergj; — animal_loverg;,,
dog_owner j,cx — animal_lover ;.. What about
dog_ownerTyna — animal_lovertyna.

m animal_lover ;¢ — —killer_of_Animalsj,c,
animal_loveer — —|ki||er_of_AnimaI551||.

B animalryna A (—killer_of_Animalsgy) — —killer_of_Tunagy,
animaltyna A (—killer_of_Animalsj,cx) — —killer_of_Tunajack-

What is missing?
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2.3 Some examples
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2.3 Some examples

Since some time, Sudoku puzzles are becoming quite famous.

115 4167
5126 4
4 9
4 5 2|6
6 9 7 1
1/8/3|9
8
4 3|15|7/8]|6
3 4

Table 2: A simple Sudoku (S;)
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2.3 Some examples

Can they be solved with sentential logic?

Idea: Given a Sudoku-Puzzle S, construct a
language Propg,gok, @and a theory
Ts C FmIZ%PmpSudoku) such that

MOD(Ts) = Solutions of the puzzle S

Solution

In fact, we construct a theory Ts40ky and for each
(partial) instance of a9 x 9 puzzle S a particular
theory T such that

MOD(Tsygoku U Ts) = {S : S is a solution of S}
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2.3 Some examples

We introduce the following prop. constants:

einsm, 1< Z,] <9,
zwei; ;, 1 <14,5 <9,
dreii’j, 1<1,5 <09,
vieri,j, 1<12,5 L9,
fuenfi,j, 1 < Z,j < 9,
A sechs; ;, 1 <i,57 <9,
sieben; ;, 1 <1i4,5 <9,
B acht; ;, 1 <4,5 <9,
B neun;;, 1 <17,5 <9.

This completes the language Props,goku-
How many symbols are these?
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2.3 Some examples

We distinguished between the puzzle S and a
solution S of it.

What is a model (or valuation) in the sense of
Definition 2.6 (Slide 69)?

115 4167
5/2|6 4

(0]

Table 3: How to construct a model S?
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2.3 Some examples

We have to give our symbols a meaning (the
semantics), i.e. a valuation v.

eins; ; means (i, j) contains a 1
zwei; ; means (i, j) contains a 2

neun; ; means (i, j) contains a 9
To be precise: given a 9 x 9 square that is

completely filled out, we define our valuation v as
follows (forall 1 <¢,5 <9).

o(eins: ;) = true, if 1 is at position (i, j),
“7 0 false, else .
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o(zwei true, if 2 is at position (i, j),
vJ false, else .
o(drei; true, if 3 is at position (i, j),
Cliy false, else .
true, if 4 is at position (i, j),
v(vieri;) false, else .

etc.

[ true, if9is at position (7, j),
v(neun; ;) = { false, else .

Therefore any 9 x 9 square can be seen as a model or
valuation with respect to the language Lsygoku-
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How does T look like?

Tg = { einsl,4, eins5’8, eins6,6,
mngg,mNeuﬁ,
dreiﬁ’g, drei&g, drei9’4,
viery 7, Viery s, viers 1, viery 3, Vierg o, vierg g,

neuns 4, N€UNs 2, N€UNg 9,
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2.3 Some examples

How should the theory Ts,goky 100k like (s.t. models
of Tsudoku U Ts correspond to solutions of the puzzle)?

First square: 7}

eins;; V ...V eins33
ZWGiLl V...V ZWGi373
drei171 V...V drei373
Viel’1,1 V...V vier3,3
fuenf;; vV ... V fuenfs s
A sechs;; V ... V sechs;
sieben;; V ... V siebeng
B acht171 V...V acht373

El neun;; V ... V neuns3s
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2.3 Some examples

The formulae on the last slide are saying, that

The number 1 must appear somewhere in the
first square.

The number 2 must appear somewhere in the
first square.

The number 3 must appear somewhere in the
first square.

etc

Does that mean, that each number 1, ..., 9
occurs exactly once in the first square?
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2.3 Some examples

No! We have to say, that each number occurs

only once:
T{-

(elnsm A ZWGiiJ), 1 S Z,] S 3,
—|(e|nsm~ VAN dreiiyj), 1< Z,j < 3,
—(eins; ; A vier; ;), 1 <1,j <3,
tc
—(zwei; ; A drei;;), 1 <i,j <3,
a (ZWGiZ‘J AN vieri,j), 1 S Z,j S 3,
_I(ZWEiiJ‘ VAN fuenfm»), 1 S Z,] S 3,
B etc

0]

How many formulae are these?
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Second square: T,

eins; 4 V ... V einszg
zwei; 4 V ...V zweisg
drei1’4 V...V drei3,6
viery 4 V ... V viersg
fuenf174 V...V fuenfg,()-
A sechs; 4 V ... V sechszg
sieben; 4 V ... V siebengg
B acht174 V...V acht376

El neun;4 V ... V neunzg

And all the other formulae from the previous
slides (adapted to this case): T}
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2.3 Some examples

The same has to be done for all 9 squares.

What is still missing:
Rows: Each row should contain exactly the
numbers from 1 to 9 (no number twice).

Columns: Each column should contain exactly
the numbers from 1 to 9 (no number
twice).
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2.3 Some examples

First Row: Trow 1

eins;; V eins;o V ... V eins g
zweiy; V zweij o V ...V zweip g
drei;; V dreijo V ... V dreijg

vier; 1 V vierjo V ... V vierjg
fuenf;; V fuenf; o V ... V fuenf;g
A sechs;; V sechs; o V ... V sechs; g
sieben; ; V sieben;o V ... V sieben; g
H acht;; V acht;o V ... V acht;g

El neun;; V neun;o V ... V neunjg
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Analogously for all other rows, eg.
Ninth Row: Tgrow o

einsg; V einsgs V ... V einsgg
zweig 1 V zweigoy V ... V zZweig g
dreig’l V dreig’g V...V dreig’g

Viel’g’l V Vierg’g V...V Vierg’g
fuenfg; V fuenfgy V ... V fuenfgg
A sechsy; V sechsgs V ... V sechsgg
siebeng ; V siebeng, V ... V siebengg
B acht971 V acht972 V...V acht9’9

El neung; V neung, V ... V neungg

Is that sufficient? What if a row contains
several 1's?
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First Column: Tcolumn 1

einsl,l V einsm V...V einsg,l
zwei;; V zweig; V ... V zwelg
dreil,l V dreig,l V...V dreig,l

vier; 1 V vierg; V ... V vierg;
fuenfm V fuenf271 V...V fuenfg,l
A sechs;; V sechsy; V ... V sechsg;
sieben; ; V siebeny; V ... V siebeng;
H acht;; V achty; V ... V achtg;

El neun;; V neung; V ... V neung;

Analogously for all other columns.

Is that sufficient? What if a column contains
several 1's?
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All put together:

TSudoku — T]_ U T{ U .« .. U Tg U Tg’
TRow1 U... UTRow9
TCqumn 1 u...u TCqumn 9
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Here is a more difficult one.

Prof. Dr. Jurgen Dix

2

3

=[N |©O|00 | O

2

6

Table 4: A difficult Sudoku Sdifﬁcu|t

2 Sentential Logic (SL)
2.3 Some examples
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2.3 Some examples

Example 2.16 (Wumpus)

A wumpus is moving around in a grid. A knight in shining armour
moves around and is looking for gold. The wumpus is trying to
kill him when they are on the same cell. The knight is also dying
when he enters a pit. Fortunately, in the cells adjacent to pits
there is a cold breeze. And in adjacent cells to the wumpus, there
is an incredible stench.

How should the knight behave?

Shaas Zereere~
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Coremee— o]
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ZBreeze = ~ Broeze |
Breeze = Breeze

START
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14 24 3.4 24
13 23 33 43
12 2.2 3,2 4.2
oK
11 2.1 3,1 41
oK OK
@

= Agent
B =Breeze
G = Glitter, Gold
OK = Safe square
P =Pit
S =Stench
V = Visited
W =Wumpus

2 Sentential Logic (SL)

2.3 Some examples

1,4 2,4 34 4,4
13 2,3 33 4,3
12 2,2 3,2 4,2
P?
OK
1,1 2,1 31 P2 4,1
\% B
OK oK
(b)
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1.4 2,4 3.4 4,4
1,3WI 2,3 33 4,3
1,2 2,2 3.2 4,2
S
OK OK
11 2,1 B 31 pI 4,1
\ \
OK OK
@

= Agent
B =Breeze
G =Glitter, Gold
OK = Safe square
= Pit
= Stench
= Visited
= Wumpus

s<o0wv

2 Sentential Logic (SL)

2.3 Some examples

14 2,4 3.4 4,4
P?
13 wi 2,3 33 P2 4,3
S G
B
12 2,2 3,2 4,2
S
\ \
OK OK
11 21 B 3,1 PI 4,1
\ \
OK OK
(b)
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Language definition:
si;  stench on field (i, j)
b;,;  breeze on field (i, j)
pit,; (i,7) is apit
gli; (i, J) glitters
wij (i, j) contains Wumpus

General knowledge:
=511 — (2w A wyg A wa )
—s91 —  (mwyg A wag A Twa g A TWg g )

—s — (w11 A Wyio9 A W o A W
1,2 1,1 1,2 2,2 1,3

S12 —> (WigVwiaVwagVwg)
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Knowledge after the 3rd move:

—S11 A —Sg1 Asia A by Abag A by

Can we derive that the wumpus is located at
(1,3)?

Answer:

Yes. With any correct and complete calculus.
Because it is semantically entailed.
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We now formalize a "Logelei“ (in order to solve it with a theorem
prover).

Example 2.17 ("Logelei“ from "Die Zeit“ (1))

Alfred ist als neuer Korrespondent in Wongowongo. Er soll tiber
die Prasidentschaftswahlen berichten, weill aber noch nichts tiber
die beiden Kandidaten, weswegen er sich unter die Leute begibt,
um Infos zu sammeln. Er befragt eine Gruppe von Passanten, von
denen drei Anhdnger der Entweder-oder-Partei sind und drei
Anhdnger der Konsequenten.
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"Logelei” from ”Die Zeit“ (2)

Auf seinem Notizzettel notiert er stichwortartig die
Antworten.

A: »Nachname Songo: Stadt Rongo,

B: »Entweder-oder-Partei: dlter,

: »Vorname Dongo: bei Umfrage hinteny,
: »Konsequenten: Vorname Mongox,

: »Stamm Bongo: Nachname Gongox,

: »Vorname Dongo: jlinger,

: »Stamm Bongo: bei Umfrage vorn,

: »Worname Mongo: bei Umfrage hinten,
F: »Konsequenten: Stamm Nongo,

D: »Stadt Longo: jiinger,

E: »Stamm Nongo: jiinger«.

F: »Konsequenten: Nachname Gongo«.

monNw>N
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Jetzt griibelt Alfred. Er weil}, dass die Anhanger
der Entweder-oder-Partei (A, B und C) immer eine
richtige und eine falsche Aussage machen,
wahrend die Anhanger der Konsequenten (D, E
und F) entweder nur wahre Aussagen oder nur
falsche Aussagen machen.

Welche Informationen hat Alfred tber die beiden
Kandidaten?

(By Zweistein)
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2.3 Some examples

Towards a solution

m Selection of the language £ (Prop).

m Analysis and formalization of the problem.

m Transformation to the input format of a prover.
m Output of a solution, i.e. a model.
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2.3 Some examples

Definition of the constants

SUrysongo =  X'S surname is Songo
SUry Gongo =  X'S surname is Gongo
first; pongo =  X’s first name is Dongo
first, mongo =  X’s first name is Mongo

tribe; gongo = X belongs to the Bongos
tribe; nongo = X belongs to the Nongos

City, rongo = X COMes from Rongo
City, longo = X COmMes from Longo
senior, = X is the senior candidate
junior, = x is the junior candidate
worse, = x’s poll is worse

better, = x’s poll is better

Here z is a candidate, i.e. = € {a,b}. So we have 24
constants in total.
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2.3 Some examples

The correspondent Alfred noted 12 statements
about the candidates (each interviewee gave 2
statements, ¢, ¢') which we enumerate as follows

¢A7¢247¢Ba¢/37 .- '7¢F7¢IF'7

All necessary symbols are now defined, and we
can formalize the given statements.
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Formalization of the statements

da (sura,Songo A Citya,Rongo)\/
<5U rb,Songo /\ Cityb,Rongo)
, :
¢A <> f|rstb’Mongo
¢p <> senior,
; .
¢B — (t”bea,Bongo A sura,Gongo)\/
(tribeb,Bongo A Surb,Gongo)
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Furthermore, explicit conditions between the
statements are given, e.g.

(a A=) V (294 A $y)
and

(¢p A ¢p) V (=D A =¢D).
Analogously, for the other statements.
Is this enough information to solve the puzzle?
E.g., can the following formula be satisfied?

SUrg Songo /\ SUrg Gongo
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2.3 Some examples

We also need implicit conditions (axioms) which
are required to solve this problem.

It is necessary to state that each candidate has
only one name, comes from one city, etc.

We need the following background knowledge...

SUrz Songo <> —su Fz,Gongo

firstx’Dongo < ﬁfirStx,MongO

worse, <> —better,

Can we abstain from these axioms by changing
our representation of the puzzle?
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2.3 Some examples

What is still missing?

Can we prove that when a’s poll is worse, then s’s
poll is better?

We need to state the relationships between these
attributes:

worse, < better,

senior, <> junior,
Finally, we have modeled all “sensible”
information. Does this yield a unique model?
No! There are 6 models in total, but this is all
right. It just means there is no unique solution.
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2.3 Some examples

What if a unique model is desirable?

Often, there are additional assumptions hidden
“between the lines”. Think, for example, of
deductions by Sherlock Holmes (or Miss Marple,
Spock, Monk etc).
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For example, it might be sensible to assume that
both candidates come from different cities:

Cityx,Rongo e Cityy,Long;o
Indeed, with this additional axiom there is an
unique model.

But, be careful...
... this additional information may not be
justified by the nature of the task!
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2.4 Hilbert Calculus
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Deriving formulae purely algorithmically
m We have a clear undestanding of what it

means that “a formula follows or can be
deduced from a theory 7.

m Can we automize that?

m Can we find a procedure to systematically
derive new formulae?

m In such a way that all formulae that do indeed
follow from T will be eventually derived?

m Let us take inspiration of what mathematicians
have done since centuries!
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Definition 2.18 (Hilbert-Type Calculi)

A Hilbert-Type calculus over a language £ is a pair
(Ax, Inf) where

Ax: is a subset of the set of £L-formulae: they are
called axioms,

Inf: is a set of pairs written in the form

¢17¢27--~7¢n
(4

where ¢y, ¢s, ..., ., 1 are from Fml3p, ) they
are called inference rules.

Intuitively, we assume the axioms to be true and use the
inference rules to derive new formulae.
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Definition 2.19 (Calculus for Propositional Logic SL)

We define Hilbert?" = ({=¢ V ¢, =}, Inf), a Hilbert-Type
calculus for SL. The only axiom schema is —¢ V ¢, the only
axiom is —[.

The set Inf of inference rules consists of the following four
schemata

Expansion: -,
eV (¥Vx)

Associativity: ( VOV

Shortening: ££

Vzp,—! VX
Cut: 50—50—¢v

(¢, v, x stand for arbitrarily complex formulae (not just constants). They
represent schemata, rather than particular formulae in the language.)
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Definition 2.20 (Proof)

A proof of a formula ¢ from a theory 7' C Fmlyp,,,, is a finite
sequence ¢y, . .., ¢, of formulae such that ¢,, = ¢ and for all
i with 1 <¢ < n one of the following conditions holds:

B o, is instance of the axiom schema, or of the form —[J,
u p; € T,

m thereis ¢; with [ < i and ¢, is obtained from ¢, by
expansion, associativity, or shortening,

m thereis ¢, o With [,k < i and ; is obtained from ¢, ¢
by cut.

We write: T' s, ¢ (¢ can be derived (or proved) from 7).

Prof. Dr. Jurgen Dix Clausthal, SS 2018 126



@IH@ TU C‘laus‘thal 2 Sentential Logic (SL)

2.4 Hilbert Calculus

We have now introduced two important notions:

Syntactic derivability s : the notion that certain
formulae can be derived (or proved)
from other formulae using a certain
calculus,

Semantic validity =: the notion that certain
formulae follow (semantically) (or can
be deduced (are entailed)) from other
formulae based on the semantic notion
of a model.
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Definition 2.21 (Correct-, Completeness for a calculus)

Given an arbitrary calculus (which defines a notion i-) and a
semantics based on certain models (which defines a
relation |=), we say that

Correctness: The calculus is correct with respect to the
semantics, if the following holds:

TF ¢ impliesT = ¢.

Completeness: The calculus is complete with respect to
the semantics, if the following holds:

T = ¢ implies T I ¢.
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2.4 Hilbert Calculus

|

Lemma 2.22 (Corrrectness of Hilbert?")

Let T be a (possibly infinite) theory and  a formula over Prop.
Then T g1, ¢ implies that T' = .

l.e. each provable formula is also entailed!

Proof.

By induction on the structure of ¢.
We have to show that

all instances of the axiom schema are valid, - is
valid, and

for each inference rule the conjunction of the
premises entails its conclusion.

]
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We show a few simple facts that we need later to
prove completeness.

Lemma 2.23 (Some derivations)

FsL -l

OV Y s LYV o.

wFsL V.

¢V Y s =gV

== VY s @V

B{-¢Vx,~¥Vx}tks (V) Vx
The first three are shown on ~~ blackboard 2.12.
(4) and (5) are ~ exercise.
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Lemma 2.24 (Derived inference rules)

The following rules can be added to the calculus
without affecting the set of derivable
formulae. They are also called derived rules.

(Modus Ponens) -2,
B (Commutativity) wvw

Let iy, is, ... im €1{1,2,...,n}. Then

(pil\/...\/gﬁim
w1 V...V,

(Gen. Expansion)

Prof. Dr. Jurgen Dix Clausthal, SS 2018 131



Q@EW 2 Sentential Logic (SL)
.:I:H ‘ClaUSthal 2.4 Hilbert Calculus

lausthal University of Technology

Theorem 2.25 (Weak completeness)

Let 1, ..., p, and ¢ formulae over Prop.Then:

{©1,...,0n} = @ implies that {1, ..., on} Fsi .
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2.4 Hilbert Calculus

Definition 2.26 ((In-) Consistency of a theory 7))

A theory T is called consistent, if there is a
formula that can not be proved from it.

A theory T is called inconsistent, if it is not
consistent. l.e. from an inconsistent theory, all
formulae can be proved.

Consistency is a property of a calculus. It is often mixed up
with existence of a model (which it is often equivalent to).

Attention: Completeness

After we have proved the completeness theorem, we know
that inconsistent theories are exactly those that do not
posess any models (see Slide 82). But we do not know this
yet! It has to be proved.
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The key to prove completeness of our calculus is
based on the following

Let T' be a theory and ¢, be formulae from
Fmi2{p.,)- Then the following holds

T s (¢ — ) ifand only if T'U {¢} Fs ¢
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Proof.

One direction (left to right) is trivial: just an
application of Modus Ponens (which we have
shown to be a derived rule on Slide 131). The
other direction is by induction on the length of a
proof for .

A proof of ¢ from T'U {¢} might have used ¢ at
several places. The idea is to replace in each step
of the proof of ¢ a formula n by ¢ — 7. This then
transforms the old proof into one of (¢ — ) in

T. ]
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2.4 Hilbert Calculus

An important consequence of the deduction
theorem is the following

Lemma 2.28 (Consistency and Derivability)

Let T be a theory and ¢ a formula from Fmlyp,,
(both could be inconsistent). Then the following
holds

T ks ¢ ifandonly if T'U{—¢} is inconsistent.
T t/sL ¢ if and only if T'U {—¢} is consistent.
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Proof of Lemma 2.28.
The second statement follows trivially from the
first (contraposition).

Let 7' s ¢. Adding —¢ does not influence the
proof of ¢, so T'U {—¢} Fs. ¢. But, trivially,

T U {=¢} FsL ~¢, so T U {—-¢} is inconsistent.
Conversely, if T'U {—¢} is inconsistent, then

T U {—¢} Fs. ¢ (because any formula can be
derived). By the deduction theorem,

T ks —¢p — ¢, thus 7" . @. [
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Theorem 2.29 (Correct-, Completeness for Hilbert;")

A formula follows semantically from a theory T if
and only if it can be derived:

T = gifandonlyifT Fs ¢

Proof of the Correctness part of Theorem 2.29.

Correctness follows by induction on the length
of proofs: the axiom is valid and all four inference
rules have the property, that from their premises,
the conclusions follow. We have already discussed

this in Lemma 2.22.
]
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2.4 Hilbert Calculus

Proof of the Completeness part of Theorem 2.29.

To prove completeness, it is enough to show that each consistent
theory is satisfiable (because if T |= ¢ and not T' -5 ¢, then

T U {—p} is consistent (why?), thus satisfiable: a contradiction).
Given a consistent theory T', how to construct a model for 7'? We
claim that the models of T" are exactly the maximal consistent
extensions of 7'. Let ¢, o1, ... an enumeration of FmIZL(mp). We
construct the sequence 7; as follows: Ty := T,

T: o E If ﬂ l_SL i,
FTU U {—gi) else.

Then (J;2, T; is a maximal consistent extension of T:If it were
inconsistent, then there were a proof of [J; this proof uses only finitely
many formulae; but then there is a ng such that 7,,, contains all of them,
so T,,, were inconsistent; but all 7; are consistent by Lemma 2.28! It is

. . : sL
maximal because ¢, 1, ... is an enumeration of FmIE(Pr‘op)' O
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The following important result is equivalent to the
completeness theorem:

Corollary 2.30 (Compactness for Hilbert?")

A formula follows from a theory T' if and only if
it follows from a finite subset of 7'

Cn(T) = | {Cn(T") : T' C T, T'finite}.
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@Ku T[{ Claustha] 2.4 Hilbert Calculus

Proof.

Derivability in a calculus means that there is a
proof, a finite object. Thus, by completeness, if a
formula follows from a (perhaps infinite) theory
T, there is a finite proof of it which involves only
finitely many formulae from T'. Thus the formula
follows from these finitely many formulae. O

Prof. Dr. Jurgen Dix Clausthal, SS 2018 141



el TU Clausthal 2 e
Satlsflablllty of a theory

The following equally important result is again a
corollary to the completeness theorem

Corollary 2.31 (Compactness for theories 7)

Let T be a theory from Fml3k L(Prop)- Then the
following are equivalent:

m T is satisfiable,
m each finite subset of T is satisfiable.
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2.5 Resolution Calculus
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Conjunctive Normal Form

m We have already seen that each formula can be
written in conjunctive normal form.

m Thus each formula can be identified with a set
of clauses.

m We note that it is possible, that a clause is
empty: itis represented by [J.

m We also note that it is possible, that a
conjunction is empty. The empty conjunction
is obviously dual to the empty disjunction: itis
represented by —[J (or by the macro T
introduced in Definition 2.3 on Slide 63).
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Language for the Resolution Calculus
How can we determine whether a disjunction \/7; ¢; ; is
satisfiable or not?

Definition 2.32 (Clauses, Language Fml5 )

A propositional formula of the form /7%, ¢; ;, where all ¢; ; are
constants or negated constants, is called a clause.

We also allow the empty clause, represented by OI. Dually, -0
can be interpreted as the empty conjunction.

Given a signature Prop, determining a language L(Prop) or just L,
we denote by FmlIZ {5l or just FmlIZ**** the set of formulae
consisting of just clauses over Prop.
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2.5 Resolution Calculus

Definition 2.33 (Set-notation of clauses)

Aclause AV -BV CvV ...V —E can also be represented as a
set
{A,-B,C,...,—E}.

Thus the set-theoretic union of such sets corresponds
again to a clause: {A,—-B} U{A —C} represents AV —=B Vv —C.
The empty set () corresponds to the empty disjunction and
is represented by [1.

But we know this already from Slides 51-53.
Note that we identify double occurrences implicitly by
using the set-notation: {A,A,B,C} = {A B, C}.
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We define an inference rule on Fm|{@“®:

Definition 2.34 (SL resolution)

Let C, C5 be clauses and let X by any constant
from Prop. The following inference rule allows to
derive the clause C; vV C, from C; vV X and Cy VV =X:

Ci VX, CyV—=X
Cy V Cy

|f01 :OQ :@,then Ol\/CQ = [
Compare with the Cut rule in Definition 2.19.

(Res)
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If we use the set-notation for clauses, we can
formulate the inference rule as follows:
Definition 2.35 (SL resolution (Set notation))

Derive the clause C; U C; from C; U {X} and
Cz U {—IX}:
C1 U{X}, Co U {=X}
C1 U Cy
In the rule C; or C5 can be both empty, in which

case [ is derived from X and —=X. (Note, that we
identify the empty set () with [J.)

(Res)
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2.5 Resolution Calculus

Definition 2.36 (Resolution Calculus for SL)

We define the resolution calculus Robinsonyt,...
as the pair (0, {Res}) operating on the set
Fml&®s of clauses.

We denote the corresponding derivation
relation by Fges (in contrast to -5, induced by the
Hilbert calculus from Definition 2.19).

m So there are no axioms at all and only one
inference rule.

m The notion of a proof in this system is obvious:
itis literally the same as given in
Definition 2.19.
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2.5 Resolution Calculus

Is this calculus correct and complete?

Answer:
It is correct, but not complete!

But “T" = ¢” is equivalent to
“T'U{-¢} is unsatisfiable”

or rather to
TU {—|¢} FqL L.

Now in such a case, the resolution calculus is
powerful enough to derive .
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Resolution calculus is not complete

Example 2.37 (Complete vs refutation complete)

We consider Prop = {a,b}. Obviously a |=s. a V b
anda ks a Vb Buta #res @ V b.

