MB TU Clausthal

Clausthal University of Technology

Complexity Theory

Prof. Dr. Jurgen Dix

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 1

el TU Clausthal

Time and Date: Lecture (SR 210):
Wednesday/Thursday, 10ct.

Exercises/Labs (SR210): approx. fortnightly
Assistent: Niklas Fiekas

Homepage
http://cig.in.tu-clausthal.de/
Visit regularly!

Important info about scripts, slides, exercises et
cetera.

Exam: oral examination.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 2

http://cig.in.tu-clausthal.de/

el TU Clausthal

What is this lecture about? (1)

Prof.

This lecture course builds on “Informatics Il1” and deepens many
topics introduced there.

The first chapter (5 lectures, 2 labs) starts with Makanin's problem
(word equations over a free monoid) which is decidable, and then
covers some topics from the Chomsky hierarchy: the
Myhill-Nerode theorem (how to construct a minimal finite
automaton), deterministic PDA’s, type 1 languages, normalform
for type 0 and type 1 languages, Ehrenfeucht's theorem and
Lindenmayer systems, a class of grammars that is orthogonal to
parts of the Chomsky hierarchy.

Chapter 2 (6 lectures, 2 labs) discusses undecidability results in

greater depth (Post's Correspondence theorem, (primitive)

recursive functions, Hilbert's 10. problem (solving diophantine

equations)). We also cover Rice's theorem and its analogue for
rammars.

r. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 3

@u’u IU ‘C‘l\‘a u sthal

What is this lecture about? (2)

Chapters 3 (2 lectures, 1 lab) and 4 (3 lectures, 1 lab) cover
classical complexity results: time versus space, speed-up,
gap-theorem, union-theorem and complexity classes: PH (the
polynomial hierarchy), PSPACE, EXPSPACE and their subclasses.
We also prove Immerman/Szelepcsényi's theorem. We end with
the decidability of Presburger arithmetic, the theory of reals with
addition (and multiplication) and their respective complexities.
The results are obtained by quantifier elimination.

Chapter 5 (1 lecture) is a short overview of the arithmetical and
analytical hierarchy (extending EXPSPACE into the undecidable)
and discusses descriptive complexity: Can we find logics
corresponding to complexity classes (Fagin's theorem).

Many thanks to Nils Bulling for proofreading and helping with
the exercises of previous versions.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 4

@KM lU Lhustlnl
Table of contents

1. The Chomsky Hierarchy
2. (Un-) Decidability

3. SPACE versus TIME

4. EXPSPACE

5. More advanced topics

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 5

.1 1 The Ch Hierarch
w: TU Clausthal e Chomsky Hierarchy
Clausthal University of Technolog;

1. The Chomsky Hierarchy

The Chomsky Hierarchy
m Makanin’s Algorithm

Minimal DFA

cf = hom(Dycknreg)

DPDA/DCF

LBA/Type 1

re = hom(cs)

Ehrenfeucht

Lindenmayer

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 6

Mu TU Clausthal 1 The Chomsky Hierarchy

Content of this chapter:

Type 3: Does a unique minimal automaton exist?
PDAs are indeterministic. Which class do
deterministic PDA’s generate? — DCF.
Type 2: Dyck = CFL: Each cf-language has the form
hom(Dyck n type3).
Type 1:

Languages of type 1: LBA acceptable.
Contextsensitive = bounded.
Type 1 is closed under complements.

Type 0: Each r.e. set has the form hom(typel).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 7

ity .
ws TU Clausthal 1 The Chomsky Hierarchy
Clausthal University of Technolog;

Content of this chapter:

Ehrenfeucht: Equality of morphisms modulo L can be
checked on a finite test set.

New class: Incomparable to Type 2, 3:

m Lindenmayer systems: a class which is
incomparable to both type 2 and type 3.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 8

@u’u TU C]austha] 1 The Chomsky Hierarchy

A (homo-) morphism is a structure-preserving mapping
from one algebraic structure in another one.

Definition 1.1 (Homomorphism)

A (homo-) morphism h : A; — A,

m of one algebraic structure A, = (M,Op}, ,...,O0pk,)
m into another algebraic structure of the same type
—ll =8
Ay = (N, ODppys - -+ 5 Opmk)
is a function h : M — N that is compatible with all

operators. This means that the following holds: for
l<i<kandforallay,...,a, € M:

h(Op (as,. .., an,)) = Op:” (h(ar), ..., h(ay,)).

Prof. Dr. Jurgen Dix * Department of Informatics = TU Clausthal WS 16/17 9

ity .
ws U Clausthal 1 The Chomsky Hierarchy
Clausthal University of Technolog;

Definition 1.2 (Isomorphism)
An Isomorphism from A; = (M, Op}, ,...,O0pk,)

to Ay = (N, O_p}nl, ...,O_pfnk) is a homomorphism
h: Ay — A, which is bijective.

Example: Graphs.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 10

@Ku '(l“y‘ ‘Qlausthal 1 The Chomsky Hierarchy
For languages: a (homo-) morphism from a
language based on alphabet ¥ to a language
based on alphabet T', is a function which maps

m one symbol in
m to a word in T'* (T is a different alphabet).

Some examples on ~ blackboard 1.1.

Why are morphisms useful?
~ blackboard 1.2

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 1M

1 The Chomsky Hierarchy

e’ TU Clausthal

Lemma 1.3 (Unique Extension to >*)

h can be uniquely extended to h : ¥* — I'* so that:
B A(uowv) = h(u)oh(v) forallu,veX*, and
mh(e) =e.

It suffices to define h on Y. Then his uniquely
defined on X*.

h operates on words in ¥* by using symbol
after symbol!

A morphism h is e-free if h(a) # ¢ forall a € X.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 12

@u’u TU C‘]aus‘thal 1 The Chomsky Hierarchy

Definition 1.4 ((Ext.) Regular Expressions Regs., Regs:)

Regular expressions Regy, are defined as follows:
1. 0is a regular expression.

2. Forall a € ¥ is a a regular expression.
3. If r and s are regular expressions, then so are
m (r + s) (union),
m (rs) (concatenation),
m (r*) (Kleene star).
Extended regular expressions fRegs; are obtained when we
replace above “regular expression” by “extended regular
expression” and also add
4. If r and s are ext. regular expressions, then so are
m (—r) (negation),
B (rns).
We usually omit parentheses and agree that * is stronger than
concatenation, which is stronger than +, n and —.

