
Logic and Verification
Prof. Dr. Jürgen Dix

Computational Intelligence Group
TU Clausthal

Summer Term 2018

Prof. Dr. Jürgen Dix Clausthal, SS 2018 1

What Song the Syrens sang,
or what name Achilles assumed
when he hid himself among women,
though puzzling Questions,
are not beyond all conjecture.

Sir Thomas Browne

Prof. Dr. Jürgen Dix Clausthal, SS 2018 2

Acknowledgment

This course grew out of my former AI course (held from
2004–2014 at TU Clausthal). The main new parts are the
chapters about model checking, PROLOG, and answer set
programming.
The author gratefully acknowledges material and slides (for
the Prolog part) provided by Nils Bulling used in his BSc
course TI1906 Logic-Based Artificial Intelligence at TU Delft
in the summer term 2015.
Many thanks also to Tobias Ahlbrecht who helped with the
exercises.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 3

Time and place: Monday, Tuesday 10–12.
Exercises: See schedule (7 exercises in total).

Website
www.in.tu-clausthal.de/index.php?id=cig_logic-2018

Visit regularly!

There you will find important information about
the lecture, documents, exercises et cetera.

Organization: Tobias Ahlbrecht;
Exercise class: A. Mantel, J. Schwede;
Exam: tbd

Prof. Dr. Jürgen Dix Clausthal, SS 2018 4

What is this course about?
This course is about logic based formal methods and how to use
them for verification in computer science.

It rigorously defines the language and semantics of

sentential logic (SL) and

first-order logic (FOL).
We introduce the notion of a model, and show how hardware and
software systems can be modelled within this framework. We also
consider

semantic entailment vs. syntactic derivability
of formulae and how these two notions are related through
correctness and completeness. Completeness is formally proved
for SL and extensively discussed for FOL (in the form of
refutation completeness).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 5

What is this course about? (cont.)
Both logics are applied to important verification problems:

SL and its extension LTL for verifying linear temporal
properties in concurrent systems, and

FOL for verifying input/output properties of programs (the
Hoare calculus).

We show how the resolution calculus for FOL leads to PROLOG,
a programming language based on FOL.

We also show that SL leads to a declarative version of PROLOG:
Answer Set Programming (ASP), that can be used to solve
problems expressible on the second level of the polynomial
hierarchy.

While ASP is not a full-fledged programming language, it can be
used for many naturally ocurring problems and it allows to model
them in a purely declarative way.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 6

Lecture Overview

1. Introduction (1 lecture)
2. Sentential Logic (SL) (3 lectures)
3. Verification I: Reactive Systems (3 lectures)
4. First-Order Logic (FOL) (2,5 lectures)
5. Verification II: Hoare Calculus (2,5 lectures)
6. From FOL to PROLOG (2 lectures)
7. PROLOG (3 lectures)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 7

1 Introduction

1. Introduction
1 Introduction

What Is AI?
Logic: From Plato To Zuse
Verification

Verifying reactive systems
Verifying programs

References

Prof. Dr. Jürgen Dix Clausthal, SS 2018 8

1 Introduction

Content of this chapter (1):

Defining AI: There are several interpretations of
AI. They lead to scientific areas ranging
from Cognitive Science to Rational
Agents.

History: We discuss some important
philosophical ideas in the last three
millennia and touch some events that
play a role in later chapters (syllogisms
of Aristotle, Ars Magna).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 9

1 Introduction

Content of this chapter (2):

Logic-Based AI since 1958: AI came into being
in 1956-1958 with John McCarthy. We
give a rough overview of its successes
and failures.

Rational Agent: The viewpoint to consider an
agent as a rationally acting entity.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 10

1 Introduction

Content of this chapter (3):

Model checking: Many problems can be
modelled with finite state systems and
solved by checking whether (1) a given
model has a certain property, (2) a
theory is satisfiable or (3) a formula is
valid.

Verification: Programs are based on an infinite
state space and thus require other
methods, similar to the Hoare calculus.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 11

1 Introduction
1.1 What Is AI?

1.1 What Is AI?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 12

1 Introduction
1.1 What Is AI?

“The exciting new effort to make computers
think . . . machines with minds, in the full
and literal sense” (Haugeland, 1985)

“The study of mental faculties through the
use of computational models”
(Charniak and McDermott, 1985)

“[The automation of] activities that we asso-
ciate with human thinking, activities such as
decision-making, problem solving, learning
. . .” (Bellman, 1978)

“The study of the computations that make
it possible to perceive, reason, and act”
(Winston, 1992)

“The art of creating machines that perform
functions that require intelligence when per-
formed by people” (Kurzweil, 1990)

“A field of study that seeks to explain and
emulate intelligent behavior in terms of
computational processes” (Schalkoff, 1990)

“The study of how to make computers do
things at which, at the moment, people are
better” (Rich and Knight, 1991)

“The branch of computer science that is con-
cerned with the automation of intelligent
behavior” (Luger and Stubblefield, 1993)

Table 1: Several Definitions of AI

Prof. Dr. Jürgen Dix Clausthal, SS 2018 13

1 Introduction
1.1 What Is AI?

1. Cognitive science

2. ”Socrates is a man. All men are mortal. Therefore
Socrates is mortal.”
(Famous syllogisms by Aristotle.)

(1) Informal description
(2) Formal description
(3) Problem solution
(2) is often problematic due to under-specification

(3) is deduction (correct inferences): only enumerable,
but not decidable

Prof. Dr. Jürgen Dix Clausthal, SS 2018 14

1 Introduction
1.1 What Is AI?

3. Turing Test:
http://cogsci.ucsd.edu/~asaygin/tt/ttest.html

http://www.loebner.net/Prizef/loebner-prize.html
Standard Turing Test
Total Turing Test

Turing believed in 1950:

In 2000 a computer with 109 memory-units could
be programmed such that it can chat with a
human for 5 minutes and pass the Turing Test
with a probability of 30 %.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 15

http://cogsci.ucsd.edu/~asaygin/tt/ttest.html
http://www.loebner.net/Prizef/loebner-prize.html

1 Introduction
1.1 What Is AI?

4. In item 2. correct inferences were mentioned.

Often not enough information is available
in order to act in a way that makes sense (to
act in a provably correct way).
 Non-monotonic logics.

The world is in general under-specified. It is
also impossible to act rationally without correct
inferences: reflexes.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 16

1 Introduction
1.1 What Is AI?

The year 1943:
McCulloch and W. Pitts drew on three sources:

1 physiology and function of neurons in the
brain,

2 propositional logic due to Russell/Whitehead,
3 Turing’s theory of computation.

Model of artificial, connected neurons:
Any computable function can be computed by some
network of neurons.
All the logical connectives can be implemented by
simple net-structures.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 17

1 Introduction
1.1 What Is AI?

The year 1956:
Two-month workshop at Dartmouth organized by
McCarthy, Minsky, Shannon and Rochester.

Idea:

Combine knowledge about automata theory,
neural nets and the studies of intelligence (10
participants)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 18

1 Introduction
1.1 What Is AI?

Newell und Simon show a reasoning program,
the Logic Theorist, able to prove most of the
theorems in Chapter 2 of the Principia
Mathematica (even one with a shorter proof).

But the Journal of Symbolic Logic rejected a paper
authored by Newell, Simon and Logical Theorist.

Newell and Simon claim to have solved the
venerable mind-body problem.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 19

1 Introduction
1.1 What Is AI?

The year 1958: Birthyear of AI

The term
Artificial Intelligence

is
proposed as the name of the new
discipline.
McCarthy joins MIT and develops:

1 Lisp, the dominant AI programming language
2 Time-Sharing to optimize the use of computer-time
3 Programs with Common-Sense.

Advice-Taker: A hypothetical program that can be seen
as the first complete AI system. Unlike others it
embodies general knowledge of the world.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 20

1 Introduction
1.1 What Is AI?

The years 1960-1966:
McCarthy concentrates on
knowledge-representation and reasoning in
formal logic (Robinson’s Resolution, Green’s
Planner, Shakey).

Minsky is more interested in getting programs to
work and focusses on special worlds, the
Microworlds.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 21

1 Introduction
1.1 What Is AI?

Blocksworld is the most famous microworld.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 22

1 Introduction
1.1 What Is AI?

From the 70’ies to the 90’ies

’73: PROLOG (Colmerauer, Kowalski)

’74: Relational databases, SQL (Codd)

81-91: Fifth generation project (Japan)

’91: Dynamic Analysis and Replanning
Tool (DART) paid back DARPA’s
investment in AI during the last 30
years.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 23

1 Introduction
1.1 What Is AI?

From the 90’ies until today

’93: Nine Men‘s Morris (“Mühle”) solved (Gasser
(ETH)). #: 1010.

’97: IBM’s Deep Blue wins against Kasparow. #: 1046.
’98: NASA’s remote agent program: Deep Space 1.

Many modules have been model-checked.
’07: Checkers (“Dame”) solved: Chinook by J.

Schaeffers. #: 1020.
’10: IBM’s Watson winning Jeopardy

http://www-05.ibm.com/de/pov/watson/

’16: Google’s AlphaGo winning 4: 1 against Lee
Sedol in a professional Go match.
#: 10170.
https://de.wikipedia.org/wiki/AlphaG

’17: Google’s AlphaZero as a program learning
arbitrary games by itself. Even Chess, as one
particular instance, and achieving high
Elo-ranking.
https://de.wikipedia.org/wiki/AlphaZero

Prof. Dr. Jürgen Dix Clausthal, SS 2018 24

http://www-05.ibm.com/de/pov/watson/
https://de.wikipedia.org/wiki/AlphaG
https://de.wikipedia.org/wiki/AlphaZero

1 Introduction
1.2 Logic: From Plato To Zuse

1.2 Logic: From Plato To Zuse

Prof. Dr. Jürgen Dix Clausthal, SS 2018 25

1 Introduction
1.2 Logic: From Plato To Zuse

450 BC : Plato, Socrates, Aristotle

Sokr.: ”What is characteristic of piety which
makes all actions pious?”
Aris.: ”Which laws govern the rational part of
the mind?”

800 : Al Chwarizmi (Arabia): Algorithm

1300 : Raymundus Lullus: Ars Magna

1646–1716: G. W. Leibniz:
Materialism, uses ideas of Ars Magna to build
a machine for simulating the human mind

Prof. Dr. Jürgen Dix Clausthal, SS 2018 26

1 Introduction
1.2 Logic: From Plato To Zuse

1805 : Jacquard: Loom

1815–1864: G. Boole:
Formal language,
Logic as a mathematical discipline

1792–1871: Ch. Babbage:
Difference Engine: Logarithm-tables
Analytical Engine: with addressable memory,
stored programs and conditional jumps

Prof. Dr. Jürgen Dix Clausthal, SS 2018 27

1 Introduction
1.2 Logic: From Plato To Zuse

Figure 1.1: Reconstruction of Babbage’s difference engine.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 28

1 Introduction
1.2 Logic: From Plato To Zuse

1848–1925 : G. Frege: Begriffsschrift
2-dimensional notation for PL1

Figure 1.2: A formula from Frege’s Begriffsschrift.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 29

1 Introduction
1.2 Logic: From Plato To Zuse

1862–1943: D. Hilbert:
Famous talk 1900 in Paris: 23 problems
23rd problem: The Entscheidungsproblem

1872–1970: B. Russell:
1910: Principia Mathematica
Logical positivism, Vienna Circle (1920–40)

1906–1978: K. Gödel:
Completeness theorem (1930)
Incompleteness theorem (1930/31)
Unprovability of theorems (1936)

1912–1954: A. Turing:
Turing-machine (1936)
Computability

Prof. Dr. Jürgen Dix Clausthal, SS 2018 30

1 Introduction
1.2 Logic: From Plato To Zuse

1938/42: First operational programmable computer: Z 1
Z 3 by K. Zuse (Deutsches Museum)
with floating-point-arithmetic.
Plankalkül: First high-level programming language

Figure 1.3: Reconstruction of Zuse’s Z3.
Prof. Dr. Jürgen Dix Clausthal, SS 2018 31

1 Introduction
1.2 Logic: From Plato To Zuse

1940 : First computer ”Heath Robinson” built to
decipher German messages (Turing)
1943 ”Collossus” built from vacuum tubes

1940–45: H. Aiken: develops MARK I, II, III.
ENIAC
First general purpose electronic computer

1952 : IBM: IBM 701, first computer to yield profit
(Rochester et alii)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 32

1 Introduction
1.2 Logic: From Plato To Zuse

1948: First stored program computer (The Baby)
Tom Kilburn (Manchester)
Manchester beats Cambridge by 3 months

Figure 1.4: Reconstruction of Kilburn’s baby.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 33

1 Introduction
1.2 Logic: From Plato To Zuse

First program run on The Baby in 1948:

Figure 1.5: Reconstruction of first executed program on The Baby.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 34

1 Introduction
1.3 Verification

1.3 Verification

Prof. Dr. Jürgen Dix Clausthal, SS 2018 35

1 Introduction
1.3 Verification

Model Checking Technique
Errors are expensive: Ariane 5 missile crash, . . .

Model checking provides means to detect such erros!

Formal model

Logical (formal)
specification

Let's model ckeck...

M |= hh{1, 2}ii⇤ g>
' = hh{1, 2}ii⇤ g> Computational

Complexity?

?Problem
(e.g. mobile phone)

+
(Safety) Property

(e.g. deadlock free)

q0

q2 q1

pos0

pos1

wait,wait

wait,wait wait,wait

push,push

push,push push,push

pu
sh

,w
ai

t
push,wait

w
ait,push

push,w
ait

wait,push

w
ai

t,p
us

h

pos2

Prof. Dr. Jürgen Dix Clausthal, SS 2018 37

1 Introduction
1.3 Verification

Model checking refers to the problem to
determine whether a given formula ϕ is
satisfied in a state q of modelM.

Local model checking is the decision problem
that determines membership in the set

MC(L,MOD, |=) =def

{(M, q, ϕ) ∈ MOD× L | M, q |= ϕ},
where

L is a logical language,
MOD is a class of (pointed) models for L (i.e. a tuple
consisting of a model and a state), and
|= is a semantic satisfaction relation compatible with L and
MOD.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 38

1 Introduction
1.3 Verification

Example 1.1 (Concurrency)
We assume the following three processes which run
independently and parallel and share the integer variable x.

Inc while t do if x � 200 then x := x+ 1 fi do
Dec while t do if x
 0 then x := x− 1 fi do
Reset while t do if x == 200 then x := 0 fi do

Does this ensure that the value of x is always between
(possibly including) 0 and 200?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 39

1 Introduction
1.3 Verification

Example 1.2 (Deadlock: Dining philosophers)

Five philosophers are sitting at a round table with a bowl of
rice in the middle. They can just do three things: (1)
thinking, (2) eating and (3) waiting to do (1) or (2). The
problem is that they can eat only by using two chopsticks
and eating rice out of the bowl.
But between two adjacent philosophers there is only one
chopstick. Therefore, at any point in time, only two
philosophers can eat concurrently.
If they all take the chopstick on their left, a deadlock
occurs.

What is a fair synchronization so that there is no
deadlock and no philosopher is starving?

How can this be modelled and the two properties
formally verified?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 40

1 Introduction
1.3 Verification

Dining philosophersDeadlock 91

P0

P1 P2

P3

P4

Stick0

Stick1

Stick2

Stick3Stick4

Five philosophers are sitting at a round table with a bowl of rice in the middle. For the
philosophers (being a little unworldly) life consists of thinking and eating (and waiting,
as we will see). To take some rice out of the bowl, a philosopher needs two chopsticks.
In between two neighboring philosophers, however, there is only a single chopstick. Thus,
at any time only one of two neighboring philosophers can eat. Of course, the use of the
chopsticks is exclusive and eating with hands is forbidden.

Note that a deadlock scenario occurs when all philosophers possess a single chopstick.
The problem is to design a protocol for the philosophers, such that the complete system is
deadlock-free, i.e., at least one philosopher can eat and think infinitely often. Additionally,
a fair solution may be required with each philosopher being able to think and eat infinitely
often. The latter characteristic is called freedom of individual starvation.

The following obvious design cannot ensure deadlock freedom. Assume the philosophers
and the chopsticks are numbered from 0 to 4. Furthermore, assume all following calcula-
tions be “modulo 5”, e.g., chopstick i−1 for i=0 denotes chopstick 4, and so on.

Philosopher i has stick i on his left and stick i−1 on his right side. The action request i,i

express that stick i is picked up by philosopher i. Accordingly, request i−1,i denotes the
action by means of which philosopher i picks up the (i−1)th stick. The actions release i,i

and release i−1,i have a corresponding meaning.

The behavior of philosopher i (called process Phil i) is specified by the transition system
depicted in the left part of Figure 3.2. Solid arrows depict the synchronizations with the
i-th stick, dashed arrows refer to communications with the i−1th stick. The sticks are
modeled as independent processes (called Stick i) with which the philosophers synchronize
via actions request and release; see the right part of Figure 3.2 that represents the process
of stick i. A stick process prevents philosopher i from picking up the ith stick when
philosopher i+1 is using it.

Figure 1.6: Dining philosophers.
Prof. Dr. Jürgen Dix Clausthal, SS 2018 41

1 Introduction
1.3 Verification

Example 1.3 (What does program P(x) calculate?)

The input, x, ranges over integers.

y := 1;
z := 0;
while z 6= x {

z := z + 1;
y := y · z

}

Prof. Dr. Jürgen Dix Clausthal, SS 2018 42

1 Introduction
1.3 Verification

Example 1.4 (What do these programs calculate?)

int foo1(int n) {
local int k, int j;
k := 0;
j := 1;
while (k 6= n){

k := k + 1;
j := 2 ∗ j

} return(j) }

int foo2(int n) {
local int k, int j;
k := 0;
j := 1;
while (k 6= n){

k := k + 1;
j := 2 + j

} return(j) }

Prof. Dr. Jürgen Dix Clausthal, SS 2018 43

1 Introduction
1.4 References

1.4 References

Prof. Dr. Jürgen Dix Clausthal, SS 2018 44

1 Introduction
1.4 References

This lecture covers several areas, from classical logic, via
classical verification techniques to the programming
language PROLOG.
There exist many good textbooks for all these areas.
However, each has its own particular viewpoint and
therefore introduces the notions in a different way. In
particular concerning logic, many other, equivalent,
approaches are possible.
A theorem in our approach can be a definition in
another and vice versa.
To solve the exercises, strictly stick to the exposition
on the slides, and what has been lectured until then.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 45

1 Introduction
1.4 References

Literature I

Christel Baier and Joost-Pieter Katoen.
Principles of model checking.
May 2008. Cambridge: MIT Press.

Rafael Bordini and Jürgen Dix.
Programming Multiagent Systems.
In G. Weiss, editor, Multiagent systems, pages 587–640,
2013. MIT-Press.

F. Dalpaiz and J. Dix and M. B. van Riemsdijk
Engineering Multi-Agent systems.
Second International Workshop (Paris 2014), revised and
selected papers.
Springer LNAI series 8758, 2015.

Jürgen Dix and Michael Fisher.
Verifying Multi-Agent Systems.
In G. Weiss, editor, Multiagent systems, pages 641–693,
2013. MIT-Press.

Nils Bulling and Jürgen Dix and Wojciech Jamroga.
Model Checking Logics of Strategic Ability: Complexity.
In Specification and Verification of Multi-Agent Systems,
pages 125–158, 2010. Springer.

Amir Pnueli.
The Temporal Logic of Programs.
In Proceedings of the 18th IEEE Symp. on Founda-
tions of Computer Science, 1977.

A. Prasad Sistla and Edmund M. Clarke.
The complexity of Propositional Linear Temporal
Logic.
In Journal of the ACM, volume32, no. 3, pages
733–749, 1985.

William Clocksin and Christopher S. Mellish.
Programming in PROLOG.
Springer Science & Business Media, 2003.

Michael Huth and Mark Ryan.
Logic in Computer Science: Modelling and rea-
soning about systems.
2000. Cambridge University Press.

D’Silva et al.
A Survey of Automated Techniques for Formal
Software Verification.
In IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, voulme 27, no. 7,
pages 1165–1178, 2008.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 46

2 Sentential Logic (SL)

2. Sentential Logic (SL)
2 Sentential Logic (SL)

Motivation
Syntax and Semantics
Some examples

Sudoku
Wumpus in SL
A Puzzle

Hilbert Calculus
Resolution Calculus

Prof. Dr. Jürgen Dix Clausthal, SS 2018 47

2 Sentential Logic (SL)

Content of this chapter (1):

Logic: Logics can be used to describe the world and
how it evolves. We start with propositional logic
as the fundamental basis. All important notions
(model, theory, validity, deducibility,
derivability, calculus, model checking,
counterexamples) are rigorously introduced and
are the basis for first-order logic.

Examples: We illustrate the use of SL with three examples:
The game of Sudoku, the Wumpus world and
one of the weekly puzzles in the newspaper Die
Zeit. Finding a solution for these problems is
reduced to computing models of a certain
theory.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 48

2 Sentential Logic (SL)

Content of this chapter (2):

Calculi for SL: While it is nice to describe the world, we
also want to draw conclusions about it.
Therefore we have to derive new information
and deduce statements, that are not explicitly
given, but somehow contained in the
description. We introduce a Hilbert-type
calculus and the notion of proof in a purely
syntactical way.

While Hilbert-type calculi are easily motivated,
they cannot be efficiently implemented.
Robinson’s resolution calculus is much more
suited and will be later extended to FOL.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 49

2 Sentential Logic (SL)
2.1 Motivation

2.1 Motivation

Prof. Dr. Jürgen Dix Clausthal, SS 2018 50

2 Sentential Logic (SL)
2.1 Motivation

Folklore (1)
We all know the laws of Boole in algebra (Boolean Algebra)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

(A ∩B) = A ∪B
(A ∪B) = A ∩B

A = A
A ∪ (B ∩A) = A
A ∩ (B ∪A) = A

A ∪A = U

A ∩A = ∅
∅ = U

U = ∅
Expressions formed using ∪,∩, , (,), U, ∅ are called Boolean
expressions (U is the universe). blackboard 2.1

Prof. Dr. Jürgen Dix Clausthal, SS 2018 51

2 Sentential Logic (SL)
2.1 Motivation

Folklore (2)

Can we show, using these laws, that each
Boolean expression (formed using A,B,C, . . .
and ∩,∪, (,),) can be written as an
intersection of unions of A,A,B,B,C,C . . . ?
Can we show, using these laws, that each
Boolean expression (formed using A,B,C, . . .
and ∩,∪, (,),) can be written as a union of
intersections of A,A,B,B,C,C . . .?

 blackboard 2.2

Prof. Dr. Jürgen Dix Clausthal, SS 2018 52

2 Sentential Logic (SL)
2.1 Motivation

Folklore (3)

With the correspondence
= corresponds to ↔

corresponds to ¬
∩ corresponds to ∧
∪ corresponds to ∨
∅ corresponds to false
U corresponds to true

we immediately get valid formulae in SL.

 blackboard 2.3

Prof. Dr. Jürgen Dix Clausthal, SS 2018 53

2 Sentential Logic (SL)
2.1 Motivation

Example 2.1 (Tweety and Friends)

We want to throw a party for Tweety, his friend Gentoo and
Tux. But they have different circles of friends and dislike
some. Tweety tells you that he would like to see either his
friend the King or not to meet Gentoo’s Adelie. But Gentoo
proposes to invite Adelie or Humboldt or both. Tux,
however, does not like Humboldt and the King too much, so
he suggests to exclude at least one of them.

Can we represent this using sentential logic?

What do we gain by doing that?

Exactly how many solutions are there?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 54

2 Sentential Logic (SL)
2.1 Motivation

Propositional Symbols

k means invite The King

a means invite Adelie

h means invite Humboldt

¬k means exclude The King

¬a means exclude Adelie

¬h means exclude Humboldt

Problem Formalized
Tweety: k ∨ ¬a means “invite The King or exclude Adelie”, but

not both: ¬(k ∧ ¬a),

Gentoo: a ∨ h means “invite Adelie or Humboldt or both”,

Tux: ¬h ∨ ¬k means “exclude Humboldt or The King or both”.

Resulting Formula
Can we make the following formula true?

ϕparty : (k ∨ ¬a) ∧ ¬(k ∧ ¬a) ∧ (a ∨ h) ∧ (¬h ∨ ¬k)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 55

2 Sentential Logic (SL)
2.1 Motivation

There seems to be only one method of solution:
to check all possibilities.

ϕparty : (k ∨ ¬a) ∧ ¬(k ∧ ¬a) ∧ (a ∨ h) ∧ (¬h ∨ ¬k)

k a h k ∨ ¬a ¬(k ∧ ¬a) a ∨ h ¬h ∨ ¬k ϕparty

1 1 1 1 1 1 0 0
1 1 0 1 1 1 1 1
1 0 1 0 1 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 1 1 1 0
0 1 0 0 1 1 1 0
0 0 1 1 1 1 1 1
0 0 0 1 1 0 1 0

Prof. Dr. Jürgen Dix Clausthal, SS 2018 56

2 Sentential Logic (SL)
2.1 Motivation

Therefore there are exactly two solutions.
We can also deduce, that either Humboldt or
both The King and Adelie can be invited.
Later we call the rows in the table models (or
valuations).

Complexity

Truth tables have 2n rows, where n is the number
of propositional constants. In the worst case, all
have to be checked (or maybe not???????).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 57

2 Sentential Logic (SL)
2.1 Motivation

Overview

real world

true
(t)

false
(f)

semantics –– gives meaning

propositional symbols

⇧ = {p, q, . . .}

^, _, ¬, !

p! (q ^ r)

logical connectives

propositional formulae

syntax –– no meaning in real world

v̄

valuation
v : ⇧! {t, f}

extended valuation

uniquely
defines

v |= '

A valuation corresponds to a row in a
truth table (assignment of variables)

An extended valuation corresponds to a
complete row in a truth table.

p q p ^ q
t t t
t f f
f t f
f f f

v

v̄

Figure 2.7: Syntax and Semantics for SL

Prof. Dr. Jürgen Dix Clausthal, SS 2018 58

2 Sentential Logic (SL)
2.2 Syntax and Semantics

2.2 Syntax and Semantics

Prof. Dr. Jürgen Dix Clausthal, SS 2018 60

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Syntax: Language L =L (Prop)
The sentential (propositional) language is built upon
propositional constants: �, p1, p2, p3, . . . (countably

many). We also use a, b, c, . . . , p, q, r, The
symbol � has a special meaning: it stands for
falsity, the statement that is always false. This
will become clear when we define the semantics
of SL.

logical connectives: ¬ (unary), ∨ (binary), and
grouping symbols: (,) for unique readability.
Often, for concrete applications, we consider only a finite, nonempty set
of propositional constants and refer to it as Prop (e.g. Prop = {a, p, q}).
However, the symbol � is always present, we do not include it in the set
Prop.

Logical connectives are used to construct complex formulae
from the propositional constants.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 61

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Definition 2.2 (Sentential Language L(Prop))

Given a set Prop, the signature, the sentential (or
propositional) language L(Prop) over Prop
determines the set FmlSL

L(Prop) of L (Prop) formulae
defined by

ϕ ::= � | p | (¬ϕ) | (ϕ ∨ ϕ)

where p ∈ Prop.

Note that this only makes sense for finite Prop. However, by adding

symbols 0 and 1, one can easily produce infinitely many propositional

symbols p100101 using finitely many grammar rules.

 blackboard 2.4
Prof. Dr. Jürgen Dix Clausthal, SS 2018 62

2 Sentential Logic (SL)
2.2 Syntax and Semantics

We assume that Prop is fixed and omit it if clear from context: so
we write FmlSL

L instead of FmlSL
L(Prop) to denote the set of all

SL-formulae over Prop. We freely omit parentheses in formulae for
better readability.

What about other connectives? They are defined as macros.

Definition 2.3 (SL connectives as macros)

We define the following syntactic constructs as macros:

> =def (¬�)

ϕ ∧ ψ =def (¬((¬ϕ) ∨ (¬ψ)))

ϕ→ ψ =def ((¬ϕ) ∨ ψ)

ϕ↔ ψ =def ((ϕ→ ψ) ∧ (ψ → ϕ))

 blackboard 2.5

Prof. Dr. Jürgen Dix Clausthal, SS 2018 63

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Semantics
What should it mean that a L (Prop)-formula ϕ is
true? Intuitively, we want the following:

> is always t
� is always f

¬ϕ is t iff ϕ is f
ϕ ∨ ψ is t iff ϕ or ψ (or both) are t
ϕ ∧ ψ is t iff both ϕ and ψ are t
ϕ→ ψ is t iff either ϕ is f or ψ is t
ϕ↔ ψ is t iff ϕ and ψ are both t, or both f

Prof. Dr. Jürgen Dix Clausthal, SS 2018 64

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Transitions systems (see next chapter)
consist of a set of states and actions
(transitions) between these states.
States are determined by what holds true in
them.
A state will be uniquely determined by the
facts that are true in it.
These facts are exactly the elements in Prop:
the propositional constants.
Therefore, we need to fix the truth values of
the propositional constants.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 65

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Definition 2.4 (Valuation, truth assignment)

A valuation (or truth assignment) for a language
L(Prop) is a mapping v : Prop → {t, f} from the
set of propositional constants into the set {t, f}.
A valuation fixes the values of individual propositional
constants.

We are particularly interested in the truth of complex
formulae like (p ∨ q) ∧ r.

Semantics
The process of mapping a set of L-formulae into {t, f} is
called semantics.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 66

2 Sentential Logic (SL)
2.2 Syntax and Semantics

It suffices to state the semantics for the basic connectives.

Definition 2.5 (Semantics v |= ϕ, v̄)
Let v be a valuation. We define inductively the notion of a formula
ϕ ∈ FmlSL

L(Prop) being true or satisfied by v (notation: v |= ϕ):

v |= � does not hold,

v |= p if, by definition, v(p) = t and p ∈ Prop,

v |= ¬ϕ if, by definition, not v |= ϕ,

v |= ϕ ∨ ψ if, by definition, v |= ϕ or v |= ψ

We denote a set of L (Prop)-formulae by T . Given a set
T ⊆ FmlSL

L(Prop) we write v |= T if, by definition, v |= ϕ for all
ϕ ∈ T . We use v 6|= ϕ instead of “not v |= ϕ”.

Thus we have uniquely extended a valuation v to a mapping v̄
from FmlSL

L(Prop) into the set {t, f}.
 blackboard 2.6

Prof. Dr. Jürgen Dix Clausthal, SS 2018 67

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Truth Tables

Truth tables are a conceptually simple way of
working with SL (invented by Peirce in 1893 and
used by Wittgenstein in 1910’ies (and in TLP)).

p q ¬p p ∨ q p ∧ q p→ q p↔ q

t t f t t t t
f t t t f t f
t f f t f f f
f f t f f t t

Prof. Dr. Jürgen Dix Clausthal, SS 2018 68

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Definition 2.6 (Model, Theory, Tautology (Valid))

1 If v |= ϕ, we also call v (or v̄) a model of ϕ. We write
MOD(T) for all models of a theory T :

MOD(T) =def {v : v |= T}

2 A theory is any set T ⊆ FmlSL
L(Prop).

v satisfies T if, by definition, v |= ϕ for all ϕ ∈ T .
3 A L-formula ϕ is called L-tautology (or simply called

valid) if it is satisfied in all models: for all models v it
holds that v |= ϕ.

We suppress the language L when obvious from context.
 blackboard 2.7

Prof. Dr. Jürgen Dix Clausthal, SS 2018 69

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Tweety revisited (1)

In Example 2.1 we can now state the following:
The language we consider is Prop = {a, k, h}.
The valuation v which makes k, a, h all true
defines a structure which is not a model of the
formula φparty.
The valuation which makes k, a true and h
false, is a model of φparty.
φparty can also be seen as the theory Tparty

consisting of the four formulae k ∨ ¬a,
¬(k ∧ ¬a), a ∨ h, and ¬h ∨ ¬k.
The formula φparty is not a tautology, but k→ k
is one.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 70

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Definition 2.7 (Consequence Set Cn(T), entailment)

A formula ϕ follows (semantically) from T (or is
entailed from T) if for all models v of T
(i.e. v |= T) also v |= ϕ holds. We denote this by
T |= ϕ.
We call

CnL(T) =def {ϕ ∈ FmlSL
L(Prop) : T |= ϕ},

or simply Cn(T), the semantic consequence
operator.

We also say ϕ can be deduced from T .
 blackboard back to 2.7

Prof. Dr. Jürgen Dix Clausthal, SS 2018 71

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Duality ofMOD and Cn

Both Cn and MOD are defined on theories (sets of

formulae). But the definition of Cn can easily be extended

to also deal with sets of models. For a set M consisting

solely of models, we define

Cn(M) =def {ϕ ∈ FmlSL
L(Prop) : v |= ϕ for all v ∈M}.

MOD is obviously dual to Cn:

Cn(MOD(T)) = Cn(T),
MOD(Cn(T)) = MOD(T).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 72

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Tweety revisited (2)

Considering again Example 2.1 how does
CnL(Tparty) look like?

It is infinite.
It contains all tautologies.
It contains (k ∧ a ∧ ¬h) ∨ h.
Is CnL(Tparty) = CnL({(k ∧ a ∧ ¬h) ∨ h})?
Is
CnL(Tparty) = CnL({(k∧a∧¬h)∨(¬k∧¬a∧h)})?
So there are different axiomatisations of
CnL(Tparty).
How to decide which are equivalent?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 73

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Duality

The duality principle is an important property in
algebra and logic. It can be stated as follows.
Theorem 2.8 (Duality Principle)

We consider formulae φ, ψ over Prop built using
only ¬,∨,∧,�,>. For such a formula ϕ, let D(ϕ) be
the formula obtained by switching ∨ and ∧, and �
and >.
Then the following are equivalent:

φ is equivalent to ψ
D(φ) is equivalent to D(ψ).

 blackboard 2.8
Prof. Dr. Jürgen Dix Clausthal, SS 2018 74

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Conjunctive/disjunctive Normal form
We consider formulae φ built over Prop from only ¬,∨,∧,�.

Using the simple boolean rules, any formula φ can be written as a
conjunction of disjunctions (conjunctive normal form)

n∧

i=1

mi∨

j=1

φi,j

The φi,j are just prop. constants or negated prop. constants from
Prop.

Definition 2.9 (Clauses, literals)
Constants and negated constants (¬p) are called literals.
Disjunctions

∨mi
j=1 φi,j built from literals φi,j are called clauses.

 blackboard 2.9

Prof. Dr. Jürgen Dix Clausthal, SS 2018 75

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Theorem 2.10 (Conjunctive/disjunctive normal form)

Any formula over Prop built using only ¬,∨,∧,� can be equivalently
transformed into one with the same constants of the form

n∧

i=1

mi∨

j=1

φi,j ,

(the φi,j are, possibly negated, constants from Prop, the empty
disjunction is identified with �): conjunctive normal form.

Dually, any formula can be transformed into one of the form

n∨

i=1

mi∧

j=1

φi,j ,

(the φi,j are, possibly negated, constants from Prop, the empty
conjunction is identified with >): disjunctive normal form.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 76

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Normal forms

What are the normal forms of the
following formulae?

p,
¬p,
p→ p,
�,
¬¬(p→ ¬�).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 77

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Clauses
Normal form

Instead of working on arbitrary formulae, it is
sometimes easier to work on finite sets of
clauses.

This is without loss of generality (wlog): all
formulae can be equivalently represented as a
set (conjunction) of clauses.

This approach is much more suited for
implementing a calculus (theorem proving) and
we discuss it in detail in Subsection 2.5 from
Slide 143 on.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 78

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Lemma 2.11 (Properties of Cn(T))

The semantic consequence operator has the
following properties:

1 T -expansion: T ⊆ Cn(T),
2 Monotony: T ⊆ T ′ ⇒ Cn(T) ⊆ Cn(T ′),
3 Closure: Cn(Cn(T)) = Cn(T).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 79

2 Sentential Logic (SL)
2.2 Syntax and Semantics

To entail (or deduce) something from a theory is
important. But it is equally important to know
that something is not entailed from a theory
(i.e it does not follow from it): we emphasize
this importance in the next lemma.
Lemma 2.12 (ϕ 6∈ Cn (T), countermodel)

ϕ 6∈ Cn(T) if and only if there is a model v with
v |= T and v |= ¬ϕ.

This model is often referred to as a countermodel
for ϕ.

 blackboard 2.10

Prof. Dr. Jürgen Dix Clausthal, SS 2018 80

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Definition 2.13 (Completeness of a Theory T)

T is called complete if for each formula
ϕ ∈ FmlSL

L(Prop): T |= ϕ or T |= ¬ϕ holds.

Do not mix up this last condition with the property of a
valuation (model) v: each model is complete in the
above sense.
A complete theory gives us a perfect description of
the world (or state) we are in: we know everything!
In most cases, however, our knowledge is incomplete.
An incomplete theory leaves open many possibilities:
many complete extensions of it, namely exactly the
models of it.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 81

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Lemma 2.14 (Ex Falso Quodlibet)

The following are equivalent:
T has a model,
Cn(T) 6= FmlSL

L(Prop).
Russel story: Derive from “7 = 8” that you are the

pope.

 blackboard 2.11

Prof. Dr. Jürgen Dix Clausthal, SS 2018 82

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Tweety revisited (3)

We discuss the following statements.
Is the theory CnL(Tparty) complete, does it
have a model?

What about the theory CnL({A,A→ B,¬B})?
Does each theory with a model posess a
maximal extension that still has a model?

How many such extensions are there for Tparty?

Is there a theory T such that Cn(T) = ∅? What
about Cn(∅)?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 83

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Who killed Tuna, the cat?

Example 2.15 (Tuna the cat)

There are two people, Jack and Bill. There is also a
cat, called Tuna, and a dog with no name, owned
by Bill. Tuna has been killed by either Jack or Bill,
but it is not known by whom precisely.
All we know is that animal lovers do not kill
animals and that dog owners are animal lovers.
So who killed Tuna?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 84

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Who killed Tuna, the cat? (2)

How can we formalize this story in SL? We need
to choose Prop appropriately.

We need to express that Tuna is a cat: catTuna.
Either Jack or Bill killed Tuna: killer_of_TunaBill,
killer_of_TunaJack.
dog_ownerBill, dog_ownerJack.
animal_loverBill, animal_loverJack.

What about dog_ownerTuna, catBill?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 85

2 Sentential Logic (SL)
2.2 Syntax and Semantics

Who killed Tuna, the cat? (3)
Our theory T consists of:

catTuna.
killer_of_TunaBill ∨ killer_of_TunaJack,
¬(killer_of_TunaBill ∧ killer_of_TunaJack)
dog_ownerBill.
dog_ownerBill → animal_loverBill,
dog_ownerJack → animal_loverJack. What about
dog_ownerTuna → animal_loverTuna.
animal_loverJack → ¬killer_of_AnimalsJack,
animal_loverBill → ¬killer_of_AnimalsBill.
animalTuna ∧ (¬killer_of_AnimalsBill)→ ¬killer_of_TunaBill,
animalTuna ∧ (¬killer_of_AnimalsJack)→ ¬killer_of_TunaJack.