The reason is that with a alone, there is no
possibility to derive a V b with the resolution rule
(the premises are not fulfilled). Whereas when
—(a VvV b) is added, i.e. both —a and —b, then the
rules can be applied and lead to the derivation of
.
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2.5 Resolution Calculus

m If T ks does not imply T Fges .
mIf T Fpes ¢ then also T' g ¢

(forp € legml .
m But the following holds:

TU{=¢} Fs. Oifand only if T'U {=¢} Fres U
We say that resolution is refutation complete.

Theorem 2.38 (Completeness of resolution refutation)

If M is an unsatisfiable set of clauses then the
empty clause [J can be derived in Robinson 4.
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@Ku TH, ‘gjl,aUSthal 2.5 Resolution Calculus
How to use the resolution calculus? (1)

Suppose we want to prove that 7' = ¢. Using the
Hilbert calculus, we could try to prove ¢ directly.
This is not possible for the resolution calculus, for
two different reasons:
m it operates on clauses, not on arbitrary
formulae,
m there is no completeness resultin a form
similar to Theorem 2.29.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 153



@KH [ U Qlausthal 2 Sentential Logic (SL)

2.5 Resolution Calculus

How to use the resolution calculus? (2)

But we have refutation completeness (see
Theorem 2.38) of the resolution calculus, which
allows us to do the following:

We transform 7' U {—¢} into a set of clauses.

Then we apply the resolution calculus and try
to derive L. l.e. instead of T" (s ¢ we try to
ShOW T U {_|¢} l_res |:|.

If we succeed, we have shown T' = ¢.

If we can show that the empty clause is not
derivable at all, then T" }~ ¢.
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How to use the resolution calculus? (3)

How to show that the empty clause is not derivable from a
theory 77

m One could try to formally prove that no such derivation
is possible in the resolution calculus.

m This could be done by a clever induction on the
structure of all possible derivations.

m But this is often very complicated and far from trivial.

m Just applying the calculus and not being able to derive
the empty clause is not enough (there might be other
ways).

The best way is to argue semantically: to show that there is
a model of T"U {—¢} by giving a concrete valuation.
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3. Verification I: LT properties

Verification I: LT properties
Motivation

Basic transition systems
Interleaving and handshaking
State-space explosion

LT properties in general

LTL
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Content of this chapter (1):

In this chapter we explore ways to use SL for the verification of
reactive systems. First we need to model concurrent systems
using SL. This allows us to analyse a broad class of hardware and
software systems.

Transition Systems: They are the main underlying abstraction to
describe concurrent systems. We start with
asynchronous systems and then deal with
synchronization: interleaving, and handshaking. An
important classic example that we discuss is the
dining philosophers problem.

LT properties: Which properties of the concurrent systems that
we introduced do we want to verify? It turns out that
many interesting conditions are linear temporal
properties. Among them are fairness, safety as well
as starvation and deadlock-freeness.
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Content of this chapter (2):

LTL: This is an extension of SL to formulate
linear-temporal properties within a logic. Given a
model and a LTL formula, checking whether the
formula is satisfied in the model is called LTL model
checking. We describe and discuss this method in
detail.

CTL, timed CTL: These are nontrivial extensions of LTL and allow
us to express much more interesting properties.
However, these are too advanced and will not be
dealt with in this course.
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3.1 Motivation
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@[ﬂ TU Clausthal 3.1 Motivation

Clausthal University of Technolog

The need for verification
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Figure 3.9: Errors in software development

Prof. Dr. Jurgen Dix Clausthal, SS 2018 160



l@!ﬁb TU Claust{}al 3 Verification IghT&:)(iﬁ;rt%ioe;

Clausthal University of Technol

The need for verification
specification

Design Process

product or
prototype

bug(s) found
\2 Verification

Figure 3.10: Overall approach
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Inference Tasks: The Three Questions

The semantical perspective allows us to think about the
following inference tasks:

Inference Tasks

Model Checking: Given ¢ and a model M, does the
formula correctly describe this model?

Satisfiability Checking: Given ¢, does there exist a
model in which the formula is true?

Validity Checking: Given ¢, is it true in all models?
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Model Checkmg

m This is the simplest of the three tasks.

m Nevertheless it is useful, e.g. for hardware
verification.

Example 3.1

Think of a model M as a mathematical picture of
a chip. A logical description ¢ might define some
security issues. If M fulfills ¢, then this means that
the chip will be secure wrt. these issues.
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Model checking for simple SL

Given a model v and a description ¢.
Is v = ¢ true?

Example 3.2

Given a model v in which a is true and b is false.
Is ¢ := (aV —b) — b true?
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Model checking
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Figure 3.11: Model Checking
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Satisfiability Checking

m One can interpret the description as a constraint.
m Is there anything that matches this description?

m We have to create model after model until we find one
that satisfies .

m In the worst case we have to generate all models.

A good example is our sudoku problem.

Satisfiability Checking for SL

Given a description . Is there a model v s.t. v = ¢ is true?
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Validity Checking

m The intuitive idea is that we write down a set of all our
fundamental and indisputable axioms.
m Then, with this theory, we derive new formulae.

Example 3.3

Mathematics: We are usually given a set of axioms.

E.g. Euclid’s axioms for geometry. We want to prove
whether a certain statement follows from this set, or can
be derived from it.

Validity Checking for SL
Given a description ¢. Does v = ¢ hold for all models v?
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3.2 Basic transition systems
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m What is an appropriate abstraction to model
hardware and software systems?
~+ Transition systems.

m Easy: processes run completely
autonomously.

m Difficult: processes communicate with each
other.

m Main notion is a state: this is exactly what we
called a model in Chapter 2.
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3.2 Basic transition systems

Definition 3.4 (Transition system)

A transition system TS is a tuple (S, Act,—, I, Prop, )
where

m Sis a set of states, denoted by sy, s, .. .,

m Act is a set of actions, denoted by «, 3,7, ..

B — C S x Act x Sis a transition relation,

m / C Sis the set of initial states,

m Prop is a set of atomic propositions, and

m 7 :S — 27 s a labelling (or valuation).
A TS is finite if, by definition, S, Act and Prop are all finite.

4

This is in accordance with Lg;. States are what we called
models. A labelling corresponds to a set of valuations. The
new feature is that we can move between states by means
of actions: instead of (s, o, s') we write s —~ 5.
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Example 3.5 (Beverage Vending Machine)
A machine delivers soda or beer after a coin has been inserted. A
possible TS is:

® Prop = {pay, soda, beer, select},

1 15 — {90 Tozars Seethy Szl 4 — 1wt

m Act = {insert-coin (get-soda) Oget-beers 7},

Qlinsert-coin Qget-beer

m the transitions: sp, ——— Seelect, Sbeer ——— Spay»

Qget-soda T T
Ssoda ? Spay, Sselect 7 Speer Sselect ? Ssoda-
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Beverage Vending Machine (cont.)

get_soda get_beer

insert_coin

Figure 3.12: TS of a beverage vending machine
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Simple Beverage Vending Machine (cont.)

m Note that the machine nondeterministically chooses beer or
soda after a coin has been inserted. Nondeterminism can be
seen as implementation freedom.

m Often we choose Prop = S, so that the labelling function is
very simple: 7(s) = {s}.

m When some properties do not refer to particular constants,
we can also choose Prop C S and 7(s) = {s} N Prop.

m We can also choose Prop and S independently. “The
machine only delivers a drink after a coin has been
inserted”. We choose Prop = {paid, drink} with labelling
function: W(Spay) =def @,F(Ssoda) =def W(Sbeer) =def
{paid, drink}, 7(Sselect) =def {Paid}.

m Sometimes we want to abstract away from particular actions
(internal actions of the machine not of any interest), like
71, 2. In that case, we use the symbol 7 for all such actions.
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Simple Hardware Circuit

We consider the hardware circuit diagram below. Next to it is the
corresponding transition system TS.

Lo

Figure 3.13: TS of a hardware circuit
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Example 3.6 (Simple Hardware Circuit)

Here we are dealing with boolean variables: input
x, output y and register r. They can be easily
treated within Prop.
m A state is determined by the contents of x and
regiSter T Sp=0,r=0, Sz=0,r=1, Sz=1,r=0, Sz=1,r=1-
B Prop =g {x, 1.y}
m The labelling is given by 7(s,—0,—0) = {y},
7I_(5310:0,7“:1) = {r}; 7T(sle,r:()) - {X}r
T(Sp=1,=1) = {X, 1,¥}.
m One could also use Prop =4 {x,y} and
modify 7 accordingly.
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3.2 Basic transition systems

Successor/predeccessor, terminal states

Successor (resp. predeccessor) states of a given
state s in a transition system TS are important.
They are determined by all outgoing (resp.
ingoing) transitions.
m Post(s) =ger Upena Suce(s, ), where
B Succ(s,a) =g {81 5 = s'}.
m Pre(s) =g4er Uqena Anc(s, ), where

B Anc(s,a) =g {5’ : 8" = s}.

A terminal state s is a state without any outgoing
transitions: Post(s) = 0.
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Determlnlsm/lndetermmlsm

We already discussed the indeterminism of transition
systems on Slide 173. It is similar to the indeterministic
choice in a proof-calculus: there are many paths that are
proofs.
m Sometimes the observable behaviour is deterministic.
How can we formalize that?
m Level of actions versus level of states.

Definition 3.7 (Deterministic transition system)
A transition system TS is called
m action-deterministic, if, by definition, |I| <1 and for
all s € Sand a € Act: |Succ(s, )| < 1.
m Prop-deterministic, if, by definition, |I| < 1 and for all
seSand T C Prop: |Post(s)N{s'€S: n(s") =T} < 1.
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Executions
The informal working of a transition system is clear. How
can we formally describe it and work with it?

m An execution of a TS is a (usually infinite) sequence of
states and actions starting in an initial state and built
using the transition relation of TS.

m We require the sequence to be maximal, i.e. it either
ends in a terminal state or it is infinite.

m Sometimes we also consider initial fragments of an
execution.

m Reachable states are those states of TS that can be
reached with initial fragments of executions.
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Executions/Reachable states

Definition 3.8 (Executions and reachable states)

Given a transition system TS, an execution (or run) is an
alternating sequence of states and actions, written
So¥1S1Q02 . . . OpSy, ... OF

aq anp
Sg —>  —> Sy

satisfying:
H sy € I,
Qg .
ms; —— s, forall s,

m either (1) the sequence is finite and ends in a terminal
state, or (2) the sequence is infinite.

A state s € S is called reachable, if there is a finite initial
fragment of an execution that ends in the state s.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 179



Q@EW 3 Verification I: LT properties
" TU ClaUSthal 3.2 Basic transition systems

Clausthal University of Technolog

Example 3.9 (Extended beverage vending machine)

The extended machine counts the number of bottles available
and returns the coin if it is empty. It also refills automatically if
there are no bottles left.

m We need more complex transitions: conditional transitions,

nsoda=0Anbeer=0: ret-coin
e.g. select - start,
nsoda>0: sget nbeer>0: bget
select —————— start, select ————— start,

t: coi t: refill
start — 2 select, start — —— start.

m sget and bget decrement the numbers nsoda and nbeer by
one, refill sets it to the maximum value max.

m This leads to the notion of a program graph.
m Such a graph can be unfolded to a transition system TS.
m So we end up with model checking transition systems.
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3.2 Basic transition systems

The extended beverage
vending machine has
been introduced in Ex-
ample 3.9 on Slide 180.
It counts the number of
bottles and returns the
coin if it is empty. Setting
maz to 2 we get the un-
folded transition system
depicted on the right.

Figure 3.14: TS of the extended
beverage vending machine
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Program graph

m Instead of a TS, a program graph PG is the
right notion, as it deals with conditional
transitions and allows variables Var.

m The role of Prop and the labelling function = is
taken over by an evaluation function Eval, that
assigns values to the typed variables in Var
(see Definition 3.10).

m The program graph is a directed graph, the
nodes of which are called locations: they take
the role of the statesina TS.
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Program graph

Definition 3.10 (Program graph)

A program graph PG over a set of typed variables Var is a
directed graph where the edges are labelled with conditions and
actions: it is a tuple (Loc, Act, Effect, <, Locg, Prop, go) where

B Loc is a set of locations, denoted by [y, [5,.. .,
m Actis a set of actions, denoted by «, 3,7, ...,

m Eval(Var) is the set of all assignments o of values to
variables in Var (compatible with their type).

m Effect : Act x Eval(Var) — Eval(Var) takes an assignment p,
applies action « and computes the resulting assignment ¢'.

B — C Loc x Cond(Var) x Act x Loc is a conditional transition
relation,

B Locy C Loc is the set of initial locations,
m gp € Cond(Var) is the initial condition.
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Boolean conditions over Var
m Cond(Var) is the set of all boolean conditions over Var.

E.g.:
(=3 <z <5) A (y=hblue) V (z=0)

m How can we define these conditions formally?

m Assume we consider variables x4, . .., x, of particular
types ranging over domains domy, ..., dom,. For
1 <i<nletD; C dom;. We consider the set Prop,,,, of
sentential constants of the form “p,cp,” (for arbitrary i,
and variable z of type i and D;). p.ep, is true whenever
the actual value of z is indeed in D;, otherwise it is false.

Then Cond(Var) is the set of all SL formulae over
7)7‘0])\/3,.
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PG of extended beverage vending machine

Var:
Loc:
Act:
Effect:

Locy:

Jo-

Prof. Dr. JUrgen Dix

nsoda, nbeer, with domain {0, 1, ..., max};

start, select;

bget, sget, coin, ret-coin, refill;

(coin,n) — n, (ret-coin,n) — n,

(sget,n) — n[nsoda — 1/nsoda],

(bget, n) — n[nbeer — 1/nbeer]|,

(refill, n) — 7/, where 1/ (nsoda) := 7 (nbeer) := max.

: obvious from Figure 3.14,

start,

nsoda = max A nbeer = max.
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Synchronous product

m Often there exists a central clock that allows
two transition systems to be synchronized.
e.g. synchronous hardware circuits.

m This leads to the synchronous product
TS, ® TS, of two transition systems: both
systems have to perform all steps in a
synchronous fashion.
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Synchronous product (cont.)

Definition 3.11 (Synchronous product: TS; ® TS.)

Given two transition systems TSy, TSa ((S;, Act, —;, I;, Prop;, mi),
1 = 1,2) with a common set of actions Act, we define the
synchronous product TS; ® TS, by

(S1 X Sg,Act,—>, I x I3, Propy U Propy, )

where the labelling 7 and — are defined by
W m((s1,52)) =des m1(s1) Um2(s2),
B (s1,592) ki (s}, sh) if, by definition, s; 2 i and sg E)g sh.

* is @ mapping from Act x Act into Act that assigns to each pair
(o, B) an action «a * f3.

* is usually assumed to be commutative and associative. Often action names are
irrelevant (e.g. for hardware circuits), so they do not play any role in such cases.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 187



@KW - -~ 3 Verification I: LT properties
" (l\ w, nga USthal 3.2 Basic transition systems

Synchronous product

m There is no autonomy, as in the interleaving
operator to be introduced below in
Definition 3.14 on Slide 197.

m Normally, when asynchronous systems are
represented by transition systems, one does
not make any assumptions about how long
the processes take for execution. Only that
these are finite time intervals.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 188



!@Hf% TU Clausthal 3 Verification I: LT properties

3.2 Basic transition systems
Synch ronous product

Example 3.12 (Synchronous product of two circuits)

We consider the following circuits. The first one
has no input variables (output is y defined by
and register transition —r;), the second one has
input z, and output ' defined by x V r, and
register transition z V ry .

\%
T
B

5
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Synchronous product

The corresponding transition systems are:

TS, : TSy :
Ny

(0)
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Synchronous product

The synchronous product of Example 3.12 is:

TS ® TS, :

Figure 3.15: Synchronous product of two circuits
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3.3 Interleaving and handshaking
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Interleaving independent processses

How can we merge two completely independent
transition systems? (Think of finite state
automata!)

Consider traffic lights that can simply switch
between green and red.
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Interleaving independent processses (cont.)

Example 3.13 (Two independent traffic lights)
Two independent traffic lights on two roads.

TrLighty )
—_ red

green

TrLighty B

red

green

Figure 3.16: TS of two independent traffic lights
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3.3 Interleaving and handshaking

Interleaving independent processses (cont.)
The result should be:

TilLight ‘ ‘ ‘ Titight,

o
‘

Figure 3.17: TS of two traffic lights
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3.3 Interleaving and handshaking

Interleaving independent processses

The result of interleaving the following processes
is also obvious.

x=10 y=7
a ||| |8 =
x;/ ),:5

Figure 3.18: TS of two independent processes
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3.3 Interleaving and handshaking

Definition 3.14 (Interleaving: TS, ||| TS,)

Given two transition systems TS, TS,
((S;, Act;, —>, I;, Prop;, m;), i = 1,2) we define the
interleaved fransition system TS, ||| TS, by

<Sl X Sg,ACtl U ACtg, —, 1 X IQ,PTOPl U PTOp2,7T>

where the labelling = and — are defined by
m m((s1,52)) =def m1(51) U ma(s2),
m (s1,50) — (sh,sh) if, by definition, s, <, s} or
59 i)g 8/2.

In contrast to the synchronous product (Definition 3.11 on
Slide 187) there is no clock: executions do not depend on time.
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Shared variables

The examples on Slides 195 and 196 are simple, because there are
no shared variables.

What happens, if we do the same construction in the following
example:

r=23 xr=23
a || |8 =
xr==0 1:'4

Figure 3.19: TS of processes with shared variable
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3.3 Interleaving and handshaking
Semaphores
Example 3.15 (Mutex via a semaphore)

Two processes P, and P, have access to a binary variable y,
a semaphore. Value 0 of y means the semaphore is
possessed by one process, value 1 means it is free.

m Each process P, is in one of three states:
noncrit;, wait;, crit;.
m There is a transition from noncrit; to wait; and from

wait; to crit; but the last one only when y is 1 (then the
transition fires and the value is set to 0).

m There is a transition from crit; to noncrit; and y is set to
1.

How can we model this as a TS?
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3.3 Interleaving and handshaking
Semaphores (cont.)

We first model it as program graphs.

PGli PGQZ
5
y>0: y>0:
voyi=y-l LVy=y -l

Figure 3.20: Semaphores and program graphs
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Interleaved program graph

A construction similar to Definition 3.14 yields an
interleaved program graph

PG, ||| PG, :
et > |(noncrity, noncritg) [+~
yi=y+l 7 T Y=yl
S
[(WaitlJloncnrz) [(11011(”1‘1 Wdlf'Q)]
g" y>0: Y= J+] . y>0:
Lyi=y—1 7 B e yi=y—1i

[(cn'tl 11011crit2) ] [ <w¥11th Wdltz) ] [ <non(r1'r1 crity) ]

cntl Wdltz o Waltl cntz

yimybl o Ly =y

B (crity, crity) -

Figure 3.21: Interleaving program graphs

Prof. Dr. Jurgen Dix Clausthal, SS 2018 201



Mu TU Clausthal 3 Verification I: LT properties
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Unfolding program graph into TS

Here is the transition system that we obtain from
Figure 3.21

(n1,n2,y=1)

(w1, n2, y=1)
(w1, w2, y=1)

(w1, c2, y=0)

Figure 3.22: The final transition system
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) ; 3.3 Interleaving and handshaking
Semaphores (cont.)

m The transition system does not contain
anymore the critical state (because it is not
reachable). The system satisfies the mutual
exclusion property.

m But it is possible that both processes are at the
same time in the waiting state: this is a
deadlock situation that should be avoided (by
an appropriate scheduling algorithm to
implement the nondeterministic choice).
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What have we achieved so far?

m Interleaving of transition systems works well
for independent systems.

m It is not appropriate when synchronization of
certain parts is essential.

m Instead of a TS, the program graph PG
(introduced in Definition 3.10 on Slide 183) is
the right notion, as it deals with conditional
transitions and allows shared variables Var.

m We have just seen that shared variable

communication (e.g. semaphores) can be used
to model synchronization.
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What have we achieved so far? (cont.)

® An interleaving of program graphs can be
defined similarly to Definition 3.14: see
Slide 201.

m This interleaved graph can again be unfolded
to a transition system TS: see Slide 202.

m We end up again with model checking
transition systems.
We are now introducing another method for
modelling synchronization: handshaking, a
refined version of interleaving on the level of
transition systems (not program graphs).
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3.3 Interleaving and handshaking

From interleaving to handshaking

m Concurrent processes that need to interact
can do so in a synchronous fashion via
handshaking.

m Sometimes one process has to wait for the
other to finish: they have to synchronize.

m We introduce a set of distinguished
handshake actions H.

m We define a transition system TS, ||, TS, that
takes into account the handshakes in H.

m For an empty set H we get back our notion of
an interleaved transition system TS; ||| TS-.
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3.3 Interleaving and handshaking

Example 3.16 (Traffic junction)

We consider a traffic junction with two traffic lights. Both
switch from green to red and green etc., butin a
synchronized way: when one is green the other one should
be red (to avoid accidents).

Figure 3.23: Traffic junction
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Traffic ]unction

TrLight, TrLight, Y
e red _ red

() o )s

Figure 3.24: Traffic junction

The interleaved system TrLight, || TrLight,does not work
anymore!
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Clausthal University of T

Example 3.17 (Railroad crossing)

A railroad crossing consists of a train, a gate and a controller.
An approaching train sends a signal so that the gates have
to be closed. The gates open again only when another
signal, indicating that the train has passed, has been sent.

lower raise

down

Train Controller Gate
Figure 3.25: Components of Railroad crossing
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Mutual exclusion in general

Suppose we have two processes P, P, with
shared variables.

m When they are operating on these shared
variables, they are in a critical phase.
Otherwise they are in an uncritical phase.

m We assume the processes alternate between
critical and noncritical phases (infinitely
often).

m The problem is to avoid concurrency when
both are in critical phases.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 210



@Kﬂ l U (JlaUSthal 3 Verification I: LT properties

3.3 Interleaving and handshaking

Mutual exclusion in general (cont.)

m Mutual exclusion algorithms are scheduling
algorithms to ensure that no critical actions
are executed in parallel.

m One of the most prominent solutions is
Peterson’s mutex algorithm.

m As Peterson’s algorithm is based on the
interleaving of program graphs (which we
have not formally introduced but illustrated on
Slides 200—202), we introduce a variant based
on ||, between transition systems.
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Definition 3.18 (Handshaking: TS, ||,,TS-)

For transition systems TS;, TS, ((S;, Act;, —;, I;, Prop;, m;)),
H C Act; NActy and 7 ¢ H, we define the transition system
with handshaking TS, ||, TS, by

(S1 x Sa, Acty U Acty, —, I X Iz, Prop; U Prop,, )

where the labelling 7 and % are defined by
m 7((s1, S2)) =aer m1(51) U ma(S2),
m for o ¢ H, & is defined as in Definition 3.14,
m fora € H, (s1,5:) = (s}, s5) if, by definition, s; %, s/,
and s, % sh.

When H = Act; N Acty, we simply write TS, || TS, instead of
T51HHT52. When H = @ then T51||@T52 = T51 ||| T52
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Example 3.19 (Mutual exclusion via an arbiter)

Suppose we have two processes P, and P,. Both alternate
infinitely often between critical and noncritical phases.

The interleaved system TS, ||| TS, has a critical state that has
to be avoided (shared resources). How can a third process,
the arbiter, be used to resolve the conflicts?

Arbiter:

release

T ||| T2

noncrit; noncrity

crit; noncrity noncrit crity

request

crit crity

Prof. Dr. Jurgen Dix
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Mutual exclusion via an arbiter (cont.)

Asssume P; and P, have each actions request and release. We
set H = {request, release} = Act; N Act, and get the system:

(T1 ||| T3) || Arbiter :

R
(noncritl noncrity unlockj

release release

request request
[ crit; noncrity lock noncrity crity lock j

Figure 3.27: Mutual exclusion via arbiter
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Traffic junction revisited

m We reconsider Example 3.16 from Slide 207.

m This time we build TS;||, TS, with H = {a, 5}
and it all works!

m However, there is a small problem. The state
(red,red) is a deadlock.

m So even if two transition systems do not have
deadlocks (an assumption to be made on
Slide 228) their parallel composition might
have.
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Railroad crossing revisited

m We reconsider Example 3.17 from Slide 209.
m This time we build
Train H {approach,exit} Controller H {lower,raise} Gate ’

or, according to our convention, simply

Train|| Controller|| Gate.
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Railroad crossing: almost working

-~

< far 0.up > )
approach
lower,

approach

< near, 2, down =

< in, 2, down >

approach

raise
< far; 2, down >

< far, 3, down >

<< near, 3, down =

= in 5, down >

Figure 3.28: TS of Railroad crossing
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Dlnlng Philosophers revisited
We reconsider Example 1.2 from Slide 40. An
obvious representation is for each philosopher to
have four actions available (request left stick,
request right stick, release left stick, release right
stick) — we model “thinking” and “waiting” in the
states. And for each stick also two requests and
two releases (from the adjacent philosophers).
This results in the overall system

Phily|| Stick|| Phily|| Sticks|| Phils | Sticks|| . . . || Phil|| Stickq
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3 Verification I: LT properties
3.3 Interleaving and handshaking

Dining Philosophers revisited (cont)

release; ;

~

request;_j ;,
T

wait for
left stick

request; ;

'
’
,

N
req;,; NIC; it
\

\
\

'
'
'

1

Jrequest; ;
, ;

v

\
\

.
relijrelijipiy, o

( occupied occupied )

|
h
'
1

release;_j;
/

return the
left stick

Figure 3.29: Dining Philosophers
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3.3 Interleaving and handshaking

Dlnlng Philosophers revisited (cont.)

m What is wrong with this model?
m deadlock, starvation.
m How can it be improved?

m Idea: make sticks available only for one
philosopher at a time.

m And make sure, that one half of the sticks start
in a different state than the other half.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 220



el TU Clausthal

Dining Philosophers revisited (cont)
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3.3 Interleaving and handshaking

available;
reliit
\

\
req;

occupied

relil,-

Prof. Dr. Jurgen Dix

Figure 3.30: Dining Philosophers refined
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3.4 State-space explosion
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Input size
m Remember: input size of an integer n is logn,
not n.
m n is exponential in logn.

m Similarly, the program graph is a compact
representation of the underlying transition
system, which is obtained by unfolding.

m When asking “how complex is it to check a
property of a TS”, the representation of the
TS matters.

m Size of program graph versus size of TS.
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Size of unfolded transition system

What is the size of a transition system obtained
from unfolding a program graph with variables
x € Var?

m Size of underlying domains is important.

m dom(x) infinite: unfolded transition system is
infinite and undecidability issues arise.

m dom(z) finite: number of states is
|Loc| I evar |[dom(x)] .