Prof. Dr. Jirgen Dix * Department of Informatics = TU Clausthal WS 16/17 13

Mu TU Clausthal 1 The Chomsky Hierarchy

Definition 1.5 (Semantics of Regy’)

An (extended) regular expression r defines a language
J(r) over ¥ as follows:

m J(0) := &,

m J(a) := {a},forae X,
mJ(r+s):=3(r)vI(s),
mJI(rns):=3(r)nI(s),
m J(rs) :=3(r)3(s),
mJ(r*) :=3(r)%,

u

We also use a™ in a regular expression (this is a macro). We
use “1”, defined by 1 := 0*. Obviously J(1) = {e}.
~ blackboard 1.3

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 14

@Kﬂ TU C‘laus‘thal 1 The Chomsky Hierarchy

What added value do — and n give us? Can
we express more sets?

Consider the alphabet ¥ = {ag, a1, ..., a,}.
Give a regular expression of the language
consisting of all words over ¥ that have not
the form a fori > 1?

Give a regular expression of the language
consisting of all words over ¥ that have not
the following form

(... ((aka1)%az)? - - - an)?.

Languages can be described more succinctly!

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 15

@Kﬂ— TU Clausthal 1 The Chomsky Hierarchy

Given regular expression r, 7', how complex is it to
construct regular expressions for —r and r n 1’/
and what is the size of these expressions?

Naive approach: Construct dfa’a (to
compute the complement). This requires to
transform a nfa in a dfa: exponential time
(subset cnstructio. Indeed: double
exponential (getting the regular expression
from the automaton).

Also the size of the constructed regular
expression is double exponential.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 16

@Kﬂ— TU Clausthal 1 The Chomsky Hierarchy

In fact, this is not accidental:

Size: In general, the size of the constructed
regular expressions is double
exponential in the input size.

Complexity: To construct —r takes double
exponential time. To constructr n 7’
takes exponential time. (The case
r1 N ... ¥ for unlimited & is also
double exponential.)

We refer to Wouter Gelade and Frank Neven, Succinctness of the

Complement and Intersection of Regular Expressions, STACS: 25th

Annual Symposium on Theoretical Aspects of Computer Science,

Bordeaux, pages 325-336, 2008.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 17

@Ku TU C]austha] 1 The Chomsky Hierarchy

Checking eex’s (1)

Given a word w and an extended regular
expression eex, how to efficiently determine that
w € eex?

Construct automata corresponding to
subexpressions. What about the
complexity?

Is there an algorithm polynomial in |w| + |eex|?

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 18

@KH' TU Clausthal 1 The Chomsky Hierarchy

Checking eex’s (2)

We construct a table with yes/no entries for
m each subexpression r of eex, and

m each substring z;; of w (starting from position
i and ending in j), such that

[|
N, else.

~ blackboard 1.4

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 19

@Ku l U Clausthal 1 The Chomsky Hierarchy

Checklng eex’s (3)

m The table has size (|ecx| + |w|)? (n subexpr. of
eex and " substrings of w).

m For each entry we have to consider all cases (to
build the expression) and we can show, that
determining each entry takes time at most
(leex| + |w|). We start with small
subexpressions 0, a of eex and all substrings of
w. Then consider subexpressions built from
N, +,0,"

m This gives a complexity of (Jecx| + |wl|)*.

Prof. Dr. Jurgen Dix * Department of Informatics = TU Clausthal WS 16/17 20

@Ku TU Clausthal 1 The Chomsky Hierarchy

Decidability of several problems

Finite | Empty | Equivalence | Intersection
TypeO | no no no no
Type1 | yes no no no
oL yes no no no
Type 2 | yes yes no no
DCF yes yes yes‘ no
Type 3 | yes yes yes yes

9Very complicated, not in this lecture.

m yes/no entries: Already given in Informatics IIl.
m yes/no: This lecture.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 21

@ﬁTWJ(Jauﬁhal

Closure under certain operations

1 The Chomsky Hierarchy

J

€ free — h

N reg

<=

Type O

Rec

Type 1

NN
I

oL

NESENEND

Type 2

DCFL

ANEEENEEENENENE:
SEIRSEIRSR RN
NENE
NERENN
N ESENERENERENE)

Type 3

< s s s

ENE RN ERNENENIE

SNENENEEENENEN

NEEANEERNENENEE

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal

WS 16/17 22

@KM’ '[U Clausthal 1 The Chomsky Hierarchy

Deterministic finite automaton (dfa):

m Given w € ¥*, a dfa checks, whether w € L.
m A dfa has:

m a read-only head, moving to the left (not back).
= an internal state, with finitely many values.

m [t starts in the initial state.
m Reading one letter may result in a state change.

m If it has read the whole word and ends in a final state,
then it accepts (“YES”): w is contained in L.
Otherwise it does not accept: “No”.

m It stops after exactly |w| steps.

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 23

@u’u TU C‘]aus‘thal 1 The Chomsky Hierarchy

Notation as a graph:
m a node for each possible state,

m edges are marked with symbols: They
describe state changes.

m Initial states are marked with an arrow,
m final states are marked with a double circle.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 24

ﬁu@ TU Clausthal 1 The Chomsky Hierarchy

Definition 1.6 (Deterministic Finite Automaton (dfa))

A deterministic finite automaton (dfa) is a tuple
A= (K, X, 0,s0, F), with
m K afinite set of states,
m Y afinite alphabet,
mJ: K x X — K the (total) transition function,
m sy € K the initial state, and
m F' C K the set of final states.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 25

@KW ’IU (:lausthal 1 The Chomsky Hierarchy

d(q,a) = ¢’ means:
m The automaton is in state g,
m reads an a and
m reaches state ¢.

We extend § to 0* : K x ¥* — K, which is defined
recursively over ¥* as follows:

5*(g,¢) == ¢
0 (q,wa) = 0(0"(q,w),a)

We often write § instead of ¢* if clear from
context.

Prof. Dr. Jirgen Dix * Department of Informatics = TU Clausthal WS 16/17 26

HKB TU Clausthal 1 The Chomsky Hierarchy

o .
Clausthal University of Technology 1.1 Makanin’s Algorithm

1.1 Makanin’s Algorithm

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 27

@Kl% TU Clausthal 1 The Chomsky Hierarchy

1.1 Makanin’s Algorithm

Content of this section:

We introduce finite sets of word equations
over a set of constants X and a set of variables
Q. A solution is a set of instantiations of the
variables.

Makanin's algorithm decides whether there
are solutions for such a system and even
computes them.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 28

el TU Clausthal e Koo
Example 1.7
Let > = {a,b,c}, Q = {x,y, z} and consider the
equation
abxcy = ycxba

Is that equation solvable? |.e. can we assign
words from ¥* to z, y such that we get the same
words on both sides of the equation? How many
solutions are there?