What is missing?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 86

2 Sentential Logic (SL)
2.3 Some examples

2.3 Some examples

Prof. Dr. Jürgen Dix Clausthal, SS 2018 87

2 Sentential Logic (SL)
2.3 Some examples

Since some time, Sudoku puzzles are becoming quite famous.

Table 2: A simple Sudoku (S1)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 88

2 Sentential Logic (SL)
2.3 Some examples

Can they be solved with sentential logic?
Idea: Given a Sudoku-Puzzle S, construct a
language PropSudoku and a theory
TS ⊆ FmlSL

L(PropSudoku) such that

MOD(TS) = Solutions of the puzzle S

Solution

In fact, we construct a theory TSudoku and for each
(partial) instance of a 9× 9 puzzle S a particular
theory TS such that

MOD(TSudoku ∪ TS) = {S : S is a solution of S}
Prof. Dr. Jürgen Dix Clausthal, SS 2018 89

2 Sentential Logic (SL)
2.3 Some examples

We introduce the following prop. constants:

1 einsi,j, 1 ≤ i, j ≤ 9,
2 zweii,j, 1 ≤ i, j ≤ 9,
3 dreii,j, 1 ≤ i, j ≤ 9,
4 vieri,j, 1 ≤ i, j ≤ 9,
5 fuenfi,j, 1 ≤ i, j ≤ 9,
6 sechsi,j, 1 ≤ i, j ≤ 9,
7 siebeni,j, 1 ≤ i, j ≤ 9,
8 achti,j, 1 ≤ i, j ≤ 9,
9 neuni,j, 1 ≤ i, j ≤ 9.

This completes the language PropSudoku.

How many symbols are these?
Prof. Dr. Jürgen Dix Clausthal, SS 2018 90

2 Sentential Logic (SL)
2.3 Some examples

We distinguished between the puzzle S and a
solution S of it.
What is a model (or valuation) in the sense of
Definition 2.6 (Slide 69)?

Table 3: How to construct a model S?
Prof. Dr. Jürgen Dix Clausthal, SS 2018 91

2 Sentential Logic (SL)
2.3 Some examples

We have to give our symbols a meaning (the
semantics), i.e. a valuation v.

einsi,j means 〈i, j〉 contains a 1
zweii,j means 〈i, j〉 contains a 2

...
neuni,j means 〈i, j〉 contains a 9

To be precise: given a 9× 9 square that is

completely filled out, we define our valuation v as
follows (for all 1 ≤ i, j ≤ 9).

v(einsi,j) =

{
true, if 1 is at position 〈i, j〉,
false, else .

Prof. Dr. Jürgen Dix Clausthal, SS 2018 92

2 Sentential Logic (SL)
2.3 Some examples

v(zweii,j) =

{
true, if 2 is at position 〈i, j〉,
false, else .

v(dreii,j) =

{
true, if 3 is at position 〈i, j〉,
false, else .

v(vieri,j) =

{
true, if 4 is at position 〈i, j〉,
false, else .

etc.

v(neuni,j) =

{
true, if 9 is at position 〈i, j〉,
false, else .

Therefore any 9× 9 square can be seen as a model or
valuation with respect to the language LSudoku.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 93

2 Sentential Logic (SL)
2.3 Some examples

How does TS look like?

TS = { eins1,4, eins5,8, eins6,6,
zwei2,2, zwei4,8,
drei6,8, drei8,3, drei9,4,
vier1,7, vier2,5, vier3,1, vier4,3, vier8,2, vier9,8,
...
neun3,4, neun5,2, neun6,9,

}

Prof. Dr. Jürgen Dix Clausthal, SS 2018 94

2 Sentential Logic (SL)
2.3 Some examples

How should the theory TSudoku look like (s.t. models
of TSudoku ∪ TS correspond to solutions of the puzzle)?

First square: T1

1 eins1,1 ∨ . . . ∨ eins3,3

2 zwei1,1 ∨ . . . ∨ zwei3,3
3 drei1,1 ∨ . . . ∨ drei3,3
4 vier1,1 ∨ . . . ∨ vier3,3

5 fuenf1,1 ∨ . . . ∨ fuenf3,3

6 sechs1,1 ∨ . . . ∨ sechs3,3

7 sieben1,1 ∨ . . . ∨ sieben3,3

8 acht1,1 ∨ . . . ∨ acht3,3

9 neun1,1 ∨ . . . ∨ neun3,3

Prof. Dr. Jürgen Dix Clausthal, SS 2018 95

2 Sentential Logic (SL)
2.3 Some examples

The formulae on the last slide are saying, that
1 The number 1 must appear somewhere in the

first square.
2 The number 2 must appear somewhere in the

first square.
3 The number 3 must appear somewhere in the

first square.
4 etc

Does that mean, that each number 1, . . . , 9
occurs exactly once in the first square?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 96

2 Sentential Logic (SL)
2.3 Some examples

No! We have to say, that each number occurs
only once:
T ′1:

1 ¬(einsi,j ∧ zweii,j), 1 ≤ i, j ≤ 3,
2 ¬(einsi,j ∧ dreii,j), 1 ≤ i, j ≤ 3,
3 ¬(einsi,j ∧ vieri,j), 1 ≤ i, j ≤ 3,
4 etc
5 ¬(zweii,j ∧ dreii,j), 1 ≤ i, j ≤ 3,
6 ¬(zweii,j ∧ vieri,j), 1 ≤ i, j ≤ 3,
7 ¬(zweii,j ∧ fuenfi,j), 1 ≤ i, j ≤ 3,
8 etc

How many formulae are these?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 97

2 Sentential Logic (SL)
2.3 Some examples

Second square: T2

1 eins1,4 ∨ . . . ∨ eins3,6

2 zwei1,4 ∨ . . . ∨ zwei3,6
3 drei1,4 ∨ . . . ∨ drei3,6
4 vier1,4 ∨ . . . ∨ vier3,6

5 fuenf1,4 ∨ . . . ∨ fuenf3,6

6 sechs1,4 ∨ . . . ∨ sechs3,6

7 sieben1,4 ∨ . . . ∨ sieben3,6

8 acht1,4 ∨ . . . ∨ acht3,6

9 neun1,4 ∨ . . . ∨ neun3,6

And all the other formulae from the previous
slides (adapted to this case): T ′2

Prof. Dr. Jürgen Dix Clausthal, SS 2018 98

2 Sentential Logic (SL)
2.3 Some examples

The same has to be done for all 9 squares.

What is still missing:
Rows: Each row should contain exactly the

numbers from 1 to 9 (no number twice).
Columns: Each column should contain exactly

the numbers from 1 to 9 (no number
twice).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 99

2 Sentential Logic (SL)
2.3 Some examples

First Row: TRow 1

1 eins1,1 ∨ eins1,2 ∨ . . . ∨ eins1,9

2 zwei1,1 ∨ zwei1,2 ∨ . . . ∨ zwei1,9
3 drei1,1 ∨ drei1,2 ∨ . . . ∨ drei1,9
4 vier1,1 ∨ vier1,2 ∨ . . . ∨ vier1,9

5 fuenf1,1 ∨ fuenf1,2 ∨ . . . ∨ fuenf1,9

6 sechs1,1 ∨ sechs1,2 ∨ . . . ∨ sechs1,9

7 sieben1,1 ∨ sieben1,2 ∨ . . . ∨ sieben1,9

8 acht1,1 ∨ acht1,2 ∨ . . . ∨ acht1,9

9 neun1,1 ∨ neun1,2 ∨ . . . ∨ neun1,9

Prof. Dr. Jürgen Dix Clausthal, SS 2018 100

2 Sentential Logic (SL)
2.3 Some examples

Analogously for all other rows, eg.
Ninth Row: TRow 9

1 eins9,1 ∨ eins9,2 ∨ . . . ∨ eins9,9

2 zwei9,1 ∨ zwei9,2 ∨ . . . ∨ zwei9,9
3 drei9,1 ∨ drei9,2 ∨ . . . ∨ drei9,9
4 vier9,1 ∨ vier9,2 ∨ . . . ∨ vier9,9

5 fuenf9,1 ∨ fuenf9,2 ∨ . . . ∨ fuenf9,9

6 sechs9,1 ∨ sechs9,2 ∨ . . . ∨ sechs9,9

7 sieben9,1 ∨ sieben9,2 ∨ . . . ∨ sieben9,9

8 acht9,1 ∨ acht9,2 ∨ . . . ∨ acht9,9

9 neun9,1 ∨ neun9,2 ∨ . . . ∨ neun9,9

Is that sufficient? What if a row contains
several 1’s?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 101

2 Sentential Logic (SL)
2.3 Some examples

First Column: TColumn 1

1 eins1,1 ∨ eins2,1 ∨ . . . ∨ eins9,1

2 zwei1,1 ∨ zwei2,1 ∨ . . . ∨ zwei9,1
3 drei1,1 ∨ drei2,1 ∨ . . . ∨ drei9,1
4 vier1,1 ∨ vier2,1 ∨ . . . ∨ vier9,1

5 fuenf1,1 ∨ fuenf2,1 ∨ . . . ∨ fuenf9,1

6 sechs1,1 ∨ sechs2,1 ∨ . . . ∨ sechs9,1

7 sieben1,1 ∨ sieben2,1 ∨ . . . ∨ sieben9,1

8 acht1,1 ∨ acht2,1 ∨ . . . ∨ acht9,1

9 neun1,1 ∨ neun2,1 ∨ . . . ∨ neun9,1

Analogously for all other columns.

Is that sufficient? What if a column contains
several 1’s?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 102

2 Sentential Logic (SL)
2.3 Some examples

All put together:

TSudoku = T1 ∪ T ′1 ∪ . . . ∪ T9 ∪ T ′9
TRow 1 ∪ . . . ∪ TRow 9

TColumn 1 ∪ . . . ∪ TColumn 9

Prof. Dr. Jürgen Dix Clausthal, SS 2018 103

2 Sentential Logic (SL)
2.3 Some examples

Here is a more difficult one.

Table 4: A difficult Sudoku Sdifficult

Prof. Dr. Jürgen Dix Clausthal, SS 2018 104

2 Sentential Logic (SL)
2.3 Some examples

Example 2.16 (Wumpus)
A wumpus is moving around in a grid. A knight in shining armour
moves around and is looking for gold. The wumpus is trying to
kill him when they are on the same cell. The knight is also dying
when he enters a pit. Fortunately, in the cells adjacent to pits
there is a cold breeze. And in adjacent cells to the wumpus, there
is an incredible stench.
How should the knight behave?

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench

Prof. Dr. Jürgen Dix Clausthal, SS 2018 105

2 Sentential Logic (SL)
2.3 Some examples

A
B
G

P
S

W

 = Agent
 = Breeze
 = Glitter, Gold

 = Pit
 = Stench

 = Wumpus

OK = Safe square

V = Visited

A

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

OKOK
B

P?

P?A

OK OK

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

(a) (b)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 106

2 Sentential Logic (SL)
2.3 Some examples

BB P!

A

OK OK

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

OK

W!

V
P!

A

OK OK

OK

 1,1 2,1 3,1 4,1

 1,2 2,2 3,2 4,2

 1,3 2,3 3,3 4,3

 1,4 2,4 3,4 4,4

V

S

OK

W!

V

V V

B
S G

P?

P?

(b)(a)

S

A
B
G

P
S

W

 = Agent
 = Breeze
 = Glitter, Gold

 = Pit
 = Stench

 = Wumpus

OK = Safe square

V = Visited

Prof. Dr. Jürgen Dix Clausthal, SS 2018 107

2 Sentential Logic (SL)
2.3 Some examples

Language definition:
si,j stench on field 〈i, j〉
bi,j breeze on field 〈i, j〉
piti,j 〈i, j〉 is a pit
gli,j 〈i, j〉 glitters
wi,j 〈i, j〉 contains Wumpus

General knowledge:
¬s1,1 −→ (¬w1,1 ∧ ¬w1,2 ∧ ¬w2,1)
¬s2,1 −→ (¬w1,1 ∧ ¬w2,1 ∧ ¬w2,2 ∧ ¬w3,1)
¬s1,2 −→ (¬w1,1 ∧ ¬w1,2 ∧ ¬w2,2 ∧ ¬w1,3)

s1,2 −→ (w1,3 ∨ w1,2 ∨ w2,2 ∨ w1,1)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 108

2 Sentential Logic (SL)
2.3 Some examples

Knowledge after the 3rd move:

¬s1,1 ∧ ¬s2,1 ∧ s1,2 ∧ ¬b1,1 ∧ b2,1 ∧ ¬b1,2

Question:

Can we derive that the wumpus is located at
〈1, 3〉?
Answer:

Yes. With any correct and complete calculus.
Because it is semantically entailed.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 109

2 Sentential Logic (SL)
2.3 Some examples

We now formalize a ”Logelei“ (in order to solve it with a theorem
prover).

Example 2.17 (”Logelei“ from ”Die Zeit“ (1))
Alfred ist als neuer Korrespondent in Wongowongo. Er soll über
die Präsidentschaftswahlen berichten, weiß aber noch nichts über
die beiden Kandidaten, weswegen er sich unter die Leute begibt,
um Infos zu sammeln. Er befragt eine Gruppe von Passanten, von
denen drei Anhänger der Entweder-oder-Partei sind und drei
Anhänger der Konsequenten.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 110

2 Sentential Logic (SL)
2.3 Some examples

”Logelei“ from ”Die Zeit“ (2)

Auf seinem Notizzettel notiert er stichwortartig die
Antworten.
A: »Nachname Songo: Stadt Rongo«,
B: »Entweder-oder-Partei: älter«,
C: »Vorname Dongo: bei Umfrage hinten«,
A: »Konsequenten: Vorname Mongo«,
B: »Stamm Bongo: Nachname Gongo«,
C: »Vorname Dongo: jünger«,
D: »Stamm Bongo: bei Umfrage vorn«,
E: »Vorname Mongo: bei Umfrage hinten«,
F: »Konsequenten: Stamm Nongo«,
D: »Stadt Longo: jünger«,
E: »Stamm Nongo: jünger«.
F: »Konsequenten: Nachname Gongo«.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 111

2 Sentential Logic (SL)
2.3 Some examples

”Logelei“ from ”Die Zeit“ (3)

Jetzt grübelt Alfred. Er weiß, dass die Anhänger
der Entweder-oder-Partei (A, B und C) immer eine
richtige und eine falsche Aussage machen,
während die Anhänger der Konsequenten (D, E
und F) entweder nur wahre Aussagen oder nur
falsche Aussagen machen.
Welche Informationen hat Alfred über die beiden
Kandidaten?

(By Zweistein)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 112

2 Sentential Logic (SL)
2.3 Some examples

Towards a solution

Selection of the language L (Prop).
Analysis and formalization of the problem.
Transformation to the input format of a prover.
Output of a solution, i.e. a model.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 113

2 Sentential Logic (SL)
2.3 Some examples

Definition of the constants
surx,Songo ≡ x’s surname is Songo
surx,Gongo ≡ x’s surname is Gongo
firstx,Dongo ≡ x’s first name is Dongo
firstx,Mongo ≡ x’s first name is Mongo
tribex,Bongo ≡ x belongs to the Bongos
tribex,Nongo ≡ x belongs to the Nongos
cityx,Rongo ≡ x comes from Rongo
cityx,Longo ≡ x comes from Longo
seniorx ≡ x is the senior candidate
juniorx ≡ x is the junior candidate
worsex ≡ x’s poll is worse
betterx ≡ x’s poll is better

Here x is a candidate, i.e. x ∈ {a, b}. So we have 24
constants in total.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 114

2 Sentential Logic (SL)
2.3 Some examples

The correspondent Alfred noted 12 statements
about the candidates (each interviewee gave 2
statements, φ, φ′) which we enumerate as follows

φA, φ
′
A, φB, φ

′
B, . . . , φF , φ

′
F ,

All necessary symbols are now defined, and we
can formalize the given statements.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 115

2 Sentential Logic (SL)
2.3 Some examples

Formalization of the statements

φA ↔ (sura,Songo ∧ citya,Rongo)∨
(surb,Songo ∧ cityb,Rongo)

φ′A ↔ firstb,Mongo

φB ↔ seniora

φ′B ↔ (tribea,Bongo ∧ sura,Gongo)∨
(tribeb,Bongo ∧ surb,Gongo)

...

Prof. Dr. Jürgen Dix Clausthal, SS 2018 116

2 Sentential Logic (SL)
2.3 Some examples

Furthermore, explicit conditions between the
statements are given, e.g.

(φA ∧ ¬φ′A) ∨ (¬φA ∧ φ′A)

and
(φD ∧ φ′D) ∨ (¬φD ∧ ¬φ′D).

Analogously, for the other statements.

Is this enough information to solve the puzzle?
E.g., can the following formula be satisfied?

sura,Songo ∧ sura,Gongo

Prof. Dr. Jürgen Dix Clausthal, SS 2018 117

2 Sentential Logic (SL)
2.3 Some examples

We also need implicit conditions (axioms) which
are required to solve this problem.
It is necessary to state that each candidate has
only one name, comes from one city, etc.
We need the following background knowledge...

surx,Songo ↔ ¬surx,Gongo

firstx,Dongo ↔ ¬firstx,Mongo

...
worsex ↔ ¬betterx

Can we abstain from these axioms by changing
our representation of the puzzle?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 118

2 Sentential Logic (SL)
2.3 Some examples

What is still missing?
Can we prove that when a’s poll is worse, then s’s
poll is better?
We need to state the relationships between these
attributes:

worsex ↔ bettery

seniorx ↔ juniory

Finally, we have modeled all “sensible”
information. Does this yield a unique model?

No! There are 6 models in total, but this is all
right. It just means there is no unique solution.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 119

2 Sentential Logic (SL)
2.3 Some examples

What if a unique model is desirable?
Often, there are additional assumptions hidden
“between the lines”. Think, for example, of
deductions by Sherlock Holmes (or Miss Marple,
Spock, Monk etc).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 120

2 Sentential Logic (SL)
2.3 Some examples

For example, it might be sensible to assume that
both candidates come from different cities:

cityx,Rongo ↔ cityy,Longo

Indeed, with this additional axiom there is an
unique model.

But, be careful...

... this additional information may not be
justified by the nature of the task!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 121

2 Sentential Logic (SL)
2.4 Hilbert Calculus

2.4 Hilbert Calculus

Prof. Dr. Jürgen Dix Clausthal, SS 2018 122

2 Sentential Logic (SL)
2.4 Hilbert Calculus

Deriving formulae purely algorithmically

We have a clear undestanding of what it
means that “a formula follows or can be
deduced from a theory T”.

Can we automize that?

Can we find a procedure to systematically
derive new formulae?

In such a way that all formulae that do indeed
follow from T will be eventually derived?

Let us take inspiration of what mathematicians
have done since centuries!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 123

2 Sentential Logic (SL)
2.4 Hilbert Calculus

Definition 2.18 (Hilbert-Type Calculi)

A Hilbert-Type calculus over a language L is a pair
〈Ax, Inf〉 where

Ax: is a subset of the set of L-formulae: they are
called axioms,

Inf: is a set of pairs written in the form

φ1, φ2, . . . , φn
ψ

where φ1, φ2, . . . , φn, ψ are from FmlSL
L(Prop): they

are called inference rules.
Intuitively, we assume the axioms to be true and use the
inference rules to derive new formulae.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 124

2 Sentential Logic (SL)
2.4 Hilbert Calculus

Definition 2.19 (Calculus for Propositional Logic SL)

We define HilbertSLL = 〈{¬ϕ ∨ ϕ,¬�}, Inf〉, a Hilbert-Type
calculus for SL. The only axiom schema is ¬ϕ ∨ ϕ, the only
axiom is ¬�.
The set Inf of inference rules consists of the following four
schemata
Expansion: ϕ

ψ∨ϕ ,

Associativity: ϕ∨(ψ∨χ)
(ϕ∨ψ)∨χ ,

Shortening: ϕ∨ϕ
ϕ

,

Cut: ϕ∨ψ,¬ϕ∨χ
ψ∨χ .

(ϕ,ψ, χ stand for arbitrarily complex formulae (not just constants). They
represent schemata, rather than particular formulae in the language.)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 125

2 Sentential Logic (SL)
2.4 Hilbert Calculus

Definition 2.20 (Proof)

A proof of a formula ϕ from a theory T ⊆ FmlSL
L(Prop) is a finite

sequence ϕ1, . . . , ϕn of formulae such that ϕn = ϕ and for all
i with 1 ≤ i ≤ n one of the following conditions holds:

ϕi is instance of the axiom schema, or of the form ¬�,

ϕi ∈ T ,

there is ϕl with l < i and ϕi is obtained from ϕl by
expansion, associativity, or shortening,

there is ϕl, ϕk with l, k < i and ϕi is obtained from ϕl, ϕk
by cut.

We write: T `SL ϕ (ϕ can be derived (or proved) from T).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 126

2 Sentential Logic (SL)
2.4 Hilbert Calculus

We have now introduced two important notions:
Syntactic derivability `SL: the notion that certain

formulae can be derived (or proved)
from other formulae using a certain
calculus,

Semantic validity |=: the notion that certain
formulae follow (semantically) (or can
be deduced (are entailed)) from other
formulae based on the semantic notion
of a model.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 127

2 Sentential Logic (SL)
2.4 Hilbert Calculus

Definition 2.21 (Correct-, Completeness for a calculus)
Given an arbitrary calculus (which defines a notion `) and a
semantics based on certain models (which defines a
relation |=), we say that

Correctness: The calculus is correct with respect to the
semantics, if the following holds:

T ` φ implies T |= φ.

Completeness: The calculus is complete with respect to
the semantics, if the following holds:

T |= φ implies T ` φ.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 128

2 Sentential Logic (SL)
2.4 Hilbert Calculus

Lemma 2.22 (Corrrectness of HilbertSLL)

Let T be a (possibly infinite) theory and ϕ a formula over Prop.

Then T `SL ϕ implies that T |= ϕ.

I.e. each provable formula is also entailed!

Proof.
By induction on the structure of ϕ.
We have to show that

1 all instances of the axiom schema are valid, ¬� is
valid, and

2 for each inference rule the conjunction of the
premises entails its conclusion.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 129

2 Sentential Logic (SL)
2.4 Hilbert Calculus

We show a few simple facts that we need later to
prove completeness.
Lemma 2.23 (Some derivations)

1 `SL ¬�.
2 φ ∨ ψ `SL ψ ∨ φ.
3 ϕ `SL ϕ ∨ ψ.
4 φ ∨ ψ `SL ¬¬φ ∨ ψ.
5 ¬¬φ ∨ ψ `SL φ ∨ ψ.
6 {¬φ ∨ χ,¬ψ ∨ χ} `SL ¬(φ ∨ ψ) ∨ χ.

The first three are shown on blackboard 2.12.
(4) and (5) are exercise.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 130

2 Sentential Logic (SL)
2.4 Hilbert Calculus

Lemma 2.24 (Derived inference rules)

The following rules can be added to the calculus
without affecting the set of derivable
formulae. They are also called derived rules.

1 (Modus Ponens) χ,χ→ϕ
ϕ ,

2 (Commutativity) ψ∨ϕ
ϕ∨ψ ,

3 Let i1, i2, . . . , im ∈ {1, 2, . . . , n}. Then

(Gen. Expansion)
ϕi1 ∨ . . . ∨ ϕim
ϕ1 ∨ . . . ∨ ϕn

Prof. Dr. Jürgen Dix Clausthal, SS 2018 131

2 Sentential Logic (SL)
2.4 Hilbert Calculus

Theorem 2.25 (Weak completeness)

Let ϕ1, . . . , ϕn and ϕ formulae over Prop.Then:

{ϕ1, . . . , ϕn} |= ϕ implies that {ϕ1, . . . , ϕn} `SL ϕ.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 132

2 Sentential Logic (SL)
2.4 Hilbert Calculus

Definition 2.26 ((In-) Consistency of a theory T)

A theory T is called consistent, if there is a
formula that can not be proved from it.

A theory T is called inconsistent, if it is not
consistent. I.e. from an inconsistent theory, all
formulae can be proved.

Consistency is a property of a calculus. It is often mixed up
with existence of a model (which it is often equivalent to).

Attention: Completeness

After we have proved the completeness theorem, we know
that inconsistent theories are exactly those that do not
posess any models (see Slide 82). But we do not know this
yet! It has to be proved.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 133

2 Sentential Logic (SL)
2.4 Hilbert Calculus

The key to prove completeness of our calculus is
based on the following

Theorem 2.27 (Deduction Theorem)

Let T be a theory and φ, ψ be formulae from
FmlSL

L(Prop). Then the following holds

T `SL (φ→ ψ) if and only if T ∪ {φ} `SL ψ

Prof. Dr. Jürgen Dix Clausthal, SS 2018 134

2 Sentential Logic (SL)
2.4 Hilbert Calculus

Proof.

One direction (left to right) is trivial: just an
application of Modus Ponens (which we have
shown to be a derived rule on Slide 131). The
other direction is by induction on the length of a
proof for ψ.
A proof of ψ from T ∪ {φ}might have used φ at
several places. The idea is to replace in each step
of the proof of ψ a formula η by φ→ η. This then
transforms the old proof into one of (φ→ ψ) in
T .

Prof. Dr. Jürgen Dix Clausthal, SS 2018 135

2 Sentential Logic (SL)
2.4 Hilbert Calculus

An important consequence of the deduction
theorem is the following

Lemma 2.28 (Consistency and Derivability)

Let T be a theory and φ a formula from FmlSL
L(Prop)

(both could be inconsistent). Then the following
holds

1 T `SL φ if and only if T ∪ {¬φ} is inconsistent.
2 T 6`SL φ if and only if T ∪ {¬φ} is consistent.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 136

2 Sentential Logic (SL)
2.4 Hilbert Calculus

Proof of Lemma 2.28.

The second statement follows trivially from the
first (contraposition).

Let T `SL φ. Adding ¬φ does not influence the
proof of φ, so T ∪ {¬φ} `SL φ. But, trivially,
T ∪ {¬φ} `SL ¬φ, so T ∪ {¬φ} is inconsistent.
Conversely, if T ∪ {¬φ} is inconsistent, then
T ∪ {¬φ} `SL φ (because any formula can be
derived). By the deduction theorem,
T `SL ¬φ→ φ, thus T `SL φ.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 137

2 Sentential Logic (SL)
2.4 Hilbert Calculus

Theorem 2.29 (Correct-, Completeness for HilbertSLL)

A formula follows semantically from a theory T if
and only if it can be derived:

T |= ϕ if and only if T `SL ϕ

Proof of the Correctness part of Theorem 2.29.

Correctness follows by induction on the length
of proofs: the axiom is valid and all four inference
rules have the property, that from their premises,
the conclusions follow. We have already discussed
this in Lemma 2.22.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 138

2 Sentential Logic (SL)
2.4 Hilbert Calculus

Proof of the Completeness part of Theorem 2.29.
To prove completeness, it is enough to show that each consistent
theory is satisfiable (because if T |= ϕ and not T `SL ϕ, then
T ∪ {¬ϕ} is consistent (why?), thus satisfiable: a contradiction).
Given a consistent theory T , how to construct a model for T? We
claim that the models of T are exactly the maximal consistent
extensions of T . Let ϕ0, ϕ1, . . . an enumeration of FmlSL

L(Prop). We
construct the sequence Ti as follows: T0 := T ,

Ti+1 :=

{
Ti if Ti `SL ϕi,
Ti ∪ {¬ϕi} else.

Then
⋃∞
i=0 Ti is a maximal consistent extension of T :If it were

inconsistent, then there were a proof of �; this proof uses only finitely
many formulae; but then there is a n0 such that Tn0

contains all of them,
so Tn0

were inconsistent; but all Ti are consistent by Lemma 2.28! It is
maximal because ϕ0, ϕ1, . . . is an enumeration of FmlSL

L(Prop).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 139

2 Sentential Logic (SL)
2.4 Hilbert Calculus

The following important result is equivalent to the
completeness theorem:

Corollary 2.30 (Compactness for HilbertSLL)

A formula follows from a theory T if and only if
it follows from a finite subset of T :

Cn(T) =
⋃
{Cn(T ′) : T ′ ⊆ T, T ′finite}.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 140

2 Sentential Logic (SL)
2.4 Hilbert Calculus

Proof.

Derivability in a calculus means that there is a
proof, a finite object. Thus, by completeness, if a
formula follows from a (perhaps infinite) theory
T , there is a finite proof of it which involves only
finitely many formulae from T . Thus the formula
follows from these finitely many formulae.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 141

2 Sentential Logic (SL)
2.4 Hilbert Calculus

Satisfiability of a theory

The following equally important result is again a
corollary to the completeness theorem

Corollary 2.31 (Compactness for theories T)

Let T be a theory from FmlSL
L(Prop). Then the

following are equivalent:
T is satisfiable,
each finite subset of T is satisfiable.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 142

2 Sentential Logic (SL)
2.5 Resolution Calculus

2.5 Resolution Calculus

Prof. Dr. Jürgen Dix Clausthal, SS 2018 143

2 Sentential Logic (SL)
2.5 Resolution Calculus

Conjunctive Normal Form

We have already seen that each formula can be
written in conjunctive normal form.
Thus each formula can be identified with a set
of clauses.
We note that it is possible, that a clause is
empty: it is represented by �.
We also note that it is possible, that a
conjunction is empty. The empty conjunction
is obviously dual to the empty disjunction: it is
represented by ¬� (or by the macro >
introduced in Definition 2.3 on Slide 63).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 144

2 Sentential Logic (SL)
2.5 Resolution Calculus

Language for the Resolution Calculus
How can we determine whether a disjunction

∨mi
j=1 φi,j is

satisfiable or not?

Definition 2.32 (Clauses, Language FmlclausalL)
A propositional formula of the form

∨mi
j=1 φi,j , where all φi,j are

constants or negated constants, is called a clause.

We also allow the empty clause, represented by �. Dually, ¬�
can be interpreted as the empty conjunction.

Given a signature Prop, determining a language L(Prop) or just L,
we denote by FmlclausalL(Prop), or just FmlclausalL the set of formulae
consisting of just clauses over Prop.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 145

2 Sentential Logic (SL)
2.5 Resolution Calculus

Definition 2.33 (Set-notation of clauses)

A clause A ∨ ¬B ∨ C ∨ . . . ∨ ¬E can also be represented as a
set

{A,¬B,C, . . . ,¬E}.
Thus the set-theoretic union of such sets corresponds
again to a clause: {A,¬B} ∪ {A,¬C} represents A ∨ ¬B ∨ ¬C.
The empty set ∅ corresponds to the empty disjunction and
is represented by �.

But we know this already from Slides 51–53.
Note that we identify double occurrences implicitly by
using the set-notation: {A,A,B,C} = {A,B,C}.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 146

2 Sentential Logic (SL)
2.5 Resolution Calculus

We define an inference rule on FmlclausalL :
Definition 2.34 (SL resolution)

Let C1, C2 be clauses and let X by any constant
from Prop. The following inference rule allows to
derive the clause C1 ∨C2 from C1 ∨X and C2 ∨¬X:

(Res)
C1 ∨ X, C2 ∨ ¬X

C1 ∨ C2

If C1 = C2 = ∅, then C1 ∨ C2 = �.

Compare with the Cut rule in Definition 2.19.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 147

2 Sentential Logic (SL)
2.5 Resolution Calculus

If we use the set-notation for clauses, we can
formulate the inference rule as follows:
Definition 2.35 (SL resolution (Set notation))

Derive the clause C1 ∪ C2 from C1 ∪ {X} and
C2 ∪ {¬X}:

(Res)
C1 ∪ {X}, C2 ∪ {¬X}

C1 ∪ C2

In the rule C1 or C2 can be both empty, in which
case � is derived from X and ¬X. (Note, that we
identify the empty set ∅ with �.)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 148

2 Sentential Logic (SL)
2.5 Resolution Calculus

Definition 2.36 (Resolution Calculus for SL)

We define the resolution calculus RobinsonSLLclausal

as the pair 〈∅, {Res}〉 operating on the set
FmlclausalL of clauses.
We denote the corresponding derivation
relation by `Res (in contrast to `SL induced by the
Hilbert calculus from Definition 2.19).

So there are no axioms at all and only one
inference rule.
The notion of a proof in this system is obvious:
it is literally the same as given in
Definition 2.19.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 149

2 Sentential Logic (SL)
2.5 Resolution Calculus

Question:

Is this calculus correct and complete?

Answer:

It is correct, but not complete!

But “T |= φ” is equivalent to

“T ∪ {¬φ} is unsatisfiable”

or rather to
T ∪ {¬φ} `SL �.

Now in such a case, the resolution calculus is
powerful enough to derive �.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 150

2 Sentential Logic (SL)
2.5 Resolution Calculus

Resolution calculus is not complete

Example 2.37 (Complete vs refutation complete)

We consider Prop = {a, b}. Obviously a |=SL a ∨ b
and a `SL a ∨ b. But a 6`RES a ∨ b.

The reason is that with a alone, there is no
possibility to derive a ∨ b with the resolution rule
(the premises are not fulfilled). Whereas when
¬(a ∨ b) is added, i.e. both ¬a and ¬b, then the
rules can be applied and lead to the derivation of
�.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 151

2 Sentential Logic (SL)
2.5 Resolution Calculus

If T `SL ϕ does not imply T `Res ϕ.
If T `Res ϕ then also T `SL ϕ
(for ϕ ∈ FmlclausalL).
But the following holds:

T ∪ {¬φ} `SL � if and only if T ∪ {¬φ} `Res �
We say that resolution is refutation complete.

Theorem 2.38 (Completeness of resolution refutation)

If M is an unsatisfiable set of clauses then the
empty clause � can be derived in RobinsonSLLclausal .

Prof. Dr. Jürgen Dix Clausthal, SS 2018 152

2 Sentential Logic (SL)
2.5 Resolution Calculus

How to use the resolution calculus? (1)

Suppose we want to prove that T |= φ. Using the
Hilbert calculus, we could try to prove φ directly.
This is not possible for the resolution calculus, for
two different reasons:

it operates on clauses, not on arbitrary
formulae,
there is no completeness result in a form
similar to Theorem 2.29.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 153

2 Sentential Logic (SL)
2.5 Resolution Calculus

How to use the resolution calculus? (2)

But we have refutation completeness (see
Theorem 2.38) of the resolution calculus, which
allows us to do the following:

1 We transform T ∪ {¬φ} into a set of clauses.

2 Then we apply the resolution calculus and try
to derive �. I.e. instead of T `res φ we try to
show T ∪ {¬φ} `res �.

3 If we succeed, we have shown T |= φ.

4 If we can show that the empty clause is not
derivable at all, then T 6|= φ.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 154

2 Sentential Logic (SL)
2.5 Resolution Calculus

How to use the resolution calculus? (3)
How to show that the empty clause is not derivable from a
theory T?

One could try to formally prove that no such derivation
is possible in the resolution calculus.
This could be done by a clever induction on the
structure of all possible derivations.
But this is often very complicated and far from trivial.
Just applying the calculus and not being able to derive
the empty clause is not enough (there might be other
ways).

The best way is to argue semantically: to show that there is
a model of T ∪ {¬φ} by giving a concrete valuation.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 155

3 Verification I: LT properties

3. Verification I: LT properties
3 Verification I: LT properties

Motivation
Basic transition systems
Interleaving and handshaking
State-space explosion
LT properties in general
LTL

Prof. Dr. Jürgen Dix Clausthal, SS 2018 156

3 Verification I: LT properties

Content of this chapter (1):
In this chapter we explore ways to use SL for the verification of
reactive systems. First we need to model concurrent systems
using SL. This allows us to analyse a broad class of hardware and
software systems.

Transition Systems: They are the main underlying abstraction to
describe concurrent systems. We start with
asynchronous systems and then deal with
synchronization: interleaving, and handshaking. An
important classic example that we discuss is the
dining philosophers problem.

LT properties: Which properties of the concurrent systems that
we introduced do we want to verify? It turns out that
many interesting conditions are linear temporal
properties. Among them are fairness, safety as well
as starvation and deadlock-freeness.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 157

3 Verification I: LT properties

Content of this chapter (2):
LTL: This is an extension of SL to formulate

linear-temporal properties within a logic. Given a
model and a LTL formula, checking whether the
formula is satisfied in the model is called LTL model
checking. We describe and discuss this method in
detail.

CTL, timed CTL: These are nontrivial extensions of LTL and allow
us to express much more interesting properties.
However, these are too advanced and will not be
dealt with in this course.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 158

3 Verification I: LT properties
3.1 Motivation

3.1 Motivation

Prof. Dr. Jürgen Dix Clausthal, SS 2018 159

3 Verification I: LT properties
3.1 Motivation

The need for verification
System Verification 5

Analysis Conceptual
Design Programming Unit Testing Operation

0

Time (non-linear)

errors errors
detected

cost of
correction
per error

50%

40%

30%

20%

10%

0%

2.5

5

7.5

10

12.5

(in %)
introduced (in %)

System Testing

(in 1,000 US $)

Figure 1.3: Software lifecycle and error introduction, detection, and repair costs [275].

About 50% of all defects are introduced during programming, the phase in which actual
coding takes place. Whereas just 15% of all errors are detected in the initial design stages,
most errors are found during testing. At the start of unit testing, which is oriented to
discovering defects in the individual software modules that make up the system, a defect
density of about 20 defects per 1000 lines of (uncommented) code is typical. This has
been reduced to about 6 defects per 1000 code lines at the start of system testing, where
a collection of such modules that constitutes a real product is tested. On launching a new
software release, the typical accepted software defect density is about one defect per 1000
lines of code lines1.

Errors are typically concentrated in a few software modules – about half of the modules
are defect free, and about 80% of the defects arise in a small fraction (about 20%) of
the modules – and often occur when interfacing modules. The repair of errors that are
detected prior to testing can be done rather economically. The repair cost significantly
increases from about $ 1000 (per error repair) in unit testing to a maximum of about
$ 12,500 when the defect is demonstrated during system operation only. It is of vital
importance to seek techniques that find defects as early as possible in the software design
process: the costs to repair them are substantially lower, and their influence on the rest
of the design is less substantial.

Hardware Verification Preventing errors in hardware design is vital. Hardware is
subject to high fabrication costs; fixing defects after delivery to customers is difficult, and
quality expectations are high. Whereas software defects can be repaired by providing

1For some products this is much higher, though. Microsoft has acknowledged that Windows 95 contained
at least 5000 defects. Despite the fact that users were daily confronted with anomalous behavior, Windows
95 was very successful.

Figure 3.9: Errors in software development
Prof. Dr. Jürgen Dix Clausthal, SS 2018 160

3 Verification I: LT properties
3.1 Motivation

The need for verification

System Verification 3

Hard- and Software Verification

System verification techniques are being applied to the design of ICT systems in a more
reliable way. Briefly, system verification is used to establish that the design or product
under consideration possesses certain properties. The properties to be validated can be
quite elementary, e.g., a system should never be able to reach a situation in which no
progress can be made (a deadlock scenario), and are mostly obtained from the system’s
specification. This specification prescribes what the system has to do and what not,
and thus constitutes the basis for any verification activity. A defect is found once the
system does not fulfill one of the specification’s properties. The system is considered
to be “correct” whenever it satisfies all properties obtained from its specification. So
correctness is always relative to a specification, and is not an absolute property of a
system. A schematic view of verification is depicted in Figure 1.2.