W # states is exponential in # variables.
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Influence of |Prop| and |S|

Clearly also the # constants in a state plays a role. The same
is true for the size of the state space of the interleaved
system.
m Prop can be large, due to the allowed conditions of the
variables in the program graph. In practice only a small
number of such conditions are interesting.

m What about the labelling function 7?

m Representing 7 explicitly is expensive. Often, this info
can be derived from the state.

m State space of TS, ||| ... ||| TS, is cartesian product:
1" ,S;. Size is exponential in # components.

m In general, the size of the TS obtained from a program
graph is exponential in the size of the program graph.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 225



HKB TU Clausthal 3 Verification I: LT properties

Clausthal University of Technology 3.5 LT properties in general

3.5 LT properties in general
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LT properties of transition systems

Transition systems are abstractions from systems
in the real world. We would like to

m reason about particular computations of a TS;

m reason about all possible executionsina TS,

m formulate inferesting properties sucha TS
should satisfy.

Main notion: a path in a TS. It is a sequence of
states starting in an initial state. It corresponds to
an execution of the TS and is closely related to the
notion of run introduced in Definition 3.8 on
Slide 179.
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3.5 LT properties in general

Transitions systems without terminal nodes

From now on, we assume wlog that all transition systems do not
have any terminal nodes. In case a TS has terminal nodes, we
could simply add for each such node a new action and a new state
(with an arrow pointing to itself) and extend the TS appropriately.

Definition 3.20 (Path )\ (of a TS))

Apath A : Ny — Sina TS is a sequence of states
starting with an initial state such that this
sequence corresponds to a run of the TS.
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Paths versus traces

Often, we are not so much interested in the states as such,
only what is true in them, i.e. which propositions from Prop
are true: 7(s;).

Definition 3.21 (Trace of )\ of a TS)

The trace of a path A : Ny — Sin a TS with Prop is the
following infinite sequence

A0 TAL))T(A2)) ... 7(A()) . ..

(m(A(2)) is the set of all propositions that are true in state A(i)).
We call this also an w-word over 27777,

The set of all traces of a TS is the set of the traces of all paths
from TS: it is denoted by Traces(TS).
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Runs or paths?

We want to define what it means that
two transition systems behave the same.

We take the set of runs of a TS as the defining
behaviour.

Often the actions do not play any role, only
the states do. Then we could take the set of
paths of a TS as the defining behaviour.

Both possibilities rely on the internal behaviour,
that we might not be able to determine.
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Runs or paths? (cont.)

Often one cannot distinguish between certain
states, we only know what is true in them (and
that depends on the language Prop).
Therefore we choose from now on the
observable behaviour to describe a TS: the

set of ftraces as the defining behaviour of a
TS.

Die Grenzen meiner Sprache bedeuten die
Grenzen meiner Welt.

L. Wittgenstein, TLP, Satz 5.6
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3.5 LT properties in general

Definition 3.22 (Equivalence of transition systems)

Let TS; and TS, be two transition systems over
Prop and let A C Prop. We say that

TS, and TS, are A-equivalent, if, by definition,
Traces(TS;) | 4 = Traces(TS,) | 4,

TS, is a correct implementation of TS,, if, by
definition, Traces(TS;) C Traces(TS,).

Prof. Dr. Jurgen Dix Clausthal, SS 2018 232



@KW A 3 Verification ILTpopotc
.’:[:u[{ SJlrauSthal 3.5 LT properties in general

Example 3.23 (Two transition systems TS;, TS,)

What are the paths, traces of them?

515254, s1528%. {p,at{pH{a}*, {p,a{p{}*

515285, s15455. {p, a{pH{a}*, {p,ar{p}{}*.
Both transition systems have the same set of

traces. Is there any difference between
them?

Prof. Dr. Jurgen Dix Clausthal, SS 2018 233



W 2 TU Clausthal e s o o
Propertles of transition systems

"Whenever p holds, a state with q is
reachable.”

m Obviously this is true in TS; but notin TS,.

m Later: this cannot be expressed in LTL.

m Any property that is solely based on the set
of traces of a TS can not distinguish between
TSl and TSQ

m But still many useful properties can be
defined: linear time (LT) properties.

m The former two transition systems cannot be
distinguished by any LT-property.
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Propertles of transition systems

Definition 3.24 (LT properties)

Given a set Prop, a LT property over Prop is any
subset of (27P)«,

A transition system TS satisfies such a property, if
all its traces are contained in it.

m A LT property is a, possibly infinite, set of
infinite words.
Attention
{p,a}{p}{q}“ really means the infinite word

{p.af{pHa}...{a}..., not {p}{p}H{a}...{a}..,

or {a}{p}{q}...{q}... asin regular expressions.

\' |
.
.
.
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Properties of transition systems

We also use {{p,q}, {p}}{p}{q}* to denote the set of words
that either start with {p, q} or with {p}.

Example 3.25
When p then q two steps farther ahead.

It is never the case that p and g. This is important for
mutual exclusion algorithms: one wants to ensure that
never two processes are at the same time in their critical

section.

When p then eventually q. When a message has been
sent, it will eventually be received.
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3.5 LT properties in general

Example 3.26 (Sets of paths)

OO0 @ ORONOR OO

{a} {r} {r} {rr {a} {q} {r} {r} {r}
—(Co—()~()~()- @ OnOnOn O O
{r} {@} {r} {p} {r} {@} {a} {r} {r}
OO ORO @* OnOnOn O O
{r} {r} {q} {rr {r} {r} {a} {a} {r}

etc. etc.

The first infinite set of paths M; can be denoted more
succinctly by {p}*{q}{p}* and the second, M, by
{p}*{a}{a}{p}* (we are using the Kleene * as in regular
expressions). These expressions are called w regular
expressions.
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Which properties does M, satisfy?
m At some time q is true and then always p holds.
W g is true exactly once.
m p is always true with one single exception,
when q is true.

m g is true exactly once (and in that state p is
not true), and before and after that, only p
holds true. This will be expressed as a LTL
formula shortly.

Can M, be represented as a (finite) transition
system at all?
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Theorem 3.27 (Traces and LT-properties)

Let TS, and TS, be two transition systems over Prop.
Then the following are equivalent:
m Traces(TS;) C Traces(TS,)

m for all LT properties M: if TS, satisfies M, so
does TS;.

Corollary 3.28

TS, and TS, satisfy the same LT properties if and
only if Traces(TS;) = Traces(TS,).

Mu TU Clausthal 3 Verification I: LT properties
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More interesting properties

For the formal specification and verification of
concurrent and distributed systems, the following
useful concepts can be formally, and concisely,
specified as LT properties (and later also using
temporal logics):

m safety properties,

m liveness properties,

m fairness properties.
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Safety Properties

Many safety properties are quite simple, they are just
conditions on the states and called invariants. They have
the form (A, c 277P)

M = {AOAlAz . forall i: Az ):QO}
for a propositional formula .
Examples are
m mutual exclusion properties: —crit; V —crity,
m deadlock freedom: —waity V ... V —waits. Deadlock

freedom does not imply a fair distribution, i.e. —waitg
can always hold.

Others require conditions on finite fragments, for example
a traffic light with three phases requiring an orange phase
immediately before a red phase. This is not an invariant.
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Safety Propertles (cont.)

Definition 3.29 (Safety property)

A LT property M is called a safety property, if
for all words )\ € (2%{’)“ \ Msate there exists a finite
prefix (a bad prefix) A of A such that

Maen{N : X € (277)“ X is a finite prefix of X'} = 0

Soitis a condition on a finite initial fragment:
no extended word resulting from such a bad
prefix is allowed.
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Liveness Properties

Definition 3.30 (Liveness property)

A LT property M is a liveness property, if the set
of finite prefixes of the elements of M is identical
to (27r)*. l.e. each finite prefix can be extended
to an infinite word that satisfies the property.

m Each process will eventually enter its critical
section.

m Each process will enter its critical section
infinitely often.

m Each waiting process will eventually enter its
critical section.
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Liveness Properties (cont.)

Starvation freedom in the dining philosophers is
a typical example: each philosopher is getting her
sticks infinitely often.

Starvation freedom: For all timepoints i, if there
is a waiting process at time ¢, then the process
gets into its critical section eventually.
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Safety versus Liveness

m Are safety properties also liveness properties?
Vice versa?

m There is only one property that is both:
(2Prr)« j.e. the trivial property that contains
all paths.

Theorem 3.31 (LT properties as intersections)

Each LT-property can be represented as the
intersection of a safety with a liveness property.

But there are LT properties that are neither safe
nor live.
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Fairness Properties

Definition 3.32 (Fairness property)

A LT property is a fairness property, if one of the
following applies:

Each process gets its turn infinitely often
provided that

unconditional: (no restrictions)
strong: itis enabled infinitely often,

weak: itis continuously enabled from a certain
time on.
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LT properties used in practice

safety and liveness property
(2AP )w
I

safety properties _ -~ liveness properties

_---- neither liveness
nor safety properties

invariants

Figure 3.31: Overview LT-properties
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3.6 LTL
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Typical temporal operators

Xy @ is true in the neXt moment in time

Gy ¢ is true Globally: in all future moments

Fo @ is true Finally: eventually (in the future)

U @ is true Until at least the moment when
becomes true (and this eventually happens)

G((—passport V —ticket) — X—board_flight)

send(msg, rcvr) —  Freceive(msg, rcvr)
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Safety: Something bad will not happen,
something good will always hold.
G-bankrupt,
GfuelOK,
Usually: G—. ...

Liveness: Something good will happen.
Frich,
power_on — Fonline,
Usually: F. . ..
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el TU Clausthal
Fairness: Combinations of safety and liveness:

FG—dead or
G(request_taxi — Farrive_taxi).

Strong fairness: “If something is
requested then it will be

allocated”:
G(attempt — Fsuccess),
GFattempt — GFsuccess.

Scheduling processes, responding to
messages, no process is blocked forever,

etc.

Clausthal, SS 2018 251

Prof. Dr. Jurgen Dix



Mu TU Clausthal 3 Verification I: LT properties

3.6 LTL

Definition 3.33 (Language £;;; [Pnueli 1977])

The language £, 1 (Prop) is given by all formulae generated by the
following grammar, where p € Prop is a proposition:

pu=p | o | Ve | oUp | Xe.

The additional operators
m F (eventually in the future) and
m G (always from now on)

can be defined as macros :

Fo=(-0OUe and Gp=-F-p

The standard Boolean connectives T, A, —, and <> are defined in
their usual way as macros (see Definition 2.3 on Slide 63).
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Models of L

The semantics is given over paths, which are infinite sequences
of states from S, and a standard labelling function

7 : S — P(Prop) that determines which propositions are true at
which states.

Definition 3.34 (Path \ = ¢yq1¢2¢3 .. .)

m A path X over a set of states S is an infinite sequence of
states. We can view it as a mapping Ny — S. The set of all
sequences is denoted by S“.

A[i] denotes the ith position on path A (starting from ¢ = 0)
and

m )\[i, o] denotes the subpath of X starting from i
(A5, 00] = Ali]A[E+1]...).
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w

A= q0q192q3-.- €S

Definition 3.35 (Semantics of £;,)

Let A\ be a path and 7 be a labelling function over S. The
semantics of LTL, ="', is defined as follows:

A\, 7 =T poif, by definition, p € 7(A\[0]) and p € Prop;

m )\, 7 =T —p if, by definition, not A\, m ELTE ¢ (we write
AT @)

M\ MY o v if, by definition, A, =T o or X, m ELTL 4;

M\, =Y X if, by definition, \[1, oo, 7 =T ; and
M\, =Y oU o if, by definition, there is an i € Ny such that
i, oc], m = ¢ and A[j, oo], 7 =ML pforall 0 < j < 4.
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Other tem poral operators

A, = Fo if, by definition, \[i, oc], 7 = ¢ for some
1 € Ny ;

A, 7 = Gy if, by definition, \[i, oo], 7 = ¢ for all

1 € Np;

Exercise
Prove that the semantics does indeed match the
definitions;

m Fy is equivalent to (—=[J)U , and

m Gy is equivalent to —F—.
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Valldlty, satisfiability

satisfiable: a LTL formula is satisfiable, if, by
definition, there is a model for i,

valid: a LTL formula is valid, if, by definition,
it is true in all models,

contradictory: a LTL formula is contradictory,
if, by definition, there is no model for it.
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posy  pos; Posy posy  posi  Pos

000 _. 000

A, m |= Fpos;

N = A1, 00|, 7 | posy
pos; € m(A'[0])
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posp  pos; Posy posy posi  pos;

000 _» 000

A, m |= GFpos; if and only if

A0, o], 7 = Fpos; and
A[l, 0], ™ = Fpos; and
A2, 00|, 7 = Fpos; and
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Paths and infinite sets of paths

m Paths are infinite entities, and so are infinite
sets of them.

m They are both theoretical constructs.

m In order to work with them we need a finite
representation:

m namely fransition systems (also called
pointed Kripke structures).
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A set of paths (1) |

We reconsider the paths Ao, A1, ..., A;, ... from
Example 3.26 on Slide 237:

—(Co—~(D~(D—~() *@* mgA-pAXG(pA—q)

{a} {r} {r} {r}

—()—~C—~(—~(~ @+ m p A Xq A XXGp

{r} {@} {p} {p}

OmOnOnO0 *@* = p A Xp A XXq

{r} {r} {q¥ {rr

etc.

Can we distinguish between them (using LTL)?
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Indlstlngmshable paths

Observation

While any two paths can be distinguished by appropriate
LTL formulae, these formulae get more and more
complicated: operators need to be nested.

m The first two paths can be distinguished by just
propositional logic, no LTL connectives are needed.

m But the second and third cannot: we need X.
m For the third and fourth we need a nesting XX.

By induction over the structure of ¢

Given any LTL formula ¢, there is a i, € N such that for all
i,j >0t N E@ifand onlyif \; = o.
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@Ku TU ‘Ql\ya‘u's‘t‘hal 3.61LTL
A set of paths (2)

m Can we find a LTL formula, or a set of LTL

formulae, that characterize exactly the
whole set of paths?

m So what holds true in all of these paths?

m pU q. But this is also true in other paths not
listed above.

m (p A—q)U (g A —p). Again, this is also true in
other paths.

B (pA—-q)U(qA-pAXG(pA—q)). That is it.
This describes exactly the set of paths above.
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Another set of paths (1)

We reconsider the second set of paths from
Example 3.26 on Slide 237:

o+ ~Cm g A Xg AXXG(p A q)

{a¥ {a} {p} {r}

—()—~C—~(—~(~ @» B pAXgAXXgAXXXGp

{r} {@} {a¥ {p}

ROnOnOnO *@* m etc.

{r} {r} {q} {a¥

etc.

What holds true in exactly these paths?
(P A—q)U (q A —=pAX(gA—p)AXXG(p A —q))
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LTL formulae and transition systems: TS |= ¢

m Up to now we have defined LTL formulae only
for paths.

m For a transition system TS, we say that an LTL
formula is true in a state s, if itis true in all
runs resulting from that state.

m A LTL formula is true in the whole transition
system, if it is frue in all runs resulting from
the initial states.
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LTL formulae and transition systems: TS |= ¢

Definition 3.36 (TS and LTL formulae: TS |= ¢)

Leta TS and a LTL formula ¢ be given.

m A LTL formula ¢ is true in a state s of TS, if,
by definition, it is true in all runs resulting
from s.

m A LTL formula ¢ is true in TS, if, by
definition,it is true in all runs resulting from
all initial states.
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LTL formulae and transition systems
Example 3.37 (LTL formulae)
{r}

{rg} {rq} {p} @ @ 0
0 (1)

Which formulae hold true?
TSli T51 ’: Gp, TSl % X(p AN q),
TS = G(qg — G(pAq)),
but TS; = G(q — (pAq)))
TSQI T52 % Fp and TSQ Fé _\Fp
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From system to behavioral structure

System Computational str.

pos,

T % §

pos, pos;,
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From computational to behavioral structure

Computational str. Behavioral str.

-/‘\ @

pos, pos,

[¢] [e] o [¢]

The behavioral structure is usually infinite! Here, it is an infinite
tree. We say it is the ¢o-unfolding of the model.
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Example 3.38 (LTL indistinguishable transition systems)

{0} U

T51: TSQ: '

Both systems can be distinguished by the property
“a state where p holds can be reached”.

m Each trace of TS is also one of TS;: each LTL formula true in
TS, is also true in TS,.
m So the above property cannot be expressed in LTL.
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LT-Properties and their expressibility

m The example on the preceding slide shows that a
certain property is not a LT property.

m This does not mean that the two transition systems
cannot be distinguished.

m In fact the formula X—p is true in TS, but not in TS;.

m The traces of the two systems are also different, so both
define different LT properties.
Are there TS; and TS, that define different LT-properties
but cannot be distinguished by any set of £,;; formulae?

Yes. L, formulae express exactly “x-free w-regular

properties”, a strict subset of “w-regular properties”, which
is itself a strict subset of LT-properties.
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LT-Propertles and their expressibility (cont.)

We consider again Example 3.23 with the two
transition systems TS; and TS..

The property whenever p a state with q can
be reached distinguishes them.

Can this property be expressed in LTL?

No, because both have the same set of
traces.
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3.6 LTL
Some Exercises

Example 3.39 (Formalizing properties in LTL)
Formalise the following properties as LTL
formulae over Prop = {p}

p should never occur.

p should occur exactly once.

At least once p is directly be followed by —p.

p is true at exactly all even states.
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Some Exercises (cont.)

Compare the foIIowing two transition systems:
{r} {p}

{p} &

Example 3.40 (Evenness)

Formalise the following as a LTL formula: p is true
at all even states (the odd states do not matter).

Does p A G(p — XXp) work?

Prof. Dr. Jurgen Dix Clausthal, SS 2018 273



@KH' [ U (JlaUSthal 3 Verification I: LT pro;(gtﬂ;i

Satlsflablllty of LTL formulae

A formula is satisfiable, if there is a model

(i.e. path) where it holds true. Can we restrict the
structure of such paths? l.e. can we restrict to
simple paths, for example paths that are periodic?

m If this is the case, then we might be able to
construct counterexamples more easily, as
we need only check very specific paths.

m It would be also useful to know how long the
period is and within which initial segment
of the path it starts, depending on the length
of the formula ¢.
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S‘ahtmi'sfiakbility of LTL formulae (cont.) |

Theorem 3.41 (Periodic model theorem [SistlaClarke 1985])

A formula ¢ € LTL is satisfiable if and only if
there is a path \ which is ultimately periodic, and

the period starts within 21| steps and has a length
which is < 4F1%l,
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4. First-Order Logic: Semantics

First-Order Logic: Semantics

m Motivation

m FOL: Syntax

m FOL: Models

m Examples: LTL and arithmetic

m Prenex normal form and clauses
m Sit-Calculus

m The Blocksworld

m Higher order logic
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Content of this chapter:

FOL: While sentential logic SL has some nice features,
it is quite restricted in expressivity. First order
logic (FOL) is an extension of SL which allows us
to express much more in a succinct way.

LTL: We show that LTL, introduced in the previous
chapter, is but a subsystem of FOL: the
monadic theory of order (Kamp's theorem).

SIT-calculus: The Situation Calculus, introduced by John
McCarthy, is a special method for using FOL to
express the dynamics of an agent. Applying
actions to the world leads to a series of
successor worlds that can be represented with
special FOLterms.
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Content of this chapter (2):

Blocksworld: We consider the blocksworld scenario and
discuss how to formalize that with FOL.

HOL: Finally, we give an outlook to higher order
logics (HOL), in particular to second order
logic. While we can express much more than in
1st order logic, the price we have to pay is that
there is no correct and complete calculus.

Declarative: In this chapter we only consider the question
How fo use FOL to model the world? We are
not concerned with deriving new information
or with implementing FOL. This will be done in
the next chapter.
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4.1 Motivation
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Example 4.1 (Continuity of a function)

For the classical definition of the continuity of a function,
we need:

m Variables: ¢, 0, z, xo,

m functions: f(-), | - |,

m relations (or predicates): <, >, = and
m quantifiers: v, 3.

Ve>036>0 (Vo (|z—z0] <d) = |f(z)— flzo) | <€)

So we need terms that we can compare with each other
and functions that represent values (that can be
compared with the values of terms).
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Terms and predicates

m In SL we only have sentential constants which can be
true or false in a model.

m In FOL we introduce terms, which can be built up
inductively. They represent objects, a category which is
not available in SL.

m E.g. given an object tom the term father_of (tom)
represents another object (intuitively Tom’s father).

m These objects can be used in FOL predicates:
Is_Father_of (erich, tom). The binary predicate
Is_Father_of (-, -) represents a relation between two
objects.
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Terms and predicates (cont.)

m Terms are built recursively out of constants (not to be
confused with propositional constants) using function
symbols.

m We also allow a new category which is not available in
SL: variables. They are denoted by z, vy, z, . . ..

m Variables allow us to formulate conditions that
represent interesting entities. They can be instantiated
with terms.

m Constants can be tom, erich, tobias, function symbols
sister_of (+), father_of (-). They lead to complex terms
like

father_of (sister_of (father_of (tom)))

m These objects can be used in FOL predicates:

is_Father_of (erich,tom).
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Tuna revisited
Our Example 2.15 on Slide 84 can be defined in FOL in a

much more intuitive way. There are objects like cats, dogs,
animals, humans etc.

m funa is such an object, as well as jack or bill.

m While tuna belongs to the class of cats (defined by a
predicate cat), jack is a human, or an animal_lover.

m That animal lovers do not kill animals, can now by
expressed more intuitively as just one sentence:
Va (animal_lover(z) — (Vy (animal(y)) — —killer_of (z, ).

m In SL we needed many such implications (for all
potential objects).
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Overview

syntax — no meaning in real world

semantics — gives meaning

4 First-Order Logic: Semantics

4.1 Motivation

variables
Ty Y, Zy. ..
logical connectives m I A
\
/\7 \/7 —, v7 3
function symbols IA

real world

f

predicate symbols

FOL formulae

A= (U,I)
U={a,b,c,...}

»real functions over U
| ,real relations over U

true ()

false (f)

Va(P(r) = R(f(z))
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4.2 FOL: Syntax
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Definition 4.2 (First order logic £(X))

The language £(X) of first order logic (Prédikatenlogik
erster Stufe) consists of:

W1,y 2,T,%,...,%,,.... acountable set Var of
variables,

m foreach k € No: PF, P¥ ... P* ... acountable set
Pred” of k-dimensional predicate symbols (the
0-dimensional predicate symbols consist of the
propositional logic constants from Lg;, i.e. [J, Prop).

m foreach k € Ng: fF, f¥, ..., f*,... a countable set Func*
of k-dimensional function symbols. The 0-dimensional
function symbols are also called individuum constants.

m —, V: the sentential connectives,

m (, ): the parentheses, and

m J: the existential quantifier.
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Definition (continued)

The used set of predicate and function symbols
and X C Var is also called signature .

The signature defines a language L(X)
(analogously to Definition 2.2 on Slide 62). When
clear from context, we omit X and use L instead
of L(X).

The signature X plays in FOL the same role as
Prop in SL: it determines the set of formulae
iy
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Definition (continued)

The concepts of an £(>)-term ¢ and an
L(3)-formula ¢ are defined inductively:

Term: L(X)-terms ¢ are defined as follows:
each variable is a £L(X)-term,
if ¥ is a k-dimensional function symbol from
Y and ty, ...t are L(X)-terms, then
fE(ty, ... ty) is a L(X)-term (for k = 0 we write
1%, not f°(); in fact, we use symbols ¢, d, . . .).

The set of all £(X)-terms over a set X C Var is called
Termgs)(X) or Term.(X). Using X = () we get the set of
basic terms Term,s)(0), or just Term,.
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Definition (continued)

Formulae: ¢ is defined inductively:

if P¥ is a k-dimensional predicate symbol from
Y and ty, ..., t; are L(X)-terms then
PX(t1,...,t) is a £(X)-formula (for k = 0 we
get back the propositional constants, which
we also write without parentheses).

For all £L(X)-formulae ¢: (—yp) is a L-formula.

For all £L(X)-formulae p and ¢: (¢ V) is a
L(X)-formula.

If  is a variable and ¢ a £(X)-formula then
(Fz ) is a L(X)-formula.
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Definition (continued)

Atomic L(X)-formulae are those which are
composed according to (1), we call them
Atomics). The set of all £L(X)-formulae over X is

called FmIFC()L)

Positive formulae (FmIF?”) are those which are
composed using only (1), (3) and (4).

If pis a L-formula and is part of another
L-formula ¢ then ¢ is called sub-formula of .
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4 First-Order Logic: Semantics
4.2 FOL: Syntax

As in SL (where we assumed Prop to be fixed), we assume that the
signature X (i.e. the set of function and predicate symbols) is
fixed: thus the language £(X) is fixed and we omit it if clear from

context (like parentheses).

Other connectives are defined as macros, as in SL.

Definition 4.3 (FOL connectives as macros)

We define the following syntactic constructs as macros:

T =def
CANY  =gef
=Y =
Y =
Vry =gef

~ blackboard
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Example 4.4

Let d be a constant, g € Func?, and f € Func?,
and p € Pred” and q € Pred".