We denote the length of a word w by |w|, and the
number of occurrences of a variable z in it by |w|,.
Thus |abzcy| = 5 and |ycxbal, = 1 = |ycxbal,.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 29

@KW 1 The Chomsky Hierarchy
" IH, ‘Qlau,s,t‘hal 1.1 Makanin’s Algorithm

Definition 1.8 (Word equations, solution)

A word equation over the alphabet X in the variables Q is of
the form
L =R,

where L, R are elements of (¥ u Q)*.
A system of word equations over ¥ in 2 is a set

S:= {L1=R1,...,Lk=Rk}

of word equations. Such a system is quadratic if
VzeQ: Y5(|Lie + |Rilz) < 2.

A solution of S is an instantiation o :) — ¥* such that
O'(LZ) = O'(RZ) forall i = 1,. k.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 30

@IKI% TU Clausthal 1 The Chomsky Hierarchy

1.1 Makanin’s Algorithm

There is an algorithm to compute whether there is a
solution of a finite system of word equations over %
in the variables ().

m Another formulation: the existential theory
of equations over a free monoid is decidable.

m In 1983, the result was extended to the
existential theory of equations over a free
group is decidable.

m These are deep theorems and their proof is
quite complicated. We discuss its relation to
PCP and present a special case.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 31

Mw 1 The Chomsky Hierarchy
" ’:[\:Hj ‘Ql‘rauﬁs,,tﬂhal 1.1 Makanin’s Algorithm

Lemma 1.10 (Quadratic Equations)

There is a simple algorithm due to Matijasevich
(1968) to compute whether there is a solution of a
finite system of quadratic word equations over ¥ in
the variables).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 32

-lU Clausthal 1 The Chomsky Hierarchy

1.1 Makanin’s Algorithm

Proof of Lemma 1.10 (1).

We assume the system FE is given as k equations
oftheform L, = Ry, ... , L, = R;.

We show our lemma by induction on ().

For Q2 = 7, the lemma is clear (simply checking

whether all right and left hand sides correspond

to each other). Let |E| := 3 | |L;R|

1. step: Set o(z) = e for some x € (2, obtaining

E' over Q\{z}. If there is a solution (can
be decided by induction hypothesis), we
call it singular solution, we are done. If
not, next step.

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal 6/17 33

@u’u TU C]austha] 1 The Chomsky Hierarchy

1.1 Makanin’s Algorithm

Proof of Lemma 1.10 (2).

2. step: Wlog we assume that for all solutions (if any)
o(x) # e for all z € Q. Then the first equation has
eithertheform (1) x...=a...or(Qz...=y...
where z,y € Q, x # y, a € X. In case (1) we
transform [z/az], in case (2) we transform
[2/yz], where z is a new variable.

We get a new system F’, still quadratic, with:
|E'| < ||E| and E is solvable iff E’is solvable.
Let o be a non-singular solution of E where
Y,ealo ()] is minimal. Then we find a solution ¢’
for £’ with |0'(2)| < |o’(x)| (note o(y) # €). So
the length of the shortest solution has
decreased. We proceed recursively.

O

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 34

@u’u TU C]austha] 1 The Chomsky Hierarchy

1.1 Makanin’s Algorithm

Proof of Lemma 1.10 (2).

3. step: It remains to nondeterministically
guess a solution. If there is none, this
can be detected because there are only
finitely many different systems of
equations possible (up to renaming of
variables).

So we'll enter a loop eventually and
know that we do not need to go on
anymore.

[]

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 35

1 The Chomsky Hierarchy

iy
" ’:[\:Hj S:pl:ag?s,,tﬂ}:lal 1.1 Makanin’s Algorithm

Example 1.11 (lllustration of Lemma 1.10)
Let ¥ = {a,b,c} and Q = {z,y, z} and consider

abrcy = ycxba

Figure 1 on slide 37 shows all the instances that we get (up
to renaming of variables). Note that new equations need
not have strictly less variables or strictly shorter length (only
the shortest solution length decreases).

But they do not get any larger.

Therefore, there can be only finitely many of them. Thus
if there is no solution at all, this can be determined. If there
is a solution, it will be computed or guessed eventually.

We get as shortest length solution z := q, y := aba.
However, there is also the solution: = := aca, y := aba.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 36

iy

1 The Chomsky Hierarchy
-];H\ ‘g;pfl‘?(}?lﬂshggal 1.1 Makanin’s Algorithm
) Y ay
abrcy = yerba breay = yerba
y ey y — by

y = xy
cabry = yerba reaby = yerba

T 4cx || yr

Y=< reaby = cyxba

Tr+E
abx = xba aby = yba
T+ br || ¢ ax Yy by ||y ay

bax = xba

Figure 1: A simple algorithm for systems of quadratic equations.
Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 37

@KW T B 1 The Chomsky Hierarchy
" (l\ w, ngaUSthal 1.1 Makanin’s Algorithm

What about the complexity of the general result?

Free monoids: The best bound of Makanin’s
algorithm is exponential space, while
the prblem has been shown to be in
PSPACE.

Free groups: There is no primitive recursive
bound for Makanin’s algorithm.
However, the complexity of the problem
has been shown to be in PSPACE.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 38

HKB’ 1 The Chomsky Hierarchy
» TU Clausthal 1.2 Minimal DFA

Clausthal University of Technology

1.2 Minimal DFA

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 39

1 The Chomsky Hierarchy

@Hf* TU C"lauhs_tﬂhal 1.2 Minimal DFA

Another method to determine whether a
language is not regular. Given a language L, is
there a unique minimal dfa for L?

Definition 1.12 (~,)
For a language L < ¥* we define the relation
~p S XF x X%

v~px if YVweX': (vwe Liffzwe L)).

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 40

K 1 The Ch Hierarch
S TU Clausthal e Chomsky Hierarchy
Clausthal University of Technolog .

Definition 1.13 (R4)

Foradfa A = (K, X, 0, sy, F') we define the relation
Ry € X* x X%
vRax if §(sp,v) = (sg,).

m ~;, R4 are equivalence relations

m ~, R4 areright congruences:
(v~pt iff VweX*: (vw ~p tw)).

~+ blackboard 1.5

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 41

'HIW 1 The Chomsky Hierarchy
" Iqucltags‘t‘hal 1.2 Minimal DFA

Example 1.15

L ={we{a,b}*: #4,(w)=1 mod 3}.

There are exactly 3 equivalence classes:
[e] = {w e {a,b}* : #,(w) =0 mod 3}.
[a] = {w e {a,b}*: #,(w) =1 mod 3}.
[aa] = {w € {a,b}* : #,(w) =2 mod 3}.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 42

8,01

1 The Ch ky Hi h
dTU Clausthal e Chomsky Hierarchy

Example 1.16

L ={we{a}*: w=aP, pisprime}.

There are infinitely many equivalence classes.
Example 1.17

L={we{a}*: w=adP, pandp+ 2 are primes}.

How many equivalence classes are there?

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 43

1 The Chomsky Hierarchy
1.2 Minimal DFA

el TU Clausthal

Theorem 1.18 (Myhill-Nerode)

Let L < ¥* be a language. The following are

equivalent:

(1) L is rational (type 3).