Design Process

bug(s) found

no bugs found

product or
prototype

properties

specification
system

Verification

Figure 1.2: Schematic view of an a posteriori system verification.

This book deals with a verification technique called model checking that starts from a
formal system specification. Before introducing this technique and discussing the role
of formal specifications, we briefly review alternative software and hardware verification
techniques.

Software Verification Peer reviewing and testing are the major software verification
techniques used in practice.

A peer review amounts to a software inspection carried out by a team of software engineers
that preferably has not been involved in the development of the software under review. The

Figure 3.10: Overall approach

Prof. Dr. Jürgen Dix Clausthal, SS 2018 161

3 Verification I: LT properties
3.1 Motivation

Inference Tasks: The Three Questions
The semantical perspective allows us to think about the
following inference tasks:

Inference Tasks
Model Checking: Given ϕ and a modelM, does the

formula correctly describe this model?

Satisfiability Checking: Given ϕ, does there exist a
model in which the formula is true?

Validity Checking: Given ϕ, is it true in all models?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 162

3 Verification I: LT properties
3.1 Motivation

Model Checking

This is the simplest of the three tasks.
Nevertheless it is useful, e.g. for hardware
verification.

Example 3.1

Think of a modelM as a mathematical picture of
a chip. A logical description ϕ might define some
security issues. IfM fulfills ϕ, then this means that
the chip will be secure wrt. these issues.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 163

3 Verification I: LT properties
3.1 Motivation

Model checking for simple SL

Given a model v and a description ϕ.
Is v |= ϕ true?

Example 3.2

Given a model v in which a is true and b is false.
Is ϕ := (a ∨ ¬b)→ b true?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 164

3 Verification I: LT properties
3.1 Motivation

Model checking

system requirement

formal model formal specification

model checking
algorithm

true

false

counterexample

flaw in system

model checker

formalization

informal problem

Figure 3.11: Model Checking

Prof. Dr. Jürgen Dix Clausthal, SS 2018 165

3 Verification I: LT properties
3.1 Motivation

Satisfiability Checking

One can interpret the description as a constraint.
Is there anything that matches this description?
We have to create model after model until we find one
that satisfies ϕ.
In the worst case we have to generate all models.

A good example is our sudoku problem.

Satisfiability Checking for SL

Given a description ϕ. Is there a model v s.t. v |= ϕ is true?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 166

3 Verification I: LT properties
3.1 Motivation

Validity Checking

The intuitive idea is that we write down a set of all our
fundamental and indisputable axioms.
Then, with this theory, we derive new formulae.

Example 3.3
Mathematics: We are usually given a set of axioms.
E.g. Euclid’s axioms for geometry. We want to prove
whether a certain statement follows from this set, or can
be derived from it.

Validity Checking for SL

Given a description ϕ. Does v |= ϕ hold for all models v?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 167

3 Verification I: LT properties
3.2 Basic transition systems

3.2 Basic transition systems

Prof. Dr. Jürgen Dix Clausthal, SS 2018 168

3 Verification I: LT properties
3.2 Basic transition systems

What is an appropriate abstraction to model
hardware and software systems?

 transition systems.
Easy: processes run completely
autonomously.
Difficult: processes communicate with each
other.
Main notion is a state: this is exactly what we
called a model in Chapter 2.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 169

3 Verification I: LT properties
3.2 Basic transition systems

Definition 3.4 (Transition system)

A transition system TS is a tuple 〈S,Act,−→, I,Prop, π〉
where

S is a set of states, denoted by s1, s2, . . .,
Act is a set of actions, denoted by α, β, γ, . . .,
−→ ⊆ S× Act× S is a transition relation,
I ⊆ S is the set of initial states,
Prop is a set of atomic propositions, and
π : S→ 2Prop is a labelling (or valuation).

A TS is finite if, by definition, S, Act and Prop are all finite.

This is in accordance with LSL. States are what we called
models. A labelling corresponds to a set of valuations. The
new feature is that we can move between states by means
of actions: instead of 〈s, α, s′〉 we write s α−→ s′.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 170

3 Verification I: LT properties
3.2 Basic transition systems

Example 3.5 (Beverage Vending Machine)
A machine delivers soda or beer after a coin has been inserted. A
possible TS is:

Prop = {pay, soda, beer, select},
S = {spay, sbeer, ssoda, sselect}, I = {spay},
Act = {αinsert-coin, αget-soda, αget-beer, τ},
the transitions: spay

αinsert-coin−−−−−→ sselect, sbeer
αget-beer−−−−→ spay,

ssoda
αget-soda−−−−−→ spay, sselect

τ−→ sbeer, sselect
τ−→ ssoda.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 171

3 Verification I: LT properties
3.2 Basic transition systems

Beverage Vending Machine (cont.)

soda select beer

pay

insert_coin

get_beerget_soda

⌧
⌧

Figure 3.12: TS of a beverage vending machine

Prof. Dr. Jürgen Dix Clausthal, SS 2018 172

3 Verification I: LT properties
3.2 Basic transition systems

Simple Beverage Vending Machine (cont.)

Note that the machine nondeterministically chooses beer or
soda after a coin has been inserted. Nondeterminism can be
seen as implementation freedom.
Often we choose Prop = S, so that the labelling function is
very simple: π(s) = {s}.
When some properties do not refer to particular constants,
we can also choose Prop (S and π(s) = {s} ∩ Prop.
We can also choose Prop and S independently. “The
machine only delivers a drink after a coin has been
inserted”. We choose Prop = {paid, drink} with labelling
function: π(spay) =def ∅, π(ssoda) =def π(sbeer) =def

{paid, drink}, π(sselect) =def {paid}.
Sometimes we want to abstract away from particular actions
(internal actions of the machine not of any interest), like
τ1, τ2. In that case, we use the symbol τ for all such actions.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 173

3 Verification I: LT properties
3.2 Basic transition systems

Simple Hardware Circuit
We consider the hardware circuit diagram below. Next to it is the
corresponding transition system TS .

XOR

OR

NOT

r

x y x = 0, r = 0 x = 1, r = 0

x = 0, r = 1 x = 1, r = 1

{y} {x}

{r} {x,r,y}

Figure 3.13: TS of a hardware circuit

Prof. Dr. Jürgen Dix Clausthal, SS 2018 174

3 Verification I: LT properties
3.2 Basic transition systems

Example 3.6 (Simple Hardware Circuit)

Here we are dealing with boolean variables: input
x, output y and register r. They can be easily
treated within Prop.

A state is determined by the contents of x and
register r: sx=0,r=0, sx=0,r=1, sx=1,r=0, sx=1,r=1.
Prop =def {x, r, y}.
The labelling is given by π(sx=0,r=0) = {y},
π(sx=0,r=1) = {r}, π(sx=1,r=0) = {x},
π(sx=1,r=1) = {x, r, y}.
One could also use Prop =def {x, y} and
modify π accordingly.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 175

3 Verification I: LT properties
3.2 Basic transition systems

Successor/predeccessor, terminal states

Successor (resp. predeccessor) states of a given
state s in a transition system TS are important.
They are determined by all outgoing (resp.
ingoing) transitions.

Post(s) =def

⋃
α∈Act Succ(s, α), where

Succ(s, α) =def {s′ : s
α−→ s′}.

Pre(s) =def

⋃
α∈Act Anc(s, α), where

Anc(s, α) =def {s′ : s′
α−→ s}.

A terminal state s is a state without any outgoing
transitions: Post(s) = ∅.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 176

3 Verification I: LT properties
3.2 Basic transition systems

Determinism/indeterminism
We already discussed the indeterminism of transition
systems on Slide 173. It is similar to the indeterministic
choice in a proof-calculus: there are many paths that are
proofs.

Sometimes the observable behaviour is deterministic.
How can we formalize that?
Level of actions versus level of states.

Definition 3.7 (Deterministic transition system)
A transition system TS is called

action-deterministic, if, by definition, |I| ≤ 1 and for
all s ∈ S and α ∈ Act: |Succ(s, α)| ≤ 1.
Prop-deterministic, if, by definition, |I| ≤ 1 and for all
s ∈ S and T ⊆ Prop: |Post(s) ∩ {s′ ∈ S : π(s′) = T}| ≤ 1.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 177

3 Verification I: LT properties
3.2 Basic transition systems

Executions
The informal working of a transition system is clear. How
can we formally describe it and work with it?

An execution of a TS is a (usually infinite) sequence of
states and actions starting in an initial state and built
using the transition relation of TS .
We require the sequence to be maximal, i.e. it either
ends in a terminal state or it is infinite.
Sometimes we also consider initial fragments of an
execution.
Reachable states are those states of TS that can be
reached with initial fragments of executions.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 178

3 Verification I: LT properties
3.2 Basic transition systems

Executions/Reachable states

Definition 3.8 (Executions and reachable states)

Given a transition system TS , an execution (or run) is an
alternating sequence of states and actions, written
s0α1s1α2 . . . αnsn . . . or

s0
α1−→ · · · αn−→ sn · · ·

satisfying:
s0 ∈ I,

si
αi+1−−→ si+1 for all i,

either (1) the sequence is finite and ends in a terminal
state, or (2) the sequence is infinite.

A state s ∈ S is called reachable, if there is a finite initial
fragment of an execution that ends in the state s.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 179

3 Verification I: LT properties
3.2 Basic transition systems

Example 3.9 (Extended beverage vending machine)

The extended machine counts the number of bottles available
and returns the coin if it is empty. It also refills automatically if
there are no bottles left.

We need more complex transitions: conditional transitions,
e.g. select ↪

nsoda=0∧nbeer=0: ret-coin−−−−−−−−−−−−−−−−−→ start,

select ↪
nsoda
0: sget−−−−−−−−−→ start, select ↪

nbeer
0: bget−−−−−−−−−→ start,
start ↪

t: coin−−−−→ select, start ↪
t: refill−−−−→ start.

sget and bget decrement the numbers nsoda and nbeer by
one, refill sets it to the maximum value max.

This leads to the notion of a program graph.

Such a graph can be unfolded to a transition system TS.

So we end up with model checking transition systems.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 180

3 Verification I: LT properties
3.2 Basic transition systems

The extended beverage
vending machine has
been introduced in Ex-
ample 3.9 on Slide 180.
It counts the number of
bottles and returns the
coin if it is empty. Setting
max to 2 we get the un-
folded transition system
depicted on the right.

start

select

start start

select select

start
start start

selectselect select

start start

select select

start

select

refill

refill

refill

coin

coin coin

coin
coin

coin

coin coin

coinret_coin

beer soda

sget

sget

sget

sget

sget bget

bget

bget

bget

bget

Figure 3.14: TS of the extended
beverage vending machine

Prof. Dr. Jürgen Dix Clausthal, SS 2018 181

3 Verification I: LT properties
3.2 Basic transition systems

Program graph

Instead of a TS , a program graph PG is the
right notion, as it deals with conditional
transitions and allows variables Var.
The role of Prop and the labelling function π is
taken over by an evaluation function Eval, that
assigns values to the typed variables in Var
(see Definition 3.10).
The program graph is a directed graph, the
nodes of which are called locations: they take
the role of the states in a TS .

Prof. Dr. Jürgen Dix Clausthal, SS 2018 182

3 Verification I: LT properties
3.2 Basic transition systems

Program graph

Definition 3.10 (Program graph)

A program graph PG over a set of typed variables Var is a
directed graph where the edges are labelled with conditions and
actions: it is a tuple 〈Loc,Act,Effect, ↪→, Loc0,Prop, g0〉 where

Loc is a set of locations, denoted by l1, l2, . . .,

Act is a set of actions, denoted by α, β, γ, . . .,

Eval(Var) is the set of all assignments % of values to
variables in Var (compatible with their type).

Effect : Act× Eval(Var)→ Eval(Var) takes an assignment %,
applies action α and computes the resulting assignment %′.

↪→ ⊆ Loc× Cond(Var)× Act× Loc is a conditional transition
relation,

Loc0 ⊆ Loc is the set of initial locations,

g0 ∈ Cond(Var) is the initial condition.
Prof. Dr. Jürgen Dix Clausthal, SS 2018 183

3 Verification I: LT properties
3.2 Basic transition systems

Boolean conditions over Var

Cond(Var) is the set of all boolean conditions over Var.
E.g.:

(−3 ≤ x � 5) ∧ (y = blue) ∨ (z = �)

How can we define these conditions formally?
Assume we consider variables x1, . . . , xn of particular
types ranging over domains dom1, . . . , domn. For
1 ≤ i ≤ n let Di ⊆ domi. We consider the set PropVar of
sentential constants of the form “px∈Di

” (for arbitrary i,
and variable x of type i and Di). px∈Di

is true whenever
the actual value of x is indeed in Di, otherwise it is false.
Then Cond(Var) is the set of all SL formulae over
PropVar.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 184

3 Verification I: LT properties
3.2 Basic transition systems

PG of extended beverage vending machine

Var: nsoda, nbeer, with domain {0, 1, . . . ,max};
Loc: start, select;

Act: bget, sget, coin, ret-coin, refill;

Effect: 〈coin, η〉 7→ η, 〈ret-coin, η〉 7→ η,
〈sget, η〉 7→ η[nsoda− 1/nsoda],
〈bget, η〉 7→ η[nbeer− 1/nbeer],
〈refill, η〉 7→ η′, where η′(nsoda) := η′(nbeer) := max.

↪→: obvious from Figure 3.14,

Loc0: start,

g0: nsoda = max ∧ nbeer = max.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 185

3 Verification I: LT properties
3.2 Basic transition systems

Synchronous product

Often there exists a central clock that allows
two transition systems to be synchronized.
e.g. synchronous hardware circuits.

This leads to the synchronous product
TS1 ⊗ TS2 of two transition systems: both
systems have to perform all steps in a
synchronous fashion.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 186

3 Verification I: LT properties
3.2 Basic transition systems

Synchronous product (cont.)

Definition 3.11 (Synchronous product: TS1 ⊗ TS2)

Given two transition systems TS1, TS2 (〈Si,Act,−→i, Ii,Propi, πi〉,
i = 1, 2) with a common set of actions Act, we define the
synchronous product TS1 ⊗ TS2 by

〈S1 × S2,Act,−→, I1 × I2,Prop1 ∪ Prop2, π〉

where the labelling π and −→ are defined by

π(〈s1, s2〉) =def π1(s1) ∪ π2(s2),

〈s1, s2〉 α?β−−→ 〈s′1, s′2〉 if, by definition, s1
α−→1 s

′
1 and s2

β−→2 s
′
2.

? is a mapping from Act× Act into Act that assigns to each pair
〈α, β〉 an action α ? β.

? is usually assumed to be commutative and associative. Often action names are
irrelevant (e.g. for hardware circuits), so they do not play any role in such cases.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 187

3 Verification I: LT properties
3.2 Basic transition systems

Synchronous product

There is no autonomy, as in the interleaving
operator to be introduced below in
Definition 3.14 on Slide 197.
Normally, when asynchronous systems are
represented by transition systems, one does
not make any assumptions about how long
the processes take for execution. Only that
these are finite time intervals.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 188

3 Verification I: LT properties
3.2 Basic transition systems

Synchronous product

Example 3.12 (Synchronous product of two circuits)

We consider the following circuits. The first one
has no input variables (output is y defined by r1

and register transition ¬r1), the second one has
input x, and output y′ defined by x ∨ r2 and
register transition x ∨ r2 .76 Modelling Concurrent Systems

r1

NOT

y
OR

r2

y′x

0

1

00 01

10 11

TS2 :TS1 :

000 100

010

101 001

111 011

110

TS1 ⊗ TS2 :

Figure 2.23: Synchronous composition of two hardware circuits.

be a mapping4 that assigns to each pair of actions α, β, the action name α ∗ β. The
synchronous product TS1 ⊗ TS2 is given by:

TS1 ⊗ TS2 = (S1 × S2,Act,→, I1 × I2,AP1 ∪ AP2, L),

where the transition relation is defined by the following rule

s1
α−−→ 1 s′

1 ∧ s2
β−−→ 2 s′

2

〈s1, s2〉 α∗β−−−→ 〈s′
1, s

′
2〉

and the labeling function is defined by: L(〈s1, s2〉) = L1(s1) ∪ L2(s2).

Action α∗β denotes the synchronous execution of actions α and β. Note that compared to
the parallel operator ‖ where components perform actions in common synchronously, and
other action autonomously (i.e., asynchronously), in TS1 ⊗ TS2, both transition systems
have to perform all steps synchronously. There are no autonomous transitions of either
TS1 or TS2.

4Operator ∗ is typically assumed to be commutative and associative.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 189

3 Verification I: LT properties
3.2 Basic transition systems

Synchronous product

The corresponding transition systems are:

76 Modelling Concurrent Systems

r1

NOT

y
OR

r2

y′x

0

1

00 01

10 11

TS2 :TS1 :

000 100

010

101 001

111 011

110

TS1 ⊗ TS2 :

Figure 2.23: Synchronous composition of two hardware circuits.

be a mapping4 that assigns to each pair of actions α, β, the action name α ∗ β. The
synchronous product TS1 ⊗ TS2 is given by:

TS1 ⊗ TS2 = (S1 × S2,Act,→, I1 × I2,AP1 ∪ AP2, L),

where the transition relation is defined by the following rule

s1
α−−→ 1 s′

1 ∧ s2
β−−→ 2 s′

2

〈s1, s2〉 α∗β−−−→ 〈s′
1, s

′
2〉

and the labeling function is defined by: L(〈s1, s2〉) = L1(s1) ∪ L2(s2).

Action α∗β denotes the synchronous execution of actions α and β. Note that compared to
the parallel operator ‖ where components perform actions in common synchronously, and
other action autonomously (i.e., asynchronously), in TS1 ⊗ TS2, both transition systems
have to perform all steps synchronously. There are no autonomous transitions of either
TS1 or TS2.

4Operator ∗ is typically assumed to be commutative and associative.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 190

3 Verification I: LT properties
3.2 Basic transition systems

Synchronous product

The synchronous product of Example 3.12 is:

76 Modelling Concurrent Systems

r1

NOT

y
OR

r2

y′x

0

1

00 01

10 11

TS2 :TS1 :

000 100

010

101 001

111 011

110

TS1 ⊗ TS2 :

Figure 2.23: Synchronous composition of two hardware circuits.

be a mapping4 that assigns to each pair of actions α, β, the action name α ∗ β. The
synchronous product TS1 ⊗ TS2 is given by:

TS1 ⊗ TS2 = (S1 × S2,Act,→, I1 × I2,AP1 ∪ AP2, L),

where the transition relation is defined by the following rule

s1
α−−→ 1 s′

1 ∧ s2
β−−→ 2 s′

2

〈s1, s2〉 α∗β−−−→ 〈s′
1, s

′
2〉

and the labeling function is defined by: L(〈s1, s2〉) = L1(s1) ∪ L2(s2).

Action α∗β denotes the synchronous execution of actions α and β. Note that compared to
the parallel operator ‖ where components perform actions in common synchronously, and
other action autonomously (i.e., asynchronously), in TS1 ⊗ TS2, both transition systems
have to perform all steps synchronously. There are no autonomous transitions of either
TS1 or TS2.

4Operator ∗ is typically assumed to be commutative and associative.

Figure 3.15: Synchronous product of two circuits

Prof. Dr. Jürgen Dix Clausthal, SS 2018 191

3 Verification I: LT properties
3.3 Interleaving and handshaking

3.3 Interleaving and handshaking

Prof. Dr. Jürgen Dix Clausthal, SS 2018 192

3 Verification I: LT properties
3.3 Interleaving and handshaking

Interleaving independent processses

How can we merge two completely independent
transition systems? (Think of finite state
automata!)

Consider traffic lights that can simply switch
between green and red .

Prof. Dr. Jürgen Dix Clausthal, SS 2018 193

3 Verification I: LT properties
3.3 Interleaving and handshaking

Interleaving independent processses (cont.)

Example 3.13 (Two independent traffic lights)

Two independent traffic lights on two roads.
Parallelism and Communication 37

TrLight1
red

green

TrLight2
red

green

TrLight1 ||| TrLight2 red red

green red

green green

red green

Figure 2.4: Example of interleaving operator for transition systems.

modeling a red light, the other one modeling a green light (see upper part of Figure 2.4).
The transition system of the parallel composition of both traffic lights is sketched at the
bottom of Figure 2.4 where ||| denotes the interleaving operator. In principle, any form
of interlocking of the “actions” of the two traffic lights is possible. For instance, in the
initial state where both traffic lights are red, there is a non-deterministic choice between
which of the lights turns green. Note that this nondeterminism is descriptive, and does
not model a scheduling problem between the traffic lights (although it may seem so).

An important justification for interleaving is the fact that the effect of concurrently ex-
ecuted, independent actions α and β, say, is identical to the effect when α and β are
successively executed in arbitrary order. This can symbolically be stated as

Effect(α |||β, η) = Effect((α ; β) + (β ; α), η)

where the operator semicolon ; stands for sequential execution, + stands for nondetermin-
istic choice, and ||| for the concurrent execution of independent activities. This fact can
be easily understood when the effect is considered from two independent value assignments

Figure 3.16: TS of two independent traffic lights
Prof. Dr. Jürgen Dix Clausthal, SS 2018 194

3 Verification I: LT properties
3.3 Interleaving and handshaking

Interleaving independent processses (cont.)
The result should be:

green green

red red

green red red green

TrLight1 TrLight2

Figure 3.17: TS of two traffic lights

Prof. Dr. Jürgen Dix Clausthal, SS 2018 195

3 Verification I: LT properties
3.3 Interleaving and handshaking

Interleaving independent processses

The result of interleaving the following processes
is also obvious.

x = 0 y = 7

x = 1 y = 5

↵ � x = 1, y = 7 x = 0, y = 5

x = 0, y = 7

x = 1, y = 5

↵

↵
�

�

=

Figure 3.18: TS of two independent processes

Prof. Dr. Jürgen Dix Clausthal, SS 2018 196

3 Verification I: LT properties
3.3 Interleaving and handshaking

Definition 3.14 (Interleaving: TS1 9 TS2)

Given two transition systems TS1, TS2

(〈Si,Acti,−→i, Ii,Propi, πi〉, i = 1, 2) we define the
interleaved transition system TS1 9 TS2 by

〈S1 × S2,Act1 ∪ Act2,−→, I1 × I2,Prop1 ∪ Prop2, π〉

where the labelling π and −→ are defined by
π(〈s1, s2〉) =def π1(s1) ∪ π2(s2),

〈s1, s2〉 α−→ 〈s′1, s′2〉 if, by definition, s1
α−→1 s

′
1 or

s2
α−→2 s

′
2.

In contrast to the synchronous product (Definition 3.11 on
Slide 187) there is no clock: executions do not depend on time.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 197

3 Verification I: LT properties
3.3 Interleaving and handshaking

Shared variables
The examples on Slides 195 and 196 are simple, because there are
no shared variables.
What happens, if we do the same construction in the following
example:

x = 3 x = 3

x = 6 x = 4

↵ � x = 6, x = 3 x = 3, x = 4

x = 3, x = 3

x = 6, x = 4

↵

↵
�

�

=

Figure 3.19: TS of processes with shared variable

Prof. Dr. Jürgen Dix Clausthal, SS 2018 198

3 Verification I: LT properties
3.3 Interleaving and handshaking

Semaphores

Example 3.15 (Mutex via a semaphore)

Two processes P1 and P2 have access to a binary variable y,
a semaphore. Value 0 of y means the semaphore is
possessed by one process, value 1 means it is free.

Each process Pi is in one of three states:
noncriti,waiti, criti.
There is a transition from noncriti to waiti and from
waiti to criti but the last one only when y is 1 (then the
transition fires and the value is set to 0).
There is a transition from criti to noncriti and y is set to
1.

How can we model this as a TS?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 199

3 Verification I: LT properties
3.3 Interleaving and handshaking

Semaphores (cont.)

We first model it as program graphs.Parallelism and Communication 43

wait1

crit1

noncrit1

y := y+1

y := y−1
y > 0 :

wait2

crit2

noncrit2

y := y + 1

y := y − 1
y > 0 :

PG1 : PG2 :

Figure 2.6: Individual program graphs for semaphore-based mutual exclusion.

Example 2.24. Mutual Exclusion with Semaphores

Consider two simplified processes Pi, i=1, 2 of the form:

Pi loop forever
... (* noncritical actions *)
request
critical section
release
... (* noncritical actions *)
end loop

Processes P1 and P2 are represented by the program graphs PG1 and PG2, respectively,
that share the binary semaphore y. y=0 indicates that the semaphore—the lock to get
access to the critical section—is currently possessed by one of the processes. When y=1,
the semaphore is free. The program graphs PG1 and PG2 are depicted in Figure 2.6.

For the sake of simplicity, local variables and shared variables different from y are not
considered. Also, the activities inside and outside the critical sections are omitted. The
locations of PGi are noncriti (representing the noncritical actions), waiti (modeling the
situation in which Pi waits to enter its critical section), and criti (modeling the critical
section). The program graph PG1 |||PG2 consists of nine locations, including the (unde-
sired) location 〈crit1, crit2〉 that models the situation where both P1 and P2 are in their
critical section, see Figure 2.7.

When unfolding PG1 |||PG2 into the transition system TSSem = TS(PG1 |||PG2) (see
Figure 2.8 on page 45), it can be easily checked that from the 18 global states in TSSem

Figure 3.20: Semaphores and program graphs

Prof. Dr. Jürgen Dix Clausthal, SS 2018 200

3 Verification I: LT properties
3.3 Interleaving and handshaking

Interleaved program graph

A construction similar to Definition 3.14 yields an
interleaved program graph44 Modelling Concurrent Systems

〈wait1, noncrit2〉 〈noncrit1, wait2〉

〈noncrit1, noncrit2〉

〈wait1, wait2〉〈crit1, noncrit2〉 〈noncrit1, crit2〉

〈crit1, wait2〉 〈wait1, crit2〉

〈crit1, crit2〉

y > 0 :
y := y−1

y := y+1 y := y+1

y := y+1y := y+1

y := y−1y := y−1
y > 0 :y > 0 : y := y+1

PG1 ||| PG2 :

Figure 2.7: PG1 |||PG2 for semaphore-based mutual exclusion.

only the following eight states are reachable:

〈noncrit1,noncrit2, y = 1〉 〈noncrit1,wait2, y = 1〉
〈wait1,noncrit2, y = 1〉 〈wait1,wait2, y = 1〉
〈noncrit1, crit2, y = 0〉 〈crit1,noncrit2, y = 0〉
〈wait1, crit2, y = 0〉 〈crit1,wait2, y = 0〉

States 〈noncrit1,noncrit2, y = 1〉, and 〈noncrit1, crit2, y = 0〉 stand for examples of sit-
uations where both P1 and P2 are able to concurrently execute actions. Note that in
Figure 2.8 n stands for noncrit, w for wait, and c for crit. The nondeterminism in these
states thus stand for interleaving of noncritical actions. State 〈crit1,wait2, y = 0〉, e.g.,
represents a situation where only PG1 is active, whereas PG2 is waiting.

From the fact that the global state 〈crit1, crit2, y = . . .〉 is unreachable in TSSem , it follows
that processes P1 and P2 cannot be simultaneously in their critical section. The parallel
system thus satisfies the so-called mutual exclusion property.

In the previous example, the nondeterministic choice in state 〈wait1,wait2, y = 1〉 rep-
resents a contention between allowing either P1 or P2 to enter its critical section. The
resolution of this scheduling problem—which process is allowed to enter its critical section
next?—is left open, however. In fact, the parallel program of the previous example is
“abstract” and does not provide any details on how to resolve this contention. At later
design stages, for example, when implementing the semaphore y by means of a queue of
waiting processes (or the like), a decision has to be made on how to schedule the processes
that are enqueued for acquiring the semaphore. At that stage, a last-in first-out (LIFO),

Figure 3.21: Interleaving program graphs
Prof. Dr. Jürgen Dix Clausthal, SS 2018 201

3 Verification I: LT properties
3.3 Interleaving and handshaking

Unfolding program graph into TS

Here is the transition system that we obtain from
Figure 3.21
Linear-Time Behavior 99

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

Figure 3.6: Transition system of semaphore-based mutual exclusion algorithm.

other process is no longer in its critical section. Situations in which one process is in its
critical section whereas the other is moving from the noncritical state to the waiting state
are impossible.

The path π in the state graph of TSSem where process P1 is the first to enter its critical
section is of the form

π = 〈n1, n2, y = 1〉 → 〈w1, n2, y = 1〉 → 〈c1, n2, y = 0〉 →
〈n1, n2, y = 1〉 → 〈n1, w2, y = 1〉 → 〈n1, c2, y = 0〉 → . . .

The trace of this path is the infinite word:

trace(π) = ∅ ∅ { crit1 } ∅ ∅ { crit2 } ∅ ∅ { crit1 } ∅ ∅ { crit2 }

The trace of the finite path fragment

π̂ = 〈n1, n2, y = 1〉 → 〈w1, n2, y = 1〉 → 〈w1, w2, y = 1〉 →
〈w1, c2, y = 0〉 → 〈w1, n2, y = 1〉 → 〈c1, n2, y = 0〉

is trace(π̂) = ∅ ∅ ∅ { crit2 } ∅ { crit1 }.

Figure 3.22: The final transition system
Prof. Dr. Jürgen Dix Clausthal, SS 2018 202

3 Verification I: LT properties
3.3 Interleaving and handshaking

Semaphores (cont.)

The transition system does not contain
anymore the critical state (because it is not
reachable). The system satisfies the mutual
exclusion property.

But it is possible that both processes are at the
same time in the waiting state: this is a
deadlock situation that should be avoided (by
an appropriate scheduling algorithm to
implement the nondeterministic choice).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 203

3 Verification I: LT properties
3.3 Interleaving and handshaking

What have we achieved so far?

Interleaving of transition systems works well
for independent systems.

It is not appropriate when synchronization of
certain parts is essential.

Instead of a TS , the program graph PG
(introduced in Definition 3.10 on Slide 183) is
the right notion, as it deals with conditional
transitions and allows shared variables Var.

We have just seen that shared variable
communication (e.g. semaphores) can be used
to model synchronization.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 204

3 Verification I: LT properties
3.3 Interleaving and handshaking

What have we achieved so far? (cont.)

An interleaving of program graphs can be
defined similarly to Definition 3.14: see
Slide 201.

This interleaved graph can again be unfolded
to a transition system TS : see Slide 202.

We end up again with model checking
transition systems.

We are now introducing another method for
modelling synchronization: handshaking, a
refined version of interleaving on the level of
transition systems (not program graphs).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 205

3 Verification I: LT properties
3.3 Interleaving and handshaking

From interleaving to handshaking

Concurrent processes that need to interact
can do so in a synchronous fashion via
handshaking.

Sometimes one process has to wait for the
other to finish: they have to synchronize.

We introduce a set of distinguished
handshake actions H.

We define a transition system TS1‖HTS2 that
takes into account the handshakes in H.

For an empty set H we get back our notion of
an interleaved transition system TS1 9 TS2.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 206

3 Verification I: LT properties
3.3 Interleaving and handshaking

Example 3.16 (Traffic junction)

We consider a traffic junction with two traffic lights. Both
switch from green to red and green etc., but in a
synchronized way: when one is green the other one should
be red (to avoid accidents).

Figure 3.23: Traffic junction

Prof. Dr. Jürgen Dix Clausthal, SS 2018 207

3 Verification I: LT properties
3.3 Interleaving and handshaking

Traffic junction

Figure 3.24: Traffic junction

The interleaved system TrLight1 9 TrLight1does not work
anymore!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 208

3 Verification I: LT properties
3.3 Interleaving and handshaking

Example 3.17 (Railroad crossing)

A railroad crossing consists of a train, a gate and a controller.
An approaching train sends a signal so that the gates have
to be closed. The gates open again only when another
signal, indicating that the train has passed, has been sent.

far near

in

approachapproach

enterexit

Train

0

1

2

3

approach raise

exitlower

up

down

lower raise

Controller Gate

Figure 3.25: Components of Railroad crossing

Prof. Dr. Jürgen Dix Clausthal, SS 2018 209

3 Verification I: LT properties
3.3 Interleaving and handshaking

Mutual exclusion in general

Suppose we have two processes P1, P2 with
shared variables.

When they are operating on these shared
variables, they are in a critical phase.
Otherwise they are in an uncritical phase.
We assume the processes alternate between
critical and noncritical phases (infinitely
often).
The problem is to avoid concurrency when
both are in critical phases.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 210

3 Verification I: LT properties
3.3 Interleaving and handshaking

Mutual exclusion in general (cont.)

Mutual exclusion algorithms are scheduling
algorithms to ensure that no critical actions
are executed in parallel.

One of the most prominent solutions is
Peterson’s mutex algorithm.

As Peterson’s algorithm is based on the
interleaving of program graphs (which we
have not formally introduced but illustrated on
Slides 200—202), we introduce a variant based
on ‖H between transition systems.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 211

3 Verification I: LT properties
3.3 Interleaving and handshaking

Definition 3.18 (Handshaking: TS1‖HTS2)

For transition systems TS1, TS2 (〈Si,Acti,−→i, Ii,Propi, πi〉),
H ⊆ Act1 ∩ Act2 and τ 6∈ H, we define the transition system
with handshaking TS1‖HTS2 by

〈S1 × S2,Act1 ∪ Act2,−→, I1 × I2,Prop1 ∪ Prop2, π〉

where the labelling π and α−→ are defined by
π(〈s1, s2〉) =def π1(s1) ∪ π2(s2),

for α 6∈ H, α−→ is defined as in Definition 3.14,
for α ∈ H, 〈s1, s2〉 α−→ 〈s′1, s′2〉 if, by definition, s1

α−→1 s
′
1,

and s2
α−→2 s

′
2.

When H = Act1 ∩ Act2, we simply write TS1‖TS2 instead of
TS1‖HTS2. When H = ∅ then TS1‖∅TS2 = TS1 9 TS2.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 212

3 Verification I: LT properties
3.3 Interleaving and handshaking

Example 3.19 (Mutual exclusion via an arbiter)

Suppose we have two processes P1 and P2. Both alternate
infinitely often between critical and noncritical phases.
The interleaved system TS1 9 TS2 has a critical state that has
to be avoided (shared resources). How can a third process,
the arbiter, be used to resolve the conflicts?Parallelism and Communication 51

T1 T2 Arbiter :

unlock

lock

noncrit1 noncrit2

crit1 noncrit2 noncrit1 crit2

T1 T2 : Arbiter:

crit1 crit2

request
release

noncrit1 noncrit2 unlock

crit1 noncrit2 lock noncrit1 crit2 lock
requestrequest

releaserelease

Figure 2.12: Mutual exclusion using handshaking with arbiter process.

nondeterminism stands for the concurrent execution of the actions scanning the bar code
and the synchronous transfer of the price to the printer.

Example 2.30. Railroad Crossing

For a railroad crossing a control system needs to be developed that on receipt of a signal
indicating that a train is approaching closes the gates, and only opens these gates after the
train has sent a signal indicating that it crossed the road. The requirement that should be
met by the control system is that the gates are always closed when the train is crossing the
road. The complete system consists of the three components Train, Gate, and Controller:

Train ‖ Gate ‖ Controller.

Figure 2.15 depicts the transition systems of these components from left (modeling the
Train) to right (modeling the Gate). For simplicity, it is assumed that all trains pass
the relevant track section in the same direction—from left to right. The states of the
transition system for the Train have the following intuitive meaning: in state far the train
is not close to the crossing, in state near it is approaching the crossing and has just sent a
signal to notify this, and in state in it is at the crossing. The states of the Gate have the
obvious interpretation. The state changes of the Controller stand for handshaking with

Figure 3.26: Transition systems and arbiter
Prof. Dr. Jürgen Dix Clausthal, SS 2018 213

3 Verification I: LT properties
3.3 Interleaving and handshaking

Mutual exclusion via an arbiter (cont.)
Asssume P1 and P2 have each actions request and release. We
set H = {request, release} = Act1 ∩ Act2 and get the system:

Parallelism and Communication 51

T1 T2 Arbiter :

unlock

lock

noncrit1 noncrit2

crit1 noncrit2 noncrit1 crit2

T1 T2 : Arbiter:

crit1 crit2

request
release

noncrit1 noncrit2 unlock

crit1 noncrit2 lock noncrit1 crit2 lock
requestrequest

releaserelease

Figure 2.12: Mutual exclusion using handshaking with arbiter process.

nondeterminism stands for the concurrent execution of the actions scanning the bar code
and the synchronous transfer of the price to the printer.

Example 2.30. Railroad Crossing

For a railroad crossing a control system needs to be developed that on receipt of a signal
indicating that a train is approaching closes the gates, and only opens these gates after the
train has sent a signal indicating that it crossed the road. The requirement that should be
met by the control system is that the gates are always closed when the train is crossing the
road. The complete system consists of the three components Train, Gate, and Controller:

Train ‖ Gate ‖ Controller.

Figure 2.15 depicts the transition systems of these components from left (modeling the
Train) to right (modeling the Gate). For simplicity, it is assumed that all trains pass
the relevant track section in the same direction—from left to right. The states of the
transition system for the Train have the following intuitive meaning: in state far the train
is not close to the crossing, in state near it is approaching the crossing and has just sent a
signal to notify this, and in state in it is at the crossing. The states of the Gate have the
obvious interpretation. The state changes of the Controller stand for handshaking with

Figure 3.27: Mutual exclusion via arbiter

Prof. Dr. Jürgen Dix Clausthal, SS 2018 214

3 Verification I: LT properties
3.3 Interleaving and handshaking

Traffic junction revisited

We reconsider Example 3.16 from Slide 207.

This time we build TS1‖HTS2 with H = {α, β}
and it all works!

However, there is a small problem. The state
〈red, red〉 is a deadlock.

So even if two transition systems do not have
deadlocks (an assumption to be made on
Slide 228) their parallel composition might
have.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 215

3 Verification I: LT properties
3.3 Interleaving and handshaking

Railroad crossing revisited

We reconsider Example 3.17 from Slide 209.