Which of the following strings are terms, which
are formulae?

lg(d d), g(x,p(z,y)),

B p(d), f(z,9(y,2),d),

B g(v, f(y,2),d), f(z,9(y, 2),d), Vzq,

A g(f(9(d,x),9(f(z,a,2),y), f(z,y,9(x,v))), a),
5] d/\f( ), V2 f(z, )

@ p(p(d, d),z), ~p(d, g(d, x)).
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Example 4.5 (From semigroups to rings)

We consider £ = {0, 1, +, -, <,=}, where 0, 1 are constants
(€ Func®), +, - binary operations (€ Func?®) and <, = binary
relations (€ Pred®) . What can be expressed in this
language?

Ax1: VaVyVz z+ (y+2)=(x+y)+2
Ax 2: Vzx (x4+0=0+4+2z) A (0+2=12)
Ax3: Vzdy (z4+y=0) A (y+2=0)
Ax 4: VaVy T+y=y+zx

Ax 5: VaVyVz x-(y-2)=(z-y)- =2

Ax 6: VaVyVz z-(y+z2)=x-y+x-z
Ax7: VaVyVz (y+z2)-z=y-z+z-x

Axiom 1 describes a semigroup, the axioms 1-2 describe a
monoid, the axioms 1-3 a group, and the axioms 1-7 a ring.
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Example 4.6
Formalize the following sentence:
Every student x is younger than some teacher
y.
W s(x): xis a student
W t(x): z is a teacher
m y(z,y): z is younger than y

Va(s(r) — Qy(tly) Ay(z,9))))
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Example 4.7
Formalize the following sentence:

Andy and Paul have the same maternal
grandmother.

m a: Andy
m p: Paul
m m(z,y): zisy’s mother

VaVyVuVv(m(z,y)Am(y, a)Am(u, v)Am(v,p) — = = u)
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U‘nary function or binary predicate?

Given a unary function symbol f(x) and a
constant c. Then the only terms that can be built
are of the form f"(c). Assume we have = as the
only predicate. Then the atomic formulae that
we can built have the form f"(c) = f™(c). We call
this language £;.
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Unary function or binary predicate? (2)

Assume now that instead of f and =, we use a
binary predicate p(y, z) which formalizes
y = f(x). We call this language L.
m Can we express all formulae of £ in £5?
m And vice versa?
m What is the difference between both
approaches?
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FOL with equality =?

Often we want to use real equality (identity): a
binary relation that is true only if the objects are
identical (not just in a equivalence relation).

This means that we assume to have a
distinguished symbol = among the binary
predicates in Pred” which is interpreted as
identity in all models, i.e. its interpretation is
fixed.
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Tuna the cat in FOL
We formalize again the example of the killed cat
(Example 2.15), this time in FOL.
Bill owns a dog.
~+ owns(x,y), dog(z), bill.
Dog owners are animal lovers.
~» animal_lover(z).
Animal lovers do not kill animals.
~~ killer_of (x, y), animal(x).
Either Jack or Bill killed Tuna, the cat.
~ jack, tuna, cat(z),killer_of (x,y).
~ blackboard
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Tuna the cat in FOL (2)

Bill owns a dog.
Jy (owns(bill,y) A dog(y)).
Dog owners are animal lovers.
Va ((owns(z,y) A dog(y)) — animal_lover(x)).
Animal lovers do not kill animals.
VaVy ( (animal_lover(x) A animal(y)) —
—killer_of (z,y) ).
Either Jack or Bill killed Tuna, the cat.
cat(tuna),
(killer_of (jack, tuna) V killer_of (bill, tuna),
—(killer_of (jack, tuna) A killer_of (bill, tuna))).
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4.3 FOL: Models
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Definition 4.8 (L-structure A = (Uy, 14))

A L(X)-structure or a L(X)-interpretation over the

signature X is a pair A =45 (U4, 14) with U4 being an

arbitrary non-empty set, which is called the basic set (the

universe or the individuum range) of A. Further I, is a

mapping which

m assigns to each k-dimensional predicate symbol p* in

L(X) a k-dimensional predicate over U4 (O is assigned
the empty set),

m assigns to each k-dimensional function symbol f* in
L(X) a k-dimensional function on U 4.

In other words: the domain of 14 is exactly the set of
predicate and function symbols of £(X).

Where is the valuation v from SL hidden?

Prof. Dr. Jurgen Dix Clausthal, SS 2018 303



@KW 4 First-Order Logic: Semantics
" TU ‘ClaUStha] 4.3 FOL: Models

Definition (continued)

The range of 14 consists of the predicates and functions on
U4. We write:

La(p) = p*, Lua(f) = A

Let o be a £;-formula and A =,.; (U4, 14) a L-structure. A is
called matching with ¢ if 14 is defined for all predicate and
function symbols which appear in ¢, i.e. if £L(X,) C L(X).

FOL with Equality

Often, one assumes that the predicate symbol = is built-in
and interpreted by identity in all structures A:

IA(=) =aes {(z,2) : x € Ua}. In that case, = is not listed
among the predicates in a model A.
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Definition 4.9 (Variable assignment p)

A variable assignment o over a £-structure
A = (Uy, I4) is a function

o: Var — Uy; = +— o(x).

In the next chapter, the Hoare calculus, this is
exactly what we will call state of a program.
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Example 4.10

Let ¢ be the formula

q(z) V Vz(p(z, g(2))) V 3z(Vy(p(f(z),y) A a(a)))
mU =R

m /(a) : the constant 7,
I(f):I(f)=sin: R — R and
I(g) =cos: R — R,

m/(p)={(r,s) e R?:r < s}and
I(q) = [3,00) C R,

I(x): the constant 7.

Is p true in M = (U, I)?
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4.3 FOL: Models

m M £ q(x) because M(q) = [3,00) and M(z) = § ¢ [3,00),
m M [~ Vz(p(x, 9(2))) because (M(x), M(g)(M(2)))
(ﬁ,cos( u)) € M(p) = {(r,s) € R? : r < s} and cos(
all u
B M = q(a) because M(a) =7 € M(q) = [3, 00) is satisfied.
B M = 3x(Yy(p(f(z),y))) because not for all ' € R exists a
u € R such that
(M(f)(M(=)), M(y)) = (sin(u), v') € M(p) = {(r,5) € R? |
r < s} is fulfilled (e.g. v’ = —2).

= MEp

W <

wm
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Some structures
Details ~~ blackboard.

We consider £(X) = {<, =} and the structures
(Z, <%)
(R, <)
(Q, <9
(QF, <)

Give formulae in £(X) that are true in all
structures, or just in only one of them.

Is there a formula ¢ which can distinguish
between (R, <®) and (Q, <9©)?
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Ludwig Wittgenstein

Ein Bild hielt uns gefangen. Und heraus kon-
nten wir nicht, denn es lag in unserer Sprache,
und sie schien es uns nur unerbittlich zu
wiederholen.

Philosophische Untersuchungen, §115
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Some structures (2)

We have seen some formulae that are true in these
structures. Can we come up with a finite
axiomatization?

Dense linear order without endpoints

It turns out, that the set of all formulae true in
(R, <®) coincides with the set all formulae true in
(Q, <9). An axiomatization is given by the finite
set of formulae stating that < is a dense, linear
order without endpoints. This theory is also
complete.
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Definition 4.11 (Semantics of first order logic, Model A)
Let » be a formula, A a structure matching with ¢
and p a variable assignment over A. For each term
t, which can be built from components of ¢, we
define the value of ¢ in the structure A, called
A(t).
for a variable z: A(x) =45 o(z).
if £ has the form ¢ = f*(¢y, ... ), with ty,...
being terms and f* a k-dimensional function
symbol, then A(t) =4 fA(At), ..., Alts)).

Compare with Definition 5.10.
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Definition (continued)

We define inductively the logical value of a formula ¢ in A:

1. if o =ger P*(t1, ..., tx) With the terms ¢, ..., ¢, and the
k-dimensional predicate symbol p*, then

A(9) =g { E eifls(efl(tl), L Al) € A

2. if P =def —|¢’ then

t, if Alp)=H,
f, else.

A(p) =aes {
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Definition (continued)

3. if © =def (77/} V T]), then

Atw)=ay { § SAW) =torAm=t

4. if © =def 31”(,0, then

t, ifddeUy: A[x/d](@b) =t
f, else.

Ale) =as {

Ford € Uy let Ajy/,) be the structure A', identical to A
except for the definition of z#': 24" =,.; d (whether 1 4 is
defined for = or not).

Prof. Dr. Jurgen Dix Clausthal, SS 2018 313



mw 4 First-Order Logic: Semantics
" TU ‘ClaUStha] 4.3 FOL: Models

Definition (continued)

We write:
B A ¢[g] for A(p) = t: Ais a model for ¢ with respect to o.

m If o does not contain free variables, then A = ¢|g] is
independent from p (and we leave it out).

m If there is at least one model for ¢, then ¢ is called
satisfiable or consistent.

A free variable is a variable which is not in the scope of a
quantifier. For instance, z is a free variable of Vap(z, z) but not
free (or bounded) in Vz3zp(z, 2).

A variable can occur free and bound in the same formula. So, to be
precise, we have to talk about a particular occurrence of a variable: the
very position of it in the formula.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 314



ml* TU Clausthal 4 First-Order Logic: Semantics

4.3 FOL: Models

A theory is a set of formulae without free
variables: T C Fml,. The structure A satisfies
Tif A= ¢ holds forall p € T. We write A =T
and call A a model of T.

A L-formula ¢ is called £-valid, if for all
matching L-structures A the following
holds: A = .

From now on we suppress the language L,
because it is obvious from context.
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Definition 4.13 (Consequence set Cn(7"))

A formula ¢ follows semantically from T, if for
all structures A with A =T also A |= ¢ holds.
We write: T = .

In other words: all models of 7" do also satisfy .

We denote by Cn;(T') =4 {¢ € Fmlz: T = ¢}, or
simply Cn(T'), the semantic consequence
operator.
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Lemma 4.14 (Properties of Cn(T))

The semantic consequence operator Cn has the
following properties

T-extension: T'C Cn(T),
Monotony: T CT' = Cn(T) C Cn(T"),
Closure: Cn(Cn(T)) = Cn(T).

Lemma 4.15 (p ¢ Cn (T))

¢ & Cn(T) if and only if there is a structure A
with A =T and A | —.

Or: ¢ ¢ Cn(T) ifandonlyif thereisa
counterexample (@ model of 7" in which ¢ is not
true).
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Definition 4.16 (MOD(T'), Cn(U{))

For T C Fml,, then we denote by MOD(T') the set of all
L-structures A which are models of 7™

MOD(T) = 4o {A: Al=T}.

If I/ is a set of structures then we can consider all sentences, which
are true in all structures. We call this set also Cn(l{):

CnU) =gef {p €Fmig: forall AclU: A= p}.

MOD is obviously dual to Cn:
Cn(MOD(T)) = Cn(T), MOD(Cn(T)) = MOD(T).
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4.3 FOL: Models

Most theorems and notions from SL carry over
literally to FOL.

Definition 4.17 (Completeness of a theory 7')
T is called complete, if for each formula ¢ € Fml,:
T = ¢orT = —p holds.

Do not mix up this last condition with the

property of a structure v (or a model): each
structure is complete in the above sense.

T is consistent if and only if Cn(T) # Fml,.
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Predicate- or function- symbols?

How to formalize each animal has a brain?
Two unary predicate symbols: animal(z),
has_brain(z). The statement becomes

Va (animal(z) — has_brain(z) )

Finally, what about a binary predicate
is_brain_of (y, x) and the statement

Va (animal(x) — Jyis_brain_of(y,x))

But why not introducing a unary function
symbol brain_of (x) denoting x’s brain? Then

Vo Jy (animal(x) — y = brain_of (v) )
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4.4 Examples: LTL and arithmetic
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Example: FO (<)
Monadic first-order logic of order, denoted by FO (<), is
first-order logic with the only binary symbol < (except
equality, which is also allowed) and, additionally, any
number of unary predicates. The theory assumes that < is
a linear order with least element, but nothing else:
Ver <z, VaVy(zr <yVy<uzx),
VaVy ((x <yAy <z) =z =y), aVyz < y.
A typical model is given by

N = <N07 SNO7 Pj1v, pé\/a cee piL\f>

where <™ is the usual ordering on the natural numbers and
Pf;v C Np.

The sets p/¥ determine the timepoints where the property
p: holds.
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What can we express in FO (<)?

Can we find formulae that express that
m a property r is true infinitely often?

m whenever r is true, then s is true in the next
timepoint?

m ris true at all even timepoints and —r at all
odd timepoints?
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LTL revisited (1)
The monadic first-order theory of (linear)

order, FO(<) (see Slide 322) is equivalent to

LTL:
There is a translation from sentences of LTL

to sentences of FO(<) and vice versa, such
that the LTL sentence is true in \, 7 if and
only if its translation is true in the associ-
ated first-order structure.

This was proved by Hans Kamp in his PhD
thesis 1968.
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Relation to first-order logic (2)

More precisely: an infinite path \ is described as a first-order
structure with domain N and predicates P, for p € Prop. The
predicates stand for the set of timepoints where p is true. So
each path A can be represented as a structure
Ny = (N, <N PV PY L PN,

Then each LTL formula ¢ translates to a first-order formula
ae(x) with one free variable s.t.

¢ istruein A[n,o0] ifand only if ay(n)is truein N,.

And conversely: for each first-order formula with a free
variable there is a corresponding LTL formula s.t. the same
condition holds.

Does that mean that LTL is useless?
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S 4.4 Examples: LTL and arithmetic
N in different languages

Example 4.19 (Natural numbers in different languages)

B Nppy = (No, 0V, +, =) (, Presburger Arithmetik”),

B Npeano = (No, 0V, +V, N =N ( Peano Arithmetik”),

B Npw = (No, OV, 1V, 4V N =N (variant of Mpeano).
These sets each define the same natural numbers, but in
different languages.

Question:

If the language is bigger then we might express more.
Is Lpa strictly more expressive than Lp.,,,,?
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No, because one can replace the 1V by a

L peano-formula: there is a £peq,,-formula ¢(z) so
that for each variable assignment p the following
holds:

Npa =, 6(x) if and only if p(z) = 1V

m Thus we can define a macro for 1.
m Each formula of £p4 can be transformed into
an equivalent formula of Lp.4,.
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4.4 Examples: LTL and arithmetic

Question:

Is £ peano perhaps more expressive than Lp,., or
can the multiplication be defined somehow?

Indeed, Lpqn, IS more expressive:

m the set of sentences valid in NVp,. is decidable,
whereas

m the set of sentences valid in Npg, is Not even
recursively enumerable.
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Different languages for NVp,.;
B N = (No, 0V, 1V, 4V =)
. NPres (N ON SN +N _N)
. NPres (N ON 1N SN +N N)
[ | Npmg (N(), 1N ‘|‘N N)

All these structures, resp. their formulae
are interdefinable.
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We shall introduce Z = (Z,0%,1%,+% -2 .2 <7)in
the chapter about the Hoare calculus. How does
it compare with NVp..,,?

m “=" can be defined with < and vice versain Z
and Npeano (resp. in Npye).

m “—" can also be defined with the other
constructs.

B Npeuno Can be defined in Z with an
appropriate formula ¢(z):

Z k=, ¢(x) if and only if p(z) € Ny
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m Can Npe,, be defined in (Z, +%,.%)?
To be more precise, for each Lp.,,, formula ¢,
there is a £z formula ¢’ such that: if Npy = ¢ then
ZEJd.
So Z is at least as difficult as Npegno.
The converse is true as well. Therefore although
the theories of Z and Np..,, are not identical, the
truth of a formula in one of them can be reduced

to the truth of a translated formula in the other
one.
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4.4 Examples: LTL and arithmetic

What about R = (R, 0%, 1® & R R &) and
=(Q,09,12 4 0 .Q <Q)? How do they
compare with Np.,,,?

m State a formula that distinguishes both
structures.

m Can one define Q within R (as we did define
NPeano in Z)7

m Is there an axiomatization of R?

In general, theories of specific structures are
undecidable. But it depends on the underlying
language.
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4.5 Prenex normal form and
clauses
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Prenex normal form (1)

Definition 4.20 (Prenex normal form)

We consider FOL-formulae built not just over 3, —, Vv, but
also using the macros V, A\, —, <.
A FOL formula of the form

Quzy ... Quny

where 1) does not contain any quantifiers, is called in
prenex normal form.

Proposition 4.21

Each FOL-formula is equivalent to one in prenex normal
form.
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4.5 Prenex normal form and clauses

Prenex normal form (2)

Instead of proving the last proposition by induction on the
structure of formulae, we illustrate how this can be done.

Move the — sign to the innermost parts (the atomic
formulae). Here we use just the boolean laws.

Move the leftmost quantifier to the front in such a way,
that its scope is the whole formula.

Do the last step recursively until all quantifiers are in
front.
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Prenex normal form (3)

How can we do the second step?

m Vzp(z) A is replaced by Vz(p(z) A ) if x does not
occur in ¢, and by Vz(¢(2) A ¢) otherwise (for suitable

m Vzp(z) V¢ is replaced by Vz(p(z) V ¢) if x does not
occur in ¢, and by Vz(p(2) V ©) otherwise (for suitable

m Jzp(x) A is replaced by 3x(¢(x) A ¢) if x does not
occurin ¢, and by Vz(p(2) A ¢) otherwise (for suitable
2).

m Jzp(z) V ¢ is replaced by 3z (p(z) V ¢) if x does not
occur in ¥, and by Vz(¢(z) V ¢) otherwise (for suitable
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4.5 Prenex normal form and clauses

Prenex normal form (4)

A formula in prenex form Qz; ... Q,z,% can be
even more normalised: the ¢ part can be putin
conjunctive or disjunctive normal form (they can
be viewed as SL formulae and the boolean laws
can be applied).

Later, we need to get rid of existential
quantifiers: working with universally quantified
formulae is more appropriate for the resolution
calculus (as will become clear in a while).
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Satisfiability equivalence (1)

Proposition 4.22 (Skolemization)

Each FOL formula ¢ in a language L can be transformed to a
formula ¢' in an extended language £’ O £ (which contains
additional function symbols) such that the following holds:
(1) ¢ is in prenex normal form and contains only ¥/
quantifiers, and (2) if ¢ is satisfiable in a L-model, then this
L-model can be extended to a model in the language L' and
¢ is satisfiable in this extended model.

Thus any formula is satisfiability equivalent to a universal
formula in an extended language.

Note: it is not possible to transform each formula into an
equivalent formula that contains only universal
quantifiers (in its prenex normal form).
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Satlsflablllty equivalence (2)

Example 4.23 (Eliminating 3 quantifiers)
We consider the two formulae

323y (a(x) A —q(y)),

Va3y (p(x, y) = —a(y)).
How can we get rid of the existential
quantifiers?
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Satlsflablllty equivalence (3)

The first formula is easy to transform: we just add two new
constants ¢, ¢ and instantiate them for the variables. This
leads to q(c) A —q(c’), or the two clauses q(c) and q(¢).

The second formula is more complicated, because there is
no single y. We have to take into account, that the y
depends on the chosen . Therefore we introduce a new
function symbol f(z): Va p(z, f(x)) — —q(f(x)). Then we
have to transform the formula into disjunctive form:

Ve —p(z, f(2)) V ~q(f ().

The newly introduced function symbols are also called
Skolem functions, the technique is called skolemization.
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Satlsflablllty equivalence (4)

Applying the technique of the last slide recursively, we can
transform each set M of £L-formulae into a set M’ of
universally quantified formulae in prenex form in an
extended language £’ (where £’ is obtaind from L by
adding certain function symbols).

Theorem 4.24 (Satisfiability equivalence)

Let M be a set of FOL sentences in a language L and M’ be its
transform in L' O L, which is universal and in prenex form.

M is satisfiable if and only if M’ is satisfiable.

So we do not get equivalence in the full sense, but
satisfiability equivalence. This suffices to prove refutation
completeness of the resolution calculus for FOL.
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Universal clauses

Using the techniques just introduced, it is possible to
transform any set M of FOL formulae into a set M’ of
formulae with the following properties:

m all formulae are universal,

m all formulae are in prenex form Qiz; ... Q.0

m the formulae ¢ after the quantifiers are in conjunctive
normal form,

m M and M’ are satisfiability equivalent.

We say that the set M’ is in clausal form.
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4.6 Sit-Calculus
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How do we axiomatize the Wumpus-world in
FOL?
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In order to describe actions or their effects consistently we
consider the world as a sequence of situations (snapshots of
the world). Therefore we have to extend each predicate by
an additional argument.

We use the function symbol
result(action, situation)

as the tferm for the situation which emerges when the
action action is executed in the situation situation.

Actions: Turn_right, Turn_left, Forward, Shoot, Grab,
Release, Climb.
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We also need a memory, a predicate
At(person, location, situation)

with person being either Wumpus or Agent and location
being the actual position (stored as pair [i,j]).

Important axioms are the so called successor-state axioms,
they describe how actions effect situations. The most
general form of these axioms is

true afterwards <= an action made it true
oritis already true and
no action made it false

Prof. Dr. Jurgen Dix Clausthal, SS 2018 347



@KW 4 First-Order Logic: Semantics
.’:[;Hy ‘Ql‘rausythal 4.6 Sit-Calculus

Axioms about At(p, [, s):

At(p, [, result( Forward, s))<((l = location_ahead(p, s) N =Wall(l))

At(p,1,s) — Location_ahead(p, s) =
Location_toward(l, Orient.(p, s))
Wall([z, y]) “x=0Vae=5Vy=0Vy=25)
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Location_toward(|x,y],0) = [z + 1, y]
Location_toward([x,y],90) = [z, y + 1]
Location_toward(|x,y], 180) = [z — 1, y]
Location_toward([x,y],270) = [x,y — 1]

Orient.(Agent, sg) = 90
Orient.(p,result(a, s)) = d <
((a = turn_right A d = mod(Orient.(p, s) — 90, 360))
V(a = turn_left A d = mod(Orient.(p, s) + 90, 360))
V(Orient.(p,s) = d A —=(a = turn_right V a = turn_left))
mod(z,y) is the implemented “modulo”-function,
assigning a value between 0 and y to each

variable z.
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Axioms about percepts, useful new notions:

Percept([Stench, b, g, u, c|, s)
Percept([a, Breeze, g, u, c|, s)
Percept([a, b, Glitter,u, c], s)
Percept(|a, b, g, Bump, ], s)
Percept([a, b, g, u, Scream], )

At(Agent,l, s) N Breeze(s)
At(Agent,l, s) A Stench(s)

Prof. Dr. Jurgen Dix
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Stench(s)
Breeze(s)
At_Gold(s)
At_Wall(s)
Wumpus_dead(s)

Breezy(l)
Smelly(l)
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Adjacent(ly,ls) <> Fdly = Location_toward(ly, d)
Smelly(l;) — Aly At(Wumpus, ly, s)A
(ZQ = ll V Adjacent(ll, lg))

Percept([none, none, g, u, c|, s)\
At(Agent, z,s) A Adjacent(z, y)
— OK(y)
(=At(Wumpus, x,t) A =Pit(x))
— OK(y)
At(Wumpus, 11, s) A Adjacent(ly, l5)
— Smelly(l)
At(Pit, [y, S) AN Adjacent(ll, l2)
— Breezy(ly)
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Axioms to describe actions:

Holding(Gold, result(Grab, s)) <~ At_Gold(s)V
Holding(Gold, s)

Holding(Gold, result(Release, s)) ~ O

Holding(Gold, result( Turn_right,s)) <> Holding(Gold, s)

Holding(Gold, result( Turn_left,s)) <> Holding(Gold, s)

Holding(Gold, result( Forward, s)) < Holding(Gold, s)

Holding(Gold, result(Climb, s)) < Holding(Gold, s)

Each effect must be described carefully.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 352



4 First-Order Logic: Semantics

il TU Clausthal
Axioms describing preferences among actions:
Great(a, s) — Action(a, s)
(Good(a, s) A —3bGreat(b, s)) — Action(a, )
(Medium(a, s) A =3b (Great(b, s) V Good(b, s))) — Action(a, s)
(Risky(a, s) A —3b(Great(b, s) V Good(b, s) V Medium(a, s))) —
— Action(a, s)
At(Agent,[1,1],s) A Holding(Gold, s) — Great(Climb, s)
At_Gold(s) N —Holding(Gold, s) — Great(Grab, s)
At(Agent,l, s) A —Visited(Location_ahead(Agent, s))A
AOK(Location_ahead(Agent, s)) — Good(Forward, s)
Visited(l) <» Js At(Agent, 1, s)

The goal is not only fo find the gold but also to return safely.
We need additional axioms like

Holding(Gold, s) — Go_back(s).
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Blocksworld

The Blocks World (BW) is one of the most popular
domains in Al (first used in the 1970s). However,
the setting is easy:

ERY,
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Domain

Blocks of various shapes, sizes and colors sitting
on a table and on each other.

(Here: Quadratic blocks of equal size.)

Actions

Pick up a block and put it to another position
(tower of blocks or table). Only the topmost
blocks can be used.

How to formalize this? What language to use?
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Choosmg the predicates: First try.

One action: move. We add a ternary predicate
move(b, z,y): The block b is moved from z to y
if both b and y are clear (nothing on top of
them).

So we need a predicate clear(z).

One predicate on(b, ) meaning block b is on x.

But then clear(x) can be defined by
Yy —on(y, ).

Problem: What about the table?

If we view the table as a simple block: clear(table)
means that there is nothing on the table.
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@KH' THY ‘g;l‘aUSthal 4.7 The Blocksworld
Choosing the predicates: Second try.