(2) L is the union of some equivalence classes of a
right congruence of %, which has only finitely

many equivalence classes.
(3) ~1 has only finitely many equivalence classes.

~ blackboard 1.6

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 44

1 The Chomsky Hierarchy

@m TU ClaUStpal 1.2 Minimal DFA

Clausthal University of Technolo

Proof

(1) — (2): Let A be a dfa for L. Obviously R4 has only
finitely many equivalence classes (bounded above by the
number of states). Use Lemma 1.14 to show that it is a right

congruence.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 45

1 The Chomsky Hierarchy

'[:‘g ‘C‘l\a‘u's‘thal 1.2 Minimal DFA

(2) — (3): We show: Let R’ be an equivalence relation
which satisfies (2). Then each equivalence class of R’ is
contained in some equivalence class of ~;.

Then ~, has at most as many equivalence classes as R’
(several classes of R’ could be contained in ~;), therefore
only finitely many.

Let 2 R'y. Because of the right congruence property (for all
2z € X*): xzR'yz. Thus yz € L iff 2z € L. Therefore z ~;, 4.
Thus [z]., is contained in [z]., .

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 46

! TU Clausthal R
(3) — (1): ~, is aright congruence (Lemma 1.14).

We construct a dfa M}, which accepts L:
B K= {[z].,: zeX*},
m i([z].,,a) = [za].,,
B 5o = [g]-,,
mF:={[z].,: ze L}

0 is well-defined (right congruence). Our dfa accepts L,

because

(s,) = [z]~, thus z e L(M,) iff [z]., € F

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 47

8,01 1 The Ch Hierarch
w: TU Clausthal e Chomsky Hierarchy
Clausthal University of Technolog .

Definition 1.19 (1})

For L < X" we define the following automaton
M = (K,%,6,s0, F):

m K= {[w].,: weX*},

W s =[e]~,,

mF = {[w]., : wel}

8 65([w]~,, a) = [wa].,.

Is M; a finite automaton? J

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 48

@KW D 1 The Chomsky Hierarchy
'Tu (JlaUSthal 1.2 Minimal DFA

Assume a dfa contains states ¢, ¢’ with

Vwe X : §(q,w) e Fiff 6(¢',w) e F.

What does that mean?
q and ¢’ are equivalent.

Does there exist to each dfa A another automaton

which accepts the same language and has a
minimal number of states?

Prof. Dr. Jurgen Dix * Department of Informatics = TU Clausthal WS 16/17 49

1.2 Minimal DFA

Definition 1.20 (Morphisms between dfa’s)

A morphism between two dfa's
Al = (K17 27 517 S1, Fl)r A2 = (K27 27 57 S2, FQ) is a
mapping h : K; — K such that:

h(sl) = 52,

h(Fl) c Fy,

h(EKG\F1) € Ko\ F,

h(61(q,a)) = 02(h(q),a) forall g € K; and a € 3.

An isomorphism between two dfa’s is a bijective
morphism between them.

@u’u TU C]austha] 1 The Chomsky Hierarchy

In the following we assume that all states of an
automaton are reachable.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 50

!@KW 1 The Chomsky Hierarchy
" IU ‘ClaUSt‘hal 1.2 Minimal DFA

For any morphism h from dfa A, to dfa A, it holds

that L(Al) = L(AQ)

Proof
Let s; be the initial and F; the set of final states of
A;.

w e L(A) 01(s1,w) € Fy
h(61(s1,w)) € Fy
da(h(s1),w) € Fy
da(S2,w) € Fy

w e L(AQ)

¢ ¢ ¢ 9

0

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 51

!@KW 1 The Chomsky Hierarchy
= TU Clausthal 1.2 Minimal DFA

Lemma 1.22

The mapping h, : A — M 1(4) defined by
ha(q) = [w]~, lfd(so, w) = g is a surjective
morphism from A to ML(A).

Proof

m Firstly, we observe that %4 is a function as A is
reachable.

m 1, is well-defined: Suppose there is another
word v # w with §(sp, v) = q. Then, v ~p4) w
and thus [v] = [w].

[]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 52

@KW IU (,:la USlh al 1 The Chomsky Hierarchy

1.2 Minimal DFA

m hyis a morphism: ha(so) = [€] is the initial state
of ML(A)-
Final states: Let g € F4 iff
Jw € L(A)(8(s0,w) = q) iff
Jw e L(A)(ha(q) = [w]) iff ha(q) € FML(A>'
Transitions: 0(h(q), a) = 6([w], a) with
d(s0, w) = g which is equivalent to [wa] which
is equivalent to h4(p) with
p = d(sp, wa) = 0(0(sp,w),a) = d(q,a), which is
thus equal to h4(d(q, a)).

W hy is surjective: For each w there is a state ¢
with 6(sg, w) = q.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 53

8,01

1 The Chomsky Hierarchy
" Iq UCIaHSt‘hal 1.2 Minimal DFA

Theorem 1.23 (Minimality of My)

Let A be a dfa and L = L(A). The following are
equivalent:

A is minimal: each dfa A’ with L(A") = L(A)
has at least as many states as A.
A is isomorphic to M;.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 54

@Kw B 1 The Chomsky Hierarchy
'TU ‘(JlauSthal 1.2 Minimal DFA

Proof of Theorem 1.23

We have shown (Proof of Theorem 1.18), that each other dfa
accepting L, defines an equivalence relation which is a
refinement of ~.: each of these classes is contained in one
of the classes of ~;.

Therefore each such dfa has at least as many classes as
M;,.

Let M’ be a dfa which accepts L and has the same number
of states as M;. We define an isomorphism between)/’
and M;. Let ¢ a state of M’. Then there is a word w with

8 (s, w) = ¢ (otherwise ¢’ could be removed). We map ¢’ to
d(so, w) (this is well-defined). O

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 55

el TU Clausthal T e

Proof of Theorem 1.23 (cont.)

“1 = 2": Let A be minimal. There is a surjective
moprhism iy : A — M; (Lemma 1.22). Now, if h4
would not be injective we have that A has more
states than M;. Contradiction as A is minimal!

“2 = 1": Let A be isomorph to M;; hence, there is
a bijection 7/, : My :— A. Let A’ be a (reachable)
dfa with L(A’) = L. By Lemma 1.22 there is a
surjective morphism hy : A" — M;. Now we have
that hgyq := h/yohy : A" — Alis a surjective
morphism. Then, we have that |K 4| > |K4| which
implies that A is minimal as A’ is arbitrary.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 56

MW 1 The Chomsky Hierarchy
" IU AClaUSt‘hal 1.2 Minimal DFA

Definition 1.24 (Equivalence of states)

Given a dfa A, we call two states ¢, ¢; equivalent,
if Vwe X*: §(q1,w) € F iff 0(qo, w) € F

How can we check equivalence of states? After
all, we have to take into account infinitely many
words w.