This time we build

Train‖{approach,exit}Controller‖{lower,raise}Gate,

or, according to our convention, simply

Train‖Controller‖Gate.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 216

3 Verification I: LT properties
3.3 Interleaving and handshaking

Railroad crossing: almost working

< far, 0, up >

< near, 1, up >

< near, 2, down > < in, 1, up >

< in, 2, down > < far, 1, up >

< far, 3, down > < far, 2, down >

< near, 3, down >

< near, 0, up >< in, 3, down >

< in, 0, up >

approach

lower enter approach

lower

approach

approach

enter

enter

enter

exit

exit

exit

exit

raise

raise

exit

lower

Figure 3.28: TS of Railroad crossing
Prof. Dr. Jürgen Dix Clausthal, SS 2018 217

3 Verification I: LT properties
3.3 Interleaving and handshaking

Dining Philosophers revisited

We reconsider Example 1.2 from Slide 40. An
obvious representation is for each philosopher to
have four actions available (request left stick,
request right stick, release left stick, release right
stick) — we model “thinking” and “waiting” in the
states. And for each stick also two requests and
two releases (from the adjacent philosophers).
This results in the overall system

Phil0‖Stick4‖Phil4‖Stick3‖Phil3‖Stick2‖ . . . ‖Phil4‖Stick0

Prof. Dr. Jürgen Dix Clausthal, SS 2018 218

3 Verification I: LT properties
3.3 Interleaving and handshaking

Dining Philosophers revisited (cont)92 Linear-Time Properties

wait for
left stick

left stick right stick

wait for
right stick

return the return the

think

eat

requesti i

releasei i

requesti 1 i

requesti 1 irequesti i

releasei 1 i

releasei 1 ireleasei i

available

occupied occupied

reqi i reqi i 1

reli i reli i 1

Figure 3.2: Transition systems for the ith philosopher and the ith stick.

The complete system is of the form:

Phil4 ‖Stick 3 ‖Phil3 ‖Stick2 ‖Phil2 ‖Stick1 ‖Phil 1 ‖Stick0 ‖Phil0 ‖Stick4

This (initially obvious) design leads to a deadlock situation, e.g., if all philosophers pick
up their left stick at the same time. A corresponding execution leads from the initial state

〈think4, avail3, think3, avail 2, think 2, avail 1, think 1, avail 0, think 0, avail 4〉

by means of the action sequence request4, request3, request2, request1, request0 (or any
other permutation of these 5 request actions) to the terminal state

〈wait4,0, occ4,4,wait3,4, occ3,3,wait2,3, occ2,2,wait1,2, occ1,1,wait0,1, occ0,0〉.

This terminal state represents a deadlock with each philosopher waiting for the needed
stick to be released.

A possible solution to this problem is to make the sticks available for only one philosopher
at a time. The corresponding chopstick process is depicted in the right part of Figure 3.3.
In state available i,j only philosopher j is allowed to pick up the ith stick. The above-
mentioned deadlock situation can be avoided by the fact that some sticks (e.g., the first,
the third, and the fifth stick) start in state available i,i, while the remaining sticks start in
state available i,i+1. It can be verified that this solution is deadlock- and starvation-free.

Figure 3.29: Dining Philosophers

Prof. Dr. Jürgen Dix Clausthal, SS 2018 219

3 Verification I: LT properties
3.3 Interleaving and handshaking

Dining Philosophers revisited (cont.)

What is wrong with this model?

deadlock, starvation.

How can it be improved?

Idea: make sticks available only for one
philosopher at a time.

And make sure, that one half of the sticks start
in a different state than the other half.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 220

3 Verification I: LT properties
3.3 Interleaving and handshaking

Dining Philosophers revisited (cont)

Deadlock 93

wait for
left stick

left stick right stick

wait for
right stick

return the return the

think

eat

reqi i

reli i

reqi 1 i

reqi 1 ireqi i

reli 1 i

reli 1 ireli i

availablei

occupied occupied

reqi i

reqi i 1

reli i 1

availablei 1

reli i

Figure 3.3: Improved variant of the ith philosopher and the ith stick.

A further characteristic often required for concurrent systems is robustness against failure
of their components. In the case of the dining philosophers, robustness can be formulated
in a way that ensures deadlock and starvation freedom even if one of the philosophers is
“defective” (i.e., does not leave the think phase anymore).1 The above-sketched deadlock-
and starvation-free solution can be modified to a fault-tolerant solution by changing the
transition systems of philosophers and sticks such that philosopher i+1 can pick up the ith
stick even if philosopher i is thinking (i.e., does not need stick i) independent of whether
stick i is in state available i,i or available i,i+1. The corresponding is also true when the roles
of philosopher i and i+1 are reversed. This can be established by adding a single Boolean
variable xi to philosopher i (see Figure 3.4). The variable xi informs the neighboring
philosophers about the current location of philosopher i. In the indicated sketch, xi is a
Boolean variable which is true if and only if the ith philosopher is thinking. Stick i is
made available to philosopher i if stick i is in location available i (as before), or if stick i
is in location available i+1 while philosopher i+1 is thinking.

Note that the above description is at the level of program graphs. The complete system is
a channel system with request and release actions standing for handshaking over a channel
of capacity 0.

1Formally, we add a loop to the transition system of a defective philosopher at state think i.

Figure 3.30: Dining Philosophers refined

Prof. Dr. Jürgen Dix Clausthal, SS 2018 221

3 Verification I: LT properties
3.4 State-space explosion

3.4 State-space explosion

Prof. Dr. Jürgen Dix Clausthal, SS 2018 222

3 Verification I: LT properties
3.4 State-space explosion

Input size

Remember: input size of an integer n is log n,
not n.

n is exponential in log n.

Similarly, the program graph is a compact
representation of the underlying transition
system, which is obtained by unfolding.

When asking “how complex is it to check a
property of a TS”, the representation of the
TS matters.

Size of program graph versus size of TS.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 223

3 Verification I: LT properties
3.4 State-space explosion

Size of unfolded transition system

What is the size of a transition system obtained
from unfolding a program graph with variables
x ∈ Var?

Size of underlying domains is important.

dom(x) infinite: unfolded transition system is
infinite and undecidability issues arise.

dom(x) finite: number of states is
|Loc| Πx∈Var |dom(x)| .
states is exponential in # variables.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 224

3 Verification I: LT properties
3.4 State-space explosion

Influence of |Prop| and |S|
Clearly also the # constants in a state plays a role. The same
is true for the size of the state space of the interleaved
system.
Prop can be large, due to the allowed conditions of the
variables in the program graph. In practice only a small
number of such conditions are interesting.
What about the labelling function π?
Representing π explicitly is expensive. Often, this info
can be derived from the state.
State space of TS1 9 . . . 9 TSn is cartesian product:
Πn
i=1Si. Size is exponential in # components.

In general, the size of the TS obtained from a program
graph is exponential in the size of the program graph.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 225

3 Verification I: LT properties
3.5 LT properties in general

3.5 LT properties in general

Prof. Dr. Jürgen Dix Clausthal, SS 2018 226

3 Verification I: LT properties
3.5 LT properties in general

LT properties of transition systems

Transition systems are abstractions from systems
in the real world. We would like to

reason about particular computations of a TS ;
reason about all possible executions in a TS ,
formulate interesting properties such a TS
should satisfy.

Main notion: a path in a TS . It is a sequence of
states starting in an initial state. It corresponds to
an execution of the TS and is closely related to the
notion of run introduced in Definition 3.8 on
Slide 179.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 227

3 Verification I: LT properties
3.5 LT properties in general

Transitions systems without terminal nodes

From now on, we assume wlog that all transition systems do not
have any terminal nodes. In case a TS has terminal nodes, we
could simply add for each such node a new action and a new state
(with an arrow pointing to itself) and extend the TS appropriately.

Definition 3.20 (Path λ (of a TS))

A path λ : N0 → S in a TS is a sequence of states
starting with an initial state such that this
sequence corresponds to a run of the TS .

Prof. Dr. Jürgen Dix Clausthal, SS 2018 228

3 Verification I: LT properties
3.5 LT properties in general

Paths versus traces
Often, we are not so much interested in the states as such,
only what is true in them, i.e. which propositions from Prop
are true: π(si).

Definition 3.21 (Trace of λ of a TS)
The trace of a path λ : N0 → S in a TS with Prop is the
following infinite sequence

π(λ(0))π(λ(1))π(λ(2)) . . . π(λ(i)) . . .

(π(λ(i)) is the set of all propositions that are true in state λ(i)).
We call this also an ω-word over 2Prop.

The set of all traces of a TS is the set of the traces of all paths
from TS : it is denoted by Traces(TS).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 229

3 Verification I: LT properties
3.5 LT properties in general

Runs or paths?

We want to define what it means that
two transition systems behave the same.

1 We take the set of runs of a TS as the defining
behaviour.

2 Often the actions do not play any role, only
the states do. Then we could take the set of
paths of a TS as the defining behaviour.

Both possibilities rely on the internal behaviour,
that we might not be able to determine.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 230

3 Verification I: LT properties
3.5 LT properties in general

Runs or paths? (cont.)

Often one cannot distinguish between certain
states, we only know what is true in them (and
that depends on the language Prop).

3 Therefore we choose from now on the
observable behaviour to describe a TS : the
set of traces as the defining behaviour of a
TS.

Die Grenzen meiner Sprache bedeuten die
Grenzen meiner Welt.

L. Wittgenstein, TLP, Satz 5.6

Prof. Dr. Jürgen Dix Clausthal, SS 2018 231

3 Verification I: LT properties
3.5 LT properties in general

Definition 3.22 (Equivalence of transition systems)

Let TS1 and TS2 be two transition systems over
Prop and let A ⊆ Prop. We say that

1 TS1 and TS2 are A-equivalent, if, by definition,
Traces(TS1) |A = Traces(TS2) |A,

2 TS1 is a correct implementation of TS2, if, by
definition, Traces(TS1) ⊆ Traces(TS2).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 232

3 Verification I: LT properties
3.5 LT properties in general

Example 3.23 (Two transition systems TS1, TS2)

s3

s2s1

s4

{q}

{p}{p,q}
s3

s4

s1

s5

{q}{p}

{p,q}
s2

{p}

What are the paths, traces of them?
1 s1s2s

ω
3 , s1s2s

ω
4 . {p, q}{p}{q}ω, {p, q}{p}{}ω

2 s1s2s
ω
3 , s1s4s

ω
5 . {p, q}{p}{q}ω, {p, q}{p}{}ω.

3 Both transition systems have the same set of
traces. Is there any difference between
them?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 233

3 Verification I: LT properties
3.5 LT properties in general

Properties of transition systems

“Whenever p holds, a state with q is
reachable.”
Obviously this is true in TS1 but not in TS2.
Later: this cannot be expressed in LTL.
Any property that is solely based on the set
of traces of a TS can not distinguish between
TS1 and TS2.
But still many useful properties can be
defined: linear time (LT) properties.
The former two transition systems cannot be
distinguished by any LT-property.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 234

3 Verification I: LT properties
3.5 LT properties in general

Properties of transition systems

Definition 3.24 (LT properties)

Given a set Prop, a LT property over Prop is any
subset of (2Prop)ω.
A transition system TS satisfies such a property, if
all its traces are contained in it.

A LT property is a, possibly infinite, set of
infinite words.

Attention

{p, q}{p}{q}ω really means the infinite word
{p, q}{p}{q} . . . {q} . . ., not {p}{p}{q} . . . {q} . . .,
or {q}{p}{q} . . . {q} . . . as in regular expressions.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 235

3 Verification I: LT properties
3.5 LT properties in general

Properties of transition systems
We also use {{p, q}, {p}}{p}{q}ω to denote the set of words
that either start with {p, q} or with {p}.
Example 3.25

1 When p then q two steps farther ahead.
2 It is never the case that p and q. This is important for

mutual exclusion algorithms: one wants to ensure that
never two processes are at the same time in their critical
section.

3 When p then eventually q. When a message has been
sent, it will eventually be received.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 236

3 Verification I: LT properties
3.5 LT properties in general

Example 3.26 (Sets of paths)

s1s0

{p}

s2 s3 sn… …

{q} {p} {p} {p}

s1s0

{p}

s2 s3 sn… …

{p} {q} {p} {p}

etc.

s1s0

{q}

s2 s3 sn… …

{p} {p} {p} {p}

s1s0

{p}

s2 s3 sn… …

{q} {q} {p} {p}

s1s0

{p}

s2 s3 sn… …

{p} {q} {q} {p}

etc.

s1s0

{q}

s2 s3 sn… …

{q} {p} {p} {p}

The first infinite set of paths M1 can be denoted more
succinctly by {p}∗{q}{p}ω and the second, M2, by
{p}∗{q}{q}{p}ω (we are using the Kleene ∗ as in regular
expressions). These expressions are called ω regular
expressions.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 237

3 Verification I: LT properties
3.5 LT properties in general

Which properties does M1 satisfy?
At some time q is true and then always p holds.
q is true exactly once.
p is always true with one single exception,
when q is true.
q is true exactly once (and in that state p is
not true), and before and after that, only p
holds true. This will be expressed as a LTL
formula shortly.

Can M1 be represented as a (finite) transition
system at all?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 238

3 Verification I: LT properties
3.5 LT properties in general

Theorem 3.27 (Traces and LT-properties)

Let TS1 and TS2 be two transition systems over Prop.
Then the following are equivalent:
Traces(TS1) ⊆ Traces(TS2)

for all LT properties M : if TS2 satisfies M , so
does TS1.

Corollary 3.28

TS1 and TS2 satisfy the same LT properties if and
only if Traces(TS1) = Traces(TS2).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 239

3 Verification I: LT properties
3.5 LT properties in general

More interesting properties

For the formal specification and verification of
concurrent and distributed systems, the following
useful concepts can be formally, and concisely,
specified as LT properties (and later also using
temporal logics):

safety properties,
liveness properties,
fairness properties.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 240

3 Verification I: LT properties
3.5 LT properties in general

Safety Properties
Many safety properties are quite simple, they are just
conditions on the states and called invariants. They have
the form (Ai ⊂ 2Prop)

M = {A0A1 . . . Ai . . . : for all i: Ai |= ϕ}
for a propositional formula ϕ.
Examples are

mutual exclusion properties: ¬crit1 ∨ ¬crit2,
deadlock freedom: ¬wait0 ∨ . . . ∨ ¬wait5. Deadlock
freedom does not imply a fair distribution, i.e. ¬wait0
can always hold.

Others require conditions on finite fragments, for example
a traffic light with three phases requiring an orange phase
immediately before a red phase. This is not an invariant.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 241

3 Verification I: LT properties
3.5 LT properties in general

Safety Properties (cont.)

Definition 3.29 (Safety property)

A LT property Msafe is called a safety property, if
for all words λ ∈ (2Prop)ω \Msafe there exists a finite
prefix (a bad prefix) λ̂ of λ such that

Msafe∩{λ′ : λ′ ∈ (2Prop)ω, λ̂ is a finite prefix of λ′} = ∅
So it is a condition on a finite initial fragment:
no extended word resulting from such a bad
prefix is allowed.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 242

3 Verification I: LT properties
3.5 LT properties in general

Liveness Properties

Definition 3.30 (Liveness property)

A LT property M is a liveness property, if the set
of finite prefixes of the elements of M is identical
to (2Prop)∗. I.e. each finite prefix can be extended
to an infinite word that satisfies the property.

Each process will eventually enter its critical
section.
Each process will enter its critical section
infinitely often.
Each waiting process will eventually enter its
critical section.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 243

3 Verification I: LT properties
3.5 LT properties in general

Liveness Properties (cont.)

Starvation freedom in the dining philosophers is
a typical example: each philosopher is getting her
sticks infinitely often.

Starvation freedom: For all timepoints i, if there
is a waiting process at time i, then the process
gets into its critical section eventually.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 244

3 Verification I: LT properties
3.5 LT properties in general

Safety versus Liveness

Are safety properties also liveness properties?
Vice versa?
There is only one property that is both:
(2Prop)ω, i.e. the trivial property that contains
all paths.

Theorem 3.31 (LT properties as intersections)

Each LT-property can be represented as the
intersection of a safety with a liveness property.

But there are LT properties that are neither safe
nor live.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 245

3 Verification I: LT properties
3.5 LT properties in general

Fairness Properties

Definition 3.32 (Fairness property)

A LT property is a fairness property, if one of the
following applies:
Each process gets its turn infinitely often
provided that
unconditional: (no restrictions)

strong: it is enabled infinitely often,
weak: it is continuously enabled from a certain

time on.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 246

3 Verification I: LT properties
3.5 LT properties in general

LT properties used in practice126 Linear-Time Properties

liveness properties

neither liveness
nor safety properties

invariants

safety properties

safety and liveness property
(2AP)ω

Figure 3.11: Classification of linear-time properties.

the safety properties are exactly the closed sets, while the liveness properties agree with
the dense sets. In fact, closure(P) is the topological closure of P , i.e., the smallest closed
set that contains P . The result stated in Theorem 3.37 then follows from the well-known
fact that any subset of a topological space (of the kind described above) can be written
as the intersection of its closure and a dense set.

3.5 Fairness

An important aspect of reactive systems is fairness. Fairness assumptions rule out infinite
behaviors that are considered unrealistic, and are often necessary to establish liveness
properties. We illustrate the concept of fairness by means of a frequently encountered
problem in concurrent systems.

Example 3.40. Process Fairness

Consider N processes P1, . . . , PN which require a certain service. There is one server
process Server that is expected to provide services to these processes. A possible strategy
that Server can realize is the following. Check the processes starting with P1, then P2,
and so on, and serve the first thus encountered process that requires service. On finishing
serving this process, repeat this selection procedure once again starting with checking P1.

Figure 3.31: Overview LT-properties

Prof. Dr. Jürgen Dix Clausthal, SS 2018 247

3 Verification I: LT properties
3.6 LTL

3.6 LTL

Prof. Dr. Jürgen Dix Clausthal, SS 2018 248

3 Verification I: LT properties
3.6 LTL

Typical temporal operators

Xϕ ϕ is true in the neXt moment in time
Gϕ ϕ is true Globally: in all future moments
Fϕ ϕ is true Finally: eventually (in the future)
ϕUUU ψ ϕ is true Until at least the moment when ψ

becomes true (and this eventually happens)

G((¬passport ∨ ¬ticket) → X¬board_flight)

send(msg, rcvr) → Freceive(msg, rcvr)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 249

3 Verification I: LT properties
3.6 LTL

Safety: Something bad will not happen,
something good will always hold.

G¬bankrupt,
GfuelOK,
Usually: G¬

Liveness: Something good will happen.
Frich,
power_on→ Fonline,
Usually: F

Prof. Dr. Jürgen Dix Clausthal, SS 2018 250

3 Verification I: LT properties
3.6 LTL

Fairness: Combinations of safety and liveness:
FG¬dead or
G(request_taxi→ Farrive_taxi).
Strong fairness: “If something is

requested then it will be
allocated”:

G(attempt → Fsuccess),

GFattempt → GFsuccess.
Scheduling processes, responding to
messages, no process is blocked forever,
etc.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 251

3 Verification I: LT properties
3.6 LTL

Definition 3.33 (Language LLTL [Pnueli 1977])

The language LLTL(Prop) is given by all formulae generated by the
following grammar, where p ∈ Prop is a proposition:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUUU ϕ | Xϕ.

The additional operators
F (eventually in the future) and
G (always from now on)

can be defined as macros :

Fϕ ≡ (¬�)UUU ϕ and Gϕ ≡ ¬F¬ϕ

The standard Boolean connectives >,∧,→, and↔ are defined in
their usual way as macros (see Definition 2.3 on Slide 63).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 252

3 Verification I: LT properties
3.6 LTL

Models of LLTL
The semantics is given over paths, which are infinite sequences
of states from S, and a standard labelling function
π : S→ P(Prop) that determines which propositions are true at
which states.

Definition 3.34 (Path λ = q0q1q2q3 . . .)

A path λ over a set of states S is an infinite sequence of
states. We can view it as a mapping N0 → S. The set of all
sequences is denoted by Sω.

λ[i] denotes the ith position on path λ (starting from i = 0)
and

λ[i,∞] denotes the subpath of λ starting from i
(λ[i,∞] = λ[i]λ[i+ 1] . . .).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 253

3 Verification I: LT properties
3.6 LTL

λ = q0q1q2q3 . . . ∈ Sω

Definition 3.35 (Semantics of LLTL)

Let λ be a path and π be a labelling function over S. The
semantics of LTL, |=LTL, is defined as follows:

λ, π |=LTL p if, by definition, p ∈ π(λ[0]) and p ∈ Prop;

λ, π |=LTL ¬ϕ if, by definition, not λ, π |=LTL ϕ (we write
λ, π 6|=LTL ϕ);

λ, π |=LTL ϕ ∨ ψ if, by definition, λ, π |=LTL ϕ or λ, π |=LTL ψ;

λ, π |=LTL Xϕ if, by definition, λ[1,∞], π |=LTL ϕ; and

λ, π |=LTL ϕUUU ψ if, by definition, there is an i ∈ N0 such that
λ[i,∞], π |= ψ and λ[j,∞], π |=LTL ϕ for all 0 ≤ j < i.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 254

3 Verification I: LT properties
3.6 LTL

Other temporal operators

λ, π |= Fϕ if, by definition, λ[i,∞], π |= ϕ for some
i ∈ N0 ;
λ, π |= Gϕ if, by definition, λ[i,∞], π |= ϕ for all
i ∈ N0 ;

Exercise

Prove that the semantics does indeed match the
definitions;

Fϕ is equivalent to (¬�)UUU ϕ, and
Gϕ is equivalent to ¬F¬ϕ.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 255

3 Verification I: LT properties
3.6 LTL

Validity, satisfiability

satisfiable: a LTL formula is satisfiable, if, by
definition, there is a model for it,

valid: a LTL formula is valid, if, by definition,
it is true in all models,

contradictory: a LTL formula is contradictory,
if, by definition, there is no model for it.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 256

3 Verification I: LT properties
3.6 LTL

q2q1q0 q2q1q0

pos1 pos1pos0 pos0pos2 pos2

λ, π |= Fpos1

λ′ = λ[1,∞], π |= pos1

pos1 ∈ π(λ′[0])

Prof. Dr. Jürgen Dix Clausthal, SS 2018 257

3 Verification I: LT properties
3.6 LTL

q2q1q0 q2q1q0

pos1 pos1pos0 pos0pos2 pos2

λ, π |= GFpos1 if and only if

λ[0,∞], π |= Fpos1 and
λ[1,∞], π |= Fpos1 and
λ[2,∞], π |= Fpos1 and

. . .

Prof. Dr. Jürgen Dix Clausthal, SS 2018 258

3 Verification I: LT properties
3.6 LTL

Paths and infinite sets of paths

Paths are infinite entities, and so are infinite
sets of them.

They are both theoretical constructs.

In order to work with them we need a finite
representation:

namely transition systems (also called
pointed Kripke structures).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 259

3 Verification I: LT properties
3.6 LTL

A set of paths (1)

We reconsider the paths λ0, λ1, . . . , λi, . . . from
Example 3.26 on Slide 237:

s1s0

{p}

s2 s3 sn… …

{q} {p} {p} {p}

s1s0

{p}

s2 s3 sn… …

{p} {q} {p} {p}

etc.

s1s0

{q}

s2 s3 sn… …

{p} {p} {p} {p}
q ∧ ¬p ∧ XG(p ∧ ¬q)

p ∧ Xq ∧ XXGp

p ∧ Xp ∧ XXq

Can we distinguish between them (using LTL)?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 260

3 Verification I: LT properties
3.6 LTL

Indistinguishable paths

Observation
While any two paths can be distinguished by appropriate
LTL formulae, these formulae get more and more
complicated: operators need to be nested.

The first two paths can be distinguished by just
propositional logic, no LTL connectives are needed.
But the second and third cannot: we need X.
For the third and fourth we need a nesting XX.

By induction over the structure of ϕ

Given any LTL formula ϕ, there is a i0 ∈ N such that for all
i, j ≥ i0: λi |= ϕ if and only if λj |= ϕ.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 261

3 Verification I: LT properties
3.6 LTL

A set of paths (2)

Can we find a LTL formula, or a set of LTL
formulae, that characterize exactly the
whole set of paths?

So what holds true in all of these paths?

pUUU q. But this is also true in other paths not
listed above.

(p ∧ ¬q)UUU (q ∧ ¬p). Again, this is also true in
other paths.

(p ∧ ¬q)UUU (q ∧ ¬p ∧ XG(p ∧ ¬q)). That is it.
This describes exactly the set of paths above.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 262

3 Verification I: LT properties
3.6 LTL

Another set of paths (1)

We reconsider the second set of paths from
Example 3.26 on Slide 237:

s1s0

{p}

s2 s3 sn… …

{q} {q} {p} {p}

s1s0

{p}

s2 s3 sn… …

{p} {q} {q} {p}

etc.

s1s0

{q}

s2 s3 sn… …

{q} {p} {p} {p}
q∧Xq∧XXG(p∧¬q)

p∧Xq∧XXq∧XXXGp

etc.

What holds true in exactly these paths?

(p ∧ ¬q)UUU (q ∧ ¬p ∧ X(q ∧ ¬p) ∧ XXG(p ∧ ¬q))

Prof. Dr. Jürgen Dix Clausthal, SS 2018 263

3 Verification I: LT properties
3.6 LTL

LTL formulae and transition systems: TS |= φ

Up to now we have defined LTL formulae only
for paths.

For a transition system TS , we say that an LTL
formula is true in a state s, if it is true in all
runs resulting from that state.

A LTL formula is true in the whole transition
system, if it is true in all runs resulting from
the initial states.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 264

3 Verification I: LT properties
3.6 LTL

LTL formulae and transition systems: TS |= ϕ

Definition 3.36 (TS and LTL formulae: TS |= φ)

Let a TS and a LTL formula ϕ be given.

A LTL formula ϕ is true in a state s of TS , if,
by definition, it is true in all runs resulting
from s.

A LTL formula ϕ is true in TS, if, by
definition,it is true in all runs resulting from
all initial states.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 265

3 Verification I: LT properties
3.6 LTL

LTL formulae and transition systems

Example 3.37 (LTL formulae)

s1

{p,q}

s2

{p,q} {p}

s3

s2

{p}

s0

{} {}

s1

Which formulae hold true?
TS1: TS1 |= Gp, TS1 6|= X(p ∧ q),

TS1 6|= G(q→ G(p ∧ q)),
but TS1 |= G(q→ (p ∧ q)))

TS2: TS2 6|= Fp and TS2 6|= ¬Fp

Prof. Dr. Jürgen Dix Clausthal, SS 2018 266

3 Verification I: LT properties
3.6 LTL

From system to behavioral structure

System Computational str.

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1pos2

Prof. Dr. Jürgen Dix Clausthal, SS 2018 267

3 Verification I: LT properties
3.6 LTL

From computational to behavioral structure

Computational str. Behavioral str.

q0

q2 q1

pos0

pos1pos2

q0

q0

q0

q1

q1 q1 q2

The behavioral structure is usually infinite! Here, it is an infinite
tree. We say it is the q0-unfolding of the model.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 268

3 Verification I: LT properties
3.6 LTL

Example 3.38 (LTL indistinguishable transition systems)

TS1:

s1s0

{p}{}

TS2:

s0

{}

Both systems can be distinguished by the property
“a state where p holds can be reached”.

Each trace of TS2 is also one of TS1: each LTL formula true in
TS1 is also true in TS2.
So the above property cannot be expressed in LTL.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 269

3 Verification I: LT properties
3.6 LTL

LT-Properties and their expressibility

The example on the preceding slide shows that a
certain property is not a LT property.
This does not mean that the two transition systems
cannot be distinguished.
In fact the formula X¬p is true in TS2 but not in TS1.
The traces of the two systems are also different, so both
define different LT properties.

Are there TS1 and TS2 that define different LT-properties
but cannot be distinguished by any set of LLTL formulae?
Yes. LLTL formulae express exactly “∗-free ω-regular
properties”, a strict subset of “ω-regular properties”, which
is itself a strict subset of LT-properties.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 270

3 Verification I: LT properties
3.6 LTL

LT-Properties and their expressibility (cont.)

We consider again Example 3.23 with the two
transition systems TS1 and TS2.

s3

s2s1

s4

{q}

{p}{p,q}
s3

s4

s1

s5

{q}{p}

{p,q}
s2

{p}

1 The property whenever p a state with q can
be reached distinguishes them.

2 Can this property be expressed in LTL?
3 No, because both have the same set of

traces.
Prof. Dr. Jürgen Dix Clausthal, SS 2018 271

3 Verification I: LT properties
3.6 LTL

Some Exercises

Example 3.39 (Formalizing properties in LTL)

Formalise the following properties as LTL
formulae over Prop = {p}

1 p should never occur.
2 p should occur exactly once.
3 At least once p is directly be followed by ¬p.
4 p is true at exactly all even states.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 272

3 Verification I: LT properties
3.6 LTL

Some Exercises (cont.)

Compare the following two transition systems:

s2

{p}

s0

{p} {}

s1

s0

{p} {}

s1

Example 3.40 (Evenness)

Formalise the following as a LTL formula: p is true
at all even states (the odd states do not matter).

Does p ∧G(p→ XXp) work?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 273

3 Verification I: LT properties
3.6 LTL

Satisfiability of LTL formulae

A formula is satisfiable, if there is a model
(i.e. path) where it holds true. Can we restrict the
structure of such paths? I.e. can we restrict to
simple paths, for example paths that are periodic?

If this is the case, then we might be able to
construct counterexamples more easily, as
we need only check very specific paths.

It would be also useful to know how long the
period is and within which initial segment
of the path it starts, depending on the length
of the formula ϕ.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 274

3 Verification I: LT properties
3.6 LTL

Satisfiability of LTL formulae (cont.)

Theorem 3.41 (Periodic model theorem [SistlaClarke 1985])

A formula ϕ ∈ LTL is satisfiable if and only if
there is a path λ which is ultimately periodic, and
the period starts within 21+|ϕ| steps and has a length
which is ≤ 41+|ϕ|.

 2O(n)  4O(n)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 275

4 First-Order Logic: Semantics

4. First-Order Logic: Semantics
4 First-Order Logic: Semantics

Motivation
FOL: Syntax
FOL: Models
Examples: LTL and arithmetic
Prenex normal form and clauses
Sit-Calculus
The Blocksworld
Higher order logic

Prof. Dr. Jürgen Dix Clausthal, SS 2018 276

4 First-Order Logic: Semantics

Content of this chapter:

FOL: While sentential logic SL has some nice features,
it is quite restricted in expressivity. First order
logic (FOL) is an extension of SL which allows us
to express much more in a succinct way.

LTL: We show that LTL, introduced in the previous
chapter, is but a subsystem of FOL: the
monadic theory of order (Kamp’s theorem).

SIT-calculus: The Situation Calculus, introduced by John
McCarthy, is a special method for using FOL to
express the dynamics of an agent. Applying
actions to the world leads to a series of
successor worlds that can be represented with
special FOLterms.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 277

4 First-Order Logic: Semantics

Content of this chapter (2):

Blocksworld: We consider the blocksworld scenario and
discuss how to formalize that with FOL.

HOL: Finally, we give an outlook to higher order
logics (HOL), in particular to second order
logic. While we can express much more than in
1st order logic, the price we have to pay is that
there is no correct and complete calculus.

Declarative: In this chapter we only consider the question
How to use FOL to model the world? We are
not concerned with deriving new information
or with implementing FOL. This will be done in
the next chapter.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 278

4 First-Order Logic: Semantics
4.1 Motivation

4.1 Motivation

Prof. Dr. Jürgen Dix Clausthal, SS 2018 279

4 First-Order Logic: Semantics
4.1 Motivation

Example 4.1 (Continuity of a function)
For the classical definition of the continuity of a function,
we need:

Variables: ε, δ, x, x0,
functions: f(·), | · | ,
relations (or predicates): <,>,= and
quantifiers: ∀,∃.
∀ε > 0 ∃δ > 0

(
∀x (|x− x0 |< δ)→ | f(x)− f(x0) |< ε

)

So we need terms that we can compare with each other
and functions that represent values (that can be
compared with the values of terms).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 280

4 First-Order Logic: Semantics
4.1 Motivation

Terms and predicates

In SL we only have sentential constants which can be
true or false in a model.
In FOL we introduce terms, which can be built up
inductively. They represent objects, a category which is
not available in SL.
E.g. given an object tom the term father_of (tom)
represents another object (intuitively Tom’s father).
These objects can be used in FOL predicates:
Is_Father_of(erich, tom). The binary predicate
Is_Father_of(·, ·) represents a relation between two
objects.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 281

4 First-Order Logic: Semantics
4.1 Motivation

Terms and predicates (cont.)

Terms are built recursively out of constants (not to be
confused with propositional constants) using function
symbols.
We also allow a new category which is not available in
SL: variables. They are denoted by x, y, z,
Variables allow us to formulate conditions that
represent interesting entities. They can be instantiated
with terms.
Constants can be tom, erich, tobias, function symbols
sister_of (·), father_of (·). They lead to complex terms
like

father_of (sister_of (father_of (tom)))

These objects can be used in FOL predicates:
is_Father_of(erich, tom).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 282

4 First-Order Logic: Semantics
4.1 Motivation

Tuna revisited
Our Example 2.15 on Slide 84 can be defined in FOL in a
much more intuitive way. There are objects like cats, dogs,
animals, humans etc.

tuna is such an object, as well as jack or bill .
While tuna belongs to the class of cats (defined by a
predicate cat), jack is a human, or an animal_lover.
That animal lovers do not kill animals, can now by
expressed more intuitively as just one sentence:
∀x
(
animal_lover(x)→ (∀y (animal(y)

)
→ ¬killer_of(x, y).

In SL we needed many such implications (for all
potential objects).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 283

4 First-Order Logic: Semantics
4.1 Motivation

Overview

logical connectives and quantifer

syntax –– no meaning in real world

^, _, ¬, !, 8, 9

8x(P (x)! R(f(x)))

x, y, z, . . .

predicate symbols

function symbols

real world

semantics –– gives meaning

U = {a, b, c, . . . }
real functions over U

real relations over U

A = (U, I)

true (t)

false (f)

variables

FOL formulae

f

P

IA

IA

IA

IA

Figure 4.32: Syntax and Semantics for FOL
Prof. Dr. Jürgen Dix Clausthal, SS 2018 284

4 First-Order Logic: Semantics
4.2 FOL: Syntax

4.2 FOL: Syntax

Prof. Dr. Jürgen Dix Clausthal, SS 2018 286

4 First-Order Logic: Semantics
4.2 FOL: Syntax

Definition 4.2 (First order logic L(Σ))

The language L(Σ) of first order logic (Prädikatenlogik
erster Stufe) consists of:

x, y, z, x1, x2, . . . , xn, . . .: a countable set Var of
variables,
for each k ∈ N0: P k

1 , P
k
2 , . . . , P

k
n , . . . a countable set

Predk of k-dimensional predicate symbols (the
0-dimensional predicate symbols consist of the
propositional logic constants from LSL, i.e. �, Prop).
for each k ∈ N0: fk1 , f

k
2 , . . . , f

k
n , . . . a countable set Funck

of k-dimensional function symbols. The 0-dimensional
function symbols are also called individuum constants.
¬, ∨: the sentential connectives,
(,): the parentheses, and
∃: the existential quantifier.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 287

4 First-Order Logic: Semantics
4.2 FOL: Syntax

Definition (continued)

The used set of predicate and function symbols
and X ⊆ Var is also called signature Σ.
The signature defines a language L(Σ)
(analogously to Definition 2.2 on Slide 62). When
clear from context, we omit Σ and use L instead
of L(Σ).

The signature Σ plays in FOL the same role as
Prop in SL: it determines the set of formulae
FmlFOL

L(Σ).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 288

4 First-Order Logic: Semantics
4.2 FOL: Syntax

Definition (continued)

The concepts of an L(Σ)-term t and an
L(Σ)-formula ϕ are defined inductively:

Term: L(Σ)-terms t are defined as follows:
1 each variable is a L(Σ)-term,
2 if fk is a k-dimensional function symbol from

Σ and t1, . . . ,tk are L(Σ)-terms, then
fk(t1, . . . , tk) is a L(Σ)-term (for k = 0 we write
f 0, not f 0(); in fact, we use symbols c, d, . . .).

The set of all L(Σ)-terms over a set X ⊆ Var is called
TermL(Σ)(X) or TermL(X). Using X = ∅ we get the set of
basic terms TermL(Σ)(∅), or just TermL.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 289

4 First-Order Logic: Semantics
4.2 FOL: Syntax

Definition (continued)

Formulae: ϕ is defined inductively:
1 if Pk is a k-dimensional predicate symbol from

Σ and t1, . . . ,tk are L(Σ)-terms then
Pk(t1, . . . , tk) is a L(Σ)-formula (for k = 0 we
get back the propositional constants, which
we also write without parentheses).

2 For all L(Σ)-formulae ϕ: (¬ϕ) is a L-formula.
3 For all L(Σ)-formulae ϕ and ψ: (ϕ ∨ ψ) is a
L(Σ)-formula.

4 If x is a variable and ϕ a L(Σ)-formula then
(∃xϕ) is a L(Σ)-formula.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 290

4 First-Order Logic: Semantics
4.2 FOL: Syntax

Definition (continued)

Atomic L(Σ)-formulae are those which are
composed according to (1), we call them
AtomicL(Σ). The set of all L(Σ)-formulae over X is
called FmlFOL

L(Σ).

Positive formulae (FmlFOL+
L(Σ)) are those which are

composed using only (1), (3) and (4).

If ϕ is a L-formula and is part of another
L-formula ψ then ϕ is called sub-formula of ψ.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 291

4 First-Order Logic: Semantics
4.2 FOL: Syntax

As in SL (where we assumed Prop to be fixed), we assume that the
signature Σ (i.e. the set of function and predicate symbols) is
fixed: thus the language L(Σ) is fixed and we omit it if clear from
context (like parentheses).

Other connectives are defined as macros, as in SL.

Definition 4.3 (FOL connectives as macros)

We define the following syntactic constructs as macros:

> =def (¬�)

ϕ ∧ ψ =def (¬((¬ϕ) ∨ (¬ψ)))

ϕ→ ψ =def (((¬ϕ) ∨ ψ)

ϕ↔ ψ =def ((ϕ→ ψ) ∧ (ψ → ϕ))

∀xϕ =def (¬(∃x(¬ϕ)))

 blackboard

Prof. Dr. Jürgen Dix Clausthal, SS 2018 292

4 First-Order Logic: Semantics
4.2 FOL: Syntax

Example 4.4

Let d be a constant, g ∈ Func2, and f ∈ Func3,
and p ∈ Pred2 and q ∈ Pred0.
Which of the following strings are terms, which
are formulae?