Keep the current framework, view the table as a
block but add an additional binary predicate

move_to_table(b, x),

meaning that the block b is moved from z to the
table.

clear(z) is interpreted as there is free place on z to
put a block on x. This interpretation does also
work for x = table.
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Choosmg the predicates: Third try. |

The BW language Lpw C LfoL is the subset of FOL

having a signature consisting of the two binary
predicate symbols above and =.
We define the following macros:

on(z,y) :above(zr,y) A —(3z(above(x, z) A above(z,y)))
onTable(z) :—(Jy(above(z,y)))
clear(x) : —(3y(above(y,)))

How do the L gy -structures look like?
Do they all make sense?
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4.7 The Blocksworld

Our blocksworld has a very specific structure,
which should be reflected in the models!

Let A be a nonempty set. We say that (A, <) is a
chain if < is a binary relation on A which is

irreflexive,
transitive, and

connected, (i.e., forall a,b € A it holds that
eithera < b, a = b, or a > b).

(A chain is interpreted as a tower of blocks.)
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Definition 4.27 (Lgw-BW-structure)

An BW-structure is a Lpw-structure A = (U, 1) in
which I(above) is a finite and disjoint union of
chains over U, i.e.

I(above) U {(a,b) € A* | a > b}}
(A,<)ed’

where A’ is a set of chains over U such that for all
(Al, <1), (AQ, <2) c A" with (Al, <1) 7é (AQ, <2) it
holds that A; N Ay = 0.

(Note: I(above) is transitive!)
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Definition 4.28 (BW-theory)

The theory Th(BW) consists of all Lgw-sentences
which are true in all BW-structures.

@Hﬁl TU Clausthal 4 First-Order Logic: Semantics

Is the theory complete?
No, consider for example

Vax,y(onTable(x) A onTable(y) — = = y)

m What about planning in the blocksworld?

m This should be done automatically as in the
case of the Sudoku game or the puzzle.

m Thus we need a FOL theorem prover.

~ An axiomatization is needed!
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A complete axiomatization

The set AXgy was proposed by Cook and Liu (2003):
Va —above(z, x)
VxVyVz (above(z,y) A above(y, z)) — above(z, 2)
VxVyVz (above(z,y) A above(zx, z)) —
(y = z V above(y, z) V above(z, y))
Vo VyVz (above(y, z) A above(z x)) —
(y = z V above(y, z) V above(z, y)
Va (onTable(z) v Jy(above(z, y) A onTable(y)))
A Vz (clear(z) v Jy(above(y, z) A clear(y)))
Va Yy (above(z,y) — (Jzon(z, z) A Jzon(z,y))

The last statement says that if an element is not on top (v)
then there is a block above it, and if an element is not at the
bottom (x) then there is an element below it.

Is every Lpw-BW-structure also a model for AXgy?

~ Exercise
Prof. Dr. Jurgen Dix Clausthal, SS 2018 363



4 First-Order Logic: Semantics

]
- ’:[\:H Lglaﬁ%?”tq{lal 4.7 The Blocksworld

Lemma 4.29

CI’)(.AXBw) - Th(BW).
Proof: ~~ Exercise

Indeed, both sets are identical:

Theorem 4.30 (Cook and Liu)

Cn(AXgw) = Th(BW).

Thus the axiomatization is sound and complete.
Additionally, the theory is decidable!

~~ We are ready to use a theorem prover!
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@Ku [‘U‘ ‘ClaUSthal 4.8 Higher order logic

Definition 4.31 (Second order logic Ly} 5)

The language L, o1, of second order logic consists of the
language Lo, and additionally
m foreach k € No: XF X5 ... X . acountable set
RelVar® of k-ary predicate variables.
Thereby the set of terms gets larger:

m if X* is a k-ary predicate variable and ¢, ..., t; are
terms, then X*(¢;,... t;) is also a term,
and also the set of formulae:
m if X is a predicate variable, ¢ a formula, then (3X¢) and
(VX ) are also formulae.
Not only elements of the universe can be quantified but also
arbitrary subsets resp. k-ary relations.
The semantics do not change much — except for the new
interpretation of formulae like (3X ), (VXy)).
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We also require from 14 that the new k-ary
predicate variables are mapped onto k-ary
relations on U4.

m if o =4 VX", then

t, ifforall RF CU4 x - xUy: Ajxr/ge =t,
L S AR

m if o =4 X", then

t, ifthereisa RF C U4 x -+ x Uy with Ajxx =t,
A(p) =dey { £ else. =4 A /K] (¥)

We can quantify over arbitrary n-ary relations,
not just over elements (like in first order logic).
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Dedekind/Peano Characterization of N

The natural numbers satisfy the following axioms:

@IH@ TU Clausthal 4 First-Order Logic: Semantics

Axq: 0is a natural number.

Axy: For each natural number n, there is exactly one
successor S(n) of it.

Axs: There is no natural number which has 0 as its
successor.

Ax,: Each natural number is successor of at most one
natural number.

Axs: The set of natural numbers is the smallest set N
satisfying the following properties:
0€N,
ne€ N = S(n) € N.

The natural numbers are characterized up to isomorphy by these
axioms.
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How to formalize the last properties?

Language: We choose “0” as a constant and
“S(-)"” as a unary function symbol.

Axiom for 0: Vz=S(z) =0

Axiom for S: VaVy (S(z) = S(y) — = =y).

Axiom 5: VX ((X(0) AVz (X(z) = X(S(x)))) —
VyX(y))-

While the first two axioms are first-order, the last
one is essentially second-order.
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4.8 Higher order logic

What do the following two 2nd order sentences
mean?

Vavy (z =y <= VX (X(z) <= X(v)))

VX ( VelyX(z,y) A
VavyVz ((X(z,2) AN X(y,2)) =z =y))
— VeIyX(y,z))
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4.8 Higher order logic

Answer:

The first sentence shows that equality can be
defined in 2nd OL (in contrast to FOL).

The second sentence holds in a structure if and
only if itis finite. Note that this cannot be
expressed in FOL, for a good reason:
compactness would not hold anymore. Tghis
would destroy all good properties of FOL.

While the semantics of £s,4 o7, is a canonical
extension of Lro, this does not hold for the
calculus level. It can be shown that the set of
valid sentences in L, o1, is hot even recursively
enumerable.
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4.8 Higher order logic

Attention:

There is no correct and complete
calculus for 2nd Order Logic!
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Verification Il: Hoare calculus

m Motivation
Core Programming Language
Hoare Logic
Proof Calculi: Partial Correctness
Proof Calculi: Total Correctness
Sound and Completeness
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Content of this chapter (1):

In this chapter we explore ways to use FOL for the
verification of programs: does a program really
do what we want? The method we discuss has
been developed by C.A.R. Hoare and M. Floyd in
the 60’ies.

We introduce a calculus to prove correctness of computer
programs.

Verification: We argue why formal methods are
useful/necessary for program verification.

Core Programming Language: An abstract but powerful
programming language is introduced.

Hoare Logic: We introduce the Hoare Calculus which
operates on triples {¢,.c} P {{post }-
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Content of this chapter (2):

Proof Calculi (Partial Correctness): Here we present three
calculi (proof rules, annotation calculus, and
the weakest precondition calculus) for partial
correctness.

Proof Calculi (Total Correctness): Partial correctness is
trivially satisfied when a program does not
terminate. Therefore, we consider total
correctness as well and an extension of the
calculi to deal with it. We consider the partial
and total correctness of programs.

Sound & Completeness: We briefly discuss the sound and
completeness of the Hoare calculus.
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5.1 Motivation
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Why to formally specify/verify code?

m Formal specifications are often important for
unambiguous documentations.

m Formal methods cut down software
development and maintenance costs.

m Formal specification makes software easier to
reuse due to a clear specification.

m Formal verification can ensure error-free
software required by safety-critical computer
systems.
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Verification of Programs
How can we define the state of a program?
The state of a program is given by the contents
of all variables.
What about the size of the state-space of a
program?

The state space is usually infinite! Hence, the
technique of model checking is inappropriate.
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Software Verification Framework

Main reasons for formal specifications:

m Informal descriptions often lead to
ambiguities which can result in serious (and
potentially expensive) design flaws.

m Without formal specifications a rigorous
verification is not possible!

Prof. Dr. Jurgen Dix Clausthal, SS 2018 379



W *TU Clausthal 5 Verification I Jo3(8 Sation

Methodology
We assume the following methodology:

Build an informal description D of the
program and the domain.

Convert D into an equivalent formula ¢ in a
suitable logic.

(Try to) build a program P realizing ¢.
Prove that P satisfies ¢.
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Methodology (2)

Some points to think about:

(i) Point 2 is a non-trivial and non-formal
problem and thus “cannot be proven”: D is an
informal specification!

(ii) Often there are alternations between 3 and 4.

(ili) Sometimes one might realize that ¢ is not
equivalent to D and thus one has to revise ¢.
(iv) Often, P must have a specific structure to
prove it against .
In this lecture, we will focus on points 3,4, and

(iv).
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Some Properties of the Procedure

Proof-based: Not every state of the system is
considered (there are infinitely many
anyway), rather a proof for
correctness is constructed: this works
then for all states.

Semi-automatic: Fully automatic systems are
desireable but they are not always
possible: undecidability, time
constraints, efficiency, and “lack of
intelligence”.
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Some Properties of the Procedure (2)

Property-oriented: Only certain properties of a
program are proven and not the
“complete” behavior.

Application domain: Only sequential programs
are considered.

Pre/post-development: The proof techniques
are designed to be used during the
programming process (development
phase).
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5.2 Core Programming Language
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Core Programming Language

To deal with an up-to-date programming
language like Java or C++ is out of scope of this
introductory lecture. Instead we identify some
core programming constructs and abstract away
from other syntactic and language-specific
variations.

Our programming language is built over

intfeger expressions,
boolean expressions, and
commands.
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Definition 5.1 (Program Variables)

We use Vars to denote the set of (program)
variables. Typically, variables will be denoted by
Uy...,T,Y,20Or L1, To,....

Definition 5.2 (Integer Expression)

Let x € Vars. The set of integer expressions 7 is
given by all terms generated according to the
following grammar:

I+=0|1|a|T+D) | I=1) ]| {1

We also use —I to stand for 0 — /.
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Although the term “1 — 1” is different from “0”, its meaning
(semantics) is the same. We identify “1 + 1+ ...+ 1” with

“n” (if the term consist of n 1’s). The precise notion of
meaning will be given in Definition 5.10.

Integer expressions are ferms over a set of function symbols
Func, here

Func = Vars U{0,1,+, —, -}
Note also, that we consider elements from Z as constants
with their canonical denotation! Thus we write “3” instead
of “1+1-+1".

Example 5.3 (Some integer expressions)
5, 2,6+ 3 -x),x-y+2z—3,—z-x, ...

Note that z” or y! are not integer expressions. Do we need
them?
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5.2 Core Programming Language

Definition 5.4 (Boolean Expression)

The set of Boolean expressions B is given by all formulae
generated according to the following grammar:

B:=0O| (-B) | (BAB) | (I <I)

We also use (B V B) as an abbreviation of -(—-B A —=B) and
T as an abbreviation for —[J. Boolean expressions are
formulae over the set of relation symbols Pred = {{J, <}.

So, boolean expressions are similar to sentential logic
formulae.

Note that we use I = I’ to stand for (1 < I') A =(I' < I).
We also write [ # I' for =(I = I').
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Formulae over Z

When describing the Hoare calculus, we also need formulae
to express (1) what should hold before a program is
executed, and (2) what should be the case after the
program has been executed. These formulae are built using
the boolean expressions just introduced.

Definition 5.5 (Formulae over Z)

The set of formulae Fmly,,. is given by all formulae
generated according to the following grammar:

¢ =3¢ | B | (=¢) | (9N Q)

where B is a boolean expression according to Definition 5.4
and x € Vars.

We note that “Vz¢” is just an abbreviation for “—3z-®”
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Formulae over Z (2)
We have to give a meaning (semantics) to the syntactic
constructs! Our model is given by Z where Z is the set of

integer numbers. Note that in Z we have a natural meaning
of the constructs 0,1, —, +, -, <:

Z=(2,0%1%, 2,45, 2 <),
In Chapter 4 (Section 3) we have defined what it means that
a formula is true in such a structure:
VaVyVz (x -z +y-y+2-2 >0),
Vady (y < ),
r-r < x-xT-T
r+4<x+5.
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Formulae over Z (3)

Note that when evaluating a formula with free variables,
there are two possibilities:

Either we need to assign values to these variables, or
we add “V” quantifiers to bind all variables.

The truth of a formula can only be established if the
formula is a sentence, i.e. does not contain free variables.
Let ¢(z,y) be the formula 3z 2 + z < y and let n,n’ € Z.
Then we denote

m by Voé(z,y) the formula VaVy(3z x + 2z < y),
m by ¢(x,y)[n/x,n'/y] the formula where z is replaced by
n and y is replaced by n': 32 n + z < n'.
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Formulae over Z (4)

How large is this class of formulae over Z? Is it
expressive enough?

How can we express the function z! or z*?

Which functions are not expressible? Are there
any?

Is there an algorithm to decide whether a
given sentence ¢ (formulae without free
variables) holds in Z, i.e. whether Z = ¢?

Attention: everything radically changes, when
we do not allow multiplication! Then the
resulting theory is decidable.
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Formulae over 7, (5)

Let us express some functions f : Z — Z that are
not available as integer expressions.

Definition 5.6 (Functions Expressible over Z)

A function f : Z — Zis expressible over Z if there
is a formula ®(z, y) with x, y as the only free
variables such that the following holds for all

2,2 € Z:

Z &= ®(x,y)[z/x, 2 Jy] iff f(z)=
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Formulae over Z (6)

z!: Not obvious.
7. Not obvious.

Using Godelization, it can be shown that all
naturally occurring functions can be expressed. In
fact, all recursive functions are expressible. We
shall therefore use functions like x! as macros
(knowing that they can be expressed as formulae
in the language).
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Definition 5.7 (Program)

The set Prog of (while) programs over Vars, Z and
B is given by all well-formed sequences which can
be formed according to the following grammar:

Cu=skip | x:=1] CC | ifB{C}else {C} | whileB {C}
where B € B, € Z,and x € Vars.

We usually write programs in lines (for better
readability).

Prof. Dr. Jurgen Dix Clausthal, SS 2018 395



5 Verification II: Hoare calculus

@Ku TU ‘C‘laU'S‘t‘hal 5.2 Core Programming Language

skip: Do nothing.
x :=|: Assign I to =.

Cy; Cy: Sequential execution: C; is executed
after C; provided that C; terminates.

if B {C;} else {C,}: If Bis true then C; is
executed otherwise C».

while B {C}: Cis executed as long as B is true.

The statement “B is true” is defined in
Definition 5.11.
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Example 5.8

What does the following program Fac(z)
calculate?

y =1
z:=0;
while z # x {
z:=z+1;
y:=y-z
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Is this class of programs large or small?

Can we express everything we want?
No, because we need better software engineering
constructs.
Yes, because we have "while" and therefore we can do
anything.
No, because we can not simulate (emulate) Java or C++.
It is already too large, because we assume that we can

store arbitrary numbers. This is clearly not true on real
computers.

Yes, because this class of programs corresponds to the
class of deterministic Turing machines. And we cannot
aim for more.
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While Programs = Turing Machines

Turing Machines

The class of programs we have introduced corresponds
exactly to programs of Turing machines. Thus itis an
idealization (arbitrary numbers can be stored in one cell)
and therefore it is much more expressive than any real
programming language.

But playing quake requires a lot of coding ...

m In particular, there is no algorithm to decide whether a
given program terminates or not.

m The set of all terminating programs is recursively
enumerable, but not recursive.

m Therefore the set of non-terminating programs is not
even recursively enumerable.
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Meanlng of a Program

Definition 5.9 (State)
A state s is a mapping

s:Vars — 7

A state assigns to each variable an integer. The set
of all states is denoted by 5.

The semantics of a program P is a partial
function

[P]:S— S
that describes how a state s changes after
executing the program.
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Definition 5.10 (Semantics: Integer Expression)

The semantics of integer expressions is defined:

[0] = 0O
[[1]]3 =1
[x]s = s(x)for =z € Vars

[E*x E']s = [E]s*[F]s forxe{+,—,}

Definition 5.11 (Meaning: Boolean Expression)

The semantics of a Boolean expression is given
as for sentential logic; that is, we write Z, s = B if
B is true in Z wrt to state (valuation) s.
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Definition 5.12 (Meaning: Satisfaction Z, s = ¢)

The semantics of a formula ¢ is defined
inductively. We have already defined it in
Definition 5.11 for atomic expressions. Arbitrary
formulae can also contain the quantifier 3.

Z,s = dxp(x) iff thereisan € Z
such thatZ, s = ¢(z)[n/z]

b dro: dx 3z <4,
B Jro: dx 3z < 4y.
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Definition 5.13 (Meaning: Program)

[skip](s) = s
[x := I](s) = t where t(y) = {E]ﬁ) ';fj v
[C1; C](s) = [CI([C(s))

[if B{Ci} else {Co}](s) = {

[ while B {C}](s) =
[ while B {C}([C](s)) ifZ,s | B,
s else.

[Cil(s) fZ,sE B,
[Ca](s) else.

Note that the recursive definition of the while cases is the
reason that [-] might be a partial function: itis (perhaps)
not everywhere defined.
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5.3 Hoare Logic
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Hoare Triples

How can we prove that a program/method P
really does what it is intended to do?

We describe the desired state of the (overall)
program before and af ter the execution of P.

For example, let P(x) be a program that should
return a number whose square is strictly less than
X.

Is the correctness of the program ensured
when we require that P(z) - P(z) < 2?

Not completely! What if x < 0?7 So, the
precondition is also very important!
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Definition 5.14 (Hoare Triple)

Let ¢ and ¢ be formulae of Fmly,,; and P be a
program. A Hoare friple is given by

{9}P{y}

where ¢ is said to be the precondition and ¢ the
postcondition.
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A Hoare triple {¢}P{v} is read as follows:
m If the overall program is in a state that satisfies

o, then,
m after the execution (and termination) of P the

resulting state of the program satisfies .

Let P be the program given above and y be the
variable returned. Then the following Hoare triple
would be a valid specification:

{z > 0}P{y -y < x}.
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Partlal and Total Correctness

We already introduced the informal reading of

Hoare triples. Now we will be more formal. There

are two cases one has to distinguish: Programs

that terminate and ones which do not.

Accordingly, we have two definitions of

correctness:

partially correct: ¢ holds after execution of P,
provided that P terminates,

totally correct: we require in addition that P
terminates.
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A triple {¢}P{4} is satisfied under partial
correctness, written as

=P {o}P{y},

if for each state s

Z,[P](s) F v
provided that Z, s = ¢ and [P](s) are defined.

The following program is always partially
correct: while T {x:= 0}, for arbitrary pre and
postconditions.
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.3 Hoare Logic

A triple {¢}P{«} is satisfied under total
correctness, written as

=" {o}P{¥},
if for each state s, [P](s) is defined and

Z,[PI(s) =¥
provided that Z, s |= ¢.

The following program is usually not totally
correct: while T {x:=0}. Why “usually”?
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Example 5.17
Consider the following program Succ(x):

a:=x+1;
if (a—1=0){
y:=1

} else{
y:=a
}

Under which semantics does the program satisfy
{T}Succ{y =z +1}?
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Note, that the last program is only one program
(and a very silly one) that ensures the condition
{T}Succ{y = = + 1}. There are many more.

Example 5.18

Recall the program Fac(x) stated in Example 5.8.
Which of the following statements are correct?

m = {2 > 0}Fac{y = «!},

m = {T}Fac{y = 2!},

m =" {z > 0}Fac{y = z!} and
m =P {T}Fac{y = =!}.
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Program and Logical Variables

The pre- and postconditions in a Hoare triple may
contain two kinds of variables:

m program variables and

m logical variables.
Given a program P the former kind occurs in the
program whereas the latter refers to fresh
variables.

The following example makes clear why we need
logical variables.
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Example 5.19
The following program Fac2 works as well.

y =1
while (x # 0){

y:=y-X
x:=x—1

}

Why is it not a good idea to use the Hoare triple
{z > 0}Fac2{y = !} in this case?

What about {z = 2y A x > 0}Fac2{y = z¢!}? The
variable x is a logical variable!
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5.4 Proof Calculi: Partial
Correctness
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Proof Rules
We have introduced a semantic notion of (partial
and total) correctness. As for resolution we are
after syntactic versions (- and -?) which can be
used on computers.

Sound Calculus: Can we define a calculus, that
allows us to derive only valid Hoare
triples?

Complete Calculus: Can we define a calculus,
that generates all valid Hoare friples?
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Answer to question 1: Yes, for both versions.
Answer to question 2: No, not even for +7:

HP {T}P{O} ifand only if P is not terminating.
And this set is not recursively enumerable.

The following rules were proposed by R. Floyd
and C.A.R. Hoare. A rule for each basic program
construct is presented.

If a program is correct we may be able to show it
by only applying the following rules (compare
with Modus Ponens).
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Composition

Definition 5.20 (Composition Rule (comp))

{o}Ci{n} {n}Co{v}

{63 Cy; Gy}
In order to prove that {¢}Cy; Co{u0} we

have to prove the Hoare triples {¢}Ci{n}
and {n}Cy{v} for some appropriate .
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An axiom

Definition 5.21 (Assignment Rule (assign))

(Wl /=] px =y}

The rule is self-explanatory. Recall that
Y[l /x] denotes the formula that is equal
to ¢y but each free occurrence of z is
replaced by 1.
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Another axiom

Definition 5.22 (Skip Rule (skip))

{#}skip{o}
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If RuIe

Definition 5.23 (If Rule (if))

{0 A BYCi{y} 1o A =B}Co{y}
{o}if B {Ci} else {C}{v}

In order to prove the conclusion we prove
that ¢/ holds for both possible program
executions of the if-rule: when B holds
and when it does not.
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Partial-While Rule

Definition 5.24 (Partial-While Rule (while))

{Y A BiC{Y}
{1} while B {C}{¢Y A =B}

The while-rule is the most sophisticated
piece of code; it may allow infinite
looping. The formula % in the premise

plays a decisive rule: v is true before and
after the execution of C, i.e. C does not
change the truth value of .
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Invariant
Definition 5.25 (Invariant)
An invariant of the while-statement
while B {C} is any formula v such that

=" {1 A BC{y).

The conclusion says that ¢ does not
change, even when Cis executed several
times and if C terminates then B is false.
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Example 5.26
What is an invariant of the following program?

y =1

z:=0;

while z # x {
z:=z+1;
Yy =Yz

}

An invariant is “y = z!

'"
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Impllcatlon Rule

Definition 5.27 (Implication Rule (impl))

103Gy}

{¢'1C{y'}
whenever Z = V(¢ — ¢) and
ZEY@ — ).
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Impllcatlon Rule (2)
The implication rule allows us to
strengthen the precondition ¢ to ¢’ and
to weaken the postcondition v to ¢/,
provided that the two implications hold.

Note, that this rule links program logic
with the truths of formulae in Z, which
have to be established. We call them
proof obligations.
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An Example

We will try to prove the correctness of the

program Fac given in Example 5.8. That is, we
would like to derive

{T}Fac{y = =!}

For any input state after the execution of Fac
the return value y should have the value z!.
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5.4 Proof Calculi: Partial Correctness

We have to start with axioms (by the assignment rule):

{1=1}y:=1{y=1} /- {y=1A0=0}z:=0{y=1A2=0} /.
{T}y?lzl{y?il} <Zmpl) y{y=1}z:=0{y:${/\z:0} (Zmpl)

{Tly:=1z:=0{y=1A2=0} (comp)
pe
Again, on top are axioms:
{y-(z+1)=(z+1)}zi=z+1{y-z2=2!} /. _ L _
oty ety mpl) {y-2=z}y:=y-2{y=2!}
f=snzel _‘———li?/\z ajz::z Lyy:=y-z{y==z! (comp) .
{y Fajzi=z+ly:=y-z{y=2!} (while)
{y=z2twhilez#x{z:=z+L;y:=y-z}{y =2 Az =x}
e
Putting both parts together:
fd} .
wl {y=1A2z=0} while z#x fz::z—l—l;y::y-z}{y:a;!} (Zmpl) com )
{T}Fac{y = 2!} b
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Proof obllgatlons

We have to show that the following formulae hold
in Z:
T —=1=1,
BYyly=1—-y=1A0=0),
VaVyVz(y =21 ANz # x — (y(z + 1) = (2 + 1)1)),
BvVyVz(y=1ANz=0—y=2!),
VaVyVz(y = 2! ANz =2 — y = a!).
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Annotation Calculus

m The proof rules just presented are very similar
to Hilbert style calculus rules.

m They inherit some undesirable properties: The
proof calculus is not “easy to use”.

m The proof given for the small Fac-program
looks already quite complicated.

In this section we present an annotation calculus
which is much more convenient for practical
purposes.
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We consider a program P as a sequence of basic
commands:
Ci; Gyl G
That is, none of the commands C; is directly
composed of smaller programs by means of
composition. Assume we intend to show that

= {o}P{v}
In the annotation calculus we try to find
appropriate ¢;, i = 0,...,n such that
it P {¢;}Ci{pis1} foralli=0,...,n—1
then also 7 {¢}P{v}.
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In other words, we interleave the program P with
intermediate conditions ¢,

{00} Ci{P1} Co{oa} ... {dn-1}Ci{dn}

where each step {¢;}Ci{¢;.1} is justified by one of
the proof rules given below.

That is, an annotation calculus is a way of
summarizing the application of the proof rules to
a program.

How to find the appropriate ¢;?
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We determine "something like" the weakest
preconditions successively such that

= {goCu{dh} Co{ o} - {1} Co{ o}
Under which condition would this guarantee
=7 {@o}P{¢n}?

It must be the case that Z =V (¢y — ¢}) and
Z =V (4, = én)

Why do we say “something like” the weakest
precondition? We come back to this point later.
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In the following we label the program P with
preconditions by means of rewrite rules

X

Y

Such a rule denotes that X can be rewritten (or
replaced) by Y.