Check words of length at most |K| — 2!
Theorem 1.25 (Finite test set)

If two states are equivalent for all words of length at
most | K| — 2, then they are equivalent in the sense
of Definition 1.24.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 57

@Kw B 1 The Chomsky Hierarchy
'TU ‘(JlaUSthal 1.2 Minimal DFA

Ql)“@ ~(2)

@H@\/’7

Figure 2: A dfa A.
We first check words of length at most 0, then 1,
then 2, ..., until 6.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 58

jo¥]

e’ TU Clausthal
Definition of ~,,: ~~ blackboard 1.7

Lemma 1.26

Let A be a reachable dfa. Let E,, denote the
partition belonging to ~,, and E belonging to ~.
E, .1 and E are finer than E,,.
q ~n1q iff (1) q~1q and
(2) forallae ¥ : (6(q,a) ~, 6(¢',a)) forall
q,q € K.andn e N.

If £, = E,.1 then E, = E.
E,, = Eforny = |K| —2.

This lemma implies Theorem 1.25.

Prof. Dr. Jirgen Dix * Department of Informatics = TU Clausthal WS 16/17 59

Mw 1 The Chomsky Hierarchy
" IU AClaPSt‘hal 1.2 Minimal DFA

Lemma 1.27

Let A be a dfa accepting the language L with the
following two properties:

All states are reachable.
No two states are equivalent.
Then A is isomorphic to M.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 60

mw 1 The Chomsky Hierarchy
'TU ‘ClaUStha] 1.2 Minimal DFA

Proof.

Let A be a reachable dfa in which no two states
are equivalent. By Lemma 1.22 there is a surjective
morphism %4 : A — M. It remains to show that
ha is also bijective. Suppose h, is not injective.
Then there are states ¢, ¢’ with ha(q) = ha(q): [

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 61

HKB TU Clausthal 1 The Chomsky Hierarchy

Clausthal University of Technology 1.3 cf = hom(Dyckreg)

1.3 cf = hom(Dycknreq)

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 62

MW 1 The Chomsky Hierarchy
" ’:[\:Hu ‘Ql\(auhsnt‘hal 1.3 cf = hom(Dyckreg)

We introduced in Informatik Ill the Dyck
languages Dyck,,.

Chomsky-Schitzenberger

Our main theorem in this section says, that a
contextfree language is essentially the
homomorphic image of a Dyck language.

Later (Theorem 1.73 on Slide 163) we prove that a
type 0 language is essentially the homomorphic
image of a type 1 language.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 63

1 The Chomsky Hierarchy

iy ~
.THV ‘gl'auSthal 1.3 cf = hom(Dycknreg)

Definition 1.28 (Dycklanguage D,)

For ke NletVy := {x1,71,22. .., 2, Tx} AN
alphabet over the 2k symbols x, 77, . . ., x%, Tk-
The Dyck language D is the smallest set satisfying
the following conditions:

€€ Dk;
If w e D;, then so is z;wz;.
If u, v € Dy, then so is uv.

This set can be seen as the set of all correctly
formed expressions with brackets.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 64

‘!@EW 1 The Chomsky Hierarchy
- IHHE{?}/}HS“E};Ial 1.3 cf = hom(Dycknreg)

The classes L, L-, L3 are closed under
homomorphisms. £, is closed under c-free
homomorphisms. All classes are closed under
inverse homomorphisms.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 65

1 The Chomsky Hierarchy

iy ~
.THV ‘gl'auSthal 1.3 cf = hom(Dycknreg)

Proof

Let G; = (V;, T}, R;, S;) with i € {1,2} two cf
grammars, L; = L(G;) and Vi n V, = .

Let b : 77" — I'* @a morphism, and let

G .= (%,F, Rll, Sl), with

A—ae R iffA— ae R/, and & is obtained
from a by replacing each occurrence of a terminal
a in « by h(a). Then G generates exactly h(Ly).
The remaining parts follow easily. O]

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 66

Q@EW 1 The Chomsky Hierarchy
- I,H Lglraﬁliﬁntq{lal 1.3 cf = hom(Dycknreg)

For each contextfree language L thereisane N,
a reqular language L,., and a homomorphism h
with

L = h(Dyck, n L,,)

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 67

1 The Chomsky Hierarchy

@Ku TU Clausthal 1.3 cf = hom(Dycknreg)

Proof
Let L be given by G = (V, T, R, S) in Chomsky normalform
L =L(G). Wesetn := |R|.
We assume wlog that the first [rules have the form
A = BC (denoted by r; : A;, — B;C;, 1 <i <)and the
remaining rules have the form A — « (denoted by
r;: Dj = a;, | +1 < j < n). Note that these symbols are
not all distinct: all A;, B;, C;’s are also some D,’s (why?).
And not all a;’s have to be different:
We define the following [+ (I + 1)(n —[) rules:
B A= x,B;,forl <i<|,
Dj — a:ja:ja:iCi, forl <i<l
Dj:>j_j,f0rl+1 <J<n
So we get a new grammar G’ = (V Vo, R, S).

and/+1<j<n,

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 68

@u’w . 1 The Chomsky Hierarchy
] T[{ ‘Qlausthal 1.3 cf = hom(Dycknreg)

Proof (2)

The terminals a; from G are now the words z;7;. What is
the difference between L(G) and L(G')?

As it is rightlinear, the language generated is regular.
Define L,.,:=L(G’). There are words generated that are not
in Dyck,,.

Not all words generated by G’ correspond to derivations in
G. The problem is that the parentheses z; and z; might not
match (and one cannot enforce this by the pumping
lemma). However, the matching expressions are all
contained in L(G"). Indeed, we claim that this is the only
difference:

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 69

@KW 1 The Chomsky Hierarchy
- TH, ‘Ql‘,auysythal 1.3 cf = hom(Dyckreg)

We show:
For each derivation in G of a word w, there is a
corresponding derivation in G’ which is also in Dyck,,.
Each derivation in G’ of a word w’ which is also in
Duyck,, comes from a corresponding derivation in G of
the corresponding word w’.

In an exercise, you have to make precise the meaning of
corresponding. This immediately leads to a homomorphism
h such that L = h(Dyck, N L,,).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 70

@KW B 1 The Chomsky Hierarchy
- TH’ ‘ng'a USthal 1.3 cf = hom(Dycknreg)

Up to now, we did not use the automaton that corresponds
to a cf grammar.

cf languages are covered by PDA’a (push-down
automata) (see Informatik Il1).

We also repeat the following undecidability result from
Informatik Ill. The problem to decide for a given DTM M
whether L(M) = & is undecidable.