1 g(d, d), g(x, p(x, y)),
2 p(d), f(x, g(y, z), d),
3 g(x, f(y, z), d), f(x, g(y, z), d), ∀zq,
4 g(f(g(d, x), g(f(x, a, z), y), f(x, y, g(x, y))), a),
5 d ∧ f(x), ∀z ¬f(x, y),
6 p(p(d, d), x), ¬p(d, g(d, x)).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 293

4 First-Order Logic: Semantics
4.2 FOL: Syntax

Example 4.5 (From semigroups to rings)

We consider L = {0, 1,+, ·,≤, .=}, where 0, 1 are constants
(∈ Func0), +, · binary operations (∈ Func2) and ≤, .= binary
relations (∈ Pred2) . What can be expressed in this
language?
Ax 1: ∀x∀y∀z x+ (y + z)

.
= (x+ y) + z

Ax 2: ∀x (x+ 0
.
= 0 + x) ∧ (0 + x

.
= x)

Ax 3: ∀x∃y (x+ y
.
= 0) ∧ (y + x

.
= 0)

Ax 4: ∀x∀y x+ y
.
= y + x

Ax 5: ∀x∀y∀z x · (y · z)
.
= (x · y) · z

Ax 6: ∀x∀y∀z x · (y + z)
.
= x · y + x · z

Ax 7: ∀x∀y∀z (y + z) · x .
= y · x+ z · x

Axiom 1 describes a semigroup, the axioms 1-2 describe a
monoid, the axioms 1-3 a group, and the axioms 1-7 a ring.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 294

4 First-Order Logic: Semantics
4.2 FOL: Syntax

Example 4.6

Formalize the following sentence:
Every student x is younger than some teacher
y.

s(x): x is a student
t(x): x is a teacher
y(x, y): x is younger than y

∀x(s(x)→ (∃y(t(y) ∧ y(x, y))))

Prof. Dr. Jürgen Dix Clausthal, SS 2018 295

4 First-Order Logic: Semantics
4.2 FOL: Syntax

Example 4.7

Formalize the following sentence:
Andy and Paul have the same maternal
grandmother.

a: Andy
p: Paul
m(x, y): x is y’s mother

∀x∀y∀u∀v(m(x, y)∧m(y, a)∧m(u, v)∧m(v, p)→ x
.
= u)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 296

4 First-Order Logic: Semantics
4.2 FOL: Syntax

Unary function or binary predicate?

Given a unary function symbol f(x) and a
constant c. Then the only terms that can be built
are of the form fn(c). Assume we have .

= as the
only predicate. Then the atomic formulae that
we can built have the form fn(c)

.
= fm(c). We call

this language L1.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 297

4 First-Order Logic: Semantics
4.2 FOL: Syntax

Unary function or binary predicate? (2)

Assume now that instead of f and .
=, we use a

binary predicate pf(y, x) which formalizes
y
.
= f(x). We call this language L2.

Can we express all formulae of L1 in L2?
And vice versa?
What is the difference between both
approaches?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 298

4 First-Order Logic: Semantics
4.2 FOL: Syntax

FOL with equality .
=?

Often we want to use real equality (identity): a
binary relation that is true only if the objects are
identical (not just in a equivalence relation).

This means that we assume to have a
distinguished symbol .= among the binary
predicates in Pred2 which is interpreted as
identity in all models, i.e. its interpretation is
fixed.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 299

4 First-Order Logic: Semantics
4.2 FOL: Syntax

Tuna the cat in FOL
We formalize again the example of the killed cat
(Example 2.15), this time in FOL.

1 Bill owns a dog.
 owns(x, y), dog(x), bill .

2 Dog owners are animal lovers.
 animal_lover(x).

3 Animal lovers do not kill animals.
 killer_of(x, y), animal(x).

4 Either Jack or Bill killed Tuna, the cat.
 jack , tuna, cat(x), killer_of(x, y).

 blackboard

Prof. Dr. Jürgen Dix Clausthal, SS 2018 300

4 First-Order Logic: Semantics
4.2 FOL: Syntax

Tuna the cat in FOL (2)

1 Bill owns a dog.
∃y (owns(bill , y) ∧ dog(y)).

2 Dog owners are animal lovers.
∀x ((owns(x, y) ∧ dog(y))→ animal_lover(x)).

3 Animal lovers do not kill animals.
∀x∀y ((animal_lover(x) ∧ animal(y))→
¬killer_of(x, y)).

4 Either Jack or Bill killed Tuna, the cat.
cat(tuna),
(killer_of(jack , tuna) ∨ killer_of(bill , tuna),
¬(killer_of(jack , tuna) ∧ killer_of(bill , tuna))).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 301

4 First-Order Logic: Semantics
4.3 FOL: Models

4.3 FOL: Models

Prof. Dr. Jürgen Dix Clausthal, SS 2018 302

4 First-Order Logic: Semantics
4.3 FOL: Models

Definition 4.8 (L-structure A = (UA, IA))

A L(Σ)-structure or a L(Σ)-interpretation over the
signature Σ is a pair A =def (UA, IA) with UA being an
arbitrary non-empty set, which is called the basic set (the
universe or the individuum range) of A. Further IA is a
mapping which

assigns to each k-dimensional predicate symbol pk in
L(Σ) a k-dimensional predicate over UA (� is assigned
the empty set),
assigns to each k-dimensional function symbol fk in
L(Σ) a k-dimensional function on UA.

In other words: the domain of IA is exactly the set of
predicate and function symbols of L(Σ).

Where is the valuation v from SL hidden?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 303

4 First-Order Logic: Semantics
4.3 FOL: Models

Definition (continued)
The range of IA consists of the predicates and functions on
UA. We write:

IA(p) = pA, IA(f) = fA.

Let ϕ be a L1-formula and A =def (UA, IA) a L-structure. A is
called matching with ϕ if IA is defined for all predicate and
function symbols which appear in ϕ, i.e. if L(Σ1) ⊆ L(Σ).

FOL with Equality

Often, one assumes that the predicate symbol .= is built-in
and interpreted by identity in all structures A:
IA(

.
=) =def {(x, x) : x ∈ UA}. In that case, .= is not listed

among the predicates in a model A.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 304

4 First-Order Logic: Semantics
4.3 FOL: Models

Definition 4.9 (Variable assignment %)

A variable assignment % over a L-structure
A = (UA, IA) is a function

% : Var → UA; x 7→ %(x).

In the next chapter, the Hoare calculus, this is
exactly what we will call state of a program.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 305

4 First-Order Logic: Semantics
4.3 FOL: Models

Example 4.10

Let ϕ be the formula
q(x) ∨ ∀z(p(x, g(z))) ∨ ∃x(∀y(p(f(x), y) ∧ q(a)))

U = R
I(a) : the constant π,
I(f) : I(f) = sin : R→ R and
I(g) = cos : R→ R,
I(p) = {(r, s) ∈ R2 : r ≤ s} and
I(q) = [3,∞) ⊆ R,
I(x): the constant π

2 .
Is ϕ true inM = (U, I)?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 306

4 First-Order Logic: Semantics
4.3 FOL: Models

M 6|= q(x) becauseM(q) = [3,∞) andM(x) = π
2 6∈ [3,∞),

M 6|= ∀z(p(x, g(z))) because (M(x),M(g)(M(z))) =
(π2 , cos(u)) 6∈ M(p) = {(r, s) ∈ R2 : r ≤ s} and cos(u) < π

2 for
all u.

M |= q(a) becauseM(a) = π ∈M(q) = [3,∞) is satisfied.

M |= ∃x(∀y(p(f(x), y))) because not for all u′ ∈ R exists a
u ∈ R such that
(M(f)(M(x)),M(y)) = (sin(u), u′) ∈M(p) = {(r, s) ∈ R2 |
r ≤ s} is fulfilled (e.g. u′ = −2).

⇒M 6|= ϕ

Prof. Dr. Jürgen Dix Clausthal, SS 2018 307

4 First-Order Logic: Semantics
4.3 FOL: Models

Some structures
Details blackboard.

We consider L(Σ) = {≤, .=} and the structures
1 (Z,≤Z)
2 (R,≤R)
3 (Q,≤Q)
4 (Q+

0 ,≤Q
+
0)

Give formulae in L(Σ) that are true in all
structures, or just in only one of them.

Is there a formula φ which can distinguish
between (R,≤R) and (Q,≤Q)?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 308

4 First-Order Logic: Semantics
4.3 FOL: Models

Ludwig Wittgenstein

Ein Bild hielt uns gefangen. Und heraus kon-
nten wir nicht, denn es lag in unserer Sprache,
und sie schien es uns nur unerbittlich zu
wiederholen.

Philosophische Untersuchungen, §115

Prof. Dr. Jürgen Dix Clausthal, SS 2018 309

4 First-Order Logic: Semantics
4.3 FOL: Models

Some structures (2)

We have seen some formulae that are true in these
structures. Can we come up with a finite
axiomatization?

Dense linear order without endpoints

It turns out, that the set of all formulae true in
(R,≤R) coincides with the set all formulae true in
(Q,≤Q). An axiomatization is given by the finite
set of formulae stating that < is a dense, linear
order without endpoints. This theory is also
complete.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 310

4 First-Order Logic: Semantics
4.3 FOL: Models

Definition 4.11 (Semantics of first order logic, Model A)

Let ϕ be a formula, A a structure matching with ϕ
and % a variable assignment over A. For each term
t, which can be built from components of ϕ, we
define the value of t in the structure A, called
A(t).

1 for a variable x: A(x) =def %(x).
2 if t has the form t = fk(t1, . . . , tk), with t1, . . . , tk

being terms and fk a k-dimensional function
symbol, then A(t) =def f

A(A(t1), . . . ,A(tk)).

Compare with Definition 5.10.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 311

4 First-Order Logic: Semantics
4.3 FOL: Models

Definition (continued)

We define inductively the logical value of a formula ϕ in A:
1. if ϕ =def pk(t1, . . . , tk) with the terms t1, . . . , tk and the
k-dimensional predicate symbol pk, then

A(ϕ) =def

{
t, if (A(t1), . . . ,A(tk)) ∈ pA,
f, else.

2. if ϕ =def ¬ψ, then

A(ϕ) =def

{
t, if A(ψ) = f,
f, else.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 312

4 First-Order Logic: Semantics
4.3 FOL: Models

Definition (continued)
3. if ϕ =def (ψ ∨ η), then

A(ϕ) =def

{
t, if A(ψ) = t or A(η) = t,
f, else.

4. if ϕ =def ∃xψ, then

A(ϕ) =def

{
t, if ∃d ∈ UA : A[x/d](ψ) = t,
f, else.

For d ∈ UA let A[d/x] be the structure A′, identical to A
except for the definition of xA′: xA′ =def d (whether IA is
defined for x or not).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 313

4 First-Order Logic: Semantics
4.3 FOL: Models

Definition (continued)
We write:

A |= ϕ[%] for A(ϕ) = t: A is a model for ϕ with respect to %.

If ϕ does not contain free variables, then A |= ϕ[%] is
independent from % (and we leave it out).

If there is at least one model for ϕ, then ϕ is called
satisfiable or consistent.

A free variable is a variable which is not in the scope of a
quantifier. For instance, z is a free variable of ∀xp(x, z) but not
free (or bounded) in ∀z∃xp(x, z).

A variable can occur free and bound in the same formula. So, to be
precise, we have to talk about a particular occurrence of a variable: the
very position of it in the formula.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 314

4 First-Order Logic: Semantics
4.3 FOL: Models

Definition 4.12 (Valid)

1 A theory is a set of formulae without free
variables: T ⊆ FmlL. The structure A satisfies
T if A |= ϕ holds for all ϕ ∈ T . We write A |= T
and call A a model of T .

2 A L-formula ϕ is called L-valid, if for all
matching L-structures A the following
holds: A |= ϕ.

From now on we suppress the language L,
because it is obvious from context.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 315

4 First-Order Logic: Semantics
4.3 FOL: Models

Definition 4.13 (Consequence set Cn(T))

A formula ϕ follows semantically from T , if for
all structures A with A |= T also A |= ϕ holds.
We write: T |= ϕ.

In other words: all models of T do also satisfy ϕ.

We denote by CnL(T) =def {ϕ ∈ FmlL : T |= ϕ}, or
simply Cn(T), the semantic consequence
operator.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 316

4 First-Order Logic: Semantics
4.3 FOL: Models

Lemma 4.14 (Properties of Cn(T))

The semantic consequence operator Cn has the
following properties

1 T -extension: T ⊆ Cn(T),
2 Monotony: T ⊆ T ′ ⇒ Cn(T) ⊆ Cn(T ′),
3 Closure: Cn(Cn(T)) = Cn(T).

Lemma 4.15 (ϕ 6∈ Cn (T))

ϕ 6∈ Cn(T) if and only if there is a structure A
with A |= T and A |= ¬ϕ.

Or: ϕ 6∈ Cn(T) if and only if there is a
counterexample (a model of T in which ϕ is not
true).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 317

4 First-Order Logic: Semantics
4.3 FOL: Models

Definition 4.16 (MOD(T), Cn(U))

For T ⊆ FmlL, then we denote by MOD(T) the set of all
L-structures A which are models of T :

MOD(T) =def {A : A |= T}.

If U is a set of structures then we can consider all sentences, which
are true in all structures. We call this set also Cn(U):

Cn(U) =def {ϕ ∈ FmlL : for all A ∈ U : A |= ϕ}.

MOD is obviously dual to Cn:

Cn(MOD(T)) = Cn(T), MOD(Cn(T)) = MOD(T).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 318

4 First-Order Logic: Semantics
4.3 FOL: Models

Most theorems and notions from SL carry over
literally to FOL.
Definition 4.17 (Completeness of a theory T)

T is called complete, if for each formula ϕ ∈ FmlL:
T |= ϕ or T |= ¬ϕ holds.

Attention:

Do not mix up this last condition with the
property of a structure v (or a model): each
structure is complete in the above sense.

Lemma 4.18 (Ex Falso Quodlibet)

T is consistent if and only if Cn(T) 6= FmlL.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 319

4 First-Order Logic: Semantics
4.3 FOL: Models

Predicate- or function- symbols?

How to formalize each animal has a brain?
1 Two unary predicate symbols: animal(x),

has_brain(x). The statement becomes

∀x (animal(x)→ has_brain(x))

2 Finally, what about a binary predicate
is_brain_of(y, x) and the statement

∀x (animal(x) → ∃y is_brain_of(y, x))

3 But why not introducing a unary function
symbol brain_of (x) denoting x’s brain? Then

∀x ∃y (animal(x) → y
.
= brain_of (x))

Prof. Dr. Jürgen Dix Clausthal, SS 2018 320

4 First-Order Logic: Semantics
4.4 Examples: LTL and arithmetic

4.4 Examples: LTL and arithmetic

Prof. Dr. Jürgen Dix Clausthal, SS 2018 321

4 First-Order Logic: Semantics
4.4 Examples: LTL and arithmetic

Example: FO (≤)
Monadic first-order logic of order, denoted by FO (≤), is
first-order logic with the only binary symbol ≤ (except
equality, which is also allowed) and, additionally, any
number of unary predicates. The theory assumes that ≤ is
a linear order with least element, but nothing else:
∀x x ≤ x, ∀x∀y (x ≤ y ∨ y ≤ x),
∀x∀y ((x ≤ y ∧ y ≤ x)→ x

.
= y), ∃x∀y x ≤ y.

A typical model is given by

N = 〈N0,≤N0 , pN1 , p
N
2 , . . . p

N
n 〉

where ≤N0 is the usual ordering on the natural numbers and
pNi ⊆ N0.

The sets pNi determine the timepoints where the property
pi holds.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 322

4 First-Order Logic: Semantics
4.4 Examples: LTL and arithmetic

What can we express in FO (≤)?

Can we find formulae that express that
a property r is true infinitely often?

whenever r is true, then s is true in the next
timepoint?

r is true at all even timepoints and ¬r at all
odd timepoints?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 323

4 First-Order Logic: Semantics
4.4 Examples: LTL and arithmetic

LTL revisited (1)

1 The monadic first-order theory of (linear)
order, FO(≤) (see Slide 322) is equivalent to
LTL:
There is a translation from sentences of LTL
to sentences of FO(≤) and vice versa, such
that the LTL sentence is true in λ, π if and
only if its translation is true in the associ-
ated first-order structure.

This was proved by Hans Kamp in his PhD
thesis 1968.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 324

4 First-Order Logic: Semantics
4.4 Examples: LTL and arithmetic

Relation to first-order logic (2)

1 More precisely: an infinite path λ is described as a first-order
structure with domain N and predicates Pp for p ∈ Prop. The
predicates stand for the set of timepoints where p is true. So
each path λ can be represented as a structure
Nλ = 〈N,≤N,PN1 ,PN2 , . . .PNn 〉.
Then each LTL formula φ translates to a first-order formula
αφ(x) with one free variable s.t.

φ is true in λ[n,∞] if and only if αφ(n) is true in Nλ.

And conversely: for each first-order formula with a free
variable there is a corresponding LTL formula s.t. the same
condition holds.

Does that mean that LTL is useless?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 325

4 First-Order Logic: Semantics
4.4 Examples: LTL and arithmetic

N in different languages

Example 4.19 (Natural numbers in different languages)

NPres = (N0, 0
N ,+N ,

.
=N) („Presburger Arithmetik”),

NPeano = (N0, 0
N ,+N , ·N , .=N) („Peano Arithmetik”),

NPA′ = (N0, 0
N , 1N ,+N , ·N , .=N) (variant of NPeano).

These sets each define the same natural numbers, but in
different languages.

Question:
If the language is bigger then we might express more.
Is LPA′ strictly more expressive than LPeano?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 326

4 First-Order Logic: Semantics
4.4 Examples: LTL and arithmetic

Answer:

No, because one can replace the 1N by a
LPeano-formula: there is a LPeano-formula φ(x) so
that for each variable assignment ρ the following
holds:

NPA′ |=ρ φ(x) if and only if ρ(x) = 1N

Thus we can define a macro for 1.
Each formula of LPA′ can be transformed into
an equivalent formula of LPeano.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 327

4 First-Order Logic: Semantics
4.4 Examples: LTL and arithmetic

Question:

Is LPeano perhaps more expressive than LPres , or
can the multiplication be defined somehow?

Indeed, LPeano is more expressive:

the set of sentences valid in NPres is decidable,
whereas
the set of sentences valid in NPeano is not even
recursively enumerable.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 328

4 First-Order Logic: Semantics
4.4 Examples: LTL and arithmetic

Different languages for NPres

NPres = (N0, 0
N , 1N ,+N ,

.
=N)

NPres = (N0, 0
N , SN ,+N ,

.
=N)

NPres = (N0, 0
N , 1N , SN ,+N ,

.
=N)

NPres = (N0, 1
N ,+N ,

.
=N)

All these structures, resp. their formulae
are interdefinable.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 329

4 First-Order Logic: Semantics
4.4 Examples: LTL and arithmetic

Question:

We shall introduce Z = (Z, 0Z, 1Z,+Z,−Z, ·Z, <Z) in
the chapter about the Hoare calculus. How does
it compare with NPeano?

“ .=” can be defined with < and vice versa in Z
and NPeano (resp. in NPres).
“−” can also be defined with the other
constructs.
NPeano can be defined in Z with an
appropriate formula φ(x):

Z |=ρ φ(x) if and only if ρ(x) ∈ N0

Prof. Dr. Jürgen Dix Clausthal, SS 2018 330

4 First-Order Logic: Semantics
4.4 Examples: LTL and arithmetic

Can NPeano be defined in (Z,+Z, ·Z)?
To be more precise, for each LPeano formula φ,
there is a LZ formula φ′ such that: if NPA′ |= φ then
Z |= φ′.

So Z is at least as difficult as NPeano .
The converse is true as well. Therefore although
the theories of Z and NPeano are not identical, the
truth of a formula in one of them can be reduced
to the truth of a translated formula in the other
one.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 331

4 First-Order Logic: Semantics
4.4 Examples: LTL and arithmetic

Question:

What about R = (R, 0R, 1R,+R,−R, ·R, <R) and
Q = (Q, 0Q, 1Q,+Q,−Q, ·Q, <Q)? How do they
compare with NPeano?

State a formula that distinguishes both
structures.
Can one define Q within R (as we did define
NPeano in Z)?
Is there an axiomatization of R?

In general, theories of specific structures are
undecidable. But it depends on the underlying
language.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 332

4 First-Order Logic: Semantics
4.5 Prenex normal form and clauses

4.5 Prenex normal form and
clauses

Prof. Dr. Jürgen Dix Clausthal, SS 2018 333

4 First-Order Logic: Semantics
4.5 Prenex normal form and clauses

Prenex normal form (1)

Definition 4.20 (Prenex normal form)
We consider FOL-formulae built not just over ∃,¬,∨, but
also using the macros ∀,∧,→,↔.
A FOL formula of the form

Q1x1 . . .Qnxnψ

where ψ does not contain any quantifiers, is called in
prenex normal form.

Proposition 4.21

Each FOL-formula is equivalent to one in prenex normal
form.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 334

4 First-Order Logic: Semantics
4.5 Prenex normal form and clauses

Prenex normal form (2)

Instead of proving the last proposition by induction on the
structure of formulae, we illustrate how this can be done.

1 Move the ¬ sign to the innermost parts (the atomic
formulae). Here we use just the boolean laws.

2 Move the leftmost quantifier to the front in such a way,
that its scope is the whole formula.

3 Do the last step recursively until all quantifiers are in
front.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 335

4 First-Order Logic: Semantics
4.5 Prenex normal form and clauses

Prenex normal form (3)
How can we do the second step?
∀xϕ(x) ∧ ψ is replaced by ∀x(ϕ(x) ∧ ψ) if x does not
occur in ψ, and by ∀z(ϕ(z) ∧ ψ) otherwise (for suitable
z).
∀xϕ(x) ∨ ψ is replaced by ∀x(ϕ(x) ∨ ψ) if x does not
occur in ψ, and by ∀z(ϕ(z) ∨ ψ) otherwise (for suitable
z).
∃xϕ(x) ∧ ψ is replaced by ∃x(ϕ(x) ∧ ψ) if x does not
occur in ψ, and by ∀z(ϕ(z) ∧ ψ) otherwise (for suitable
z).
∃xϕ(x) ∨ ψ is replaced by ∃x(ϕ(x) ∨ ψ) if x does not
occur in ψ, and by ∀z(ϕ(z) ∨ ψ) otherwise (for suitable
z).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 336

4 First-Order Logic: Semantics
4.5 Prenex normal form and clauses

Prenex normal form (4)

A formula in prenex form Q1x1 . . .Qnxnψ can be
even more normalised: the ψ part can be put in
conjunctive or disjunctive normal form (they can
be viewed as SL formulae and the boolean laws
can be applied).

Later, we need to get rid of existential
quantifiers: working with universally quantified
formulae is more appropriate for the resolution
calculus (as will become clear in a while).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 337

4 First-Order Logic: Semantics
4.5 Prenex normal form and clauses

Satisfiability equivalence (1)

Proposition 4.22 (Skolemization)

Each FOL formula ϕ in a language L can be transformed to a
formula ϕ′ in an extended language L′ ⊇ L (which contains
additional function symbols) such that the following holds:
(1) ϕ′ is in prenex normal form and contains only ∀
quantifiers, and (2) if ϕ is satisfiable in a L-model, then this
L-model can be extended to a model in the language L′ and
ϕ′ is satisfiable in this extended model.

Thus any formula is satisfiability equivalent to a universal
formula in an extended language.
Note: it is not possible to transform each formula into an
equivalent formula that contains only universal
quantifiers (in its prenex normal form).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 338

4 First-Order Logic: Semantics
4.5 Prenex normal form and clauses

Satisfiability equivalence (2)

Example 4.23 (Eliminating ∃ quantifiers)

We consider the two formulae
1 ∃x∃y (q(x) ∧ ¬q(y)),
2 ∀x∃y (p(x, y)→ ¬q(y)).

How can we get rid of the existential
quantifiers?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 339

4 First-Order Logic: Semantics
4.5 Prenex normal form and clauses

Satisfiability equivalence (3)
The first formula is easy to transform: we just add two new
constants c, c′ and instantiate them for the variables. This
leads to q(c) ∧ ¬q(c′), or the two clauses q(c) and q(c′).

The second formula is more complicated, because there is
no single y. We have to take into account, that the y
depends on the chosen x. Therefore we introduce a new
function symbol f(x): ∀x p(x, f(x))→ ¬q(f(x)). Then we
have to transform the formula into disjunctive form:
∀x¬p(x, f(x)) ∨ ¬q(f(x)).

The newly introduced function symbols are also called
Skolem functions, the technique is called skolemization.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 340

4 First-Order Logic: Semantics
4.5 Prenex normal form and clauses

Satisfiability equivalence (4)
Applying the technique of the last slide recursively, we can
transform each set M of L-formulae into a set M ′ of
universally quantified formulae in prenex form in an
extended language L′ (where L′ is obtaind from L by
adding certain function symbols).

Theorem 4.24 (Satisfiability equivalence)
Let M be a set of FOL sentences in a language L and M ′ be its
transform in L′ ⊇ L, which is universal and in prenex form.

M is satisfiable if and only if M ′ is satisfiable.

So we do not get equivalence in the full sense, but
satisfiability equivalence. This suffices to prove refutation
completeness of the resolution calculus for FOL.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 341

4 First-Order Logic: Semantics
4.5 Prenex normal form and clauses

Universal clauses

Using the techniques just introduced, it is possible to
transform any set M of FOL formulae into a set M ′ of
formulae with the following properties:

all formulae are universal,
all formulae are in prenex form Q1x1 . . .Qnxnψ

the formulae ψ after the quantifiers are in conjunctive
normal form,
M and M ′ are satisfiability equivalent.

We say that the set M ′ is in clausal form.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 342

4 First-Order Logic: Semantics
4.6 Sit-Calculus

4.6 Sit-Calculus

Prof. Dr. Jürgen Dix Clausthal, SS 2018 343

4 First-Order Logic: Semantics
4.6 Sit-Calculus

Question:

How do we axiomatize the Wumpus-world in
FOL?

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

Forward

S0

Forward

Turn (Right)
S1

S0S2

S3

Prof. Dr. Jürgen Dix Clausthal, SS 2018 344

4 First-Order Logic: Semantics
4.6 Sit-Calculus

Idea:
In order to describe actions or their effects consistently we
consider the world as a sequence of situations (snapshots of
the world). Therefore we have to extend each predicate by
an additional argument.

We use the function symbol

result(action, situation)

as the term for the situation which emerges when the
action action is executed in the situation situation.

Actions: Turn_right , Turn_left , Forward , Shoot, Grab,
Release, Climb.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 345

4 First-Order Logic: Semantics
4.6 Sit-Calculus

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

Forward

S0

Forward

Turn (Right)
S1

S0S2

S3

Prof. Dr. Jürgen Dix Clausthal, SS 2018 346

4 First-Order Logic: Semantics
4.6 Sit-Calculus

We also need a memory, a predicate

At(person, location, situation)

with person being either Wumpus or Agent and location
being the actual position (stored as pair [i,j]).

Important axioms are the so called successor-state axioms,
they describe how actions effect situations. The most
general form of these axioms is

true afterwards ⇐⇒ an action made it true
or it is already true and
no action made it false

Prof. Dr. Jürgen Dix Clausthal, SS 2018 347

4 First-Order Logic: Semantics
4.6 Sit-Calculus

Axioms about At(p, l, s):

At(p, l, result(Forward , s))↔((l
.
= location_ahead(p, s) ∧ ¬Wall(l))

At(p, l, s) →Location_ahead(p, s)
.
=

Location_toward(l, Orient.(p, s))
Wall([x, y]) ↔(x

.
= 0 ∨ x .

= 5 ∨ y .
= 0 ∨ y .

= 5)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 348

4 First-Order Logic: Semantics
4.6 Sit-Calculus

Location_toward([x, y], 0)
.
= [x+ 1, y]

Location_toward([x, y], 90)
.
= [x, y + 1]

Location_toward([x, y], 180)
.
= [x− 1, y]

Location_toward([x, y], 270)
.
= [x, y − 1]

Orient.(Agent, s0)
.
= 90

Orient.(p, result(a, s)) .
= d↔

((a
.
= turn_right ∧ d .

= mod(Orient.(p, s)− 90, 360))
∨(a

.
= turn_left ∧ d .

= mod(Orient.(p, s) + 90, 360))
∨(Orient.(p, s)

.
= d ∧ ¬(a

.
= turn_right ∨ a .

= turn_left))

mod(x, y) is the implemented “modulo”-function,
assigning a value between 0 and y to each
variable x.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 349

4 First-Order Logic: Semantics
4.6 Sit-Calculus

Axioms about percepts, useful new notions:

Percept([Stench, b, g, u, c], s) → Stench(s)
Percept([a,Breeze, g, u, c], s) → Breeze(s)
Percept([a, b,Glitter, u, c], s) → At_Gold(s)
Percept([a, b, g, Bump, c], s) → At_Wall(s)
Percept([a, b, g, u, Scream], s) → Wumpus_dead(s)

At(Agent, l, s) ∧ Breeze(s) → Breezy(l)
At(Agent, l, s) ∧ Stench(s) → Smelly(l)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 350

4 First-Order Logic: Semantics
4.6 Sit-Calculus

Adjacent(l1, l2) ↔ ∃ d l1 .
= Location_toward(l2, d)

Smelly(l1) → ∃l2 At(Wumpus, l2, s)∧
(l2

.
= l1 ∨ Adjacent(l1, l2))

Percept([none, none, g, u, c], s)∧
At(Agent, x, s) ∧ Adjacent(x, y)

→ OK(y)
(¬At(Wumpus, x, t) ∧ ¬Pit(x))

→ OK(y)
At(Wumpus, l1, s) ∧ Adjacent(l1, l2)

→ Smelly(l2)
At(Pit, l1, s) ∧ Adjacent(l1, l2)

→ Breezy(l2)
Prof. Dr. Jürgen Dix Clausthal, SS 2018 351

4 First-Order Logic: Semantics
4.6 Sit-Calculus

Axioms to describe actions:

Holding(Gold, result(Grab, s)) ↔ At_Gold(s)∨
Holding(Gold, s)

Holding(Gold, result(Release, s)) ↔ �
Holding(Gold, result(Turn_right , s)) ↔ Holding(Gold, s)
Holding(Gold, result(Turn_left , s)) ↔ Holding(Gold, s)
Holding(Gold, result(Forward , s)) ↔ Holding(Gold, s)
Holding(Gold, result(Climb, s)) ↔ Holding(Gold, s)

Each effect must be described carefully.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 352

4 First-Order Logic: Semantics
4.6 Sit-Calculus

Axioms describing preferences among actions:
Great(a, s)→ Action(a, s)
(Good(a, s) ∧ ¬∃bGreat(b, s))→ Action(a, s)
(Medium(a, s) ∧ ¬∃b (Great(b, s) ∨ Good(b, s)))→ Action(a, s)
(Risky(a, s) ∧ ¬∃b (Great(b, s) ∨ Good(b, s) ∨Medium(a, s)))→

→ Action(a, s)
At(Agent, [1, 1], s) ∧ Holding(Gold, s)→ Great(Climb, s)
At_Gold(s) ∧ ¬Holding(Gold, s)→ Great(Grab, s)
At(Agent, l, s) ∧ ¬Visited(Location_ahead(Agent, s))∧

∧OK(Location_ahead(Agent, s))→ Good(Forward , s)
Visited(l)↔ ∃sAt(Agent, l, s)

The goal is not only to find the gold but also to return safely.
We need additional axioms like

Holding(Gold, s)→ Go_back(s).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 353

4 First-Order Logic: Semantics
4.7 The Blocksworld

4.7 The Blocksworld

Prof. Dr. Jürgen Dix Clausthal, SS 2018 354

4 First-Order Logic: Semantics
4.7 The Blocksworld

Blocksworld

The Blocks World (BW) is one of the most popular
domains in AI (first used in the 1970s). However,
the setting is easy:

Prof. Dr. Jürgen Dix Clausthal, SS 2018 355

4 First-Order Logic: Semantics
4.7 The Blocksworld

Domain

Blocks of various shapes, sizes and colors sitting
on a table and on each other.

(Here: Quadratic blocks of equal size.)

Actions

Pick up a block and put it to another position
(tower of blocks or table). Only the topmost
blocks can be used.

How to formalize this? What language to use?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 356

4 First-Order Logic: Semantics
4.7 The Blocksworld

Choosing the predicates: First try.

1 One action: move. We add a ternary predicate
move(b, x, y): The block b is moved from x to y
if both b and y are clear (nothing on top of
them).

2 So we need a predicate clear(x).
3 One predicate on(b, x) meaning block b is on x.
4 But then clear(x) can be defined by
∀y ¬on(y, x).

Problem: What about the table?

If we view the table as a simple block: clear(table)
means that there is nothing on the table.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 357

4 First-Order Logic: Semantics
4.7 The Blocksworld

Choosing the predicates: Second try.

Keep the current framework, view the table as a
block but add an additional binary predicate

move_to_table(b, x),

meaning that the block b is moved from x to the
table.

clear(x) is interpreted as there is free place on x to
put a block on x. This interpretation does also
work for x .

= table.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 358

4 First-Order Logic: Semantics
4.7 The Blocksworld

Choosing the predicates: Third try.

Definition 4.25 (LBW)

The BW language LBW ⊆ LFOL is the subset of FOL
having a signature consisting of the two binary
predicate symbols above and .

=.

We define the following macros:
on(x, y) : above(x, y) ∧ ¬(∃z(above(x, z) ∧ above(z, y)))

onTable(x) : ¬(∃y(above(x, y)))
clear(x) : ¬(∃y(above(y, x)))

How do the LBW -structures look like?

Do they all make sense?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 359

4 First-Order Logic: Semantics
4.7 The Blocksworld

Our blocksworld has a very specific structure,
which should be reflected in the models!

Definition 4.26 (Chain)

Let A be a nonempty set. We say that (A,<) is a
chain if < is a binary relation on A which is

1 irreflexive,
2 transitive, and
3 connected, (i.e., for all a, b ∈ A it holds that

either a < b, a = b, or a > b).

(A chain is interpreted as a tower of blocks.)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 360

4 First-Order Logic: Semantics
4.7 The Blocksworld

Definition 4.27 (LBW-BW-structure)

An BW-structure is a LBW-structure A = (U, I) in
which I(above) is a finite and disjoint union of
chains over U , i.e.

I(above) =
⋃

(A,<)∈A′

{(a, b) ∈ A2 | a > b}}

where A′ is a set of chains over U such that for all
(A1, <1), (A2, <2) ∈ A′ with (A1, <1) 6= (A2, <2) it
holds that A1 ∩ A2 = ∅.

(Note: I(above) is transitive!)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 361

4 First-Order Logic: Semantics
4.7 The Blocksworld

Definition 4.28 (BW-theory)

The theory Th(BW) consists of all LBW-sentences
which are true in all BW-structures.

Is the theory complete?
No, consider for example

∀x, y(onTable(x) ∧ onTable(y)→ x
.
= y)

What about planning in the blocksworld?
This should be done automatically as in the
case of the Sudoku game or the puzzle.
Thus we need a FOL theorem prover.

 An axiomatization is needed!
Prof. Dr. Jürgen Dix Clausthal, SS 2018 362

4 First-Order Logic: Semantics
4.7 The Blocksworld

A complete axiomatization
The set AX BW was proposed by Cook and Liu (2003):

1 ∀x ¬above(x, x)
2 ∀x ∀y ∀z (above(x, y) ∧ above(y, z))→ above(x, z)
3 ∀x ∀y ∀z (above(x, y) ∧ above(x, z))→

(y = z ∨ above(y, z) ∨ above(z, y))
4 ∀x ∀y ∀z (above(y, x) ∧ above(z, x))→

(y = z ∨ above(y, z) ∨ above(z, y))
5 ∀x (onTable(x) ∨ ∃y(above(x, y) ∧ onTable(y)))
6 ∀x (clear(x) ∨ ∃y(above(y, x) ∧ clear(y)))
7 ∀x ∀y (above(x, y)→ (∃zon(x, z) ∧ ∃zon(z, y))

The last statement says that if an element is not on top (y)
then there is a block above it, and if an element is not at the
bottom (x) then there is an element below it.

Is every LBW-BW-structure also a model for AX BW?
 Exercise

Prof. Dr. Jürgen Dix Clausthal, SS 2018 363

4 First-Order Logic: Semantics
4.7 The Blocksworld

Lemma 4.29

Cn(AX BW) ⊆ Th(BW).

Proof: Exercise

Indeed, both sets are identical:

Theorem 4.30 (Cook and Liu)

Cn(AX BW) = Th(BW).

Thus the axiomatization is sound and complete.

Additionally, the theory is decidable!

 We are ready to use a theorem prover!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 364

4 First-Order Logic: Semantics
4.8 Higher order logic

4.8 Higher order logic

Prof. Dr. Jürgen Dix Clausthal, SS 2018 365

4 First-Order Logic: Semantics
4.8 Higher order logic

Definition 4.31 (Second order logic LPL 2)

The language L2nd OL of second order logic consists of the
language LFOL and additionally

for each k ∈ N0: Xk
1 , X

k
2 , . . . , X

k
n, . . . a countable set

RelVark of k-ary predicate variables.
Thereby the set of terms gets larger:

if Xk is a k-ary predicate variable and t1, . . . , tk are
terms, then Xk(t1, . . . , tk) is also a term,

and also the set of formulae:
if X is a predicate variable, ϕ a formula, then (∃Xϕ) and
(∀Xϕ) are also formulae.

Not only elements of the universe can be quantified but also
arbitrary subsets resp. k-ary relations.
The semantics do not change much – except for the new
interpretation of formulae like (∃Xϕ), (∀Xϕ)).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 366

4 First-Order Logic: Semantics
4.8 Higher order logic

We also require from IA that the new k-ary
predicate variables are mapped onto k-ary
relations on UA.

if ϕ =def ∀Xk ψ, then

A(ϕ) =def

{
t, if for all Rk ⊆ UA × · · · × UA : A[Xk/Rk](ψ) = t,
f, else.

if ϕ =def ∃Xk ψ, then

A(ϕ) =def

{
t, if there is a Rk ⊆ UA × · · · × UA with A[Xk/Rk](ψ) = t,
f, else.

We can quantify over arbitrary n-ary relations,
not just over elements (like in first order logic).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 367

4 First-Order Logic: Semantics
4.8 Higher order logic

Dedekind/Peano Characterization of N
The natural numbers satisfy the following axioms:

Ax1: 0 is a natural number.

Ax2: For each natural number n, there is exactly one
successor S(n) of it.

Ax3: There is no natural number which has 0 as its
successor.

Ax4: Each natural number is successor of at most one
natural number.

Ax5: The set of natural numbers is the smallest set N
satisfying the following properties:

1 0 ∈ N ,
2 n ∈ N ⇒ S(n) ∈ N .

The natural numbers are characterized up to isomorphy by these
axioms.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 368

4 First-Order Logic: Semantics
4.8 Higher order logic

How to formalize the last properties?

Language: We choose “0” as a constant and
“S(·)” as a unary function symbol.

Axiom for 0: ∀x¬S(x)
.
= 0.

Axiom for S: ∀x∀y (S(x)
.
= S(y)→ x

.
= y).

Axiom 5: ∀X ((X(0) ∧ ∀x (X(x)→ X(S(x)))) →
∀yX(y)).

While the first two axioms are first-order, the last
one is essentially second-order.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 369

4 First-Order Logic: Semantics
4.8 Higher order logic

Question

What do the following two 2nd order sentences
mean?

∀x∀y (x
.
= y ⇐⇒ ∀X (X(x)⇐⇒ X(y))),

∀X (∀x∃!yX(x, y) ∧
∀x∀y∀z ((X(x, z) ∧X(y, z))→ x

.
= y))

→ ∀x∃yX(y, x))

Prof. Dr. Jürgen Dix Clausthal, SS 2018 370

4 First-Order Logic: Semantics
4.8 Higher order logic

Answer:

The first sentence shows that equality can be
defined in 2nd OL (in contrast to FOL).
The second sentence holds in a structure if and
only if it is finite. Note that this cannot be
expressed in FOL, for a good reason:
compactness would not hold anymore. Tghis
would destroy all good properties of FOL.