Each rewrite rule results from a proof rule.
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Definition 5.28 (Assignment Rule)
x == E{y)}

{Y[E/x]px = E{y}

if B{C;} else {C} {v}
if B {Ci{¢}} else {Co{v} H{v)}

Definition 5.30 (If Rule (2))

if B {{¢1}---}else {{o}---}
{(B = ¢1) A (=B = ¢2)}itB{{¢1} -~ Jelse {{o}---}
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while B {P}
{¢} while B {{¢ A B}P{¢}}{¢ A =B}

where ¢ is an invariant of the while-loop.

skip{¢}
{#}skip{o}
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5.4 Proof Calculi: Partial Correctness
Applying the rules just introduced, we end up with a finite
sequence
S$1592...8m
where each s; is of the form {¢} oritis a command of a

program (which in the case of if or while commands can also
contain such a sequence).

It can also happen that two subsequent elements have the
same form: ... {¢}{¢} .. .. Whenever this occurs, we have to
show that ¢ implies ¢: a proof obligation (see Slide 425).

Definition 5.33 (Implied Rule)

Whenever applying the rules lead to a situation where two
formulae stand next to each other ... {¢}{¢}..., then we
add a proof obligation of the form

ZEY (6 1),
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Consider {¢} while B {P}{v}. Then the while-rule
yields the following construct:

{¢}{n} while B {{n AB}P{n}}{n A -BHy}

That is, we have to show that the invariant n
satisfies the following properties:
ZEY(o—n),
LZEY((nN-B) =),
P {n} while B {P}{n A =B}, and
=P {n A B}P{n} (this is the fact that it is an
invariant).
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Example 5.34
Prove: =P {y =5}x =y + 1{z = 6}
|Bx:=y+ 1{zr =06}
{y+1=6}x:=y+ 1{x = 6} (Assignment)
{y=5Hy+1=06x:=y+ 1{x =6} (Implied)
Example 5.35
Prove: =P {y < 3}y :=y + 1{y < 4}
By =y+ 1{y <4}
{y+1 <4}ty :=y+ 1{y < 4} (Assignment)
{y <3Hy+1 <4}ty :=y+ 1{y < 4} (Implied)
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Example 5.36

{y =10}
z:=0;

whiley # 0 {

Z:=Z+ X
y:=y—1
1

{7z =zyo}

Firstly, we have to use the rules of the annotation
calculus.
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{y =0}

{110/=]}

z:=0;

{1}

whiley # 0 {
{I Ay #0}
{Ily —1/yllz + =/=]}
Z:=27Z+X;
{Ily —1/yl}
y:=y—1

{1}
}

{I Ay =0}
{z = zyo}

What is a suitable invariant?
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We have to choose an invariant such that the
following hold in Z:

y =yo — 10/2],
INy#0—Ily—1/yllz + /2],
B/Ny=0—z=uzy.
What about / : T? What about [ : (z + zy = zy)?

It is easy to see that the latter invariant satisfies all
three conditions. This proves the partial
correctness of {y = yo}P{z = zy,}.
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How to ensure that = {¢}P{v¢}?
Definition 5.37 (Valid Annotation)

A valid annotation of {¢}P{v} is given if
only the rules of the annotation calculus are
used;

each command in P is embraced by a post
and a precondition;

the assignment rule is applied to each
assignment;

each proof obligation introduced by the
implied rule has to be verified.
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Proposition 5.38 (-7 if and only if Valid Annotation)

Constructing valid annotations is equivalent to
deriving the Hoare triple {¢}P{v} in the Hoare
calculus:

= {o}P{Y}
if and only if

there is a valid annotation of {¢}P{¢}.

Note, this does not mean that the calculus is
complete!
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Exercise

Let the program P be:

I
N N X

Y

+Y;

c N N

Use the annotation calculus to prove that
FP {TIP{u =z + y}.
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Exercise

Given the program P:

a:=x+1;
ifa—1=0{y:=1}else{y:=a}

Use the annotation calculus to prove that
FP {T}P{y = = + 1}.
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Exercise
Given the program Sum:

z:=0;

while x > 0 {
Z:=Z+X;
x:=x—1

}

Use the annotation calculus to prove that
FP {x = x9 Ax > 0}Sum{z = W}
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Weakest Liberal Precondition

In principle, the annotation calculus determines the
weakest precondition of a program and checks whether the
given precondition implies the calculated precondition.

l.e. when we start with something of the form

P{y}

then the annotation calculus leads to a Hoare triple

{o}P{v}

where ¢ is "something like the weakest precondition”:

= {o}P{v}.
Without the while-command the annotation calculus does
calculate the weakest precondition! But in the rule for the
while-command some invariant is selected. This does not
ensure that the weakest precondition is determined!
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A formula v is said to be weaker than y if the
following holds: Z = V(x — v).
Theorem 5.39 (Weakest Liberal Precondition)
The weakest liberal precondition of a program P
and postcondition ¢, denoted by wp(P, ¢), is the
weakest formula 1) such that =P {¢}P{¢}. Such a
formula exists and can be constructed as a formula
in our language.

The reason for the last theorem is that the model
Z with +, -, < is powerful enough to express all
notions we need.
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5.4 Proof Calculi: Partial Correctness

The weakest liberal precondition for each program is
constructed inductively:

Proposition 5.40 (wp- Partial Correctness)

wp(x:=1,¢) ifandonlyif ¢[z/I]
wp(P1; P2, ¢) ifand only if wp(P1, wp(P2,¢))
wp( if B{P:i} else {P,}) ifandonlyif (B — wp(P1,¢)) A
(=B = wp(P2, 9))
wp( while B {P},¢) ifandonlyif i€ Ny (L;(B,P,¢))

where
LO (Ba Pa ¢) =T
Li—i—l (Ba P: ¢) = (_'B — ¢) A (B — Wp(Pa LZ(B>P7 ¢))
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Proposition 5.41

The L;(B, P, ¢) are monotonically increasing:
Vi € No (Li+1(B, P, ¢) = Li(B, P, 9)).
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5.5 Proof Calculi: Total
Correctness
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Proof Rules

We extend the proof calculus for partial
correctness presented to one that covers total
correctness.

Partial correctness does not say anything about
the termination of programs. It is easy to see that
only the while construct can cause the
nontermination of a program. Hence, in addition
to the partial correctness calculus we have to
prove that a while loop terminates.
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The proof of termination of while statements
follows the following schema:

m Given a program P, identify an integer
expression I whose value decreases after
performing P but which is always
non-negative.

Such an expression E'is called a variant.
Obviously: a while loop terminates if such a
variant exists. The corresponding rule is given
below.
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Definition 5.42 (Total-While Rule)

{dANBANO< E=FEyC{oN0< E < Ep}
{# A0 < E} while B {C}{¢ A —B}

where
m ¢ is an invariant of the while-loop,
m F is a variant of the while-loop,

m F represents the initial value of E before the
loop.
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Example 5.43
Let us consider the program Fac once more:

y =1
z:=0;
while (z#x) {z:=z+1; y:=y-z}

How does a variant for the proof of

{x > 0}Fac{y = x!} look like?

A possible variant is “x — z”. The first time the
loop is entered we have that z — z = x and then
the expression decreases step by step until
=2z =
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Annotation Calculus
Definition 5.44 (Total-While Rule)

while B {P}
{$NO< E}wnieB{{¢ ABAO<E=Eo}P{¢AO<E< Eo}}{pA—B}

where
m ¢ is an invariant of the while-loop,
m Fis a variant of the while-looping,

m F), represents the initial value of E before the
loop.
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Example 5.45

Prove that ' {z > 0}Fac{y = z!}. What do we
have to do at the beginning?

We have to determine a suitable variant and an
invariant. As variant we may choose = — z and as
invariant “y = z!”. Now we can apply the
annotation calculus.
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{z >0}
{I1=0A0<2z-0}
y:=1
{y=01A0<z—0}
z:=0;
{y=2IAN0<z—2}
while x # z {

{y=2l"Ne#2AN0<z—2=Ey}
{yz+1) =E+D)IA0<z— (2+1) < Eo}

z:=z+1;
{yz=2!N0<x— 2z < Ep}
yi=y-z

{y=2'N0<z—2< Ep}}
{y=2'"z =72}

{y=='}
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Weakest Precondition

Proposition 5.46 (wp- Total Correctness)

The weakest precondition for total correctness
exists and can be expressed as a formula in our

language.

Example 5.47
What is the weakest precondition for

whilei<n {i:=i+1}{i =n+5}7?
t=n+ 0.
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5.6 Sound and Completeness
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Theoretical Aspects

Finally, we consider some theoretical aspects with
respect to the sound and completeness of the
introduced calculi.

Recall, that a calculus is sound if everything that
can be derived is also semantically true:

If -7 {¢}P{)} then E* {¢}P{y)

where = € {p,t} stands for partial/total
correctness.
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5.6 Sound and Completeness

The reverse direction is referred to as
completeness.

A calculus is complete if everything that can
semantically be derived is also derivable by the
calculus:

It =" {¢}P{v} then = {¢}P{y}

where x € {p, t} stands for partial/total
correctness.

Which direction is more difficult to prove?
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For the soundness we just have to make sure that
all proof rules introduced make sense. That is,
given a rule £ it has to be shown that Y holds

whenever X holds.

Theorem 5.48
The Hoare calculus is sound.

Exercise! []
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Theorem 5.49

The Hoare calculus is complete.

m The Hoare calculus contains axioms and rules
that require to determine whether certain
formulae (proof obligations) are true in Z.

m The theory of Z is undecidable.

m Thus any re axiomatization of Z is incomplete.

m However, most proof obligations occurring in
practice can be checked by theorem provers.
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6. From FOL to PROLOG

@A From FOL to PROLOG
m Motivation
m A calculus for FOL
m Resolution
m Herbrand
m Variants of resolution
m SLD resolution
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Resolution: We extend our resolution calculus
for SL to one for FOL. We need (2) one
more rule, factorization to deal with
terms, and (2) the concept of
unification. Our calculus is refutation
complete for arbitrary clauses.

Completeness: We extend our SL Hilbert calculus
to one for FOL. Such a calculus is still
recursively enumerable, but not
recursive: FOL is undecidable.
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PROLOG: While we introduce PROLOG in the

next chapter, the last two sections of
this chapter prepare the ground for
introducing PROLOG. We discuss
Herbrand models and input and linear
resolution.

SLD resolution: If we restrict the class of
formulae, we get a more efficient
calculus: SLD resolution. This directly
leads to PROLOG as a programming
language.
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Computational complexity of the problem

m Propositional logic: co-NP-complete.
m FOL: recursively enumerable (re).

m Higher-order logic: Not even re.
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Wa"y out of the complexity

m Interactive theorem provers require a human
to give hints to the system.

m The interaction may be at a very detailed level,
where the user guides the inferences made by
the system, or at a much higher level where
the user determines intermediate lemmas to
be proved on the way to the proof of a
conjecture.

m Often: the user defines a number of proof
strategies ~~ proving toolbox (e.g., Isabelle).
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Popular Theorem proving techniques

m First-order resolution with unification,
Higher-order unification,

Model elimination,

Superposition and term rewriting,

Lean theorem proving,

Method of analytic tableaux,

Mathematical induction,

DPLL (Davis-Putnam-Logemann-Loveland algorithm).

All the previously mentioned complexity bounds still apply!
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6.2 A calculus for FOL
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We extend our calculus for SL from Definition 2.19
Definition 6.1 (Calculus for FOL: Axioms)

We define Hilbert Pt = ({=¢ Vv o, -0}, Inf), a Hilbert-Type

calculus for FOL. We keep the axiom schema —¢ V ¢ and -0 and

add the following ones:

Substitution: ¢[t/x] — 3z, if t can be substituted in ¢,
Equality: mz =z,

Bz =Yy N . ATy =Ym — f(T1,...,2m) =
f(y1,...,ym), for all variables and function
symbols of matching arities,

Bz =y A... Nxp=yp — (R(z1,...,2,) =
R(y1,...,yn)), for all variables and relation
symbols of matching arities (in particular for =).

(¢, 7, x stand for arbitrarily complex formulae (not just constants)—they
represent schemata, rather than particular formulae in the language)
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Definition 6.2 (Calculus for FOL: Rules)

As for SL, we keep the four schemata expansion,
associativity, shortening and cut. In addition, we add the
following rule schema

ion: e2Y% :
F-Introduction: Teorp? if x does not occur free in ).

(6,7, x stand for arbitrarily complex formulae (not just constants)— they
represent schemata, rather than particular formulae in the language)

The notion of a proof is literally the same as in SL
(Definition 2.20 on Slide 126). We denote the resulting
relation with I_FOL.
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Completeness for FOL

In much the same way as for SL, but more cumbersome and
with much more formal effort, the following can be proved

Theorem 6.3 (Correct-, Completeness for Hilbert[ 5,

A formula follows semantically from a theory T' if and only
if it can be derived:

T E pifand only if T Fro

We are not giving the proof in this lecture, as we
concentrate on the resolution calculus for FOL.
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6.3 Resolution
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Unifiers
m Applying resolution in SL requires to find two
clauses so that one contains p and the other
—|p,
m In FOL we have a more difficult situation.
Consider pred1(f(x),y) V pred2(g(x)) and
—pred1(f(c), g(c)).

m The predicate —pred1(f(c), g(c)) is not exactly
the negation of pred1(f(x),y).
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Unifiers (cont.)

m Butin FOL we have more freedom: perhaps
we can find substitutions for the free variables,
such that we can make one predicate exactly
the negation of the other?

m [c¢/z,g(c)/y] is a substitution that we can use.
Resolving with this substitution we get:
pred2(g(c)).

m The technique is called unification. The
substitutions are called unifiers.
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Unifiers

Example 6.4

We consider a more difficult situation:

p(g(z,c),x) Va(y) and —p(g(f(h(y)),y), ).
m Is it possible to resolve these two clauses?

m What if we replace the last one by

—p(g(f(h(y)),y),2)?

m How many unifiers could there be?

s there one unifier that represents all unifiers?
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Most general unifier (1)

m Can we resolve p(z,a) with =q(y, b)?

m Orp(g(a), f(x)) with =p(g(y), 2)?
Basic substitutions are:
la/y. a/z, f(a)/2], [a/y, f(a)/z, f(f(a))/z], and
many more. The following substitution is the
most interesting

la/y, f(x)/7]
It contains all other substitutions as special
cases.
m This is no coincidence: it is a most general
unifier.
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Most general unifier (2)

Definition 6.5 (Most general unifier: mgU)

We consider a finite set of equations between terms or
equations between literals.

Then there is an algorithm which calculates a most general
solution substitution (i.e. a substitution of the involved
variables so that the left sides of all equations are
syntactically identical to the right sides) if one exists, or
which returns fail, if such a substitution does not exist.

In the first case the most general solution substitution is
defined (up to renaming of variables): it is called

mgU, most general unifier
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Most general unifier (3)

Given: f(x,g9(h(y),y)) = f(x,9(z,a))

The algorithm successively calculates the
following sets of equations:

{r=2, g(My),y) =9(z,a) }
{9(h(y),y) = 9(2,a) }
{hMy)=2y=a}
{z=Nhy), y=0a}
{2=N(a), y=a}

Thus the mgU is: [z/x,a/y, h(a)/z].
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The occurs-check

Given: f(z,g(x)) = f(c,¢)

Is there an mgU?
The algorithm gives the following:

{z=c glx)=c}

m But setting = = c is not a unifying substitution, because
c # g(c).

m Therefore there is no mgU. And the algorithm has to do
this check, called occurs check, to test whether the
substitution is really correct.

m However, this check is computationally expensive and
many algorithms do not do it.
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Clauses in FOL

m We have already introduced the notion of clauses in
Definition 2.33 on Slide 146.

m But now we are faced with variables and quantifiers.
However, we first use Proposition 4.22 to transform any
FOL-formula into prenex form without existential
quantifiers: V21 ... V,z,%. Then we apply
Theorem 2.10 to ¢ and transform it to a clause.

m The resulting formula, where we usually remove all
quantifiers for better reading (all variables are
universally quantified), is called a clause in FOL.

m We note that, during skolemization, we have extended
the language. But for our calculus that does not matter.
We have just additional skolem functions.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 485



6 From FOL to PROLOG
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A resolution calculus for FOL

The resolution calculus is defined over the language
Lelausal C r oo where the set of well-formed formulae
Fml e consists of all disjunctions of the following form

AV—-BVCV...V-E,

i.e. the disjuncts are only atoms or their negations
(containing variables). No implications, conjunctions,
double negations, or quantifiers are allowed. These
formulae are also called clauses.

Such a clause is also written as the set

{A,-B,C,...,—~E}.
The union of such sets corresponds again to a clause. The
empty clause is represented by .

A clause consists of FOL-atoms (or their negations) rather
than propositional constants (as in SL).

Prof. Dr. Jurgen Dix Clausthal, SS 2018 486



el TU Clausthal ¢ From oL g PROLOC

Definition 6.6 (Resolution and factorization for £¢aual )

The resolution calculus operates on clauses and
consists of the following two rules: resolution
and factorization.

C1U{A1} CyuU{-Ay}
(ReS) G0 CoymgU (A, )

where C; U {A;} and Cy U {A,} are assumed to be
disjunct wrt the variables,

C1U{L1, Lo}

(Fac) (CrU{L1})mgU(Ly, L)

Prof. Dr. Jurgen Dix Clausthal, SS 2018 487



£
IIIustratlon of the resolution rule

Example 6.7
Consider the set

M = {r(z) vV =p(z),p(a),s(a)}

and the question

M = Jx(s(x) Ar(z))?

Prof. Dr. Jurgen Dix
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Definition 6.8 (Resolution Calculus for FOL)

We define the resolution calculus

Robinson}oh.. = (0, {Res, Fac}) as follows. The
underlying language is £9%% C Lro, defined on
Slide 486 together with the set of well-formed

fOI'mU |ae leﬁclausal .

Thus there are no axioms and only two inference
rules. The well-formed formulae are just clauses.

Is this calculus correct and complete for Fmlciousa?
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Why do we need factorization?

Answer:
Consider

M = {{s(z1),s(z2)}, {=s(y1), ~s(y2)} }

Resolving both clauses gives

{s(z1)} U {=s(y1)}

or variants of it.
Resolving this new clause with one in M only leads to
variants of the respective clause in M.
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Answer (continued):

[J can not be derived (using resolution only).

Factorization solves the problem, we can deduce
both s(x) and —s(y), and from there the empty
clause .

Theorem 6.9 (Resolution is refutation complete)

Robinsons resolution calculus Robinson'9L... is

refutation complete: Given an unsatisfiable set,
the empty clause can eventually be derived using
resolution and factorization.
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We prove the contraposition: Assume a set of
clauses is consistent (i.e. [ cannot be derived).

Then there is a model of it.
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6.4 Herbrand
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The relation T' |= ¢ states that each model of T is
also a model of ¢. But because there are many
models with very large universes the following
question comes up: can we restrict to particular
models ?

T k= ¢ holds if and only if ¢ holds in all countable
models of T

By countable we mean the size of the universe of
the model.
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Quite often the universes of models (which we are

interested in) consist exactly of the basic terms Term,(0).
This leads to the following notion:

Definition 6.11 (Herbrand model)

A model A is called Herbrand model with respect to a
language if the universe of A consists exactly of Term,(()
and the function symbols f* are interpreted as follows:

£ Termp(0) x ... x Termg(0) — Term(0);
(t1, .. tr) = [, t)

We write T =per, ¢ if each Herbrand model of T is also a
model of ¢.

So the freedom in defining a Herbrand model is only in the
interpretation of the predicates: the function symbols are
fixed.
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Theorem 6.12 (Reduction to Herbrand models)

If T is universal and ¢ existential, then the
following holds:

T = ¢ifand only if T Epen ¢

Question:

Is T =perb @ Not much easier, because we have to
consider only Herbrand models? Is it perhaps
decidable?

No, truth in Herbrand models is highly
undecidable.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 496



Rl TU Clausthal 8 From FOL 1o PROLOC

The following theorem is the basic result for applying
resolution. In a way it states that FOL can be somehow
reduced to SL.

Theorem 6.13 (Herbrand)

Let T be universal and ¢ without quantifiers. Then:

T = Jxp(x) ifandonlyif therearety,... t, € Term.(0)
with: T = ¢(t1) V...V é(t,)
Or: Let M be a set of clauses of FOL (formulae in the form
Pi(t1) V = Ps(ta) V...V Py(t,) with t; € Term,(X)). Then:

M is unsatisfiable

if and only if

there is a finite and unsatisfiable set )/,,,., of basic
instances of M/.
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In automatic theorem proving, orin logic
programming (PROLOG), we are always
interested in the question:

Given M itis the case that
M =3z, .2, /\@-?

But this is equivalent to

MuU{—3zy,...x, \;¢:i}
is an unsatisfiable set of clauses.
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6.5 Variants of resolution
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6.5 Variants of resolution

Our general goal is to derive an existentially
quantified formula from a set of formulae:

M+ Jo.
To use resolution we consider
MU {—3p}

and put it into clausal form.
This set is called input.

Instead of allowing arbitrary resolvents, we try to
restrict the search space.
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Example 6.14 (Unlimited Resolution)

Let M := {r(x) V —p(z), p(a), s(a)} and

O :— s(x) A r(x) the query.

An unlimited resolution might look like this:

r(z) v op(x) pla)  s(a) —s(x)V-or(z)

r(a) —r(a)
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Input resolution: in each resolution step one of the two
parent clauses must be from the input. In our
example:

—s(x) vV —r(x)  s(a)

r(x)V plx
g () V ~p(a)

—p(a)

O
Unfortunately, this is too restrictive.

Lemma 6.15

Input resolution is correct but not refutation complete.
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Here is a generalization of input resolution:

Linear resolution: in each resolution step one of the two
parent clauses must be the previously
computed clause. So it is possible to resolve
with a previously derived clause.

Theorem 6.16 (Completeness of resolution variants)
Linear resolution is refutation complete.

Comparing input and linear resolution: While the first is
more efficient (search space is smaller) but not refutation
complete, the second is refutation complete but more
complex.

Maybe input resolution is complete for a restricted class
of formulae?
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6.6 SLD resolution
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Definition 6.17 (Horn clause)

A clause is called Horn clause if it contains at most
one positive atom.

A Horn clause is called definite if it contains
exactly one positive atom. It has the form

A(t) :— Ag(t1), ..., Ap(tn).

A Horn clause without positive atom is called
query:
O :— A]_(tl), 500 7An(tn)-
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Theorem 6.18 (Input resolution for Horn clauses)

Input resolution for Horn clauses is refutation complete.

Definition 6.19 (SLD resolution wrt P and query Q)

SLD resolution with respect to a program P and the
query (@ is input resolution beginning with the query

0:— A4, ..., A,. Then one A; is chosen and resolved with a
clause of the program. A new query emerges, which will be
treated as before. If the empty clause O can be derived, then
SLD resolution was successful and the instantiation of the
variables is called computed answer.
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Theorem 6.20 (Correctness of SLD resolution)

Let P be a definite program and @) a query. Then each
calculated answer for P wrt () is correct.

Is SLD completely instantiated?

Definition 6.21 (Computation rule)

A computation rule R is a function which assigns an atom
A; € {Ay,..., A} toeach query 0 :— Ay, ..., A,. This A; is

the chosen atom against which we will resolve in the next
step.

Note:
PROLOG always uses the leftmost atom.
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In the following, we are illustrating SLD resolution
on the following program:

p(z,z) + a(z,y),p(y,2)

p(z, )

q(a, b)
We would like to know for which instances for z,
the fact p(z, b) follows from the above theory.

Obviously, there are two solutions: x = a and
x = b and these are the only ones.

We are now showing how to derive these
solutions more formally using SLD resolution.
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0
[b/z]
“Success”

—_—
N

:—q(b,u),p(u,b) N
AP (a/a]

“Failure” “Success”
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i~ p(x, b)

LN

—a(x,y),p(y,b)
[b/x]

“Success”
—a(x,y),a(y;u), p(u, b) —a(xb)

A |

- q(x,y),a(y, v, q(u, v), p(v, b) —a(x,y),a(y,b)
[a/w]

| 3 “Success”
—a(xa)
“Failure”
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A SLD tree may have three different kinds of
branches:

infinite ones,

branches ending with the empty clause
(and leading to an answer) and

failing branches (dead ends).
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Theorem 6.22 (Independence of computation rule)

Let R be a computation rule and o an answer
calculated wrt R (i.e. there is a successful SLD
resolution). Then there is also a successful SLD
resolution for each other computation rule R’
and the answer ¢’ belonging to R’ is a variant of o.
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Theorem 6.23 (Completeness of SLD resolution)

Each correct answer substitution is
subsumed through a calculated answer
substitution. le.:
P EVQO
implies
SLD computes an answer T with: 3o : Qo = QO
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How to find successful branches in a SLD tree?

Definition 6.24 (Search rule)

A search rule is a strategy to search for
successful branches in SLD trees.

PROLOG uses depth-first-search.

A SLD resolution is determined by a computation
rule and a search rule.
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D resolution

SLD trees for P U {Q} are determined by
the computation rule.

PROLOG is incomplete because of two
reasons:

m depth-first-search, and

m incorrect unification (no occurs
check).
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A third reason comes up if we also ask for
finite and failed SLD resolutions:

m the computation rule must be fair, i.e.
there must be a guarantee that each
atom on the list of goals is eventually
chosen.
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Programming versus knowledge engineering
programming | knowledge engineering
choose language | choose logic
write program define knowledge base
write compiler | implement calculus
run program derive new facts
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PROLOG
m Motivation
m Syntax

m Queries and Matching

m Search Trees and Negation
m Recursion and Lists

m Arithmetic

m Programming
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Content of this chapter:

We introduce PROLOG on a beginners level. With
some self study, students should be able to write
their own PROLOG programs.

Syntax: We describe in detail PROLOG as a
programming language and introduce
the declarative programming paradigm:
describe what you want, but not how
to achieve it.