Remember Ogden’s lemma.
Remember the Chomsky normalform.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 71

@KW 1 The Chomsky Hierarchy
- IH, ‘Ql‘yauysyt‘hal 1.3 cf = hom(Dyckreg)

From Informatics Il
Classical definition of a PDA.

Idea of the Stack, batch: Last in, first out:
it can store arbitrarily many information units; only the most
recent info can be accessed.

m Arule S — aAbis like a call of a procedure for A: after
processing A there is still a b to process.
m Push-Down-Automaton: like finite automaton, but
with an additional stack. Transition function:
m depends on the first stack symbol
= does not only change the state, but also reads and
writes on the stack

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 72

@KW 1 The Chomsky Hierarchy
" IH, ‘Ql‘yauysyt‘hal 1.3 cf = hom(Dyckreg)

Definition 1.31 (Push-Down-Automaton (PDA))

A Push-Down-Automaton (PDA) is a tuple
M = (K,S,T, A, s, Zo, F) with

K a finite set of states
x the input alphabet
r the stack alphabet

sop € K theinitial state
ZyeI' the downmost stack symbol
F < K asetof final states
A the transition function, a finite
subset of (K x (X u {e}) xI') x (K x I'*)

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 73

@Kw . - 1 The Chomsky Hierarchy
] [U ‘%l‘a USthal 1.3 cf = hom(Dyckreg)

What does the transition function?
In one working step, the PDA does

m depending on the actual state K,

m depending on the next input symbol (or not depending
on it),

m depending on the topmost stack symbol

the following:

m next input symbol is read, or not (reading ¢),

m topmost stack symbol is removed,

m state might be changed

m zero or more symbols are written on the stack. For a
new stack word v = A; ... A, A; will be topmost, then
A, etc until A,,.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 74

@KW - - 1 The Chomsky Hierarchy
" ([‘[‘J‘ w%laUSthal 1.3 cf = hom(Dycknreg)

Used symbols:
m Symbols a, b, ¢ for letters from %,
m u, v, w for words from X7,
m A, B for stack symbols of T,
m v, n for whole stacks from ™.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 75

@u’w . 1 The Chomsky Hierarchy
] T[{ ‘Qlausthal 1.3 cf = hom(Dycknreg)

What does the transition function?
m Notion of configuration: describes the actual situation
of the PDA completely

m Consists of:
m current state,
m rest of the input,
m complete stack

m Relation - between configurations:
For configurations C, C; the string

Ch - Cy

means that the PDA can get from C; to C; in one
single step.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 76

MW 1 The Chomsky Hierarchy
" I}{ Agzrllalrlnsnthal 1.3 cf = hom(Dyckreg)

Definition 1.32 (Accepted language of a PDA)

A PDA M can accept a language in two different ways:
using final states or using empty stack:
Li(M)={w e X*|3ge F Iy e I'* ((so,w, Zo) F34 (¢,€,7))}
Le(M)={w e T*|3g € K ((s0,w, Zo) F3y (¢,5,€))}

Notes:
m If clear from context whether we mean L;(M) or L.(M),
we simply write L(M).
m The input w must be scanned M completely:
(807 w, ZO) l_* (Q7 &,)

is requested.
m APDA might not terminate (even if it is accepting).

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 77

@KW T D 1 The Chomsky Hierarchy
- ‘l‘ ‘[{ ‘glaUSthal 1.3 cf = hom(Dycknreg)

Note that the bottommost symbol may be
removed, but then the PDA hangs: it can not
work anymore, there is no successor
configuration.

This corresponds to the hanging of a nd. fa, if the
transition function is not defined (which can
happen here as well).

Prof. Dr. Jurgen Dix * Department of Informatics = TU Clausthal WS 16/17 78

@u’w 1 The Chomsky Hierarchy
. T[‘{ ‘Clgusthal 1.3 cf = hom(Dyckreg)

Definition 1.33 (Configuration of a PDA,)

A configuration C of a PDA M = (K, %, T, A, s, Zo, F) is a
triple

C=(qw,y)e K xX* x T
(w is the part of the input that has not yet been read, ~ is the
complete stack, and ¢ is the actual state.)

(s0,w, Zp) is called initial configuration with input w.

Cs is called successor configuration of C;, or Cy + Cy, if
dJae ¥ JA el Jwe ¥* Iy, n e I'*, so that
either C; = (¢, aw, A7), Cy = (g2, w, 1Y), and
(qb a, A) A (Q27 7])/

or Cy = (q1,w, Ay), Cy = (g2, w,77), and
(q17€7A) A (CJ2,77);

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 79

el TU Clausthal

m A of a PDA is essentially indeterministic:

1 The Chomsky Hierarchy
1.3 cf = hom(Dycknreg)

AcC(Kx(Xufe}) xD)x (K xI')

Using the indeterminism is a powerful tool:
(Palindroms over {a b})
(S0,€,Z0) A (s1,¢) } accepting e

(30,(1, ZQ) A (SOaA))

(s0,a,A) A (s0, AA)

Ez ’ Z)) ﬁ Ezo’g?)> Build the stack
0y Y 0

(So,b7 A) A (SOJBA)

(So,b, B) A (307BB)‘

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal

WS 16/17 80

@KW T B 1 The Chomsky Hierarchy
- ‘[‘ ‘[{ ‘gJI‘aUSthal 1.3 cf = hom(Dycknreg)

E
o

=
>

(s0,e,A) A (s1,e) | Change direction for palindromes
(s1,€) | with odd number of symbols

(so,a,A) A (s1,e) | Change direction for palindromes
(s0,b,B) A (s1,e) | with even number of symbols
(517G>A) A(S 78)

(5., B) A (s1.c) Remove the stack

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 81

@u’w 1 The Chomsky Hierarchy
. T[‘{ ‘Clgusthal 1.3 cf = hom(Dyckreg)

Definition 1.34 (Turing-Machine (DTM))

A deterministic Turing-Machine (DTM) M is a
tuple M = (K, X, 4, s) with
m K afinite set of states, h ¢ K (h is the final
state),
m Y an alphabet with L, R ¢ ¥, # € %,
Bo: K xYX > (Ku{h}) x(EU{L,R}) a
transition function, and
m s € K a start state.
Number of states: |K| — 1 (s is not counted).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 82

@Kw B 1 The Chomsky Hierarchy
- T“l{ ‘%l'a USthal 1.3 cf = hom(Dycknreg)

Definition 1.35 (Configuration of a DTM, ID (1st try))

A configuration or instantaneous description
(ID)C ofaDTM M = (K,3,4,s) is a word of the
form C' = wqu with

m g € K u {h} is the actual state,

m w € X* the contents of the tape left of the
head,

m u € X* the contents of the tape right of the
head, the head is located on the leftmost
symbol of u (if u = € then the blank is
scanned).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 83