While the semantics of L2nd OL is a canonical
extension of LFOL, this does not hold for the
calculus level. It can be shown that the set of
valid sentences in L2nd OL is not even recursively
enumerable.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 371

4 First-Order Logic: Semantics
4.8 Higher order logic

Attention:

There is no correct and complete
calculus for 2nd Order Logic!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 372

5 Verification II: Hoare calculus

5. Verification II: Hoare calculus
5 Verification II: Hoare calculus

Motivation
Core Programming Language
Hoare Logic
Proof Calculi: Partial Correctness
Proof Calculi: Total Correctness
Sound and Completeness

Prof. Dr. Jürgen Dix Clausthal, SS 2018 373

5 Verification II: Hoare calculus

Content of this chapter (1):

In this chapter we explore ways to use FOL for the
verification of programs: does a program really
do what we want? The method we discuss has
been developed by C.A.R. Hoare and M. Floyd in
the 60’ies.
We introduce a calculus to prove correctness of computer
programs.
Verification: We argue why formal methods are

useful/necessary for program verification.
Core Programming Language: An abstract but powerful

programming language is introduced.
Hoare Logic: We introduce the Hoare Calculus which

operates on triples {φpre}P {ψpost}.
Prof. Dr. Jürgen Dix Clausthal, SS 2018 374

5 Verification II: Hoare calculus

Content of this chapter (2):

Proof Calculi (Partial Correctness): Here we present three
calculi (proof rules, annotation calculus, and
the weakest precondition calculus) for partial
correctness.

Proof Calculi (Total Correctness): Partial correctness is
trivially satisfied when a program does not
terminate. Therefore, we consider total
correctness as well and an extension of the
calculi to deal with it. We consider the partial
and total correctness of programs.

Sound & Completeness: We briefly discuss the sound and
completeness of the Hoare calculus.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 375

5 Verification II: Hoare calculus
5.1 Motivation

5.1 Motivation

Prof. Dr. Jürgen Dix Clausthal, SS 2018 376

5 Verification II: Hoare calculus
5.1 Motivation

Why to formally specify/verify code?

Formal specifications are often important for
unambiguous documentations.
Formal methods cut down software
development and maintenance costs.
Formal specification makes software easier to
reuse due to a clear specification.
Formal verification can ensure error-free
software required by safety-critical computer
systems.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 377

5 Verification II: Hoare calculus
5.1 Motivation

Verification of Programs

How can we define the state of a program?

The state of a program is given by the contents
of all variables.

What about the size of the state-space of a
program?

The state space is usually infinite! Hence, the
technique of model checking is inappropriate.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 378

5 Verification II: Hoare calculus
5.1 Motivation

Software Verification Framework

Main reasons for formal specifications:

Informal descriptions often lead to
ambiguities which can result in serious (and
potentially expensive) design flaws.
Without formal specifications a rigorous
verification is not possible!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 379

5 Verification II: Hoare calculus
5.1 Motivation

Methodology

We assume the following methodology:

1 Build an informal description D of the
program and the domain.

2 Convert D into an equivalent formula φ in a
suitable logic.

3 (Try to) build a program P realizing φ.
4 Prove that P satisfies φ.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 380

5 Verification II: Hoare calculus
5.1 Motivation

Methodology (2)

Some points to think about:
(i) Point 2 is a non-trivial and non-formal

problem and thus “cannot be proven”: D is an
informal specification!

(ii) Often there are alternations between 3 and 4.
(iii) Sometimes one might realize that φ is not

equivalent to D and thus one has to revise φ.
(iv) Often, P must have a specific structure to

prove it against ϕ.
In this lecture, we will focus on points 3,4, and
(iv).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 381

5 Verification II: Hoare calculus
5.1 Motivation

Some Properties of the Procedure

Proof-based: Not every state of the system is
considered (there are infinitely many
anyway), rather a proof for
correctness is constructed: this works
then for all states.

Semi-automatic: Fully automatic systems are
desireable but they are not always
possible: undecidability, time
constraints, efficiency, and “lack of
intelligence”.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 382

5 Verification II: Hoare calculus
5.1 Motivation

Some Properties of the Procedure (2)

Property-oriented: Only certain properties of a
program are proven and not the
“complete” behavior.

Application domain: Only sequential programs
are considered.

Pre/post-development: The proof techniques
are designed to be used during the
programming process (development
phase).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 383

5 Verification II: Hoare calculus
5.2 Core Programming Language

5.2 Core Programming Language

Prof. Dr. Jürgen Dix Clausthal, SS 2018 384

5 Verification II: Hoare calculus
5.2 Core Programming Language

Core Programming Language

To deal with an up-to-date programming
language like Java or C++ is out of scope of this
introductory lecture. Instead we identify some
core programming constructs and abstract away
from other syntactic and language-specific
variations.
Our programming language is built over

1 integer expressions,
2 boolean expressions, and
3 commands.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 385

5 Verification II: Hoare calculus
5.2 Core Programming Language

Definition 5.1 (Program Variables)

We use Vars to denote the set of (program)
variables. Typically, variables will be denoted by
u, . . . , x, y, z or x1, x2,

Definition 5.2 (Integer Expression)

Let x ∈ Vars. The set of integer expressions I is
given by all terms generated according to the
following grammar:

I ::= 0 | 1 | x | (I + I) | (I − I) | (I · I)

We also use −I to stand for 0− I.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 386

5 Verification II: Hoare calculus
5.2 Core Programming Language

Although the term “1− 1” is different from “0”, its meaning
(semantics) is the same. We identify “1 + 1 + . . .+ 1” with
“n” (if the term consist of n 1’s). The precise notion of
meaning will be given in Definition 5.10.
Integer expressions are terms over a set of function symbols
Func, here

Func = Vars ∪ {0, 1,+,−, ·}
Note also, that we consider elements from Z as constants
with their canonical denotation! Thus we write “3” instead
of “1 + 1 + 1”.

Example 5.3 (Some integer expressions)

5, x, 6 + (3 · x), x · y + z − 3,−x · x, . . .
Note that xx or y! are not integer expressions. Do we need
them?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 387

5 Verification II: Hoare calculus
5.2 Core Programming Language

Definition 5.4 (Boolean Expression)

The set of Boolean expressions B is given by all formulae
generated according to the following grammar:

B ::= � | (¬B) | (B ∧B) | (I < I)

We also use (B ∨B) as an abbreviation of ¬(¬B ∧ ¬B) and
> as an abbreviation for ¬�. Boolean expressions are
formulae over the set of relation symbols Pred = {�, <}.
So, boolean expressions are similar to sentential logic
formulae.

Note that we use I = I ′ to stand for ¬(I < I ′) ∧ ¬(I ′ < I).
We also write I 6= I ′ for ¬(I = I ′).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 388

5 Verification II: Hoare calculus
5.2 Core Programming Language

Formulae over Z
When describing the Hoare calculus, we also need formulae
to express (1) what should hold before a program is
executed, and (2) what should be the case after the
program has been executed. These formulae are built using
the boolean expressions just introduced.

Definition 5.5 (Formulae over Z)

The set of formulae FmlVars is given by all formulae
generated according to the following grammar:

φ ::= ∃xφ | B | (¬φ) | (φ ∧ φ)

where B is a boolean expression according to Definition 5.4
and x ∈ Vars.

We note that “∀xφ” is just an abbreviation for “¬∃x¬Φ”

Prof. Dr. Jürgen Dix Clausthal, SS 2018 389

5 Verification II: Hoare calculus
5.2 Core Programming Language

Formulae over Z (2)
We have to give a meaning (semantics) to the syntactic
constructs! Our model is given by Z where Z is the set of
integer numbers. Note that in Z we have a natural meaning
of the constructs 0, 1,−,+, ·, <:

Z = 〈Z, 0Z, 1Z,−Z,+Z, ·Z,�Z〉.
In Chapter 4 (Section 3) we have defined what it means that
a formula is true in such a structure:

1 ∀x∀y∀z (x · x+ y · y + z · z > 0),
2 ∀x∃y (y < x),
3 x · x < x · x · x,
4 x+ 4 < x+ 5.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 390

5 Verification II: Hoare calculus
5.2 Core Programming Language

Formulae over Z (3)
Note that when evaluating a formula with free variables,
there are two possibilities:

1 Either we need to assign values to these variables, or
2 we add “∀” quantifiers to bind all variables.

The truth of a formula can only be established if the
formula is a sentence, i.e. does not contain free variables.
Let φ(x, y) be the formula ∃z x+ z < y and let n, n′ ∈ Z.
Then we denote

by ∀φ(x, y) the formula ∀x∀y(∃z x+ z < y),
by φ(x, y)[n/x, n′/y] the formula where x is replaced by
n and y is replaced by n′: ∃z n+ z < n′.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 391

5 Verification II: Hoare calculus
5.2 Core Programming Language

Formulae over Z (4)

How large is this class of formulae over Z? Is it
expressive enough?

1 How can we express the function x! or xx?
2 Which functions are not expressible? Are there

any?
3 Is there an algorithm to decide whether a

given sentence φ (formulae without free
variables) holds in Z, i.e. whether Z |= φ?

4 Attention: everything radically changes, when
we do not allow multiplication! Then the
resulting theory is decidable.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 392

5 Verification II: Hoare calculus
5.2 Core Programming Language

Formulae over Z (5)

Let us express some functions f : Z→ Z that are
not available as integer expressions.

Definition 5.6 (Functions Expressible over Z)

A function f : Z→ Z is expressible over Z if there
is a formula Φ(x, y) with x, y as the only free
variables such that the following holds for all
z, z′ ∈ Z:

Z |= Φ(x, y)[z/x, z′/y] iff f(z) = z′

Prof. Dr. Jürgen Dix Clausthal, SS 2018 393

5 Verification II: Hoare calculus
5.2 Core Programming Language

Formulae over Z (6)

x!: Not obvious.
xx: Not obvious.

Using Gödelization, it can be shown that all
naturally occurring functions can be expressed. In
fact, all recursive functions are expressible. We
shall therefore use functions like x! as macros
(knowing that they can be expressed as formulae
in the language).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 394

5 Verification II: Hoare calculus
5.2 Core Programming Language

Definition 5.7 (Program)

The set Prog of (while) programs over Vars, I and
B is given by all well-formed sequences which can
be formed according to the following grammar:

C ::= skip | x := I | C; C | if B {C} else {C} | while B {C}

where B ∈ B, I ∈ I, and x ∈ Vars.

We usually write programs in lines (for better
readability).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 395

5 Verification II: Hoare calculus
5.2 Core Programming Language

skip: Do nothing.
x := I: Assign I to x.
C1; C2: Sequential execution: C2 is executed

after C1 provided that C1 terminates.
if B {C1} else {C2}: If B is true then C1 is

executed otherwise C2.
while B {C}: C is executed as long as B is true.

The statement “B is true” is defined in
Definition 5.11.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 396

5 Verification II: Hoare calculus
5.2 Core Programming Language

Example 5.8

What does the following program Fac(x)
calculate?

y := 1;
z := 0;
while z 6= x {

z := z + 1;
y := y · z

}

Prof. Dr. Jürgen Dix Clausthal, SS 2018 397

5 Verification II: Hoare calculus
5.2 Core Programming Language

Is this class of programs large or small?
Can we express everything we want?

1 No, because we need better software engineering
constructs.

2 Yes, because we have "while" and therefore we can do
anything.

3 No, because we can not simulate (emulate) Java or C++.
4 It is already too large, because we assume that we can

store arbitrary numbers. This is clearly not true on real
computers.

5 Yes, because this class of programs corresponds to the
class of deterministic Turing machines. And we cannot
aim for more.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 398

5 Verification II: Hoare calculus
5.2 Core Programming Language

While Programs = Turing Machines

Turing Machines

The class of programs we have introduced corresponds
exactly to programs of Turing machines. Thus it is an
idealization (arbitrary numbers can be stored in one cell)
and therefore it is much more expressive than any real
programming language.
But playing quake requires a lot of coding . . .

In particular, there is no algorithm to decide whether a
given program terminates or not.
The set of all terminating programs is recursively
enumerable, but not recursive.
Therefore the set of non-terminating programs is not
even recursively enumerable.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 399

5 Verification II: Hoare calculus
5.2 Core Programming Language

Meaning of a Program

Definition 5.9 (State)

A state s is a mapping

s : Vars → Z

A state assigns to each variable an integer. The set
of all states is denoted by S.

The semantics of a program P is a partial
function

[[P]] : S → S

that describes how a state s changes after
executing the program.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 400

5 Verification II: Hoare calculus
5.2 Core Programming Language

Definition 5.10 (Semantics: Integer Expression)

The semantics of integer expressions is defined:

[[0]]s = 0

[[1]]s = 1

[[x]]s = s(x) for x ∈ Vars
[[E ∗ E ′]]s = [[E]]s ∗ [[E ′]]s for ∗ ∈ {+,−, ·}

Definition 5.11 (Meaning: Boolean Expression)

The semantics of a Boolean expression is given
as for sentential logic; that is, we write Z, s |= B if
B is true in Z wrt to state (valuation) s.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 401

5 Verification II: Hoare calculus
5.2 Core Programming Language

Definition 5.12 (Meaning: Satisfaction Z, s |= φ)

The semantics of a formula φ is defined
inductively. We have already defined it in
Definition 5.11 for atomic expressions. Arbitrary
formulae can also contain the quantifier ∃.

Z, s |= ∃xφ(x) iff there is a n ∈ Z
such that Z, s |= φ(x)[n/x]

1 ∃xφ : ∃x 3x < 4,
2 ∃xφ : ∃x 3x < 4y.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 402

5 Verification II: Hoare calculus
5.2 Core Programming Language

Definition 5.13 (Meaning: Program)

1 [[skip]](s) = s

2 [[x := I]](s) = t where t(y) =

{
s(y) if y 6= x

[[I]]s else.

3 [[C1; C2]](s) = [[C2]]([[C1]](s))

4 [[if B {C1} else {C2}]](s) =

{
[[C1]](s) if Z, s |= B,

[[C2]](s) else.

5 [[while B {C}]](s) ={
[[while B {C}]]([[C]](s)) if Z, s |= B,

s else.

Note that the recursive definition of the while cases is the
reason that [[·]] might be a partial function: it is (perhaps)
not everywhere defined.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 403

5 Verification II: Hoare calculus
5.3 Hoare Logic

5.3 Hoare Logic

Prof. Dr. Jürgen Dix Clausthal, SS 2018 404

5 Verification II: Hoare calculus
5.3 Hoare Logic

Hoare Triples

How can we prove that a program/method P
really does what it is intended to do?

We describe the desired state of the (overall)
program before and after the execution of P.

For example, let P(x) be a program that should
return a number whose square is strictly less than
x.

Is the correctness of the program ensured
when we require that P(x) · P(x) < x?

Not completely! What if x < 0? So, the
precondition is also very important!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 405

5 Verification II: Hoare calculus
5.3 Hoare Logic

Definition 5.14 (Hoare Triple)

Let φ and ψ be formulae of FmlVars and P be a
program. A Hoare triple is given by

{φ}P{ψ}

where φ is said to be the precondition and ψ the
postcondition.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 406

5 Verification II: Hoare calculus
5.3 Hoare Logic

A Hoare triple {φ}P{ψ} is read as follows:

If the overall program is in a state that satisfies
φ, then,
after the execution (and termination) of P the
resulting state of the program satisfies ψ.

Let P be the program given above and y be the
variable returned. Then the following Hoare triple
would be a valid specification:

{x > 0}P{y · y < x}.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 407

5 Verification II: Hoare calculus
5.3 Hoare Logic

Partial and Total Correctness
We already introduced the informal reading of
Hoare triples. Now we will be more formal. There
are two cases one has to distinguish: Programs
that terminate and ones which do not.
Accordingly, we have two definitions of
correctness:
partially correct: ψ holds after execution of P,

provided that P terminates,
totally correct: we require in addition that P

terminates.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 408

5 Verification II: Hoare calculus
5.3 Hoare Logic

Definition 5.15 (Partial Correctness)

A triple {φ}P{ψ} is satisfied under partial
correctness, written as

|=p {φ}P{ψ},

if for each state s

Z, [[P]](s) |= ψ

provided that Z, s |= φ and [[P]](s) are defined.

The following program is always partially
correct: while > {x := 0}, for arbitrary pre and
postconditions.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 409

5 Verification II: Hoare calculus
5.3 Hoare Logic

Definition 5.16 (Total Correctness)

A triple {φ}P{ψ} is satisfied under total
correctness, written as

|=t {φ}P{ψ},

if for each state s, [[P]](s) is defined and

Z, [[P]](s) |= ψ

provided that Z, s |= φ.

The following program is usually not totally
correct: while > {x := 0}. Why “usually”?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 410

5 Verification II: Hoare calculus
5.3 Hoare Logic

Example 5.17

Consider the following program Succ(x):

a := x + 1;
if (a− 1 = 0){

y := 1
} else{

y := a
}
Under which semantics does the program satisfy
{>}Succ{y = x+ 1}?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 411

5 Verification II: Hoare calculus
5.3 Hoare Logic

Note, that the last program is only one program
(and a very silly one) that ensures the condition
{>}Succ{y = x+ 1}. There are many more.
Example 5.18

Recall the program Fac(x) stated in Example 5.8.
Which of the following statements are correct?
|=t {x ≥ 0}Fac{y = x!},
|=t {>}Fac{y = x!},
|=p {x ≥ 0}Fac{y = x!} and
|=p {>}Fac{y = x!}.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 412

5 Verification II: Hoare calculus
5.3 Hoare Logic

Program and Logical Variables

The pre- and postconditions in a Hoare triple may
contain two kinds of variables:

program variables and
logical variables.

Given a program P the former kind occurs in the
program whereas the latter refers to fresh
variables.

The following example makes clear why we need
logical variables.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 413

5 Verification II: Hoare calculus
5.3 Hoare Logic

Example 5.19

The following program Fac2 works as well.

y := 1;
while (x 6= 0){

y := y · x;
x := x− 1

}
Why is it not a good idea to use the Hoare triple
{x ≥ 0}Fac2{y = x!} in this case?

What about {x = x0 ∧ x ≥ 0}Fac2{y = x0!}? The
variable x0 is a logical variable!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 414

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

5.4 Proof Calculi: Partial
Correctness

Prof. Dr. Jürgen Dix Clausthal, SS 2018 415

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Proof Rules
We have introduced a semantic notion of (partial
and total) correctness. As for resolution we are
after syntactic versions (`t and `p) which can be
used on computers.

Sound Calculus: Can we define a calculus, that
allows us to derive only valid Hoare
triples?

Complete Calculus: Can we define a calculus,
that generates all valid Hoare triples?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 416

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Answer to question 1: Yes, for both versions.
Answer to question 2: No, not even for `p:

`p {>}P {�} if and only if P is not terminating.

And this set is not recursively enumerable.

The following rules were proposed by R. Floyd
and C.A.R. Hoare. A rule for each basic program
construct is presented.

If a program is correct we may be able to show it
by only applying the following rules (compare
with Modus Ponens).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 417

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Composition

Definition 5.20 (Composition Rule (comp))

{φ}C1{η} {η}C2{ψ}
{φ}C1;C2{ψ}

In order to prove that {φ}C1;C2{ψ} we
have to prove the Hoare triples {φ}C1{η}
and {η}C2{ψ} for some appropriate η.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 418

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

An axiom
Definition 5.21 (Assignment Rule (assign))

{ψ[I/x]}x := I{ψ}

The rule is self-explanatory. Recall that
ψ[I/x] denotes the formula that is equal
to ψ but each free occurrence of x is
replaced by I.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 419

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Another axiom

Definition 5.22 (Skip Rule (skip))

{φ}skip{φ}

Prof. Dr. Jürgen Dix Clausthal, SS 2018 420

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

If Rule
Definition 5.23 (If Rule (if))

{φ ∧B}C1{ψ} {φ ∧ ¬B}C2{ψ}
{φ} if B {C1} else {C2}{ψ}

In order to prove the conclusion we prove
that ψ holds for both possible program
executions of the if-rule: when B holds
and when it does not.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 421

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Partial-While Rule
Definition 5.24 (Partial-While Rule (while))

{ψ ∧B}C{ψ}
{ψ} while B {C}{ψ ∧ ¬B}

The while-rule is the most sophisticated
piece of code; it may allow infinite
looping. The formula ψ in the premise
plays a decisive rule: ψ is true before and
after the execution of C, i.e. C does not
change the truth value of ψ.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 422

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Invariant

Definition 5.25 (Invariant)

An invariant of the while-statement
while B {C} is any formula ψ such that
|=p {ψ ∧B}C{ψ}.
The conclusion says that ψ does not
change, even when C is executed several
times and if C terminates then B is false.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 423

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Example 5.26

What is an invariant of the following program?

y := 1;
z := 0;
while z 6= x {

z := z + 1;
y := y · z

}
An invariant is “y = z!”.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 424

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Implication Rule

Definition 5.27 (Implication Rule (impl))

{φ}C{ψ}
{φ′}C{ψ′}

whenever Z |= ∀(φ′ → φ) and
Z |= ∀(ψ → ψ′).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 425

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Implication Rule (2)

The implication rule allows us to
strengthen the precondition φ to φ′ and
to weaken the postcondition ψ to ψ′,
provided that the two implications hold.

Note, that this rule links program logic
with the truths of formulae in Z, which
have to be established. We call them
proof obligations.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 426

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

An Example

We will try to prove the correctness of the
program Fac given in Example 5.8. That is, we
would like to derive

{>}Fac{y = x!}

For any input state after the execution of Fac
the return value y should have the value x!.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 427

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

We have to start with axioms (by the assignment rule):
{1=1}y:=1{y=1}
{>}y:=1{y=1} (impl) {y=1∧0=0}z:=0{y=1∧z=0}

{y=1}z:=0{y=1∧z=0} (impl)

{>}y := 1; z := 0{y = 1 ∧ z = 0}︸ ︷︷ ︸
ψ1

(comp)

Again, on top are axioms:
{y·(z+1)=(z+1)!}z:=z+1{y·z=z!}
{y=z!∧z 6=x}z:=z+1{y·z=z!} (impl) {y·z=z!}y:=y·z{y=z!}

{y=z!∧z 6=x}z:=z+1;y:=y·z{y=z!} (comp)

{y = z!} while z 6= x {z := z + 1; y := y · z}{y = z! ∧ z = x}︸ ︷︷ ︸
ψ2

(while)

Putting both parts together:

ψ1
ψ2

{y=1∧z=0} while z 6=x {z:=z+1;y:=y·z}{y=x!}(impl)

{>}Fac{y = x!} (comp)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 428

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Proof obligations

We have to show that the following formulae hold
in Z:

1 > → 1 = 1,
2 ∀y(y = 1→ y = 1 ∧ 0 = 0),
3 ∀x∀y∀z(y = z! ∧ z 6= x→ (y(z + 1) = (z + 1)!)),
4 ∀y∀z(y = 1 ∧ z = 0→ y = z!),
5 ∀x∀y∀z(y = z! ∧ z = x→ y = x!).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 429

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Annotation Calculus

The proof rules just presented are very similar
to Hilbert style calculus rules.
They inherit some undesirable properties: The
proof calculus is not “easy to use”.
The proof given for the small Fac-program
looks already quite complicated.

In this section we present an annotation calculus
which is much more convenient for practical
purposes.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 430

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

We consider a program P as a sequence of basic
commands:

C1; C2; . . . ; Cn

That is, none of the commands Ci is directly
composed of smaller programs by means of
composition. Assume we intend to show that

`p {φ}P{ψ}
In the annotation calculus we try to find
appropriate φi, i = 0, . . . , n such that

if `p {φi}Ci{φi+1} for all i = 0, . . . , n− 1
then also `p {φ}P{ψ}.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 431

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

In other words, we interleave the program P with
intermediate conditions φi

{φ0}C1{φ1} C2{φ2} . . . {φn−1}Cn{φn}
where each step {φi}Ci{φi+1} is justified by one of
the proof rules given below.

That is, an annotation calculus is a way of
summarizing the application of the proof rules to
a program.

How to find the appropriate φi?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 432

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

We determine “something like” the weakest
preconditions successively such that

`p {φ′0}C1{φ′1} C2{φ′2} . . . {φ′n−1}Cn{φ′n}
Under which condition would this guarantee
`p {φ0}P{φn}?
It must be the case that Z |= ∀ (φ0 → φ′0) and
Z |= ∀ (φ′n → φn)

Why do we say “something like” the weakest
precondition? We come back to this point later.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 433

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

In the following we label the program P with
preconditions by means of rewrite rules

X

Y

Such a rule denotes that X can be rewritten (or
replaced) by Y .

Each rewrite rule results from a proof rule.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 434

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Definition 5.28 (Assignment Rule)

x := E{ψ}
{ψ[E/x]}x := E{ψ}

Definition 5.29 (If Rule (1))

if B {C1} else {C2}{ψ}
if B {C1{ψ}} else {C2{ψ}}{ψ}

Definition 5.30 (If Rule (2))

if B {{φ1} · · · } else {{φ2} · · · }
{(B → φ1) ∧ (¬B → φ2)} if B {{φ1} · · · } else {{φ2} · · · }

Prof. Dr. Jürgen Dix Clausthal, SS 2018 435

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Definition 5.31 (Partial-While Rule)

while B {P}
{φ} while B {{φ ∧ B}P{φ}}{φ ∧ ¬B}

where φ is an invariant of the while-loop.

Definition 5.32 (Skip Rule)

skip{φ}
{φ}skip{φ}

Prof. Dr. Jürgen Dix Clausthal, SS 2018 436

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Applying the rules just introduced, we end up with a finite
sequence

s1s2 . . . sm

where each si is of the form {φ} or it is a command of a
program (which in the case of if or while commands can also
contain such a sequence).
It can also happen that two subsequent elements have the
same form: . . . {φ}{ψ} Whenever this occurs, we have to
show that φ implies ψ: a proof obligation (see Slide 425).

Definition 5.33 (Implied Rule)
Whenever applying the rules lead to a situation where two
formulae stand next to each other . . . {φ}{ψ} . . ., then we
add a proof obligation of the form

Z |= ∀ (φ→ ψ).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 437

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Consider {φ} while B {P}{ψ}. Then the while-rule
yields the following construct:

{φ}{η} while B {{η ∧ B}P{η}}{η ∧ ¬B}{ψ}
That is, we have to show that the invariant η
satisfies the following properties:

1 Z |= ∀ (φ→ η),
2 Z |= ∀ ((η ∧ ¬B)→ ψ),
3 `p {η} while B {P}{η ∧ ¬B}, and
4 `p {η ∧B}P{η} (this is the fact that it is an

invariant).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 438

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Example 5.34

Prove: |=p {y = 5}x := y + 1{x = 6}
1 x := y + 1{x = 6}
2 {y + 1 = 6}x := y + 1{x = 6} (Assignment)
3 {y = 5}{y + 1 = 6}x := y + 1{x = 6} (Implied)

Example 5.35

Prove: |=p {y < 3}y := y + 1{y < 4}
1 y := y + 1{y < 4}
2 {y + 1 < 4}y := y + 1{y < 4} (Assignment)
3 {y < 3}{y + 1 < 4}y := y + 1{y < 4} (Implied)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 439

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Example 5.36

{y = y0}
z := 0;
while y 6= 0 {

z := z + x;
y := y − 1

}
{z = xy0}

Firstly, we have to use the rules of the annotation
calculus.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 440

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

{y = y0}
{I[0/z]}
z := 0;
{I}
while y 6= 0 {
{I ∧ y 6= 0}
{I[y − 1/y][z + x/z]}
z := z + x;
{I[y − 1/y]}
y := y − 1
{I}

}
{I ∧ y = 0}
{z = xy0}

What is a suitable invariant?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 441

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

We have to choose an invariant such that the
following hold in Z:

1 y = y0 → I[0/z],
2 I ∧ y 6= 0→ I[y − 1/y][z + x/z],
3 I ∧ y = 0→ z = xy0.

What about I : >? What about I : (z + xy = xy0)?

It is easy to see that the latter invariant satisfies all
three conditions. This proves the partial
correctness of {y = y0}P{z = xy0}.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 442

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

How to ensure that |=p {φ}P{ψ}?
Definition 5.37 (Valid Annotation)

A valid annotation of {φ}P{ψ} is given if

1 only the rules of the annotation calculus are
used;

2 each command in P is embraced by a post
and a precondition;

3 the assignment rule is applied to each
assignment;

4 each proof obligation introduced by the
implied rule has to be verified.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 443

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Proposition 5.38 (`p if and only if Valid Annotation)

Constructing valid annotations is equivalent to
deriving the Hoare triple {φ}P{ψ} in the Hoare
calculus:

`p {φ}P{ψ}
if and only if

there is a valid annotation of {φ}P{ψ}.

Note, this does not mean that the calculus is
complete!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 444

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Exercise

Let the program P be:

z := x;
z := z + y;
u := z

Use the annotation calculus to prove that
`p {>}P{u = x+ y}.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 445

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Exercise

Given the program P:

a := x + 1;
if a− 1 = 0 {y := 1} else {y := a}

Use the annotation calculus to prove that
`p {>}P{y = x+ 1}.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 446

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Exercise

Given the program Sum:

z := 0;
while x > 0 {

z := z + x;
x := x− 1

}
Use the annotation calculus to prove that
`p {x = x0 ∧ x ≥ 0}Sum{z = x0(x0+1)

2 }.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 447

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Weakest Liberal Precondition
In principle, the annotation calculus determines the
weakest precondition of a program and checks whether the
given precondition implies the calculated precondition.
I.e. when we start with something of the form

P{ψ}
then the annotation calculus leads to a Hoare triple

{φ}P′{ψ}
where φ is “something like the weakest precondition”:

`p {φ}P{ψ}.
Without the while-command the annotation calculus does
calculate the weakest precondition! But in the rule for the
while-command some invariant is selected. This does not
ensure that the weakest precondition is determined!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 448

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

A formula ψ is said to be weaker than χ if the
following holds: Z |= ∀(χ→ ψ).
Theorem 5.39 (Weakest Liberal Precondition)

The weakest liberal precondition of a program P
and postcondition φ, denoted by wp(P, φ), is the
weakest formula ψ such that |=p {ψ}P{φ}. Such a
formula exists and can be constructed as a formula
in our language.

The reason for the last theorem is that the model
Z with +, ·, < is powerful enough to express all
notions we need.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 449

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

The weakest liberal precondition for each program is
constructed inductively:

Proposition 5.40 (wp- Partial Correctness)

wp(x := I, φ) if and only if φ[x/I]

wp(P1; P2, φ) if and only if wp(P1,wp(P2, φ))

wp(if B {P1} else {P2}) if and only if (B → wp(P1, φ)) ∧
(¬B → wp(P2, φ))

wp(while B {P}, φ) if and only if ∀i ∈ N0 (Li(B,P, φ))

where

L0 (B,P, φ) := >
Li+1 (B,P, φ) := (¬B → φ) ∧ (B → wp(P,Li(B,P, φ))

Prof. Dr. Jürgen Dix Clausthal, SS 2018 450

5 Verification II: Hoare calculus
5.4 Proof Calculi: Partial Correctness

Proposition 5.41

The Li(B,P, φ) are monotonically increasing:
∀i ∈ N0 (Li+1(B,P, φ)→ Li(B,P, φ)).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 451

5 Verification II: Hoare calculus
5.5 Proof Calculi: Total Correctness

5.5 Proof Calculi: Total
Correctness

Prof. Dr. Jürgen Dix Clausthal, SS 2018 452

5 Verification II: Hoare calculus
5.5 Proof Calculi: Total Correctness

Proof Rules
We extend the proof calculus for partial
correctness presented to one that covers total
correctness.

Partial correctness does not say anything about
the termination of programs. It is easy to see that
only the while construct can cause the
nontermination of a program. Hence, in addition
to the partial correctness calculus we have to
prove that a while loop terminates.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 453

5 Verification II: Hoare calculus
5.5 Proof Calculi: Total Correctness

The proof of termination of while statements
follows the following schema:

Given a program P, identify an integer
expression I whose value decreases after
performing P but which is always
non-negative.

Such an expression E is called a variant.
Obviously: a while loop terminates if such a
variant exists. The corresponding rule is given
below.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 454

5 Verification II: Hoare calculus
5.5 Proof Calculi: Total Correctness

Definition 5.42 (Total-While Rule)

{φ ∧B ∧ 0 ≤ E = E0}C{φ ∧ 0 ≤ E < E0}
{φ ∧ 0 ≤ E} while B {C}{φ ∧ ¬B}

where
φ is an invariant of the while-loop,
E is a variant of the while-loop,
E0 represents the initial value of E before the
loop.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 455

5 Verification II: Hoare calculus
5.5 Proof Calculi: Total Correctness

Example 5.43

Let us consider the program Fac once more:

y := 1;

z := 0;

while (z 6= x) {z := z + 1; y := y · z}

How does a variant for the proof of
{x ≥ 0}Fac{y = x!} look like?

A possible variant is “x− z”. The first time the
loop is entered we have that x− z = x and then
the expression decreases step by step until
x− z = 0.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 456

5 Verification II: Hoare calculus
5.5 Proof Calculi: Total Correctness

Annotation Calculus
Definition 5.44 (Total-While Rule)

while B {P}
{φ ∧ 0 ≤ E} while B{{φ ∧ B ∧ 0 ≤ E = E0}P{φ ∧ 0 ≤ E < E0}}{φ ∧ ¬B}

where
φ is an invariant of the while-loop,
E is a variant of the while-looping,
E0 represents the initial value of E before the
loop.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 457

5 Verification II: Hoare calculus
5.5 Proof Calculi: Total Correctness

Example 5.45

Prove that |=t {x ≥ 0}Fac{y = x!}. What do we
have to do at the beginning?

We have to determine a suitable variant and an
invariant. As variant we may choose x− z and as
invariant “y = z!”. Now we can apply the
annotation calculus.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 458

5 Verification II: Hoare calculus
5.5 Proof Calculi: Total Correctness

{x ≥ 0}
{1 = 0! ∧ 0 ≤ x− 0}
y := 1;
{y = 0! ∧ 0 ≤ x− 0}
z := 0;
{y = z! ∧ 0 ≤ x− z}
while x 6= z {
{y = z! ∧ x 6= z ∧ 0 ≤ x− z = E0}
{y(z + 1) = (z + 1)! ∧ 0 ≤ x− (z + 1) < E0}
z := z + 1;
{yz = z! ∧ 0 ≤ x− z < E0}
y := y · z
{y = z! ∧ 0 ≤ x− z < E0} }

{y = z! ∧ x = z}
{y = x!}

Prof. Dr. Jürgen Dix Clausthal, SS 2018 459

5 Verification II: Hoare calculus
5.5 Proof Calculi: Total Correctness

Weakest Precondition
Proposition 5.46 (wp- Total Correctness)

The weakest precondition for total correctness
exists and can be expressed as a formula in our
language.

Example 5.47

What is the weakest precondition for

while i < n {i := i + 1}{i = n+ 5}?

i = n+ 5.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 460

5 Verification II: Hoare calculus
5.6 Sound and Completeness

5.6 Sound and Completeness

Prof. Dr. Jürgen Dix Clausthal, SS 2018 461

5 Verification II: Hoare calculus
5.6 Sound and Completeness

Theoretical Aspects

Finally, we consider some theoretical aspects with
respect to the sound and completeness of the
introduced calculi.

Recall, that a calculus is sound if everything that
can be derived is also semantically true:

If `x {φ}P{ψ} then |=x {φ}P{ψ}
where x ∈ {p, t} stands for partial/total
correctness.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 462

5 Verification II: Hoare calculus
5.6 Sound and Completeness

The reverse direction is referred to as
completeness.
A calculus is complete if everything that can
semantically be derived is also derivable by the
calculus:

If |=x {φ}P{ψ} then `x {φ}P{ψ}
where x ∈ {p, t} stands for partial/total
correctness.

Which direction is more difficult to prove?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 463

5 Verification II: Hoare calculus
5.6 Sound and Completeness

For the soundness we just have to make sure that
all proof rules introduced make sense. That is,
given a rule X

Y it has to be shown that Y holds
whenever X holds.

Theorem 5.48

The Hoare calculus is sound.

Proof.

Exercise!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 464

5 Verification II: Hoare calculus
5.6 Sound and Completeness

Theorem 5.49

The Hoare calculus is complete.

The Hoare calculus contains axioms and rules
that require to determine whether certain
formulae (proof obligations) are true in Z.
The theory of Z is undecidable.
Thus any re axiomatization of Z is incomplete.
However, most proof obligations occurring in
practice can be checked by theorem provers.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 465

6 From FOL to PROLOG

6. From FOL to PROLOG
6 From FOL to PROLOG

Motivation
A calculus for FOL
Resolution
Herbrand
Variants of resolution
SLD resolution

Prof. Dr. Jürgen Dix Clausthal, SS 2018 466

6 From FOL to PROLOG

Content of this chapter:

Resolution: We extend our resolution calculus
for SL to one for FOL. We need (2) one
more rule, factorization to deal with
terms, and (2) the concept of
unification. Our calculus is refutation
complete for arbitrary clauses.

Completeness: We extend our SL Hilbert calculus
to one for FOL. Such a calculus is still
recursively enumerable, but not
recursive: FOL is undecidable.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 467

6 From FOL to PROLOG

Content of this chapter (2):

PROLOG: While we introduce PROLOG in the
next chapter, the last two sections of
this chapter prepare the ground for
introducing PROLOG. We discuss
Herbrand models and input and linear
resolution.

SLD resolution: If we restrict the class of
formulae, we get a more efficient
calculus: SLD resolution. This directly
leads to PROLOG as a programming
language.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 468

6 From FOL to PROLOG
6.1 Motivation

6.1 Motivation

Prof. Dr. Jürgen Dix Clausthal, SS 2018 469

6 From FOL to PROLOG
6.1 Motivation

Computational complexity of the problem

Propositional logic: co-NP-complete.

FOL: recursively enumerable (re).

Higher-order logic: Not even re.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 470

6 From FOL to PROLOG
6.1 Motivation

Way out of the complexity

Interactive theorem provers require a human
to give hints to the system.
The interaction may be at a very detailed level,
where the user guides the inferences made by
the system, or at a much higher level where
the user determines intermediate lemmas to
be proved on the way to the proof of a
conjecture.
Often: the user defines a number of proof
strategies proving toolbox (e.g., Isabelle).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 471

6 From FOL to PROLOG
6.1 Motivation

Popular Theorem proving techniques

First-order resolution with unification,
Higher-order unification,
Model elimination,
Superposition and term rewriting,
Lean theorem proving,
Method of analytic tableaux,
Mathematical induction,
DPLL (Davis-Putnam-Logemann-Loveland algorithm).