Queries and matching: The binding mechanism
of queries is presented and unification
versus matching explained.
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Content of this chapter (2):

Search trees: The most important concept is the
search tree of PROLOG, based on SLD
resolution. It constitutes the procedural
kernel of PROLOG.

Negation: Negation is differently handled in
PROLOG: it is closely related to
detecting cycles and it is not classical
negation.

Recursion: is the most important mechanism of
PROLOG. We illustrate it with lists, the
datastructure in PROLOG.
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Content of this chapter (3):

Arithmetic: PROLOG uses several built-in
arithmetic predicates. Because it is built
on terms, arithmetic expressions are
differently handled than in other
programming languages.

Programming: We present a few examples of
programming in PROLOG to illustrate
the use of recursive predicates. To
distinguish between input and output
variables is paramount.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 521



@[l% TU Cwlags-t‘hal 7 PROLOG

This chapter is heavily built on material provided
by Nils Bulling in his BSc course TI1906

Logic-Based Artificial Intelligence at TU Delft in
the summer term 2015.
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The Art of PROLOG

A logic program is a set of axioms, or rules, defining
relations between objects. A computation of a logic
program is a deduction of consequences of the pro-
gram.

A program defines a set of consequences, which is its
meaning. The art of logic programming is construct-
ing concise and elegant programs that have the de-
sired meaning.

[Leon Sterling. The Art of PROLOG.]
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Logic Programming: Basics

m logic-based programming language,

m focusses on the description of the problem and not how
to solve it,

m problem solving closer to human reasoning/thinking,

m allows to elegantly solve specific (knowledge-based)
problems.

PROLOG is a different programming paradigm. PROLOG
requires a different way of thinking in order to solve
problems. One needs to get used to it. Practice!
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m Free online book: Learn PROLOG Now!
(http://www.learnprolognow.org/)
Attention: There are different version of this book. We always
refer to the online html version!

m SWI PROLOG

m Free PROLOG interpreter
m Linux, Windows, Mac OS
m There are more interpreters, but be careful not all are ISO

compliant.
m We use SWI PROLOG 6.0.2 (http://wuw.swi-prolog.org/)

Important

The lecture does not cover the whole book Learn PROLOG Now.
Read the relevant parts of the book for some exercises!
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What is PROLOG?

LP is closer to natural language than machine or other
higher-level programming languages

Procedural vs. Declarative Programming

This is what Wikipedia says:

m Imperative programming “is a programming paradigm that
describes computation in terms of statements that change
a program state. In much the same way that imperative mood
in natural languages expresses commands to take action,
imperative programs define sequences of commands for
the computer to perform.”

m Procedural programming “is a list or set of instructions telling
a computer what to do step by step and how to perform
from the first code to the second code. Procedural programming
languages include C, Go, Fortran, Pascal, and BASIC.”

Prof. Dr. Jurgen Dix Clausthal, SS 2018 527



7 PROLOG

el TU Clausthal 72 VEROAES

m Declarative programming “is a programming paradigm, a
style of building the structure and elements of computer
programs, that expresses the logic of a computation
without describing its control flow. Many languages
applying this style attempt to minimize or eliminate side
effects by describing what the program should
accomplish in terms of the problem domain, rather than
describing how to go about accomplishing it as a sequence
of the programming language primitives.”

Important to know!

PROLOG is not a fully declarative programming language: it has
procedural elements! In contrast, ASP is the declarative
counterpart of PROLOG.
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Benefits of declarative programming

Suppose we are given a list L of integers. Write a program which
removes all 3’s in the program.

Java: PROLOG:

static void remove remove([], []).
(ArrayList<Integer> L) remove([3|T],L) :(—

{

Iterator<Integer> it= L.it(); remove(T, L).
while (it.hasNext()) remove([H|T1], [H, T2]) :—
{ not(H = 3),
if (it.next()==3) remove(T1,T2).
it.remove();

+}

. -
How to solve the problem? What is a solution?.
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PROLOG in the Real World

PROLOG Development Center: advanced scheduling systems
and speech based applications for manufacturing,
retail and service businesses, larger public
institutions, airlines and airports
http://www.pdc.dk

Visual PROLOG : support industrial strength programming of
complex knowledge emphasized problems.
Combining the very best features of logical,
functional and object-oriented programming
paradigms in a consistent and elegant way.
http://www.visual-prolog.com
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Clarissa at ISS: fully voice-operated procedure browser,
enabling astronauts to be more efficient with their
hands and eyes and to give full attention to the task
while they navigate through the procedure using
spoken commands
http://www.nasaspaceflight.com/2005/06/
iss-set-to-get-chatty-with-clarissa/

OntoDLP: OntoDLV is an intelligent ally for quickly and easily
developing powerful knowledge-based
applications and decision support systems (e.g.
Planning, Customer Profiling or Workforce
Scheduling) that otherwise require complex and
labourious programming.
http://www.exeura.eu
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Example 7.1 (FOL and PROLOG)

T =g4¢ {agent(bond), Va(agent(x) — indanger(z))}
What is the difference between facts and rules?
What can you infer? T' |= indanger(bond)

m all models satisfying 7" must satisfy indanger(bond)
m apply resolution to the clauses:
agent(bond), —agent(x) V indanger(x), —indanger(bond)

Corresponding PROLOG program:

agent(bond). (this is a fact)
indanger(X) :— agent(X). (this is a rule)

We can ask a query: ?— indanger(bond).

PROLOG answers "yes”.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 533



ot TU Clausthal TGS

Example 7.2 (A first example)
The knowledge base or database consists of the following facts.

woman (mia) .

woman (jody) .

woman (yolanda) .
playsAirGuitar(jody) .
party.

Symbol 7— shows that PROLOG waits for a command: a query.
Load the program and query the following:

B 7— woman(mia).

® 7— woman(alice).

m 7— woman(alice), woman(mia).
(

® 7— woman(X).
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m consult/1 loads a PROLOG program.

m assert/1 adds new facts and rules to the database.

m Sometimes assert/1 requires predicates to be declared
dynamic. e.g. :-dynamic woman/1.

Example 7.3
Do assert(woman(alice)). in the previous example. You get the
following error:

ERROR: assert/1: No permission to modify static
procedure ‘woman/1’

We add the clause :- dynamic woman/1 and try again.

Remark 7.4
(] 8= Implication (¢ — ¢ becomes 1 : -p)
m ; disjunction and , conjunction
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Definition 7.5 (Constant)

A constant (sometimes also called atom) is one of the following:

a non-empty sequence of letters, digits, or the underscore _
that starts with a lower-case letter;

any sequence of letters, digits, or the underscore enclosed in
single quote ‘...
a string of special characters, like &=, ===>, ;, and : -.
See PROLOG manual for more details.

Examples of atoms are: car, hOUSE_2, father, ‘House‘.
Definition 7.6 (Number)

A number is is any sequence of numbers, possibly containing a
dot.

For example 1, 1991, 1.92 are numbers in PROLOG.
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Definition 7.7 (Variable)
A variable is a sequence of letters, digits, or the
underscore _ that starts with an upper-case letter

or the underscore.
The variable _is called anonymous variable.

Examples of variables are: X, Car, HOUSE 2,
_father, House.

If the anonymous variable is used in a predicate
p(X,_) then itis handled as an arbitrary variable
without a specific name.
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Definition 7.8 (Terms, predicate, arity)

A term is defined recursively:
Each constant, number, and variable is a term.

f(ty,...,tx)isaterm,ifall t;,i=1,...,k, are terms and £ is
a constant.
Aterm £(ty,...,tx) is called compound term. A term without

variables is a ground term. £ is called functor. Each function £ is
assigned an arity, which is the number of terms it accepts. We
write £ /k for a functor £ of arity k. A term is also called
predicate.

Remark 7.9 (Attention)

In contrast to FOL, the distinction between terms and
predicates is blurred in PROLOG.

Examples: X, bond, mother(X,Y), father(son(X),Y)
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Note: The arity of a predicate is important! The same functor
with a different arity gives rise to a different predicate.

Definition 7.10 (PROLOG Fact)

A PROLOG fact is a predicate followed by a full stop.

The following are facts:
this_is the Logic_and Verification lecture. and
father(bob, X).

Facts express specific pieces of knowledge.
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Definition 7.11 (PROLOG rule)

A PROLOG rule is given by
AO o= Al,..., An.

where n > 0 and each A; fori =0,...,nis a predicate. The
predicate A, is the head of the rule, and A4, .. ., A, is the body of
the rule.

Note that a rule ends with a full stop.

The following two are rules

father (X,Y):- son(Y,X).
daughter (X,Y) :- parent(Y,X), female(X).

In logical terms, arule Ag:- A;, ..., A,. corresponds to the
formula A; A ... A A, — Ap.
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Definition 7.12 (PROLOG clause)
A clause is a PROLOG fact or a PROLOG rule.

Remember: p(X) :— q(X). means Vz (q(z) — p(z)) which is
equivalent to the clause

—p(z) V q(x).

Remark 7.13 (Clauses are universal)

It is important to note that a clause is universal. That is, the rule
p(X) :— q(X). is true for all X. Remember our discussion on Slide 485.
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Example 7.14

happy (yolanda) .

listens2music(mia) .

listens2music(yolanda) : - happy(yolanda) .
playsAirGuitar(mia):- listens2music(mia).
playsAirGuitar(yolanda) :- listens2music(yolanda).

There are 5 clauses, 2 facts and 3 rules. What are the answers to
the following queries?

7-listens2music(yolanda).

7-playsAirGuitar(yolanda) .

7-playsAirGuitar (Mia) . (Attention, read carefully!)
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Definition 7.15 (PROLOG program)

A PROLOG program is a finite sequence of clauses.

Remark 7.16 (Conjunction and disjunction)

The comma in a PROLOG rule represents a conjunction. It is also
possible to express a disjunction by a semicolon. So the rule

r(X) :— s(X), t(X); u(X).

is a shortcut for the two rules
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Remark 7.17 (Some built-in predicates)

m The matching predicate = (X, Y) is true if and only if the
terms X and Y can be made equal. We also write X = Y. It is
important to note that this is different from FOL unification
as we will discuss in more detail later. (PROLOG lacks the
occurs check.)

m The predicates fail and true are always false and true,
respectively.

m 7o load a PROLOG program the predicate consult/1 is used.
consult(‘filename.pl‘) compiles the file “filename.pl”.

m The write predicate write/1 allows to write a term to the
output.
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How PROLOG Works

7- happy(alice)

i Database

Knowledge base = logic program E i .
9 gle prog : ; Inference engine

married(alice,bob).
happy (X) : - married(X,Y).
happy(Y) : - married(X,Y).

search strategy

computation

declarative part S w »
reasoning “how

“what” not “how”

SLD resolution
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Queries, Goals and Matching

Definition 7.18 (Query and goal)

A (simple) query is of type ?— p. where p is a term. It is also
possible to combine terms within queries to complex queries by
conjunctions (,) and disjunctions (;). For example, 7-p1,...,pk
with & > 1 is a complex query.

The element on the right-hand-side of a query is called goal. In
case of complex queries, each term on the right-hand side is
called a subgoal.

Remark 7.19 (Queries are existential)

In contrast to Remark 7.13, queries are existential. That is, the
query ?— p(X) asks whether there is some X. That is, it corresponds
to a FOL formula 3zp(z).
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Asking a query ?— p(a) lets PROLOG try to derive p(a) from the
program using input (or SLD) resolution (we refer to
Definition 6.19 on Slide 506).

It tries to find a rule p(X) :— q(X), r(Y). with head p(X) which
can be unified with the goal p(a) (topmost-rules are tried
first!).

p(X) and p(a) are unified with X = a (substitution!)

In order to derive a the goals q(a), r(Y) have to be derived.
(Note that the X is instantiated). The new query is:
7—q(a), r(Y)..

The process repeats for q(a) and r(Y) in this very order!

Proceed until a goal is already contained in the knowledge
base as a fact.

We first give an example and then consider it in more detail.
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Example 7.20

loves(vince,mia).

loves (marcel,mia) .

loves (pumpkin, honey_bunny) .
loves(honey_bunny, pumpkin).

jealous(X,Y):- loves(X,Z), loves(Y,Z), X \= Y.

What does PROLOG return for ?7— jealous(marcel,W).?

Therefore: We have to add that X and Y should be distinct. This is
expressed by \=.
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Matching
Before discussing proof search in more detail, we consider the

matching of predicates. This is an important technique which
gives PROLOG its programming power.

We already discussed unification in the context of FOL. PROLOG
also unifies terms but does not perform the occurs check! We
call it matching rather than unification.

® unification: as introduced for FOL
m matching: PROLOG’s way to unify, no occurs check.

Remark 7.21 (Attention)

Often, matching is just called unification!
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Definition 7.22 (Matching in PROLOG)

Two terms t and r match if one of the following conditions hold:
t and r are identical constants or numbers.

If t is a variable and r is not, then t and r match and ¢ is
instantiated with r. Analogously, if r is a variable. If both
terms are variables they are instantiated with each other.

If t and r are compound terms then they match if each of
the following conditions hold:

m t and r have the same outermost functor, i.e.
t=f(t1,...,tk) and r=£f(r1,...,rk);

m each ti matches withri for:=1,...,k and

m the variables instantiation are compatible (i.e. a variable
cannot be assigned different terms which are not variables).
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Definition 7.23 (Matching)

In PROLOG, the matching predicate is given as = /2. If two terms
match PROLOG returns the most general instantiation o of the
variables. We write to to denote the application of o to t.The

predicate \=/2 is true if two terms do not match.

PROLOG also offers a predicate to perform (FOL-)unification:
unify_with_occurs_check/2.
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Example 7.24
What is the result of the following queries?
X=a
f(X,a)=f(b,X)
£(X,a)=f (b,Y)
X=f (X)
X+3=5+Y
A X+2=5
1+2=2+1
B X+3\=5+Y
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Example 7.25 (Variable instantiation)

woman(mia).

woman(jody).

woman(alice).
We query ?— woman(X). What is the answer?

The answer of the first matching rule is returned. With ; further
matching instantiations are returned.

7— woman(X).

X =mia;
X = jody;
X = alice.
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Example 7.26 (Variable instantiation)

woman(mia).

woman(alice).

(
woman(jody).
(
happy(mia).

We query ?— woman(X), happy(X). What is the answer?

X =mia.

There are no more answers! Why not?
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Matching is very important in PROLOG and also a powerful
programming technique as shown by the following examples.

Example 7.27 (Programming with matching)
Consider the program:

vertical(line(point(X,Y),point(X,Z)).
horizontal(line(point(X,Y),point(Z,Y)).

What are the answers to the following queries?

B 7 horizontal(line(point(1,1),point(1,3)))
( (1,1) (3,2)))
(point(1,1), point(2,Y))
( (1,1) )

1),Point))

H 7 horizontal(line(point ,point
?— horizontal(line
?7— horizontal(line

)
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PROLOG computes a most general substitution.
Remark 7.28 (Attention)

Again, be careful: matching can give different
results than (FOL-)unification. We will come back
to this issue: PROLOG does not perform the occurs
check! The occurs check is computationally
expensive.

Proposition 7.29

If two terms FOL-unify, then they match. The
other direction is not frue.
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/7.4 Search Trees and Negation
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Example 7.30 (Deduction — Informal)
Suppose we are given the program

q(a).

r(a).

p(X) := q(X), r(X).
and ask the query 7— p(a). What happens? The only way to
derive the goal p(a) is by proving p(X) for X = a.
This means to show that the goal q(a), r(a) holds.

PROLOG selects the new (sub)goal q(a) which can be derived
because of the fact q(a).

The goal r(a) remains. Itis true because of the fact r(a)..
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Searching for Proofs

Searching for a proof is a three-steps process:

ask a query,

find a rule (which one?) the head of which matches with

the query,

try to derive the body of the rule (new query).
To prove a goal PROLOG selects a subgoal to prove, considers this
subgoal and so on. There are many ways, however, to select a
subgoal: heads of different rules may match, and within a rule
the predicates in the body can be treated in different orders. In
this section we discuss PROLOG's search strategy.

This is crucial, as the correctness of programs depends on the
right understanding of PROLOG'’s functioning.

In the following we assume that a logic program is ordered, from
top to bottom.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 560



L] - 7 PROLOG
- Tu ({‘laUS‘thal 7.4 Search Trees and Negation

Three principles underly the search for proofs.

backward chaining: start from the current goal and consider
bodies which allow to derive the given goal:
(i) goal p(X); (ii) consider a rule p(Y) :— q(Z).; and (iii) try to
derive q(Z).

linear: traverse the logic program from top to bottom
(selecting appropriate rules)

backtracking: if the goal can not be derived (or has been
successfully derived) try other alternative rules in step 2 (i.e.
the 2nd topmost, 3rd topmost etc.). Backtrack to the
closest possible choice point and try a different alternative.
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Backward chaining (simple queries)

m Given a query 7— q(t).
m find a rule q(r) :— p(s). the head of which matches with q(t).

Choose the topmost rule if there are several such rules. Let o
denote the most general instantiation.

m If PROLOG is able to derive the goal p(s)o then p(t) would
be derivable.

m Thus, ask the new query ?— p(s)o

This is called backward chaining because we chain the rules one
after another, starting from the goal/query we want to derive.

What if queries are compound?
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Backward chaining (compound queries)
m Given a query 7— q1(t1),q2(t2).
m find arule q1(t3) :— p1(t4),p2(t5). the head of which
matches with q(t1). (topmost again)

m If PROLOG is able to derive the goals q2(t2), p1(t4)c and
p2(t5)o then p(t1) is derivable.

m We get the new query ?— p1(t4)o, p2(t5)0, q2(t2)
What do we observe?
Important points
Topmost rules are selected first.

Queries are treated from left to right in a depth-first search
manner (new goals p1 and p2 are placed before the “old
goal” g2 in the new query)!
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When can we terminate? That is, when have we shown whether
the initial query is true or false.

m If we obtain the empty query 7— , we are done. There are no
more goals to derive. The original query holds. ~~ compare
with resolution

m We may also end up with a query ?— p(t) and no rule's head
matches with p(t). What now?

Backtracking

If we end up with a query 7— p4(t1),...,px(tx) where the head of
no rule matches with p;(t;) then:

In the previous selection of rules, go back to the most
recent query and choose another alternative rule (again as
high up in the logic program as possible)

Proceed as before.
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Example 7.31

7— k(Y)
Y =_G23

f(a).
£(b). 7— £(_G23),g(_G23),h(_G23)
g(a). _G23 :% \ng -
g(b). > g(a), h(a) (o)
h(b).
k(X) :— £(X), g(X), h(X)

?— h(a) 7— h(b)

failure

Query: 7— k(Y)
O
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Example 7.32

First branch leads to a failure: there is no rule with a head
that matches with h(a).

PROLOG backtracks to the most recent choice point...
...and tries a different rule/fact.

This branch leads to the empty clause.

The query is shown to be derived.

A The calculated variable instantiation gives the solution.
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Which of the following is the correct
output on ?— h(X)?
X=1;3X=2X=3X=4X=5.
X=13X=2,X=3,X =3.
X=1L3X=2,X=3,X=4.
X=1X=2;X =3.

X) X=1L3X=2X=3X=3,X=4
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Example 7.34
What is the output?

X = vince, Y = vince;

X = marcel, Y = marcel;
loves(vince,mia). X = vince, Y = marcel.
loves(marcel,mia). X = vince, Y = vince;
jealous(A,B) :(— X = vince, Y = marcel;

loves(A,C), X = marcel, Y = vince;
loves(B,C). X = marcel, Y = marcel.

X = vince, Y = vince;

Query: jealous(X,Y). X = vince, Y = marcel;
X = marcel, Y = marcel;

X = marcel, Y = vince.
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Corresponding search tree

loves(vince,mia).

loves(marcel,mia). 7— jealous(X,Y)
jealous(A,B) :— X= G5|ly=_q7
loves(A,C),

?— loves(_G5,_G6), loves(_G7,_G6)

_G5 = vince _GT7 = marcel
_G6 = mia _G6 = mia

?7— loves(_G7,mia) ?7— loves(_G7,mia)

_G7 = mnc/ \G7 = marcel _GT7 = mnc/ \G7 = marcel

loves(B,C).

Prof. Dr. Jurgen Dix Clausthal, SS 2018 569



L] 7 PROLOG
- TU Clausthal 7.4 Search Trees and Negation

Definition 7.35 (PROLOG search tree)

Given a PROLOG program P and a query () the above described
procedure results in a tree with the following properties:

m the root is labelled with query Q,

m nodes are labelled with queries,

m child nodes are ordered,

m edges are labelled with variable instantiations.
We call this tree the search tree of P and @ (sometimes also
called proof tree).

A search tree may have three different kinds of branches:
infinite ones,
succesful branches ending with the empty clause (and
leading to an answer), and
failing branches (dead ends).
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Example 7.36
Consider the program:

S.
p:-r.
p:-s.
b:-p.
For the query 7-p can you identify a failing, successful, and
infinite branch in the search tree?
The branch which always uses the rule p :— r.
The branch which always uses the rule p :— s.
The branch which always uses the rule p :— p.
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How does PROLOG traverse the search tree?

PROLOG searches the tree via depth first search with
backtracking where child nodes corresponding to input rules

higher up in the program are traversed first.
Be careful: PROLOG is both incomplete and incorrect

because:
m PROLOG uses depth-first-search
m PROLOG uses incorrect unification (no occurs check).

We will discuss this in more detail later in the lecture.

Definition 7.37 (Derived)

A goal G can be derived from a program P if PROLOG finds a
succesful trace in the search tree of P for G. We write P - G and
write D(P) = {G | P F G} to denote the set of all derivable terms.
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Example 7.38 (Matching and search)

p(a) :— p(£(X)).
p(X) := q(X, X).
q(X, £(X)).
What is the result of the queries below?
’—p(a)
7= p(X)
7= p(£(X))

7—p(f(a))

Note, that some branches of the search tree may never be
traversed by PROLOG. This depends on the order of the rules.
(E.g. if the initial branch in the tree is infinite.)

Prof. Dr. Jurgen Dix Clausthal, SS 2018 573



L Bl 7 PROLOG
K [ U Llausthal 7.4 Search Trees and Negation

Declarative and Procedural Meaning

In the previous section we investigated how
PROLOG answers queries; in particular, how it
searches for a refutation of a query:

m PROLOG uses depth first search

m fop-most clauses are considered first

m left-most subgoals are evaluated first

Understanding these details is of utmost
importance when programming in PROLOG
because the behavior of the programs depends
on it.
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Declarative meaning: The logical meaning of a program, what
it should mean in logical terms only considering the
knowledge base. Apply logical reasoning and forget
about PROLOG and its search strategy.

Procedural meaning: The actual behavior of the program given
PROLOG's search strategy. The solutions that are
calculated. The way how PROLOG answers a query.
(~ backtracking, depth-first search, linear, and goal
ordering)

Attention
The declarative and procedural meaning of a program can be
different.
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Example 7.39 (Rule ordering)

Consider the following two programs and the query 7— p(X).
Program 1:

p(a).
p(b).

Program 2:

What can one observe? Solutions are found in a different order.
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Example 7.40 (Rule and goal ordering)
Now, we query 7— g(a). Program 1:

p(a).

q(X) :— p(a

q(X) :— q(£(X))
Program 2:

p(a)

q(X) :— q(£(X))

q(X) :— p(a

What can one observe?
Program 1 terminates, program 2 does not terminate. Rule
ordering affects the procedural meaning of a program.
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Example 7.41 (How to design a program?)

Often, a good way to design a PROLOG program
is to work along the following steps:

Understand the problem (of course!).

Think about a declarative solution, and come
up with a logic program.

Refine the program and take into

consideration PROLOG’s procedural
meaning.
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Negation as Finite Failure

So far, we have only asked positive queries: Does Q follow from
the program P? Can we ask whether some predicate does not
follow?

PROLOG allows a predicate \+ /1 which expresses a specific type
of negation. Itis important to understand, however, that this is
not logical negation.

In short, \+ (p) is true in program P if and only if p cannot be
derived from P because any attempt fails finitely.

Note the difference:

m —pin logic: proposition p is false

m \+ pin PROLOG: any attempt to prove p fails finitely.
What does it mean that something fails finitely?
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Example 7.42 (Non-derivability due to infinite branches)

Consider the program P given by p :— p.. Obviously p can not be
derived (we enter an infinite loop). In general, determining such
infinite cycles is undecidable.

Therefore P I/ p: but not all attempts fail finitely (in fact, no
attempt fails finitely).

Definition 7.43 (Finitely failed)

A search tree for a program P and a goal G is finitely failed if
there is no successful branch in the tree and also no infinite
branch. The set of goals which have a finitely failed search tree
with respect to a program P is denoted F'F'(P).

Thus, while trying to prove G, a finite tree is constructed with no
successful branch. The fact that the tree is finite means that the
procedure terminates and we know that there is no successful
branch.
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Definition 7.44 (Negation-as-finite-failure)

The predicate \+ is called negation-as-finite-failure (naff). We
say that \+ (G) can be derived from P if and only if
G € FF(P).

As before, we write P - \+ (G) if, by definition, G € FF(P).
Thus, we have

\+ (G) € D(P) ifandonlyif G € FF(P).

Example 7.45 (Naff is not logical negation)
In classical (propositional) logic, we have:
{=p.-p—=d} Eq
{-p—d} Fq
and in PROLOG we have:
{£(b). q:— \+ (£(2)).} F g
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While \+ is on the one hand weaker than classical negation, it is
at the same time stronger, because we use the orientation of the
rules.

The following lemma shows that negation-as-finite-failure is
different from “negation-as-failure” (i.e. something is false if it
cannot be shown to be true).

Proposition 7.46

Negation-as-failure does not imply negation-as-finite-failure:
G & D(P) does not imply that G € FF(P).
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Example 7.47 (Finite vs. infinite failure)
Consider the program:

above(X,Y) :— on(X,Y).

above(X,Y) :— on(X, Z), above(Z,Y).
on(c,b).

on(b, a).