@Kw 1 The Chomsky Hierarchy
. T[‘{ ‘Clgusthal 1.3 cf = hom(Dyck~reg)

Definition 1.36 (Successor Configuration)

A configuration C, is called successor configuration of C,
written
Ci =m G
if:
|| Cz = W;q;a;U; fori e {1, 2}, and
m there is a transition §(q1, a1) = (g2, by as follows:
Casel:be X. Then w1 = Wy, U] = Uz, Ay = b.
Case 2: b = L. Then for wy and ay: w; = weas.
For uy: If a; = # and u; = e then ist uy, = ¢,
otherwise uy = a;u;.
Case 3: b = R. Then wy = wya,.
For a; and usy: If u; = € then us = € and
as = #, otherwise u; = asus.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 84

1 The Chomsky Hierarchy

@Ku TU ClauStha] 1.3 cf = hom(Dycknreg)

Definition 1.37 (Valid Computation)
Let M be a DTM. We write

C

iff there is a sequence Cy, (1, ..., C, of
configurations (n > 0), s.t. C = Cyand C" = C,,
and forall i < n: C; =m Ciir.

Then Cy, Cy, ..., C, is called a valid computation
of M of length n from Cj to C,,.

A computation halts (or ferminates), if the last
configuration does.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 85

& TU Clausthal e ramibyered)
In view of some undecidability results in this section, we
need some results about (in-)valid DTM computations.

We have just described the concept of a valid computation.
However, for our purposes we redefine it slightly: a valid
computation is a string of the form

wy Bl g olH . Hw,

such that the usual conditions hold (each w; is a
configuration, w, the initial configuration, and w;,, is a
successor configuration of w;).

The reason why we are using w# instead of w, is because
{ww?| w e X*} is contextfree, but {ww|w € ¥*} is not.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 86

@u’w . 1 The Chomsky Hierarchy
] T[{ ‘Qlausthal 1.3 cf = hom(Dycknreg)

Definition 1.38 (Arbitrary computations Comp(M))

Fora TM M, the set of arbitrary computations, denoted by
Comp(M), consists of all (finite) strings of the form
wiFwEHwsHwl# . . #w, such that:

1. wy is aninitial ID of M (i.e. M starts on some word w),

2. all w; are ID’s compatible to M,

3. w; - w;1q: the ID’s describe a valid step of M.

We do not yet assume that w,, is a ferminating ID: the
computation might go on forever.
Comppq+(M) is the subset of Comp(M) which also satisfies:

4. w, is the final ID: M halts with w,,.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 87

@KW - - 1 The Chomsky Hierarchy
] (l U SJ‘l‘a L!Stl]al 1.3 cf = hom(Dyckreg)

Note that Compnait(M) consists of terminating
computations.

The general halting problem for TM’s is closely
related to Compnait(M): M does not terminate
for any word w (L(M) = &) iff
Comppait(M) = &.

M terminates on all words w (L(M) = ¥*) iff
Comppait(M) = .

The last two properties are not true for
Comp(M).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 88

@KW 1 The Chomsky Hierarchy
- TH, ‘Ql‘,auysythal 1.3 cf = hom(Dyckreg)

Theorem 1.39 (Comphait(M) = Ley 0 L)

The set Comppar(M) of a DTM M is the
intersection of two cf languages (and grammars
for them can be constructed).

The same is true for Comp(M).

Proof.

The idea is to use L; for w; - wﬁl for odd 7 and L,
for w!* - w;, for even i.

The intersection of both languages is then the set

of all computations.

Complete Proof: ~~ blackboard 1.7. O

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 89

@[W 1 The Chomsky Hierarchy
" ’:[\:Hj Lg:plflﬁly{s,,tﬂ};lal 1.3 cf = hom(Dycknreg)

Theorem 1.40 (Invalid TM computations as a CFL)

The set of all invalid halting computations of a
DTM, i.e. the complement of Comppar(M), is a cf
language (and its grammar can be constructed).
The same is true for the complement of Comp(M).

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 90

@KW T D 1 The Chomsky Hierarchy
- ‘l‘ ‘[{ ‘glaUSthal 1.3 cf = hom(Dycknreg)

When is a string not in Comppait(M)?

It is not of the required form w;#wy# . . ., or
w; is not initial, or

w,, is not final, or

w; - wh | is false for some odd i, or

w? - w; . is false for some even i.

The first 3 properties can be decided by dfa’s. The
last 2 properties can be decided by PDA’s.

The set of invalid computations is then the union
of two cf languages and a regular set, thus it is
itself cf. O

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 91

MW 1 The Chomsky Hierarchy
" I}{ Agzrllalrlnsnthal 1.3 cf = hom(Dyckreg)

We use Theorems 1.39 and 1.40 for several undecidability
results.

Theorem 1.41 (Undecidability for CFL Problems)

The following problems are undecidable. For cf grammars
G1,Gy and R a regular set, to decide

B /s L(Gy) n L(G,) = &7

B Is L(G,) =X*?
B Is L(Gy) = L(Gs)?
| Is L(Gy) < L(9)?
B Is L(Gy) =
AI/sRcL()

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 92

@KW 1 The Chomsky Hierarchy
- IH, ‘Ql‘yauysyt‘hal 1.3 cf = hom(Dyckreg)

Reduce L(M) = & to the problem.

For any TM M, we construct (using Theorem 1.40) a cf
grammar G with L(G) = ¥* iff L(M) = &.

Let G, by any grammar that generates ¥*. Reduce to 1.

Let G, by any grammar that generates ¥*. Reduce to 1.

Let R = ¥* and reduce to 1.

A Let R = ¥* and reduce to 1.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 93

@Kw B 1 The Chomsky Hierarchy
.THV ‘gl'auSthal 1.3 cf = hom(Dycknreg)

Here is another theorem that helps us to establish
some undecidability results.

Theorem 1.42 (Valid Computations of a TM)

Let M be a DTM that makes at least 2 moves on
every input. Then the following are equivalent:

m The set Comppgi(M) is cf.
m L(M) is finite.

Proof: (2) implies (1): trivial. For the other one, assume the set is
cf and infinite. Then one can choose a word w1 #wi#ws# . .. s.t.
wo is greater than the constant from Ogden’s lemma (for the cf
language Compp,it(M)). Find an appropriate marking and pump
once to pump the word out of the language.

~+ blackboard 1.8.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 94

el TU Clausthal Rl s
From Informatik III: Ogden’s Lemma

Theorem 1.43 (Ogden’s Lemma)

For each cf language L < X* there exists n € N,
such that: For all z € L with |z| = n and each
marking of at least n distinguished positions in z
(connected or not) there exist u,v,w,x,y,€ X, s.t.