All the previously mentioned complexity bounds still apply!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 472

6 From FOL to PROLOG
6.2 A calculus for FOL

6.2 A calculus for FOL

Prof. Dr. Jürgen Dix Clausthal, SS 2018 473

6 From FOL to PROLOG
6.2 A calculus for FOL

We extend our calculus for SL from Definition 2.19

Definition 6.1 (Calculus for FOL: Axioms)

We define HilbertFOL
L = 〈{¬ϕ ∨ ϕ,¬�}, Inf〉, a Hilbert-Type

calculus for FOL. We keep the axiom schema ¬ϕ ∨ ϕ and ¬� and
add the following ones:

Substitution: ϕ[t/x]→ ∃xϕ, if t can be substituted in ϕ,

Equality: x
.
= x,

x1
.
= y1 ∧ . . . ∧ xm .

= ym → f(x1, . . . , xm)
.
=

f(y1, . . . , ym), for all variables and function
symbols of matching arities,
x1

.
= y1 ∧ . . . ∧ xn .

= yn → (R(x1, . . . , xn)→
R(y1, . . . , yn)), for all variables and relation
symbols of matching arities (in particular for .=).

(φ, ψ, χ stand for arbitrarily complex formulae (not just constants)—they
represent schemata, rather than particular formulae in the language)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 474

6 From FOL to PROLOG
6.2 A calculus for FOL

Definition 6.2 (Calculus for FOL: Rules)

As for SL, we keep the four schemata expansion,
associativity, shortening and cut. In addition, we add the
following rule schema

∃-Introduction: ϕ→ψ
∃xϕ→ψ , if x does not occur free in ψ.

(φ, ψ, χ stand for arbitrarily complex formulae (not just constants)— they
represent schemata, rather than particular formulae in the language)

The notion of a proof is literally the same as in SL
(Definition 2.20 on Slide 126). We denote the resulting
relation with `FOL.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 475

6 From FOL to PROLOG
6.2 A calculus for FOL

Completeness for FOL

In much the same way as for SL, but more cumbersome and
with much more formal effort, the following can be proved

Theorem 6.3 (Correct-, Completeness for HilbertFOL
L(Prop))

A formula follows semantically from a theory T if and only
if it can be derived:

T |= ϕ if and only if T `FOL ϕ

We are not giving the proof in this lecture, as we
concentrate on the resolution calculus for FOL.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 476

6 From FOL to PROLOG
6.3 Resolution

6.3 Resolution

Prof. Dr. Jürgen Dix Clausthal, SS 2018 477

6 From FOL to PROLOG
6.3 Resolution

Unifiers

Applying resolution in SL requires to find two
clauses so that one contains p and the other
¬p.

In FOL we have a more difficult situation.
Consider pred1(f(x), y) ∨ pred2(g(x)) and
¬pred1(f(c), g(c)).

The predicate ¬pred1(f(c), g(c)) is not exactly
the negation of pred1(f(x), y).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 478

6 From FOL to PROLOG
6.3 Resolution

Unifiers (cont.)

But in FOL we have more freedom: perhaps
we can find substitutions for the free variables,
such that we can make one predicate exactly
the negation of the other?
[c/x, g(c)/y] is a substitution that we can use.
Resolving with this substitution we get:
pred2(g(c)).
The technique is called unification. The
substitutions are called unifiers.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 479

6 From FOL to PROLOG
6.3 Resolution

Unifiers

Example 6.4

We consider a more difficult situation:
p(g(x, c), x) ∨ q(y) and ¬p(g(f(h(y)), y), d).

Is it possible to resolve these two clauses?
What if we replace the last one by
¬p(g(f(h(y)), y), z)?
How many unifiers could there be?

Is there one unifier that represents all unifiers?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 480

6 From FOL to PROLOG
6.3 Resolution

Most general unifier (1)

Can we resolve p(x, a) with ¬q(y, b)?
Or p(g(a), f(x)) with ¬p(g(y), z)?
Basic substitutions are:
[a/y, a/x, f(a)/z], [a/y, f(a)/x, f(f(a))/z], and
many more. The following substitution is the
most interesting

[a/y, f(x)/z]

It contains all other substitutions as special
cases.
This is no coincidence: it is a most general
unifier.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 481

6 From FOL to PROLOG
6.3 Resolution

Most general unifier (2)

Definition 6.5 (Most general unifier: mgU)
We consider a finite set of equations between terms or
equations between literals.
Then there is an algorithm which calculates a most general
solution substitution (i.e. a substitution of the involved
variables so that the left sides of all equations are
syntactically identical to the right sides) if one exists, or
which returns fail, if such a substitution does not exist.
In the first case the most general solution substitution is
defined (up to renaming of variables): it is called

mgU, most general unifier

Prof. Dr. Jürgen Dix Clausthal, SS 2018 482

6 From FOL to PROLOG
6.3 Resolution

Most general unifier (3)

Given: f(x, g(h(y), y)) = f(x, g(z, a))

The algorithm successively calculates the
following sets of equations:

{ x = x, g(h(y), y) = g(z, a) }
{ g(h(y), y) = g(z, a) }
{ h(y) = z, y = a }
{ z = h(y), y = a }
{ z = h(a), y = a }

Thus the mgU is: [x/x, a/y, h(a)/z].
Prof. Dr. Jürgen Dix Clausthal, SS 2018 483

6 From FOL to PROLOG
6.3 Resolution

The occurs-check

Given: f(x, g(x)) = f(c, c)

Is there an mgU?
The algorithm gives the following:

{ x = c, g(x) = c }

But setting x = c is not a unifying substitution, because
c 6= g(c).
Therefore there is no mgU. And the algorithm has to do
this check, called occurs check, to test whether the
substitution is really correct.
However, this check is computationally expensive and
many algorithms do not do it.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 484

6 From FOL to PROLOG
6.3 Resolution

Clauses in FOL
We have already introduced the notion of clauses in
Definition 2.33 on Slide 146.
But now we are faced with variables and quantifiers.
However, we first use Proposition 4.22 to transform any
FOL-formula into prenex form without existential
quantifiers: ∀1x1 . . . ∀nxnψ. Then we apply
Theorem 2.10 to ψ and transform it to a clause.
The resulting formula, where we usually remove all
quantifiers for better reading (all variables are
universally quantified), is called a clause in FOL.
We note that, during skolemization, we have extended
the language. But for our calculus that does not matter.
We have just additional skolem functions.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 485

6 From FOL to PROLOG
6.3 Resolution

A resolution calculus for FOL
The resolution calculus is defined over the language
Lclausal ⊆ LFOL where the set of well-formed formulae
FmlLclausal consists of all disjunctions of the following form

A ∨ ¬B ∨ C ∨ . . . ∨ ¬E,
i.e. the disjuncts are only atoms or their negations
(containing variables). No implications, conjunctions,
double negations, or quantifiers are allowed. These
formulae are also called clauses.
Such a clause is also written as the set

{A,¬B,C, . . . ,¬E}.
The union of such sets corresponds again to a clause. The
empty clause is represented by �.
A clause consists of FOL-atoms (or their negations) rather
than propositional constants (as in SL).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 486

6 From FOL to PROLOG
6.3 Resolution

Definition 6.6 (Resolution and factorization for Lclausal)

The resolution calculus operates on clauses and
consists of the following two rules: resolution
and factorization.

(Res)
C1 ∪ {A1} C2 ∪ {¬A2}
(C1 ∪ C2)mgU(A1, A2)

where C1 ∪ {A1} and C2 ∪ {A2} are assumed to be
disjunct wrt the variables,

(Fac)
C1 ∪ {L1, L2}

(C1 ∪ {L1})mgU(L1, L2)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 487

6 From FOL to PROLOG
6.3 Resolution

Illustration of the resolution rule

Example 6.7

Consider the set

M = {r(x) ∨ ¬p(x), p(a), s(a)}
and the question

M |= ∃x(s(x) ∧ r(x))?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 488

6 From FOL to PROLOG
6.3 Resolution

Definition 6.8 (Resolution Calculus for FOL)

We define the resolution calculus
RobinsonFOL

Lclausal = 〈∅, {Res,Fac}〉 as follows. The
underlying language is Lclausal ⊆ LFOL defined on
Slide 486 together with the set of well-formed
formulae FmlLclausal .

Thus there are no axioms and only two inference
rules. The well-formed formulae are just clauses.
Question:

Is this calculus correct and complete for FmlLclausal?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 489

6 From FOL to PROLOG
6.3 Resolution

Question:
Why do we need factorization?

Answer:
Consider

M = {{s(x1), s(x2)}, {¬s(y1),¬s(y2)}}

Resolving both clauses gives

{s(x1)} ∪ {¬s(y1)}

or variants of it.
Resolving this new clause with one in M only leads to
variants of the respective clause in M .

Prof. Dr. Jürgen Dix Clausthal, SS 2018 490

6 From FOL to PROLOG
6.3 Resolution

Answer (continued):

� can not be derived (using resolution only).

Factorization solves the problem, we can deduce
both s(x) and ¬s(y), and from there the empty
clause �.

Theorem 6.9 (Resolution is refutation complete)

Robinsons resolution calculus RobinsonFOL
Lclausal is

refutation complete: Given an unsatisfiable set,
the empty clause can eventually be derived using
resolution and factorization.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 491

6 From FOL to PROLOG
6.3 Resolution

Proof.

We prove the contraposition: Assume a set of
clauses is consistent (i.e. � cannot be derived).
Then there is a model of it.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 492

6 From FOL to PROLOG
6.4 Herbrand

6.4 Herbrand

Prof. Dr. Jürgen Dix Clausthal, SS 2018 493

6 From FOL to PROLOG
6.4 Herbrand

The relation T |= φ states that each model of T is
also a model of φ. But because there are many
models with very large universes the following
question comes up: can we restrict to particular
models ?
Theorem 6.10 (Löwenheim-Skolem)

T |= φ holds if and only if φ holds in all countable
models of T .

By countable we mean the size of the universe of
the model.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 494

6 From FOL to PROLOG
6.4 Herbrand

Quite often the universes of models (which we are
interested in) consist exactly of the basic terms TermL(∅).
This leads to the following notion:

Definition 6.11 (Herbrand model)

A model A is called Herbrand model with respect to a
language if the universe of A consists exactly of TermL(∅)
and the function symbols fki are interpreted as follows:

fki
A

: TermL(∅)× . . .× TermL(∅) → TermL(∅);
(t1, . . . , tk) 7→ fki (t1, . . . , tk)

We write T |=Herb φ if each Herbrand model of T is also a
model of φ.

So the freedom in defining a Herbrand model is only in the
interpretation of the predicates: the function symbols are
fixed.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 495

6 From FOL to PROLOG
6.4 Herbrand

Theorem 6.12 (Reduction to Herbrand models)

If T is universal and φ existential, then the
following holds:

T |= φ if and only if T |=Herb φ

Question:

Is T |=Herb φ not much easier, because we have to
consider only Herbrand models? Is it perhaps
decidable?

No, truth in Herbrand models is highly
undecidable.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 496

6 From FOL to PROLOG
6.4 Herbrand

The following theorem is the basic result for applying
resolution. In a way it states that FOL can be somehow
reduced to SL.
Theorem 6.13 (Herbrand)
Let T be universal and φ without quantifiers. Then:

T |= ∃xφ(x) if and only if there are t1, . . . , tn ∈ TermL(∅)
with: T |= φ(t1) ∨ . . . ∨ φ(tn)

Or: Let M be a set of clauses of FOL (formulae in the form
P1(t1) ∨ ¬P2(t2) ∨ . . . ∨ Pn(tn) with ti ∈ TermL(X)). Then:

M is unsatisfiable
if and only if
there is a finite and unsatisfiable set Minst of basic
instances of M .

Prof. Dr. Jürgen Dix Clausthal, SS 2018 497

6 From FOL to PROLOG
6.4 Herbrand

In automatic theorem proving, or in logic
programming (PROLOG), we are always
interested in the question:

Given M it is the case that

M |= ∃x1, . . . xn
∧

i

φi ?

But this is equivalent to

M ∪ {¬∃x1, . . . xn
∧
i φi}

is an unsatisfiable set of clauses.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 498

6 From FOL to PROLOG
6.5 Variants of resolution

6.5 Variants of resolution

Prof. Dr. Jürgen Dix Clausthal, SS 2018 499

6 From FOL to PROLOG
6.5 Variants of resolution

Our general goal is to derive an existentially
quantified formula from a set of formulae:

M ` ∃ϕ.
To use resolution we consider

M ∪ {¬∃ϕ}
and put it into clausal form.
This set is called input.

Instead of allowing arbitrary resolvents, we try to
restrict the search space.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 500

6 From FOL to PROLOG
6.5 Variants of resolution

Example 6.14 (Unlimited Resolution)

Let M := {r(x) ∨ ¬p(x), p(a), s(a)} and
� :− s(x) ∧ r(x) the query.
An unlimited resolution might look like this:

r(x) ∨ ¬p(x) p(a)

r(a)

s(a) ¬s(x) ∨ ¬r(x)

¬r(a)

�

Prof. Dr. Jürgen Dix Clausthal, SS 2018 501

6 From FOL to PROLOG
6.5 Variants of resolution

Input resolution: in each resolution step one of the two
parent clauses must be from the input. In our
example:

¬s(x) ∨ ¬r(x) s(a)

¬r(a)
r(x) ∨ ¬p(x)

¬p(a)
p(a)

�
Unfortunately, this is too restrictive.

Lemma 6.15
Input resolution is correct but not refutation complete.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 502

6 From FOL to PROLOG
6.5 Variants of resolution

Here is a generalization of input resolution:
Linear resolution: in each resolution step one of the two

parent clauses must be the previously
computed clause. So it is possible to resolve
with a previously derived clause.

Theorem 6.16 (Completeness of resolution variants)

Linear resolution is refutation complete.

Comparing input and linear resolution: While the first is
more efficient (search space is smaller) but not refutation
complete, the second is refutation complete but more
complex.

Idea:
Maybe input resolution is complete for a restricted class
of formulae?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 503

6 From FOL to PROLOG
6.6 SLD resolution

6.6 SLD resolution

Prof. Dr. Jürgen Dix Clausthal, SS 2018 504

6 From FOL to PROLOG
6.6 SLD resolution

Definition 6.17 (Horn clause)

A clause is called Horn clause if it contains at most
one positive atom.

A Horn clause is called definite if it contains
exactly one positive atom. It has the form

A(t) :− A1(t1), . . . , An(tn).

A Horn clause without positive atom is called
query:

� :− A1(t1), . . . , An(tn).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 505

6 From FOL to PROLOG
6.6 SLD resolution

Theorem 6.18 (Input resolution for Horn clauses)

Input resolution for Horn clauses is refutation complete.

Definition 6.19 (SLD resolution wrt P and query Q)

SLD resolution with respect to a program P and the
query Q is input resolution beginning with the query
� :− A1, . . . , An. Then one Ai is chosen and resolved with a
clause of the program. A new query emerges, which will be
treated as before. If the empty clause � can be derived, then
SLD resolution was successful and the instantiation of the
variables is called computed answer.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 506

6 From FOL to PROLOG
6.6 SLD resolution

Theorem 6.20 (Correctness of SLD resolution)
Let P be a definite program and Q a query. Then each
calculated answer for P wrt Q is correct.

Question:
Is SLD completely instantiated?

Definition 6.21 (Computation rule)

A computation rule R is a function which assigns an atom
Ai ∈ {A1, . . . , An} to each query � :− A1, . . . , An. This Ai is
the chosen atom against which we will resolve in the next
step.

Note:
PROLOG always uses the leftmost atom.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 507

6 From FOL to PROLOG
6.6 SLD resolution

In the following, we are illustrating SLD resolution
on the following program:

p(x, z) ← q(x, y), p(y, z)
p(x, x)
q(a, b)

We would like to know for which instances for x,
the fact p(x, b) follows from the above theory.

Obviously, there are two solutions: x = a and
x = b and these are the only ones.

We are now showing how to derive these
solutions more formally using SLD resolution.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 508

6 From FOL to PROLOG
6.6 SLD resolution

:− p(x, b)

:− q(x, y), p(y, b)

:− p(b, b)

:− q(b, u), p(u, b)

�
[b/x]

“Success”

“Failure”

�

“Success”
[a/x]

�
�
��

�
�

��

@
@
@@

@
@
@@

1

1

2

2

3

Figure 6.34: A finite SLD-tree
Prof. Dr. Jürgen Dix Clausthal, SS 2018 509

6 From FOL to PROLOG
6.6 SLD resolution

:− p(x, b)

:− q(x, y), p(y, b)

:− q(x, y), q(y, u), p(u, b) :− q(x, b)

:− q(x, y), q(y, u), q(u, v), p(v, b) :− q(x, y), q(y, b)

:− q(x, a)

�
[b/x]

“Success”

“Failure”

�

“Success”

�

“Success”

[a/x]

�
�
��

�
�

��

�
�

��

�
�

�
�

��

@
@
@@

@
@
@@

@
@
@@

@
@
@
@
@@

.

.

.
.
.
.

1

1

1

1

2

2

2

2
3

3

Figure 6.35: An infinite SLD-tree

Prof. Dr. Jürgen Dix Clausthal, SS 2018 510

6 From FOL to PROLOG
6.6 SLD resolution

A SLD tree may have three different kinds of
branches:

1 infinite ones,
2 branches ending with the empty clause

(and leading to an answer) and
3 failing branches (dead ends).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 511

6 From FOL to PROLOG
6.6 SLD resolution

Theorem 6.22 (Independence of computation rule)

Let R be a computation rule and σ an answer
calculated wrt R (i.e. there is a successful SLD
resolution). Then there is also a successful SLD
resolution for each other computation rule R’
and the answer σ′ belonging to R’ is a variant of σ.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 512

6 From FOL to PROLOG
6.6 SLD resolution

Theorem 6.23 (Completeness of SLD resolution)

Each correct answer substitution is
subsumed through a calculated answer
substitution. I.e.:

P |= ∀QΘ
implies

SLD computes an answer τ with: ∃σ : Qτσ = QΘ

Prof. Dr. Jürgen Dix Clausthal, SS 2018 513

6 From FOL to PROLOG
6.6 SLD resolution

Question:

How to find successful branches in a SLD tree?

Definition 6.24 (Search rule)

A search rule is a strategy to search for
successful branches in SLD trees.

Note:

PROLOG uses depth-first-search.

A SLD resolution is determined by a computation
rule and a search rule.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 514

6 From FOL to PROLOG
6.6 SLD resolution

SLD trees for P ∪ {Q} are determined by
the computation rule.

PROLOG is incomplete because of two
reasons:

depth-first-search, and
incorrect unification (no occurs
check).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 515

6 From FOL to PROLOG
6.6 SLD resolution

A third reason comes up if we also ask for
finite and failed SLD resolutions:

the computation rule must be fair, i.e.
there must be a guarantee that each
atom on the list of goals is eventually
chosen.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 516

6 From FOL to PROLOG
6.6 SLD resolution

Programming versus knowledge engineering
programming knowledge engineering
choose language choose logic
write program define knowledge base
write compiler implement calculus
run program derive new facts

Prof. Dr. Jürgen Dix Clausthal, SS 2018 517

7 PROLOG

7. PROLOG
7 PROLOG

Motivation
Syntax
Queries and Matching
Search Trees and Negation
Recursion and Lists
Arithmetic
Programming

Prof. Dr. Jürgen Dix Clausthal, SS 2018 518

7 PROLOG

Content of this chapter:

We introduce PROLOG on a beginners level. With
some self study, students should be able to write
their own PROLOG programs.
Syntax: We describe in detail PROLOG as a

programming language and introduce
the declarative programming paradigm:
describe what you want, but not how
to achieve it.

Queries and matching: The binding mechanism
of queries is presented and unification
versus matching explained.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 519

7 PROLOG

Content of this chapter (2):

Search trees: The most important concept is the
search tree of PROLOG, based on SLD
resolution. It constitutes the procedural
kernel of PROLOG.

Negation: Negation is differently handled in
PROLOG: it is closely related to
detecting cycles and it is not classical
negation.

Recursion: is the most important mechanism of
PROLOG. We illustrate it with lists, the
datastructure in PROLOG.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 520

7 PROLOG

Content of this chapter (3):

Arithmetic: PROLOG uses several built-in
arithmetic predicates. Because it is built
on terms, arithmetic expressions are
differently handled than in other
programming languages.

Programming: We present a few examples of
programming in PROLOG to illustrate
the use of recursive predicates. To
distinguish between input and output
variables is paramount.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 521

7 PROLOG

Acknowledgment

This chapter is heavily built on material provided
by Nils Bulling in his BSc course TI1906
Logic-Based Artificial Intelligence at TU Delft in
the summer term 2015.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 522

7 PROLOG
7.1 Motivation

7.1 Motivation

Prof. Dr. Jürgen Dix Clausthal, SS 2018 523

7 PROLOG
7.1 Motivation

The Art of PROLOG

A logic program is a set of axioms, or rules, defining
relations between objects. A computation of a logic
program is a deduction of consequences of the pro-
gram.

A program defines a set of consequences, which is its
meaning. The art of logic programming is construct-
ing concise and elegant programs that have the de-
sired meaning.

[Leon Sterling. The Art of PROLOG.]

Prof. Dr. Jürgen Dix Clausthal, SS 2018 524

7 PROLOG
7.1 Motivation

Logic Programming: Basics

What is PROLOG?
logic-based programming language,
focusses on the description of the problem and not how
to solve it,
problem solving closer to human reasoning/thinking,
allows to elegantly solve specific (knowledge-based)
problems.

PROLOG is a different programming paradigm. PROLOG
requires a different way of thinking in order to solve
problems. One needs to get used to it. Practice!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 525

7 PROLOG
7.1 Motivation

Free online book: Learn PROLOG Now!
(http://www.learnprolognow.org/)
Attention: There are different version of this book. We always
refer to the online html version!

SWI PROLOG
Free PROLOG interpreter
Linux, Windows, Mac OS
There are more interpreters, but be careful not all are ISO
compliant.
We use SWI PROLOG 6.0.2 (http://www.swi-prolog.org/)

Important
The lecture does not cover the whole book Learn PROLOG Now.
Read the relevant parts of the book for some exercises!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 526

http://www.learnprolognow.org/
http://www.swi-prolog.org/

7 PROLOG
7.1 Motivation

What is PROLOG?
LP is closer to natural language than machine or other
higher-level programming languages

Procedural vs. Declarative Programming
This is what Wikipedia says:

Imperative programming “is a programming paradigm that
describes computation in terms of statements that change
a program state. In much the same way that imperative mood
in natural languages expresses commands to take action,
imperative programs define sequences of commands for
the computer to perform.”

Procedural programming “is a list or set of instructions telling
a computer what to do step by step and how to perform
from the first code to the second code. Procedural programming
languages include C, Go, Fortran, Pascal, and BASIC.”

Prof. Dr. Jürgen Dix Clausthal, SS 2018 527

7 PROLOG
7.1 Motivation

Declarative programming “is a programming paradigm, a
style of building the structure and elements of computer
programs, that expresses the logic of a computation
without describing its control flow. Many languages
applying this style attempt to minimize or eliminate side
effects by describing what the program should
accomplish in terms of the problem domain, rather than
describing how to go about accomplishing it as a sequence
of the programming language primitives.”

Important to know!
PROLOG is not a fully declarative programming language: it has
procedural elements! In contrast, ASP is the declarative
counterpart of PROLOG.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 528

7 PROLOG
7.1 Motivation

Benefits of declarative programming
Suppose we are given a list L of integers. Write a program which
removes all 3’s in the program.

Java:

static void remove
(ArrayList<Integer> L)

{
Iterator<Integer> it= L.it();
while (it.hasNext())
{

if (it.next()==3)
it.remove();

}}

How to solve the problem?

PROLOG:

remove([], []).

remove([3|T], L) :−
remove(T, L).

remove([H|T1], [H, T2]) :−
not(H = 3),

remove(T1, T2).

What is a solution?.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 529

7 PROLOG
7.1 Motivation

PROLOG in the Real World

PROLOG Development Center: advanced scheduling systems
and speech based applications for manufacturing,
retail and service businesses, larger public
institutions, airlines and airports
http://www.pdc.dk

Visual PROLOG : support industrial strength programming of
complex knowledge emphasized problems.
Combining the very best features of logical,
functional and object-oriented programming
paradigms in a consistent and elegant way.
http://www.visual-prolog.com

Prof. Dr. Jürgen Dix Clausthal, SS 2018 530

http://www.pdc.dk
http://www.visual-prolog.com

7 PROLOG
7.1 Motivation

Clarissa at ISS: fully voice-operated procedure browser,
enabling astronauts to be more efficient with their
hands and eyes and to give full attention to the task
while they navigate through the procedure using
spoken commands
http://www.nasaspaceflight.com/2005/06/
iss-set-to-get-chatty-with-clarissa/

OntoDLP: OntoDLV is an intelligent ally for quickly and easily
developing powerful knowledge-based
applications and decision support systems (e.g.
Planning, Customer Profiling or Workforce
Scheduling) that otherwise require complex and
labourious programming.
http://www.exeura.eu

Prof. Dr. Jürgen Dix Clausthal, SS 2018 531

http://www.nasaspaceflight.com/2005/06/iss-set-to-get-chatty-with-clarissa/
http://www.nasaspaceflight.com/2005/06/iss-set-to-get-chatty-with-clarissa/
http://www.exeura.eu

7 PROLOG
7.2 Syntax

7.2 Syntax

Prof. Dr. Jürgen Dix Clausthal, SS 2018 532

7 PROLOG
7.2 Syntax

Example 7.1 (FOL and PROLOG)
T =def {agent(bond), ∀x(agent(x)→ indanger(x))}
What is the difference between facts and rules?
What can you infer? T |= indanger(bond)

all models satisfying T must satisfy indanger(bond)

apply resolution to the clauses:

agent(bond), ¬agent(x) ∨ indanger(x), ¬indanger(bond)

Corresponding PROLOG program:

agent(bond). (this is a fact)
indanger(X) :− agent(X). (this is a rule)

We can ask a query: ?− indanger(bond).

PROLOG answers ”yes”.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 533

7 PROLOG
7.2 Syntax

Example 7.2 (A first example)
The knowledge base or database consists of the following facts.

woman(mia).
woman(jody).
woman(yolanda).
playsAirGuitar(jody).
party.

Symbol ?− shows that PROLOG waits for a command: a query.
Load the program and query the following:

?− woman(mia).

?− woman(alice).

?− woman(alice), woman(mia).

?− woman(X).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 534

7 PROLOG
7.2 Syntax

consult/1 loads a PROLOG program.
assert/1 adds new facts and rules to the database.
Sometimes assert/1 requires predicates to be declared
dynamic. e.g. :-dynamic woman/1.

Example 7.3
Do assert(woman(alice)). in the previous example. You get the
following error:

ERROR: assert/1: No permission to modify static
procedure ‘woman/1’

We add the clause :- dynamic woman/1 and try again.

Remark 7.4
:- Implication (ϕ→ ψ becomes ψ:-ϕ)

; disjunction and , conjunction

Prof. Dr. Jürgen Dix Clausthal, SS 2018 535

7 PROLOG
7.2 Syntax

Definition 7.5 (Constant)
A constant (sometimes also called atom) is one of the following:

1 a non-empty sequence of letters, digits, or the underscore
that starts with a lower-case letter;

2 any sequence of letters, digits, or the underscore enclosed in
single quote ‘ . . . ‘;

3 a string of special characters, like @=, ===>, ;, and :-.

See PROLOG manual for more details.

Examples of atoms are: car, hOUSE 2, father, ‘House‘.

Definition 7.6 (Number)
A number is is any sequence of numbers, possibly containing a
dot.

For example 1, 1991, 1.92 are numbers in PROLOG.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 536

7 PROLOG
7.2 Syntax

Definition 7.7 (Variable)

A variable is a sequence of letters, digits, or the
underscore that starts with an upper-case letter
or the underscore.
The variable is called anonymous variable.

Examples of variables are: X, Car, HOUSE 2,
father, House.

If the anonymous variable is used in a predicate
p(X,_) then it is handled as an arbitrary variable
without a specific name.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 537

7 PROLOG
7.2 Syntax

Definition 7.8 (Terms, predicate, arity)
A term is defined recursively:

1 Each constant, number, and variable is a term.

2 f(t1, . . . , tk) is a term, if all ti, i = 1, . . . , k, are terms and f is
a constant.

A term f(t1, . . . , tk) is called compound term. A term without
variables is a ground term. f is called functor. Each function f is
assigned an arity, which is the number of terms it accepts. We
write f/k for a functor f of arity k. A term is also called
predicate.

Remark 7.9 (Attention)
In contrast to FOL, the distinction between terms and
predicates is blurred in PROLOG.

Examples: X, bond, mother(X, Y), father(son(X), Y)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 538

7 PROLOG
7.2 Syntax

Note: The arity of a predicate is important! The same functor
with a different arity gives rise to a different predicate.

Definition 7.10 (PROLOG Fact)
A PROLOG fact is a predicate followed by a full stop.

The following are facts:
this is the Logic and Verification lecture. and
father(bob, X).

Facts express specific pieces of knowledge.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 539

7 PROLOG
7.2 Syntax

Definition 7.11 (PROLOG rule)
A PROLOG rule is given by

A0 :− A1,..., An.

where n ≥ 0 and each Ai for i = 0, . . . , n is a predicate. The
predicate A0 is the head of the rule, and A1, . . . , An is the body of
the rule.
Note that a rule ends with a full stop.

The following two are rules

father(X,Y):- son(Y,X).
daughter(X,Y):- parent(Y,X), female(X).

In logical terms, a rule A0:- A1,..., An. corresponds to the
formula A1 ∧ . . . ∧An → A0.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 540

7 PROLOG
7.2 Syntax

Definition 7.12 (PROLOG clause)
A clause is a PROLOG fact or a PROLOG rule.

Remember: p(X) :− q(X). means ∀x (q(x)→ p(x)) which is
equivalent to the clause

¬p(x) ∨ q(x).

Remark 7.13 (Clauses are universal)

It is important to note that a clause is universal. That is, the rule
p(X) :− q(X). is true for all X. Remember our discussion on Slide 485.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 541

7 PROLOG
7.2 Syntax

Example 7.14
happy(yolanda).
listens2music(mia).
listens2music(yolanda):- happy(yolanda).
playsAirGuitar(mia):- listens2music(mia).
playsAirGuitar(yolanda):- listens2music(yolanda).

There are 5 clauses, 2 facts and 3 rules. What are the answers to
the following queries?

1 ?-listens2music(yolanda).

2 ?-playsAirGuitar(yolanda).

3 ?-playsAirGuitar(Mia). (Attention, read carefully!)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 542

7 PROLOG
7.2 Syntax

Definition 7.15 (PROLOG program)
A PROLOG program is a finite sequence of clauses.

Remark 7.16 (Conjunction and disjunction)
The comma in a PROLOG rule represents a conjunction. It is also
possible to express a disjunction by a semicolon. So the rule

r(X) :− s(X), t(X); u(X).

is a shortcut for the two rules

r(X) :− s(X), t(X).
r(X) :− u(X).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 543

7 PROLOG
7.2 Syntax

Remark 7.17 (Some built-in predicates)
The matching predicate = (X, Y) is true if and only if the
terms X and Y can be made equal. We also write X = Y. It is
important to note that this is different from FOL unification
as we will discuss in more detail later. (PROLOG lacks the
occurs check.)

The predicates fail and true are always false and true,
respectively.

To load a PROLOG program the predicate consult/1 is used.
consult(‘filename.pl‘) compiles the file “filename.pl”.

The write predicate write/1 allows to write a term to the
output.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 544

7 PROLOG
7.3 Queries and Matching

7.3 Queries and Matching

Prof. Dr. Jürgen Dix Clausthal, SS 2018 545

7 PROLOG
7.3 Queries and Matching

How PROLOG Works
?- happy(alice)

married(alice,bob).

happy(X):- married(X,Y).

happy(Y):- married(X,Y).

Knowledge base = logic program

Database

Inference engine

SLD resolution
search strategy

declarative part
“what” not “how”

computation
reasoning “how”

query

ACCESS

Prof. Dr. Jürgen Dix Clausthal, SS 2018 546

7 PROLOG
7.3 Queries and Matching

Queries, Goals and Matching

Definition 7.18 (Query and goal)
A (simple) query is of type ?− p. where p is a term. It is also
possible to combine terms within queries to complex queries by
conjunctions (,) and disjunctions (;). For example, ?-p1,...,pk
with k ≥ 1 is a complex query.
The element on the right-hand-side of a query is called goal. In
case of complex queries, each term on the right-hand side is
called a subgoal.

Remark 7.19 (Queries are existential)
In contrast to Remark 7.13, queries are existential. That is, the
query ?− p(X) asks whether there is some X. That is, it corresponds
to a FOL formula ∃xp(x).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 547

7 PROLOG
7.3 Queries and Matching

Asking a query ?− p(a) lets PROLOG try to derive p(a) from the
program using input (or SLD) resolution (we refer to
Definition 6.19 on Slide 506).

1 It tries to find a rule p(X) :− q(X), r(Y). with head p(X) which
can be unified with the goal p(a) (topmost-rules are tried
first!).

2 p(X) and p(a) are unified with X = a (substitution!)
3 In order to derive a the goals q(a), r(Y) have to be derived.

(Note that the X is instantiated). The new query is:
?− q(a), r(Y)..

4 The process repeats for q(a) and r(Y) in this very order!
5 Proceed until a goal is already contained in the knowledge

base as a fact.
We first give an example and then consider it in more detail.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 548

7 PROLOG
7.3 Queries and Matching

Example 7.20
loves(vince,mia).
loves(marcel,mia).
loves(pumpkin, honey_bunny).
loves(honey_bunny, pumpkin).
jealous(X,Y):- loves(X,Z), loves(Y,Z), X \= Y.

What does PROLOG return for ?− jealous(marcel, W).?

Therefore: We have to add that X and Y should be distinct. This is
expressed by \=.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 549

7 PROLOG
7.3 Queries and Matching

Matching
Before discussing proof search in more detail, we consider the
matching of predicates. This is an important technique which
gives PROLOG its programming power.

We already discussed unification in the context of FOL. PROLOG
also unifies terms but does not perform the occurs check! We
call it matching rather than unification.

unification: as introduced for FOL
matching: PROLOG’s way to unify, no occurs check.

Remark 7.21 (Attention)
Often, matching is just called unification!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 550

7 PROLOG
7.3 Queries and Matching

Definition 7.22 (Matching in PROLOG)
Two terms t and r match if one of the following conditions hold:

1 t and r are identical constants or numbers.

2 If t is a variable and r is not, then t and r match and t is
instantiated with r. Analogously, if r is a variable. If both
terms are variables they are instantiated with each other.

3 If t and r are compound terms then they match if each of
the following conditions hold:

t and r have the same outermost functor, i.e.
t=f(t1,...,tk) and r=f(r1,...,rk);
each ti matches with ri for i = 1, . . . , k and
the variables instantiation are compatible (i.e. a variable
cannot be assigned different terms which are not variables).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 551

7 PROLOG
7.3 Queries and Matching

Definition 7.23 (Matching)
In PROLOG, the matching predicate is given as = /2. If two terms
match PROLOG returns the most general instantiation σ of the
variables. We write tσ to denote the application of σ to t.The

predicate \=/2 is true if two terms do not match.

PROLOG also offers a predicate to perform (FOL-)unification:
unify_with_occurs_check/2.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 552

7 PROLOG
7.3 Queries and Matching

Example 7.24
What is the result of the following queries?

1 X=a

2 f(X,a)=f(b,X)

3 f(X,a)=f(b,Y)

4 X=f(X)

5 X+3=5+Y

6 X+2=5

7 1+2=2+1

8 X+3\=5+Y

Prof. Dr. Jürgen Dix Clausthal, SS 2018 553

7 PROLOG
7.3 Queries and Matching

Example 7.25 (Variable instantiation)

woman(mia).

woman(jody).

woman(alice).

We query ?− woman(X). What is the answer?

The answer of the first matching rule is returned. With ; further
matching instantiations are returned.

?− woman(X).

X = mia;

X = jody;

X = alice.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 554

7 PROLOG
7.3 Queries and Matching

Example 7.26 (Variable instantiation)

woman(mia).

woman(jody).

woman(alice).

happy(mia).

We query ?− woman(X), happy(X). What is the answer?

X = mia.

There are no more answers! Why not?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 555

7 PROLOG
7.3 Queries and Matching

Matching is very important in PROLOG and also a powerful
programming technique as shown by the following examples.

Example 7.27 (Programming with matching)
Consider the program:

vertical(line(point(X, Y), point(X, Z)).

horizontal(line(point(X, Y), point(Z, Y)).

What are the answers to the following queries?
1 ?− horizontal(line(point(1, 1), point(1, 3)))

2 ?− horizontal(line(point(1, 1), point(3, 2)))

3 ?− horizontal(line(point(1, 1), point(2, Y)))

4 ?− horizontal(line(point(1, 1), Point))

Prof. Dr. Jürgen Dix Clausthal, SS 2018 556

7 PROLOG
7.3 Queries and Matching

PROLOG computes a most general substitution.
Remark 7.28 (Attention)

Again, be careful: matching can give different
results than (FOL-)unification. We will come back
to this issue: PROLOG does not perform the occurs
check! The occurs check is computationally
expensive.

Proposition 7.29

If two terms FOL-unify, then they match. The
other direction is not true.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 557

7 PROLOG
7.4 Search Trees and Negation

7.4 Search Trees and Negation

Prof. Dr. Jürgen Dix Clausthal, SS 2018 558

7 PROLOG
7.4 Search Trees and Negation

Example 7.30 (Deduction — Informal)
Suppose we are given the program

q(a).

r(a).

p(X) :− q(X), r(X).

and ask the query ?− p(a). What happens? The only way to

derive the goal p(a) is by proving p(X) for X = a.

This means to show that the goal q(a), r(a) holds.

PROLOG selects the new (sub)goal q(a) which can be derived
because of the fact q(a).

The goal r(a) remains. It is true because of the fact r(a)..

Prof. Dr. Jürgen Dix Clausthal, SS 2018 559

7 PROLOG
7.4 Search Trees and Negation

Searching for Proofs
Searching for a proof is a three-steps process:

1 ask a query,
2 find a rule (which one?) the head of which matches with

the query,
3 try to derive the body of the rule (new query).

To prove a goal PROLOG selects a subgoal to prove, considers this
subgoal and so on. There are many ways, however, to select a
subgoal: heads of different rules may match, and within a rule
the predicates in the body can be treated in different orders. In
this section we discuss PROLOG’s search strategy.

This is crucial, as the correctness of programs depends on the
right understanding of PROLOG’s functioning.

In the following we assume that a logic program is ordered, from
top to bottom.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 560

7 PROLOG
7.4 Search Trees and Negation

Three principles underly the search for proofs.

1 backward chaining: start from the current goal and consider
bodies which allow to derive the given goal:
(i) goal p(X); (ii) consider a rule p(Y) :− q(Z).; and (iii) try to
derive q(Z).

2 linear: traverse the logic program from top to bottom
(selecting appropriate rules)

3 backtracking: if the goal can not be derived (or has been
successfully derived) try other alternative rules in step 2 (i.e.
the 2nd topmost, 3rd topmost etc.). Backtrack to the
closest possible choice point and try a different alternative.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 561

7 PROLOG
7.4 Search Trees and Negation

Backward chaining (simple queries)
Given a query ?− q(t).

find a rule q(r) :− p(s). the head of which matches with q(t).
Choose the topmost rule if there are several such rules. Let σ
denote the most general instantiation.