We have that P I/ above(b, c) and above(b, c) € FF(P). Thus, we
also have P - \+ (above(b, c)).

Now, let us add the rule above(X,Y) :— above(X,Y). to P. Can we

still derive \+ (above(b, c))? No, because an infinite branch is
contained in the proof tree.
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Negation-as-finite-failure has to be used with caution.

Example 7.48 (Negation-as-failure)
Consider the program:

daughter0f (alice,bob) .

son0f (paul ,mary) .

onlyDaugtherl(X):- \+ son0f(Y,X), daughter0f(Z,X).
onlyDaugther2(X) :- daughter0f(Z,X), \+ sonOf(Y,X).

We would like to derive all parents who have a daughter but no
son. Which of the following queries gives the correct answer?

?7- onlyDaughterl (X).
7- onlyDaughter2(X).
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Cuts

m Itis possible to control how Prolog traverses
the search free.

m More precisely, it is possible to prune the
search tree.

m That is, to remove subtrees from the search
tree.

Definition 7.49 (Cut)

The cut is a predicate ! /0 which can be used in the
body of a rule. The predicate !/0 is always true.
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Example 7.50 (Removing subsequent £)

We write a program that takes as input terms consisting of
nestings of £ and g applied on constant a and returns the same
term with subsequent occurences of f removed.

(1) rem(f(a),f(a)).

(2) rem(g(a),g(e)

(3) rem(f(X),Res) :— begin f(X), rem(X,Res).
(4) rem(f(X),f(Res)) :— rem(X,Res).

(5) rem(g(X),g(Res)) :— rem(X,Res).

(6) begin f(£(X))

The solution found first is correct. But then wrong solutions are
returned because of backtracking. Why?
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On query 7— rem(f(£f(g(£(£(a))))), X). Prolog gives the following
output:

X = 1£(g(f(a)));

X = £(g(£(£(2))));

X = £(£(g(£(2))));

X = £(f(g(£(£(2)))));
false
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Example 7.51 (Previous example with cut)
Now we change clause number (3) as follows:

(3) rem(f(X),Res) :— begin f(X),!, rem(X,Res).

On query ?— £(f(g(£(£(a))))). Prolog gives the following output:

£(g(£(2)));

false.

l.e. only the first correct solution is returned. Once the cut ! is
encountered, backtracking below the node in the search tree
containing the goal !, rem(X,Res), ... is no longer possible.

The cut predicate prunes the search tree above the node that
caused the cut of the rule to be added to a node as a subgoal.

We make this more formal in Definition 7.52
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Cut in Example 7.51

2= rem(£(£(g(£(£(2))))) %)

X=1(G8)

begin £(£(g(£(E(a))))),
rem(f(g(£(£(a)))), 63)

&

XeE(E(a(E(£())))

?- begin f(g(£(£(a)))), !,  emiais -
C rem(g(£(£(a))), G3) > < (9(£(£(2))),_G4) >
_G4=g( G5
?- begin_f(£(a)),!, R N n
C e o | C moe D
67 =f(a)}

&)

2- rem(£(a),_G5)

_G5=1(G6)
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Origin, Cut-node

m A node in the search tree labelled !, A4, ..., Ay is called
cut-node.

m The origin of a cut node is the closest ancestor of the node
which contains fewer cut predicates.

Intuitively, the origin of a cut node is the node which caused the
introduction of the cut.

If the cut is evaluated, the overall search tree is pruned below its
origin.
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Definition 7.52 (Search tree with cut)

Let 7" be the search tree of a query @ and a program P.
If the cut-node !, A4, ..., Ay is reached, then

B A4, ..., A is the only descendant, and

m no alternative outgoing branches of the origin of the cut
node are considered anymore.
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How the cut works in general

A :-Al, A2, ' , .., An

unsuccessful
branches

not affected

-
by cut '

ay get instantiated
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Example 7.53
Query 7— father(X, tom).

father(X,Y) :— parent(X,Y),male(X).

parent(ben, tom).

parent(sam, ben).

AN N N N N N /N
(G201~
N NSNS NSNS NN

(X,

(
parent(ben, tom).

(
parent(alice, ben).
male(ben).

male(sam).

What happens when we change rule (1) as follows:
(1) father(X,Y):— parent(X,Y),male(X),!.
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Remark 7.54 (Cuts)

The previous examples have shown two different types of cuts:
removal of subtrees with and without solutions.

m A cut is called green if the removed tree does not contain any
successful branches.
m A cutis called red if the removed tree does contain successful
branches.
Green cuts are unproblematic whereas red cuts have to be used with
caution.
Cuts can improve the efficiency of a PROLOG program
dramatically.
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Example 7.55

Discuss the following two programs, intended to compute the
minimum of two numbers:

Program 1:

min(X,Y,X) :— X <Y,
min(X,Y,Y).

Program 2:

min(X,Y,X) -— X <Y,
min(X,Y,Y) :— X >=1Y.
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7.5 Recursion and Lists
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Left and right recursion

Definition 7.56 (Recursion)

A predicate is defined recursively if it occurs in the head and the
body of a (the same) rule.

Example 7.57

We would like to define a descent relation, using predicates
child/2 and descendant/2, between Paul and Anne:

child(paul, anna).

child(anna, sara).

descendant(X,Y) :— child(X,Y).
descendant(X,Y) :— child(X,Z), child(Z,Y).
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Recursive rules
What if we add the fact child(sara, frank).? In this case we have
to add the rule:
descendant(X,Y) :— child(X, W), child(W,Z), child(Z,Y).

What if we add another fact etc.? This doesn’t seem to scale and
only works if we know the facts. Any better solution?
descendant(X,Y) :— child(X,Y).
base clause
descendant(X,Y) :— child(X, Z), descendant(Z,Y).
recursive clause
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Attention: Recursion is dangerous! Think about your program
carefully.

Example 7.58 (Left and right recursion)

We consider the following variants of the rules of the descendant
example:

(1) base clause on top, right recursion

descendant(X,Y) :— child(X,Y).
descendant(X,Y) :— child(X,Z),descendant(Z,Y).

(2) base clause not on top, right recursion

descendant(X,Y) :— child(X,Z),descendant(Z,Y).
descendant(X,Y) :— child(X,Y).
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The following uses left recursion, in contrast to right recursion
(3) base clause on top, left recursion

descendant(X,Y) :— child(X,Y).
descendant(X,Y) :— descendant(Z,Y), child(X, Z).

(4) base clause not on top, left recursion

descendant(X,Y) :— descendant(Z,Y), child(X, Z).
descendant(X,Y) :— child(X,Y).
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The previous examples showed that the declarative
meaning of a program can differ from its procedural
meaning. The order of the goals as well as the order of
the rules does affect its procedural meaning.
Remark 7.59 (Recursion)

m Recursion is powerful and dangerous.

m Try to avoid left-recursion.

m Rule and predicate ordering is important.

m Try to put base clause before recursive clause.

m Put a recursive call as far as possible to the right of a rule.
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Remark 7.60 (Inductive definitions)

Consider the following inductive definition of the
natural numbers:

0 is a natural number.

If n is a natural number, then n + 1 is a natural
number.

There are no more natural numbers then those
obtained by applying the two rules above.

This definition consists of three parts: the base case,
the induction step, and a maximality condition.
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Remark 7.61

Our previous examples followed such an inductive definition,
for example:

Basic clause:  member(X, [X|-]).
Inductive clause: ~ member(X,[_|Tail]) :— member(X, Tail).
Extremal clause: ~ ?

Why don’t we have an extremal clause? Think about
negation-as-finite-failure and how PROLOG derives new facts.
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Lists

PROLOG supports the data structure of lists. Lists can store
(compound) terms. How does a list look like? Suppose we have a
functor ./2 which allows to “concatenate” terms:

[ : the empty list
.(a,[]) : corresponds to the list a.
.(a,.(b,[])) : corresponds to the list a, b.
.(a,.(b,.(c,[]))) : corresponds to the list a, b, c.

We use the function ./2 to construct recursive data structures:
lists. [] is a constant denoting the empty list.
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Definition 7.62 (List)

Alistisaterm .(ty,.(t2,.(-..,-(tx,[])))) whereeach t;,i =1,k is a
term, or [|, the empty list. The term t; is the head of the list, and
the list .(t2,.(...,.(tx, [])))) is the tail of the list. The empty list has
neither a tail nor a head.

This notation is cumbersome. PROLOG offers alternative ways to
define lists. For example:
B [ty,...,ty): List of k elements

B [Head|Tail] list with head Head and tail Tail.
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Definition 7.63 (List notation)

In PROLOG a list can also be denoted by the following two
predicates:

B [ti,...,ty] is ashortcut for .(tq,.(to,.(...,.(tx,[])))), and
B [Head|Tail] is a shortcut for .(Head, Tail).
Further shortcuts are:

B [si,...,sy|[t1,...,ta]] is written as [s1,...,Sp, t1,...,tal,
m > 0,n > 0 and.

W [S1,...,Sn|[t1,...,ta|X]] is written @s [s1,...,8p, t1,...,tn|X],
m,n > 0.

In the following we consider some examples for list operations

Prof. Dr. Jurgen Dix Clausthal, SS 2018 606



.1 7 PROLOG
] Iq U(:laH.S‘t‘hal 7.5 Recursion and Lists

Example 7.64
If possible, rewrite the following into lists of type [ty, ..., ty):

(1] [2,3,4]
[1,2,3,4]
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Example 7.65 (Checking membership)
A program which checks whether a term is a member of a list.

member (X, [X|Tail]).
member(X, [Y|Tail]) :— member(X, Tail).

This program is equivalent to.

member (X, [X|_]).
member (X, [_|Tail]) :— member(X, Tail).

The predicate member/2 is pre-built in PROLOG. Note that
member(a, [a|b]) can be derived even when [a|b] is not a list. Again,
this is due to efficiency.

What does ?— member(a,X) return?
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Example 7.66 (Appending lists)

We define a predicate append/3 where append(X, Y, Z) is true if list
X combined with list Y is list Z.

append([], X, X).
append([X|Y], Z, [X|W]) :— append(Y, Z, W).

The predicate can be used in different ways. Explain the use of the
following queries:

?— append(|[a, 2], [b, 3], [a, 2, b, b]).
?— append(][a, b], [c,d], X).
7— append(X, Y, [a, b, c,d]).

Write down the search trees.
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Example 7.67 (Last element of a list)

We define a predicate 1ast/2 which is true if the first argument is
the last element of the list in the second argument:

last(X, [X]).
last(X, [H|T]) :— last(X,T).
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Write a predicate allSame(L), where L is a list, which is true if
all elements in L are identical.
The following program defines the predicate:

allSame([]).

allSame([X]).

allSame([H1|[H2|T]]) :— H1 = H2, al1Same([H2|T]).

This can further be simplified:

allSame([]).
allSame([_]).
allSame([X, X|T]]) :— allSame([X|T]).
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Example 7.68 (Removing duplicate elements and cut)

(1) remove_duplicates(]],[]).

(2) remove_duplicates([H|T],Res) :— member(H,T),
remove_duplicates(T,Res).

(3) remove_duplicates([H|T|, [H[Res]) :—

remove_duplicates(T,Res).
We replace the second clause by

(4) remove_duplicates([H|T],Res) :— member(H,T), !,

remove_duplicates(T,Res).
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7.6 Arithmetic
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Arithmetic
We first make the following remark:

Remark 7.69 (Arithmetic)

PROLOG is already Turing complete without arithmetic. We can
simulate arithmetic with programs and define arithmetic operators
by predicates (viewing numbers as compound terms). For example,
we can write a recursive predicate plus(A, B, C) to represent

A+ B =C. So we don’t need arithmetic.

However, using arithmetic improves readability, allows for easier (to
read) programs, and can be implemented (in hardware) much more
efficiently.
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PROLOG allows a whole bunch of arithmetic
functors (on purpose we don’t say arithmetic
operators). We list a few with their reading:

+ /2 addition

— /2 subtraction

— /1 negative number

* /2 multiplication

//2 (floating point) division
/]/2 (integer) division
mod/2 | remainder after division
max/2 | maximum of two numbers

It is important to note that 4 + 3 is not 7 butitis a
PROLOG term!
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Definition 7.70 (Arithmetic expression)

An arithmetic expression is a term constructed
from numbers, variables and arithmetic functors.
The arithmetic functors are usually written in infix
notation, i.e. 5 + 2 instead of + (5,2).

We are able to write down arithmetic expressions,
but how to evaluate them?
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PROLOG offers built-in predicates to evaluate and compare
arithmetic terms. The most important are:

is/2 right evaluation
=:= /2 | left-right evalution
=\=/2 inequality

< /2 (strictly) larger
=< /2 larger or equal

> /2 (strictly) smaller
>= /2 smaller or equal

The reading of t; is t, is that t; equals the evalution of t, where
t, must be a ground artihmetic constraint at the time of
evaluation.

The reading of t; =:= t, is that t; evaluates to t, and vice versa.
Both terms must be ground at the time of evaluation.

The reading of t;=\ =t, is that t; does not evaluate to t, or vice
versa.

The other predicates have their usual interpretation.
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Example 7.71

Which of the following expressions are true/false?
H2+2=2+2
m4=2+2

BX=2+4+2
What is the instantiation of X?

m4is2+2
m2+2is4
BX==2+2
m3+2==243
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Example 7.72
Write the following in PROLOG
m The remainder of 7 divided by 2 is 1:

1is 7 mod 2.

m The value of 210 is 1024:

1014 is 2 x x10.

m Compute maximum of 4 and 89:

X is max(4, 89).
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Example 7.74 (Factorial)

We define a predicate fac/2 which computes the factorial of a
number n:

fac(0,1).
fac(N,F):— N> 0,Mis N—1,fac(M,Fm),F is N % Fm.

Then, we query 7— fac(n, X). Variable X contains the factorial of n.
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Example 7.75 (Length of a list)

We define a predicate length/2 which computes the length of a
list:

length([],0).
length([H|Tail],N) :— length(Tail,P),N is P + 1.

Example 7.76 (For-loop)
We simulate a for-loop with recursion

printnr(1) :— writeln(1).
printnr(N) :— N > 1,Mis N — 1, printnr(M), writeln(N).
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Example 7.77 (Sum numbers in a list)

We would like to define a predicate sum/2 which sums up all
numbers in a list. What about the two programs

sum([], 0).

sum([H|Tail], Sum) :— sum(Tail, Tailsum), Sum is H + Tailsum.
and

sum([], 0).

sum([H|Tail], Sum) :— Sum is H 4 Tailsum, sum(Tail, Tailsum).

Why does the former program work but not the latter?
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/.7 Programming
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Example 7.78 (Computing the power)
Write a PROLOG program which computes:

X to the power of N and return/store in P

m We define a predicate power(X,N,P).
m How to find out about the purpose of the predicate and how
to use it? Add comments:

% Computes X to the power of NN

% and return/store in P

power(_,0,1).

power(X,N,P) :— N > 0, Mis N — 1, power(X, M, MP),
P is X« MP.
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% Computes X to the power of N

% and return/store in P

power(_,0,1).

power(X,N,P) :— N >0, Mis N — 1, power(X,M, MP),
P is X« MP.

m Is this everything we need? What if we query power(2,Y,8)?
That is, we want to know which power z is needed such that
2% = 8.

m We get an error message:
>/2: Arguments are not sufficiently instantiated.
Why?

m Itis possible to query power(2,10,P) where P is instantiated
to the solution.
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% Computes X to the power of N

% and return/store in P

power(_,0,1).

power(X,N,P) :— N >0, Mis N — 1, power(X,M, MP),
P is X« MP.

®m X and N are input variables, they need to be ground when
evaluated.

m P can be an input as well as an output variable.

m We use +, — and ? to indicate input, output, and
input/output variables, respectively.

m We add the comment explaining the definition of the
predicate:
% power (+Integerl,+Integer2,?Integer3)
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Definition 7.79 (Predicates, mode)

When defining a predicate p(t1,...,tN) we group the definition
of the predicate and put above a comment clarifying the type of a
variable together with its mode, i.e. whether it is an input (+),
output (-) or input/output (?) variable. For example, it could look
as follows:

% p(+Intl, -Int2, ...,7IntN)

Note: Formally this is just a comment!
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Example 7.80
m We have already seen that the misuse of input variables can
yield errors.

m What if we use a ground term as output variable? The
following examples show that one has to be careful:

% sort(+List,-List)
?7— sort([3,1,2]1,[1,2,3])

true

% sort(+List,-List)
?_ SOI‘t([A,B,3] ) [2;1;3])
A=2B=1.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 628



el TU Clausthal TR

m In the PROLOG manual the types indicate the
following:

+ argument must be fully instantiated
- argument should be unbound
? argument bound to a term of the specified type

m Declaration of variables is important when
programming for readability.
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findall/3: collects all objects in a list that satisfy a given goal,
bagof/3: (clustered solutions),
setof/3: (no duplicates).

In the following two definitions, we consider the program:

child(martha,charlotte).
child(charlotte,caroline).
child(caroline,laura).

child(laura,rose).

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z), descend(Z,Y).
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Definition 7.81
findall(X,G,L) collectsin L
m all instantiations of X that

m correspond to solutions of G
The query 7— findall(X,descend(martha,X),Z). returns
L=[charlotte, caroline, laura, rose]

If there are no instantiations that match the goal the empty list is
returned. Note that X can be an arbitrary term. The list can
contain duplicate entries.
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Definition 7.82

bagof (X, G,L) collects in L
m all instantiations of X that
m correspond to solutions of G

m and clusters these solutions in a separate list for all
instantiations for variables in G not contained in X.

If there are no instantiations matching the goal, fail is returned.

Prof. Dr. Jurgen Dix Clausthal, SS 2018 632



e TU Clausthal

Clausthal University of Tec

The query 7— bagof (X,descend(Y,X),Z) . returns

= caroline,

= [laura, rose]

= charlotte,

= [caroline, laura, rose]
= laura,

= [rose]

= martha,

<O <BP<t0 o<
|

= [charlotte, caroline, laura, rose].
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Definition 7.83

setof (X, G,L) behaves like bagof (X, G, L) but
m each list is sorted alphabetically and
m duplicate entries are removed.

Costly operations

It is important to note that these three operations
are costly in terms of computation time. Use
them carefully.
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Anonymous variables

On query 7— sister(X,Y) Prolog returns all pairs
X and Y such that X is a sister of V.

We may only be interested in knowing who has a
sister, i.e. in the instantiations of Y. In this case we
can use the anonymous variable:

?7— sister(_,Y)

Prolog only returns instantiations for Y. Thus, the
anonymous variable is used to hide specific
instantiation.
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The anonymous variable can be used at several places in a query:
each occurrence of _ is independent of the others.

Example 7.84 (Anonymous variable)

Consider the program:

7- [X1,X2,X3,X4| Taill=[[], d(z),[2,[b,c]],[],Z].
X1 = X4, X4 = [],

X2 = d(z),
X3 = [2, [b, <],
Tail = [Z].

We may only want to know the value of the second and fourth
position on the list: Only interested in 2nd and 4th component:

7- [_,X2,_,X4|_1=[0, d(=z),[2,[b,c]],[],Z].
X2 = d(z),
X4 = [1.
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Compare the difference to (occurrences of _ are
independent):

7- [Y,X2,Y,X4|Y]=[0l], d(=),[2,[b,c]l],[]1,Z].
false.
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Tail recursion and accumulators

append([], X, X).
append([X|Y], Z, [X|W]) :— append(Y, Z, W).

Example 7.85 (Reversing a list)

We would like to reverse a list. Consider the following program,
where append is defined as before.

naiveReverse([],[1).
naiveReverse ([H|T],R) :- naiveReverse(T,RTemp),
append (RTemp, [H] ,R) .

Query ?7— naiveReverse([1,2,3,4,5,6,7,8],L). Have a look at
the trace, what can you observe?

The program is very inefficient. Can we do better?
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Consider the following approach to reverse a list:

List: [a,b,c,d] Accumulator: []
List: [b,c,d] Accumulator: [a]
List: [c,d] Accumulator: [b,a]
List: [d] Accumulator: [c,b,al
List: [] Accumulator: [d,c,b,a]

Example 7.86 (More efficient program for Reverse)
We first define an accumulator:

accRev([H|T],A,R) :- accRev(T,[H|A],R).
accRev([],A,D).

The predicate to reverse the list is: rev(L,R) :- accRev(L, [],R).
Compare the trace of 7— rev([1,2,3,4,5,6,7,8],L). to the
corresponding trace of Example 7.85.
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Compare the traces of naiveReverse([1,2,3,4,5],L). (cf.
Fig. 7.38) and rev([1,2,3,4,5],L) . (cf. Figure 7.39)

[:race] 74 ?- naiveReverse([l,2,3,4,5],L).
Call: (6) naiveReverse([1, 2, 3, 4, 5], _Gl207) ? creep

(7) naivereverse([2, 3, 4, 5], _G1298) ? creep

(8) naiveReverse([3, 4, 5], _G1298) ? creep

(9) naiveReverse([4, 5], _G1298) ? creep

(10) naiveReverse([5], _GI298) ? creep

1) naiveReverse([], _G1298) ? creep
1) naiveReverse([], []) ? creep

1) append([], [5], _G1302) ? creep
1) append([], [5], [5]) ? creep

0) naiveReverse([5], [5]) ? creep
0) append([5], [4], _G1305) ? creep
1) append([], [4], _G1297) ? creep
1) append([], [4], [4]) ? creep

0) append([5], [4], [5, 4]) ? creep
) naiveReverse([4, 5], [5, 4]) ? creep
) append([5, 41, [3], _G1311) 2 creep
0) append([4], [3], _GI303) ? creep
1) append([], [3], _G1306) ? creep
1) append( [3], [3]) 2 creep

0) append([4], [3], [4, 3]) ? creep
)

)

)

)

0

1

1

0

)

)

)

)

)

)

0

1

1

SR

append([5, 41, [3], [5, 4, 3]) ? creep
naiveReverse([3, 4, 5], [5, 4, 3]) ? creep
append([5, 4, 3], [2], _G1320) ? creep
append([4, 3], [2], _G1312) ? creep
) append([3], [2], _GI315) ? creep
) append([], [2], _G1318) ? creep
) append([], [2], [2]) ? creep
) append([3], [2], [3, 2]) ? creep
append([4, 3], [2], [4, 3, 2]) ? creep
append([5, 4, 3], [2], [5, 4, 3, 2]) ? creep
naiveReverse([2, 3, 4, 51, [5, 4, 3, 2]) ? creep
append([5, 4, 3, 2], [1], _G1207) ? creep
append([4, 3, 2], [1], _G1324) ? creep
append([3, 2], (1], _G1327) 2 creep
) append([2], [1], _GI330) ? creep
) append([], [1], _G1333) ? creep
d([], [1], [1]) ? creep

0) append([2], [1], [2, 1]) ? creep

21, (11, [3, 2, 1]) ? creep
) append([4, 3, 2], [1], [4, 3, 2, 1]) ? creep
) append([5, 4, 3, 2], [1], [5, 4, 3, 2, 1]) ? creep
) naiveReverse([1, 2, 3, 4, 51, [5, 4, 3, 2, 1]) ? creep
3 20 Ll

)
el
-1

]

8

B

Figure 7.38: Trace of naive reverse.
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[trace] 7
Call:
Call:
Call:
Call:
Call:
Call:
Call:
Exit:
Exit:
Exit:
Exit:
Exit:
Exit:
Exit:

L =[5, 4
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3 ?- rev([1,2,3,4,5],L).

(6) rev([1l, 2, 3, 4, 5], _G749) ? creep

(7) accRev([1l, 2, 3, 4, 5], [1, _G749) ? creep

(8) accRev([2, 3, 4, 5], [1], _G749) ? creep

(9) accRev([3, 4, 5], [2, 1], _G749) ? creep

(10) accrev([4, 51, [3, 2, 1], _G749) ? creep

(11) accRev([5]1, [4, 3, 2, 1], _G749) ? creep

(12) accRev([], [5, 4, 3, 2, 1], _G749) ? creep

(12) accRev([]1, [5, 4, 3, 2, 11, [5, 4, 3, 2, 1]) ? creep
(11) accRev([5]1, [4, 3, 2, 11, [5, 4, 3, 2, 1]) ? creep
(10) accRev([4, 51, [3, 2, 11, [5, 4, 3, 2, 1]) ? creep
(9) accrev([3, 4, 5], [2, 1], [5, 4, 3, 2, 1]) ? creep
(8) accrRev([2, 3, 4, 51, [1]1, [5, 4, 3, 2, 1]) ? creep
(7) accRev([l, 2, 3, 4, 51, [1, [5, 4, 3, 2, 1]) ? creep
(6) rev([l, 2, 3, 4, 51, [5, 4, 3, 2, 1]) ? creep

, 3, 1].

Figure 7.39: Trace of reverse with accumulator.
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Tidy your room!

A very simple example showing in blocksworld-like style, how to
deal with actions as elements of a list.

Example 7.87

Your room is very untidy. You should make it nice as you are
expecting friends to come over. You have three simple actions: to
pick, to move and to drop an object.

Write a binary predicate that takes a list of objects and generates a
list of actions (pick, move to box, drop) for each object.

Refine your program by putting the objects into different boxes
according to their colors.
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Tidy your room! (cont.)

tidy (L1, [D).
tidy ([0bj|0th], [pick(0Obj) ,move(0bj,box) ,drop(0bj) |0thActs])
:- tidy(Oth,OthActs).

tidy ([, [1).

tidy ([0bj|0th], [pick(Obj) ,move(Obj,box1) ,drop(0bj) |OtActs])
:- tidy(0Oth,0thActs), red(0bj).

tidy ([0bj|0th], [pick(Obj) ,move(0bj,box2) ,drop(0bj) |OthActs])
:- tidy(Oth,0thActs), green(0bj).

tidy ([0bj|0th], [pick(Obj) ,move(0bj,box3) ,drop(0bj) |OthActs])
:- tidy(Oth,0thActs), blue(0bj).
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