If PROLOG is able to derive the goal p(s)σ then p(t) would
be derivable.

Thus, ask the new query ?− p(s)σ

This is called backward chaining because we chain the rules one
after another, starting from the goal/query we want to derive.

What if queries are compound?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 562

7 PROLOG
7.4 Search Trees and Negation

Backward chaining (compound queries)
Given a query ?− q1(t1), q2(t2).

find a rule q1(t3) :− p1(t4), p2(t5). the head of which
matches with q(t1). (topmost again)

If PROLOG is able to derive the goals q2(t2), p1(t4)σ and
p2(t5)σ then p(t1) is derivable.

We get the new query ?− p1(t4)σ, p2(t5)σ, q2(t2)

What do we observe?
Important points

1 Topmost rules are selected first.

2 Queries are treated from left to right in a depth-first search
manner (new goals p1 and p2 are placed before the “old
goal” q2 in the new query)!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 563

7 PROLOG
7.4 Search Trees and Negation

When can we terminate? That is, when have we shown whether
the initial query is true or false.

If we obtain the empty query ?− , we are done. There are no
more goals to derive. The original query holds. compare
with resolution
We may also end up with a query ?− p(t) and no rule’s head
matches with p(t). What now?

Backtracking
If we end up with a query ?− p1(t1), . . . , pk(tk) where the head of
no rule matches with p1(t1) then:

1 In the previous selection of rules, go back to the most
recent query and choose another alternative rule (again as
high up in the logic program as possible)

2 Proceed as before.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 564

7 PROLOG
7.4 Search Trees and Negation

Example 7.31

f(a).

f(b).

g(a).

g(b).

h(b).

k(X) :− f(X), g(X), h(X).

Query: ?− k(Y)

?− k(Y)

?− f(_G23), g(_G23), h(_G23)

?− g(a), h(a)

?− h(a)
failure

_G23 = a

?− g(b), h(b)

?− h(b)

�

_G23 = b

Y = _G23

Prof. Dr. Jürgen Dix Clausthal, SS 2018 565

7 PROLOG
7.4 Search Trees and Negation

Example 7.32
1 First branch leads to a failure: there is no rule with a head

that matches with h(a).

2 PROLOG backtracks to the most recent choice point . . .

3 . . . and tries a different rule/fact.

4 This branch leads to the empty clause.

5 The query is shown to be derived.

6 The calculated variable instantiation gives the solution.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 566

7 PROLOG
7.4 Search Trees and Negation

Example 7.33

f(1).

f(2).

f(3).

p(3, 4).

q(4).

r(3).

r(4).

r(5).

g(X) :− p(X, Y), q(Y), r(X).

h(X) :− f(X).

h(X) :− g(X).

Which of the following is the correct
output on ?− h(X)?

1 X = 1;X = 2;X = 3;X = 4;X = 5.

2 X = 1;X = 2;X = 3;X = 3.

3 X = 1;X = 2;X = 3;X = 4.

4 X = 1;X = 2;X = 3.

5 X = 1;X = 2;X = 3;X = 3;X = 4.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 567

7 PROLOG
7.4 Search Trees and Negation

Example 7.34

loves(vince, mia).

loves(marcel, mia).

jealous(A, B) :−
loves(A, C),

loves(B, C).

Query: jealous(X, Y).

What is the output?

1 X = vince, Y = vince;
X = marcel, Y = marcel;
X = vince, Y = marcel.

2 X = vince, Y = vince;
X = vince, Y = marcel;
X = marcel, Y = vince;
X = marcel, Y = marcel.

3 X = vince, Y = vince;
X = vince, Y = marcel;
X = marcel, Y = marcel;
X = marcel, Y = vince.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 568

7 PROLOG
7.4 Search Trees and Negation

Corresponding search tree

loves(vince, mia).

loves(marcel, mia).

jealous(A, B) :−
loves(A, C),

loves(B, C).

?− jealous(X, Y)

?− loves(_G5, _G6), loves(_G7, _G6)

?− loves(_G7, mia)

�

_G7 = vince

�

_G7 = marcel

_G5 = vince
_G6 = mia

?− loves(_G7, mia)

�

_G7 = vince

�

_G7 = marcel

_G7 = marcel
_G6 = mia

X = _G5 Y = _G7

Prof. Dr. Jürgen Dix Clausthal, SS 2018 569

7 PROLOG
7.4 Search Trees and Negation

Definition 7.35 (PROLOG search tree)
Given a PROLOG program P and a query Q the above described
procedure results in a tree with the following properties:

the root is labelled with query Q,

nodes are labelled with queries,

child nodes are ordered,

edges are labelled with variable instantiations.

We call this tree the search tree of P and Q (sometimes also
called proof tree).

A search tree may have three different kinds of branches:
1 infinite ones,
2 succesful branches ending with the empty clause (and

leading to an answer), and
3 failing branches (dead ends).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 570

7 PROLOG
7.4 Search Trees and Negation

Example 7.36
Consider the program:

s.
p:-r.
p:-s.
p:-p.

For the query ?-p can you identify a failing, successful, and
infinite branch in the search tree?

1 The branch which always uses the rule p :− r.

2 The branch which always uses the rule p :− s.

3 The branch which always uses the rule p :− p.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 571

7 PROLOG
7.4 Search Trees and Negation

How does PROLOG traverse the search tree?
1 PROLOG searches the tree via depth first search with

backtracking where child nodes corresponding to input rules
higher up in the program are traversed first.

2 Be careful: PROLOG is both incomplete and incorrect
because:

PROLOG uses depth-first-search
PROLOG uses incorrect unification (no occurs check).

We will discuss this in more detail later in the lecture.

Definition 7.37 (Derived)
A goal G can be derived from a program P if PROLOG finds a
succesful trace in the search tree of P for G. We write P ` G and
write D(P) = {G | P ` G} to denote the set of all derivable terms.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 572

7 PROLOG
7.4 Search Trees and Negation

Example 7.38 (Matching and search)

p(a) :− p(f(X)).

p(X) :− q(X, X).

q(X, f(X)).

What is the result of the queries below?

1 ?− p(a)

2 ?− p(X)

3 ?− p(f(X))

4 ?− p(f(a))

Note, that some branches of the search tree may never be
traversed by PROLOG. This depends on the order of the rules.
(E.g. if the initial branch in the tree is infinite.)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 573

7 PROLOG
7.4 Search Trees and Negation

Declarative and Procedural Meaning

In the previous section we investigated how
PROLOG answers queries; in particular, how it
searches for a refutation of a query:

PROLOG uses depth first search
top-most clauses are considered first
left-most subgoals are evaluated first

Understanding these details is of utmost
importance when programming in PROLOG
because the behavior of the programs depends
on it.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 574

7 PROLOG
7.4 Search Trees and Negation

Declarative meaning: The logical meaning of a program, what
it should mean in logical terms only considering the
knowledge base. Apply logical reasoning and forget
about PROLOG and its search strategy.

Procedural meaning: The actual behavior of the program given
PROLOG’s search strategy. The solutions that are
calculated. The way how PROLOG answers a query.
(backtracking, depth-first search, linear, and goal
ordering)

Attention
The declarative and procedural meaning of a program can be
different.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 575

7 PROLOG
7.4 Search Trees and Negation

Example 7.39 (Rule ordering)
Consider the following two programs and the query ?− p(X).
Program 1:

p(a).

p(b).

Program 2:

p(b).

p(a).

What can one observe? Solutions are found in a different order.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 576

7 PROLOG
7.4 Search Trees and Negation

Example 7.40 (Rule and goal ordering)
Now, we query ?− q(a). Program 1:

p(a).

q(X) :− p(a).

q(X) :− q(f(X)).

Program 2:

p(a).

q(X) :− q(f(X)).

q(X) :− p(a).

What can one observe?
Program 1 terminates, program 2 does not terminate. Rule
ordering affects the procedural meaning of a program.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 577

7 PROLOG
7.4 Search Trees and Negation

Example 7.41 (How to design a program?)

Often, a good way to design a PROLOG program
is to work along the following steps:

1 Understand the problem (of course!).
2 Think about a declarative solution, and come

up with a logic program.
3 Refine the program and take into

consideration PROLOG’s procedural
meaning.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 578

7 PROLOG
7.4 Search Trees and Negation

Negation as Finite Failure
So far, we have only asked positive queries: Does Q follow from
the program P? Can we ask whether some predicate does not
follow?

PROLOG allows a predicate \+ /1 which expresses a specific type
of negation. It is important to understand, however, that this is
not logical negation.

In short, \+ (p) is true in program P if and only if p cannot be
derived from P because any attempt fails finitely.

Note the difference:
¬p in logic: proposition p is false
\+ p in PROLOG: any attempt to prove p fails finitely.

What does it mean that something fails finitely?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 579

7 PROLOG
7.4 Search Trees and Negation

Example 7.42 (Non-derivability due to infinite branches)
Consider the program P given by p :− p.. Obviously p can not be
derived (we enter an infinite loop). In general, determining such
infinite cycles is undecidable.

Therefore P 6` p: but not all attempts fail finitely (in fact, no
attempt fails finitely).

Definition 7.43 (Finitely failed)
A search tree for a program P and a goal G is finitely failed if
there is no successful branch in the tree and also no infinite
branch. The set of goals which have a finitely failed search tree
with respect to a program P is denoted FF (P).

Thus, while trying to prove G, a finite tree is constructed with no
successful branch. The fact that the tree is finite means that the
procedure terminates and we know that there is no successful
branch.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 580

7 PROLOG
7.4 Search Trees and Negation

Definition 7.44 (Negation-as-finite-failure)
The predicate \+ is called negation-as-finite-failure (naff). We
say that \+ (G) can be derived from P if and only if
G ∈ FF (P).

As before, we write P ` \+ (G) if, by definition, G ∈ FF (P).
Thus, we have

\+ (G) ∈ D(P) if and only if G ∈ FF (P).

Example 7.45 (Naff is not logical negation)
In classical (propositional) logic, we have:

1 {¬p,¬p→ q} |= q

2 {¬p→ q} 6|= q

and in PROLOG we have:

1 {f(b). q :− \+ (f(a)).} ` q

Prof. Dr. Jürgen Dix Clausthal, SS 2018 581

7 PROLOG
7.4 Search Trees and Negation

While \+ is on the one hand weaker than classical negation, it is
at the same time stronger, because we use the orientation of the
rules.

The following lemma shows that negation-as-finite-failure is
different from “negation-as-failure“ (i.e. something is false if it
cannot be shown to be true).

Proposition 7.46
Negation-as-failure does not imply negation-as-finite-failure:
G 6∈ D(P) does not imply that G ∈ FF (P).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 582

7 PROLOG
7.4 Search Trees and Negation

Example 7.47 (Finite vs. infinite failure)
Consider the program:

above(X, Y) :− on(X, Y).

above(X, Y) :− on(X, Z), above(Z, Y).

on(c, b).

on(b, a).

We have that P 6` above(b, c) and above(b, c) ∈ FF (P). Thus, we
also have P ` \+ (above(b, c)).

Now, let us add the rule above(X, Y) :− above(X, Y). to P . Can we
still derive \+ (above(b, c))? No, because an infinite branch is
contained in the proof tree.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 583

7 PROLOG
7.4 Search Trees and Negation

Negation-as-finite-failure has to be used with caution.

Example 7.48 (Negation-as-failure)
Consider the program:

daughterOf(alice,bob).
sonOf(paul,mary).
onlyDaugther1(X):- \+ sonOf(Y,X), daughterOf(Z,X).
onlyDaugther2(X):- daughterOf(Z,X), \+ sonOf(Y,X).

We would like to derive all parents who have a daughter but no
son. Which of the following queries gives the correct answer?

1 ?- onlyDaughter1(X).

2 ?- onlyDaughter2(X).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 584

7 PROLOG
7.4 Search Trees and Negation

Cuts

It is possible to control how Prolog traverses
the search tree.
More precisely, it is possible to prune the
search tree.
That is, to remove subtrees from the search
tree.

Definition 7.49 (Cut)

The cut is a predicate !/0 which can be used in the
body of a rule. The predicate !/0 is always true.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 585

7 PROLOG
7.4 Search Trees and Negation

Example 7.50 (Removing subsequent f)
We write a program that takes as input terms consisting of
nestings of f and g applied on constant a and returns the same
term with subsequent occurences of f removed.

(1) rem(f(a), f(a)).

(2) rem(g(a), g(a)).

(3) rem(f(X), Res) :− begin f(X), rem(X, Res).

(4) rem(f(X), f(Res)) :− rem(X, Res).

(5) rem(g(X), g(Res)) :− rem(X, Res).

(6) begin f(f(X)).

The solution found first is correct. But then wrong solutions are
returned because of backtracking. Why?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 586

7 PROLOG
7.4 Search Trees and Negation

On query ?− rem(f(f(g(f(f(a))))), X). Prolog gives the following
output:

X = f(g(f(a)));

X = f(g(f(f(a))));

X = f(f(g(f(a))));

X = f(f(g(f(f(a)))));

false.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 587

7 PROLOG
7.4 Search Trees and Negation

Example 7.51 (Previous example with cut)

Now we change clause number (3) as follows:

(3) rem(f(X), Res) :− begin f(X), !, rem(X, Res).

On query ?− f(f(g(f(f(a))))). Prolog gives the following output:

f(g(f(a)));

false.

I.e. only the first correct solution is returned. Once the cut ! is
encountered, backtracking below the node in the search tree
containing the goal !, rem(X, Res), . . . is no longer possible.

The cut predicate prunes the search tree above the node that
caused the cut of the rule to be added to a node as a subgoal.
We make this more formal in Definition 7.52

Prof. Dr. Jürgen Dix Clausthal, SS 2018 588

7 PROLOG
7.4 Search Trees and Negation

Cut in Example 7.51

?- !,rem(f(a),_G5)

?- !,rem(f(g(f(f(a)))),_G3)

?- rem(f(f(g(f(f(a))))),X)

?- begin_f(f(g(f(f(a))))),!,
rem(f(g(f(f(a)))),_G3)

?- begin_f(g(f(f(a)))),!,
rem(g(f(f(a))),_G3)

failure ?- rem(f(f(a)),_G5)

?- begin_f(f(a)),!,
rem(f(a),_G5)

X=f(g(f(a)))

?- rem(f(a),_G7)

X=f(g(f(f(a))))

…

?- rem(g(f(f(a))),_G4)

X = _G3

_G3 = f(_G4)

_G4 = g(_G5)

_G5 = f(a)

_G7 = f(a)

_G5 = f(_G7)

?- rem(f(g(f(f(a)))),_G3)

…

X=f(f(g(f(a))))

X=f(f(g(f(f(a)))))

?- rem(f(a),_G5)

…

X = f(_G8)

?- begin_f(a),!,
rem(a,_G5)

failure

?- begin_f(a),!,
rem(a,_G7)

failure

?- rem(a,_G6)

failure

_G5 = f(_G6)

Figure 7.36: How the cut works.Prof. Dr. Jürgen Dix Clausthal, SS 2018 589

7 PROLOG
7.4 Search Trees and Negation

Origin, Cut-node

A node in the search tree labelled !, A1, . . . , Ak is called
cut-node.

The origin of a cut node is the closest ancestor of the node
which contains fewer cut predicates.

Intuitively, the origin of a cut node is the node which caused the
introduction of the cut.

If the cut is evaluated, the overall search tree is pruned below its
origin.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 590

7 PROLOG
7.4 Search Trees and Negation

Definition 7.52 (Search tree with cut)

Let T be the search tree of a query Q and a program P .

If the cut-node !, A1, . . . , Ak is reached, then

A1, . . . , Ak is the only descendant, and

no alternative outgoing branches of the origin of the cut
node are considered anymore.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 591

7 PROLOG
7.4 Search Trees and Negation

How the cut works in general

?-A1,…,An,…,Ak

B0:-B1,…,Bn

not affected
by cut

?-A,B,C,D,…

?-!,A3,…,An,B,C,D,…

CUT off

origin node

variables may get instantiated

cut alternative rules

unsuccessful
branches

?-A1,A2,!,A3,…,An,B,C,D,…

A :- A1, A2, ! , … , An

Figure 7.37: The cut in general.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 592

7 PROLOG
7.4 Search Trees and Negation

Example 7.53
Query ?− father(X, tom).

(1) father(X, Y) :− parent(X, Y), male(X).

(2) parent(ben, tom).

(3) parent(ben, tom).

(4) parent(sam, ben).

(5) parent(alice, ben).

(6) male(ben).

(7) male(sam).

What happens when we change rule (1) as follows:

(1) father(X, Y) :− parent(X, Y), male(X), !.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 593

7 PROLOG
7.4 Search Trees and Negation

Remark 7.54 (Cuts)
The previous examples have shown two different types of cuts:
removal of subtrees with and without solutions.

A cut is called green if the removed tree does not contain any
successful branches.

A cut is called red if the removed tree does contain successful
branches.

Green cuts are unproblematic whereas red cuts have to be used with
caution.
Cuts can improve the efficiency of a PROLOG program
dramatically.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 594

7 PROLOG
7.4 Search Trees and Negation

Example 7.55
Discuss the following two programs, intended to compute the
minimum of two numbers:

Program 1:

min(X, Y, X) :− X < Y, !.

min(X, Y, Y).

Program 2:

min(X, Y, X) :− X < Y, !.

min(X, Y, Y) :− X >= Y.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 595

7 PROLOG
7.5 Recursion and Lists

7.5 Recursion and Lists

Prof. Dr. Jürgen Dix Clausthal, SS 2018 596

7 PROLOG
7.5 Recursion and Lists

Left and right recursion

Definition 7.56 (Recursion)
A predicate is defined recursively if it occurs in the head and the
body of a (the same) rule.

Example 7.57
We would like to define a descent relation, using predicates
child/2 and descendant/2, between Paul and Anne:

child(paul, anna).

child(anna, sara).

descendant(X, Y) :− child(X, Y).

descendant(X, Y) :− child(X, Z), child(Z, Y).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 597

7 PROLOG
7.5 Recursion and Lists

Recursive rules
What if we add the fact child(sara, frank).? In this case we have
to add the rule:

descendant(X, Y) :− child(X, W), child(W, Z), child(Z, Y).

What if we add another fact etc.? This doesn’t seem to scale and
only works if we know the facts. Any better solution?

descendant(X, Y) :− child(X, Y).

base clause
descendant(X, Y) :− child(X, Z), descendant(Z, Y).

recursive clause

Prof. Dr. Jürgen Dix Clausthal, SS 2018 598

7 PROLOG
7.5 Recursion and Lists

Attention: Recursion is dangerous! Think about your program
carefully.

Example 7.58 (Left and right recursion)
We consider the following variants of the rules of the descendant
example:

(1) base clause on top, right recursion

descendant(X, Y) :− child(X, Y).

descendant(X, Y) :− child(X, Z), descendant(Z, Y).

(2) base clause not on top, right recursion

descendant(X, Y) :− child(X, Z), descendant(Z, Y).

descendant(X, Y) :− child(X, Y).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 599

7 PROLOG
7.5 Recursion and Lists

The following uses left recursion, in contrast to right recursion
(3) base clause on top, left recursion

descendant(X, Y) :− child(X, Y).

descendant(X, Y) :− descendant(Z, Y), child(X, Z).

(4) base clause not on top, left recursion

descendant(X, Y) :− descendant(Z, Y), child(X, Z).

descendant(X, Y) :− child(X, Y).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 600

7 PROLOG
7.5 Recursion and Lists

The previous examples showed that the declarative
meaning of a program can differ from its procedural
meaning. The order of the goals as well as the order of
the rules does affect its procedural meaning.

Remark 7.59 (Recursion)
Recursion is powerful and dangerous.
Try to avoid left-recursion.
Rule and predicate ordering is important.
Try to put base clause before recursive clause.
Put a recursive call as far as possible to the right of a rule.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 601

7 PROLOG
7.5 Recursion and Lists

Remark 7.60 (Inductive definitions)

Consider the following inductive definition of the
natural numbers:

1 0 is a natural number.
2 If n is a natural number, then n+ 1 is a natural

number.
3 There are no more natural numbers then those

obtained by applying the two rules above.
This definition consists of three parts: the base case,
the induction step, and a maximality condition.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 602

7 PROLOG
7.5 Recursion and Lists

Remark 7.61
Our previous examples followed such an inductive definition,
for example:

Basic clause: member(X, [X|]).

Inductive clause: member(X, [|Tail]) :− member(X, Tail).

Extremal clause: ?

Why don’t we have an extremal clause? Think about
negation-as-finite-failure and how PROLOG derives new facts.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 603

7 PROLOG
7.5 Recursion and Lists

Lists

PROLOG supports the data structure of lists. Lists can store
(compound) terms. How does a list look like? Suppose we have a
functor ./2 which allows to “concatenate” terms:

[] : the empty list
.(a, []) : corresponds to the list a.

.(a, .(b, [])) : corresponds to the list a, b.

.(a, .(b, .(c, []))) : corresponds to the list a, b, c.

We use the function ./2 to construct recursive data structures:
lists. [] is a constant denoting the empty list.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 604

7 PROLOG
7.5 Recursion and Lists

Definition 7.62 (List)
A list is a term .(t1, .(t2, .(. . . , .(tk, [])))) where each ti, i = 1, k is a
term, or [], the empty list. The term t1 is the head of the list, and
the list .(t2, .(. . . , .(tk, [])))) is the tail of the list. The empty list has
neither a tail nor a head.

This notation is cumbersome. PROLOG offers alternative ways to
define lists. For example:

[t1, . . . , tk]: List of k elements

[Head|Tail] list with head Head and tail Tail.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 605

7 PROLOG
7.5 Recursion and Lists

Definition 7.63 (List notation)
In PROLOG a list can also be denoted by the following two
predicates:

[t1, . . . , tk] is a shortcut for .(t1, .(t2, .(. . . , .(tk, [])))), and

[Head|Tail] is a shortcut for .(Head, Tail).

Further shortcuts are:

[s1, . . . , sm|[t1, . . . , tn]] is written as [s1, . . . , sm, t1, . . . , tn],
m > 0, n ≥ 0 and.

[s1, . . . , sm|[t1, . . . , tn|X]] is written as [s1, . . . , sm, t1, . . . , tn|X],
m,n > 0.

In the following we consider some examples for list operations

Prof. Dr. Jürgen Dix Clausthal, SS 2018 606

7 PROLOG
7.5 Recursion and Lists

Example 7.64
If possible, rewrite the following into lists of type [t1, . . . , tn]:

1 [1 | [2, 3, 4]]
[1, 2, 3, 4]

2 [1, 2, 3 | []]
[1, 2, 3]

3 [1 | 2, 3, 4]
not a list

4 [[] | []]
[[]]

5 [[1, 2], [3, 4] | [5, 6, 7]]
[[1, 2], [3, 4], 5, 6, 7]

Prof. Dr. Jürgen Dix Clausthal, SS 2018 607

7 PROLOG
7.5 Recursion and Lists

Example 7.65 (Checking membership)
A program which checks whether a term is a member of a list.

member(X, [X|Tail]).

member(X, [Y|Tail]) :− member(X, Tail).

This program is equivalent to.

member(X, [X|]).

member(X, [|Tail]) :− member(X, Tail).

The predicate member/2 is pre-built in PROLOG. Note that
member(a, [a|b]) can be derived even when [a|b] is not a list. Again,
this is due to efficiency.

What does ?− member(a, X) return?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 608

7 PROLOG
7.5 Recursion and Lists

Example 7.66 (Appending lists)
We define a predicate append/3 where append(X, Y, Z) is true if list
X combined with list Y is list Z.

append([], X, X).

append([X|Y], Z, [X|W]) :− append(Y, Z, W).

The predicate can be used in different ways. Explain the use of the
following queries:

1 ?− append([a, 2], [b, 3], [a, 2, b, b]).

2 ?− append([a, b], [c, d], X).

3 ?− append(X, Y, [a, b, c, d]).

Write down the search trees.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 609

7 PROLOG
7.5 Recursion and Lists

Example 7.67 (Last element of a list)
We define a predicate last/2 which is true if the first argument is
the last element of the list in the second argument:

last(X, [X]).

last(X, [H|T]) :− last(X, T).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 610

7 PROLOG
7.5 Recursion and Lists

Write a predicate allSame(L), where L is a list, which is true if
all elements in L are identical.
The following program defines the predicate:

allSame([]).

allSame([X]).

allSame([H1|[H2|T]]) :− H1 = H2, allSame([H2|T]).

This can further be simplified:

allSame([]).

allSame([_]).

allSame([X, X|T]]) :− allSame([X|T]).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 611

7 PROLOG
7.5 Recursion and Lists

Example 7.68 (Removing duplicate elements and cut)

(1) remove duplicates([], []).

(2) remove duplicates([H|T], Res) :− member(H, T),

remove duplicates(T, Res).

(3) remove duplicates([H|T], [H|Res]) :−
remove duplicates(T, Res).

We replace the second clause by

(4) remove duplicates([H|T], Res) :− member(H, T), !,

remove duplicates(T, Res).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 612

7 PROLOG
7.6 Arithmetic

7.6 Arithmetic

Prof. Dr. Jürgen Dix Clausthal, SS 2018 613

7 PROLOG
7.6 Arithmetic

Arithmetic
We first make the following remark:

Remark 7.69 (Arithmetic)
PROLOG is already Turing complete without arithmetic. We can
simulate arithmetic with programs and define arithmetic operators
by predicates (viewing numbers as compound terms). For example,
we can write a recursive predicate plus(A, B, C) to represent
A+B = C. So we don’t need arithmetic.

However, using arithmetic improves readability, allows for easier (to
read) programs, and can be implemented (in hardware) much more
efficiently.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 614

7 PROLOG
7.6 Arithmetic

PROLOG allows a whole bunch of arithmetic
functors (on purpose we don’t say arithmetic
operators). We list a few with their reading:

+ /2 addition
− /2 subtraction
− /1 negative number
∗ /2 multiplication
//2 (floating point) division
///2 (integer) division
mod/2 remainder after division
max/2 maximum of two numbers

It is important to note that 4 + 3 is not 7 but it is a
PROLOG term!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 615

7 PROLOG
7.6 Arithmetic

Definition 7.70 (Arithmetic expression)

An arithmetic expression is a term constructed
from numbers, variables and arithmetic functors.
The arithmetic functors are usually written in infix
notation, i.e. 5 + 2 instead of + (5, 2).

We are able to write down arithmetic expressions,
but how to evaluate them?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 616

7 PROLOG
7.6 Arithmetic

PROLOG offers built-in predicates to evaluate and compare
arithmetic terms. The most important are:

is/2 right evaluation
=:= /2 left-right evalution

= \ = /2 inequality
< /2 (strictly) larger

=< /2 larger or equal
> /2 (strictly) smaller
>= /2 smaller or equal

The reading of t1 is t2 is that t1 equals the evalution of t2 where
t2 must be a ground artihmetic constraint at the time of
evaluation.
The reading of t1 =:= t2 is that t1 evaluates to t2 and vice versa.
Both terms must be ground at the time of evaluation.
The reading of t1=\=t2 is that t1 does not evaluate to t2 or vice
versa.
The other predicates have their usual interpretation.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 617

7 PROLOG
7.6 Arithmetic

Example 7.71
Which of the following expressions are true/false?

2 + 2 = 2 + 2

4 = 2 + 2

X = 2 + 2

What is the instantiation of X?

4 is 2 + 2

2 + 2 is 4

X =:= 2 + 2

3 + 2 =:= 2 + 3

Prof. Dr. Jürgen Dix Clausthal, SS 2018 618

7 PROLOG
7.6 Arithmetic

Example 7.72
Write the following in PROLOG

The remainder of 7 divided by 2 is 1:

1 is 7 mod 2.

The value of 210 is 1024:

1014 is 2 ∗ ∗10.

Compute maximum of 4 and 89:

X is max(4, 89).

Remark 7.73
We note again that terms which are evaluated must be ground.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 619

7 PROLOG
7.6 Arithmetic

Example 7.74 (Factorial)
We define a predicate fac/2 which computes the factorial of a
number n:

fac(0, 1).

fac(N, F) :− N > 0, M is N− 1, fac(M, Fm), F is N ∗ Fm.

Then, we query ?− fac(n, X). Variable X contains the factorial of n.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 620

7 PROLOG
7.6 Arithmetic

Example 7.75 (Length of a list)
We define a predicate length/2 which computes the length of a
list:

length([], 0).

length([H|Tail], N) :− length(Tail, P), N is P + 1.

Example 7.76 (For-loop)
We simulate a for-loop with recursion

printnr(1) :− writeln(1).

printnr(N) :− N > 1, M is N− 1, printnr(M), writeln(N).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 621

7 PROLOG
7.6 Arithmetic

Example 7.77 (Sum numbers in a list)
We would like to define a predicate sum/2 which sums up all
numbers in a list. What about the two programs

sum([], 0).

sum([H|Tail], Sum) :− sum(Tail, Tailsum), Sum is H + Tailsum.

and

sum([], 0).

sum([H|Tail], Sum) :− Sum is H + Tailsum, sum(Tail, Tailsum).

Why does the former program work but not the latter?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 622

7 PROLOG
7.7 Programming

7.7 Programming

Prof. Dr. Jürgen Dix Clausthal, SS 2018 623

7 PROLOG
7.7 Programming

Comments and Modes of Variables
Example 7.78 (Computing the power)
Write a PROLOG program which computes:

X to the power of N and return/store in P

We define a predicate power(X, N, P).

How to find out about the purpose of the predicate and how
to use it? Add comments:

% Computes X to the power of N

% and return/store in P

power(_, 0, 1).

power(X, N, P) :− N > 0, M is N− 1, power(X, M, MP),

P is X ∗ MP.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 624

7 PROLOG
7.7 Programming

% Computes X to the power of N

% and return/store in P

power(_, 0, 1).

power(X, N, P) :− N > 0, M is N− 1, power(X, M, MP),

P is X ∗ MP.

Is this everything we need? What if we query power(2, Y, 8)?
That is, we want to know which power x is needed such that
2x = 8.
We get an error message:
>/2: Arguments are not sufficiently instantiated.
Why?
It is possible to query power(2, 10, P) where P is instantiated
to the solution.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 625

7 PROLOG
7.7 Programming

% Computes X to the power of N

% and return/store in P

power(_, 0, 1).

power(X, N, P) :− N > 0, M is N− 1, power(X, M, MP),

P is X ∗ MP.

X and N are input variables, they need to be ground when
evaluated.
P can be an input as well as an output variable.
We use +, − and ? to indicate input, output, and
input/output variables, respectively.
We add the comment explaining the definition of the
predicate:
% power(+Integer1,+Integer2,?Integer3)

Prof. Dr. Jürgen Dix Clausthal, SS 2018 626

7 PROLOG
7.7 Programming

Definition 7.79 (Predicates, mode)
When defining a predicate p(t1, . . . , tN) we group the definition
of the predicate and put above a comment clarifying the type of a
variable together with its mode, i.e. whether it is an input (+),
output (-) or input/output (?) variable. For example, it could look
as follows:

% p(+Int1, -Int2, ...,?IntN)

Note: Formally this is just a comment!

Prof. Dr. Jürgen Dix Clausthal, SS 2018 627

7 PROLOG
7.7 Programming

Example 7.80
We have already seen that the misuse of input variables can
yield errors.

What if we use a ground term as output variable? The
following examples show that one has to be careful:

% sort(+List,-List)

?− sort([3,1,2],[1,2,3])

true

% sort(+List,-List)

?− sort([A,B,3],[2,1,3])

A = 2, B = 1.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 628

7 PROLOG
7.7 Programming

In the PROLOG manual the types indicate the
following:

+ argument must be fully instantiated
- argument should be unbound
? argument bound to a term of the specified type

Declaration of variables is important when
programming for readability.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 629

7 PROLOG
7.7 Programming

Collecting Solutions

findall/3: collects all objects in a list that satisfy a given goal,
bagof/3: (clustered solutions),
setof/3: (no duplicates).

In the following two definitions, we consider the program:

child(martha,charlotte).
child(charlotte,caroline).
child(caroline,laura).
child(laura,rose).
descend(X,Y) :- child(X,Y).
descend(X,Y) :- child(X,Z), descend(Z,Y).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 630

7 PROLOG
7.7 Programming

Definition 7.81
findall(X, G, L) collects in L

all instantiations of X that

correspond to solutions of G

The query ?− findall(X,descend(martha,X),Z). returns
L=[charlotte, caroline, laura, rose]

If there are no instantiations that match the goal the empty list is
returned. Note that X can be an arbitrary term. The list can
contain duplicate entries.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 631

7 PROLOG
7.7 Programming

Definition 7.82
bagof(X, G, L) collects in L

all instantiations of X that

correspond to solutions of G

and clusters these solutions in a separate list for all
instantiations for variables in G not contained in X.

If there are no instantiations matching the goal, fail is returned.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 632

7 PROLOG
7.7 Programming

The query ?− bagof(X,descend(Y,X),Z). returns

Y = caroline,
L = [laura, rose]
Y = charlotte,
L = [caroline, laura, rose]
Y = laura,
L = [rose]
Y = martha,
L = [charlotte, caroline, laura, rose].

Prof. Dr. Jürgen Dix Clausthal, SS 2018 633

7 PROLOG
7.7 Programming

Definition 7.83

setof(X, G, L) behaves like bagof(X, G, L) but
each list is sorted alphabetically and
duplicate entries are removed.

Costly operations

It is important to note that these three operations
are costly in terms of computation time. Use
them carefully.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 634

7 PROLOG
7.7 Programming

Anonymous variables

On query ?− sister(X,Y) Prolog returns all pairs
X and Y such that X is a sister of Y.

We may only be interested in knowing who has a
sister, i.e. in the instantiations of Y. In this case we
can use the anonymous variable:

?− sister(_,Y)

Prolog only returns instantiations for Y. Thus, the
anonymous variable is used to hide specific
instantiation.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 635

7 PROLOG
7.7 Programming

The anonymous variable can be used at several places in a query:
each occurrence of _ is independent of the others.

Example 7.84 (Anonymous variable)
Consider the program:

?- [X1,X2,X3,X4| Tail]=[[], d(z),[2,[b,c]],[],Z].
X1 = X4, X4 = [],
X2 = d(z),
X3 = [2, [b, c]],
Tail = [Z].

We may only want to know the value of the second and fourth
position on the list: Only interested in 2nd and 4th component:

?- [_,X2,_,X4|_]=[[], d(z),[2,[b,c]],[],Z].
X2 = d(z),
X4 = [].

Prof. Dr. Jürgen Dix Clausthal, SS 2018 636

7 PROLOG
7.7 Programming

Compare the difference to (occurrences of _ are
independent):

?- [Y,X2,Y,X4|Y]=[[], d(z),[2,[b,c]],[],Z].
false.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 637

7 PROLOG
7.7 Programming

Tail recursion and accumulators

append([], X, X).

append([X|Y], Z, [X|W]) :− append(Y, Z, W).

Example 7.85 (Reversing a list)

We would like to reverse a list. Consider the following program,
where append is defined as before.

naiveReverse([],[]).
naiveReverse([H|T],R):- naiveReverse(T,RTemp),

append(RTemp,[H],R).

Query ?− naiveReverse([1,2,3,4,5,6,7,8],L). Have a look at
the trace, what can you observe?

The program is very inefficient. Can we do better?

Prof. Dr. Jürgen Dix Clausthal, SS 2018 638

7 PROLOG
7.7 Programming

Consider the following approach to reverse a list:

List: [a,b,c,d] Accumulator: []
List: [b,c,d] Accumulator: [a]
List: [c,d] Accumulator: [b,a]
List: [d] Accumulator: [c,b,a]
List: [] Accumulator: [d,c,b,a]

Example 7.86 (More efficient program for Reverse)
We first define an accumulator:

accRev([H|T],A,R) :- accRev(T,[H|A],R).
accRev([],A,A).

The predicate to reverse the list is: rev(L,R) :- accRev(L,[],R).
Compare the trace of ?− rev([1,2,3,4,5,6,7,8],L). to the
corresponding trace of Example 7.85.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 639

7 PROLOG
7.7 Programming

Compare the traces of naiveReverse([1,2,3,4,5],L). (cf.
Fig. 7.38) and rev([1,2,3,4,5],L). (cf. Figure 7.39)

Figure 7.38: Trace of naive reverse.
Prof. Dr. Jürgen Dix Clausthal, SS 2018 640

7 PROLOG
7.7 Programming

Figure 7.39: Trace of reverse with accumulator.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 641

7 PROLOG
7.7 Programming

Tidy your room!

A very simple example showing in blocksworld-like style, how to
deal with actions as elements of a list.

Example 7.87
Your room is very untidy. You should make it nice as you are
expecting friends to come over. You have three simple actions: to
pick, to move and to drop an object.

Write a binary predicate that takes a list of objects and generates a
list of actions (pick, move to box, drop) for each object.

Refine your program by putting the objects into different boxes
according to their colors.

Prof. Dr. Jürgen Dix Clausthal, SS 2018 642

7 PROLOG
7.7 Programming

Tidy your room! (cont.)

tidy([],[]).
tidy([Obj|Oth],[pick(Obj),move(Obj,box),drop(Obj)|OthActs])
:- tidy(Oth,OthActs).

tidy([],[]).
tidy([Obj|Oth],[pick(Obj),move(Obj,box1),drop(Obj)|OtActs])
:- tidy(Oth,OthActs), red(Obj).
tidy([Obj|Oth],[pick(Obj),move(Obj,box2),drop(Obj)|OthActs])
:- tidy(Oth,OthActs), green(Obj).
tidy([Obj|Oth],[pick(Obj),move(Obj,box3),drop(Obj)|OthActs])
:- tidy(Oth,OthActs), blue(Obj).

Prof. Dr. Jürgen Dix Clausthal, SS 2018 643

	Introduction
	What Is AI?
	Logic: From Plato To Zuse
	Verification
	References

	Sentential Logic (SL)
	Motivation
	Syntax and Semantics
	Some examples
	Hilbert Calculus
	Resolution Calculus

	Verification I: LT properties
	Motivation
	Basic transition systems
	Interleaving and handshaking
	State-space explosion
	LT properties in general
	LTL

	First-Order Logic: Semantics
	Motivation
	FOL: Syntax
	FOL: Models
	Examples: LTL and arithmetic
	Prenex normal form and clauses
	Sit-Calculus
	The Blocksworld
	Higher order logic

	Verification II: Hoare calculus
	Motivation
	Core Programming Language
	Hoare Logic
	Proof Calculi: Partial Correctness
	Proof Calculi: Total Correctness
	Sound and Completeness

	From FOL to PROLOG
	Motivation
	A calculus for FOL
	Resolution
	Herbrand
	Variants of resolution
	SLD resolution

	PROLOG
	Motivation
	Syntax
	Queries and Matching
	Search Trees and Negation
	Recursion and Lists
	Arithmetic
	Programming