Hz=uvwxy,

m v and z contain all together at least one
distinguished position,

m vw x contains at most n distinguished positions,

m w'wx'y e L forall i e Ny.

.
|

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 95

MW 1 The Chomsky Hierarchy
" I}{ Agzrllalrlnsnthal 1.3 cf = hom(Dyckreg)

We use Theorem 1.42 to prove:

Theorem 1.44 (Undecidability for CFL Problems (2))

The following problems are undecidable. For cf
grammars Gy, Gy:

Is L(Gy) cf?
Is L(G1) n L(G9) cf?

Proof: ~~ blackboard 1.9.

What about the problem whether L(G,) is finite?

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 96

@Kw 1 The Chomsky Hierarchy
. T[‘{ ‘Clgusthal 1.3 cf = hom(Dyck~reg)

Here are a few problems for cf languages that are
decidable.

Lemma 1.45 (Decidable cf problems)

The following problems are decidable for a
contextfree grammar G:

Is L(G) = &7
Is L(G) finite?
Is L(QG) infinite?
Proof: Think of useless symbols, and Chomsky

Normalform and the corresponding problems for
regular languages.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 97

A TU Clausthal 1 The Chomsly Herarchy

Clausthal University of Technology

1.4 DPDA/DCF

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 98

@KW D 1 The Chomsky Hierarchy
" Tu (Jla ‘Ll'S‘t‘haI 1.4 DPDA/DCF

Deterministic PDA's with a deterministic, but not
necessarily complete relation.

m For each combination of state, input- and
stack symbol, there is at most one transition.

m If the PDA can do a s-transition, then it is not
allowed to read alternatively an input
symbol.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 99

@Kw B 1 The Chomsky Hierarchy
" TU ‘(JlauSthal 1.4 DPDA/DCF

Definition 1.46 (DPDA)
APDA M = (K, X, T, A, so, Zo, F) is deterministic, if:
meeX¥ Alg,a,2)+ & = A(q,e,Z) = & forall
qe K,Z eI Ifin a state ¢ with top stack symbol Z a
symbol a can be read on the input tape, then there is
no e-transition for ¢ and Z.
B |A(g,a,Z)| < 1forallge K,ZeT,ae X U {c}: Thereis
at most one transition in each configuration.
The class of languages that can be accepted by DPDA’s is
denoted by DCF. We also call such a language simply dcf.

Note that A(q, a, Z) can be empty, even if the input is not
yet consumed completely. In that case, e-moves are
possible, until a state or topmost stack symbol is reached
such that A(¢,a,Z2") + &.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 100

mw 1 The Chomsky Hierarchy
" TU ‘ClaUSthal 1.4 DPDA/DCF

Theorem 1.47 (L3 & DCF & L,)

The following holds:

L3S DCF < Lo

when acceptance for DPDA’s is defined with final
states.

For DPDA’s the acceptance with empty stack is
weaker than with final states (in fact, it does not
make sense, as even L3 < DCF does not hold).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 101

@Kw B 1 The Chomsky Hierarchy
'TU ‘(JlauSthal 1.4 DPDA/DCF

DCF < L,: “c”is trivial. We show that
L= {a't’c* |i=jorj=k} e L)\ DCF. As L is
contextfree (guess nondeterministically whether
1 = jorj=k)and DCF is closed under
complements (see below), then so would be
L = (abc)*\L (if L e DCF). But then L n a*b*c*
would also be contextfree (intersection of a cf
with a regular language). But we have:

Lna*b*c* = {a'V/cF| i #jand j # k}

and this language is not contextfree (Pumping
Lemma).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 102

@u’u TU Clausthal 1 The Chomsky Hierarchy

1.4 DPDA/DCF

Clausthal Unive

L5 < DCF: “c” is trivial, because each det. PDA can be used
as a dfa.
The language {wcw® | w € {a, b}*} is not regular,
but in DCF (no need to guess the middle, as this
is given by c).

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 103

@H‘w T ~ 1 The Chomsky Hierarchy
=1 U (l‘a usthal 1.4 DPDA/DCF

Empty stack vs final states: Consider L := {a, ab} over
Y. = {a, b}. As a has to be accepted via empty
stack, there is a computation for each DPDA of
the form
(QO7 a, ZO) l_* (Q7 €, 6)

Each such DPDA does the following on ab:

<QO7 CLb, ZO) l_* (Q7 b7 6)

thus it hangs.

Therefore no DPDA accepting via empty stack
can accept the language L := {a, ab}.

It is easy to construct DPDA’s accepting this
language via final states.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 104

@IKD} (ll‘J ‘Qla USt h a 1 1 The ChonﬂijIF)IS/;(’a/Sg

m It seems that the difference between accepting with
final states and with empty stack depends on the fact
that our PDA gets stuck when the stack is empty (and
the word to be scanned is not yet fully read).

m So why not simply allow the transition function to be
defined on (K x (X u {e}) x I" U {¢}) rather than on
(K x (X u{e}) xT).

m Then a PDA does not get stuck when the stack is empty
(the successor configuration can be changed easily) and
our counterexample does not apply.

Can you find a different counterexample?

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 105

@KW - 1 The Chomsky Hierarchy
'TU (JlaUSthal 1.4 DPDA/DCF

DCF is closed under complements, because it is
deterministic. But this is nontrivial, because a DPDA might

hang, and then the complement automaton (where
final and nonfinal states have been switched)
would hang as well: a word would then be
accepted in neither automaton;

have e-moves, which lead from a final in a nonfinal state.
Then a word w would be accepted from both
automata.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 106

1 The Chomsky Hierarchy

@Hf* TU Clausthal 1.4 DPDA/DCF

DPDA'’s are allowed to do e-moves (but not, when at the
same time a symbol can be scanned). What if we do not
allow e-moves at all?
Lemma 1.48 (DPDA without e-moves)
DPDA’s without e-moves accept less languages than
DPDA’s with e-moves.

However, one can restrict wlog. to DPDA’s without
e-moves after the last symbol is read.

For 1., consider the language

{0°Va2|4,5 > 1} U {0°17627|4,5 > 1}

For 2., use the notion of a predicting machine.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 107

':[‘“”l{ ‘Ql’austhal 1 The Chor?;kyDI’;IIij(';rch%
The predicting machine
For each DPDA M and dfa A we can construct a DPDA
(M, A) such that:
((JO7 x, [ZOJ MO]) l_;kr(M7A) (T, Y, [Zl7 :ul][Z27 /vLQ:I cee [ZTL7 :U’n])
iff
(QO,% ZO) '721:/[(Tay7 Zl e Zn) and
for 1 <i < n: u; is the set of all (¢, p) for which
forsome w (q,w, Z; Ziy1 ... Zn) i (5,6,7)

for some s € Fjy and v € T'* and § 4(p, w) € Fa.

So the new stack symbols give us information about DPDA
M and dfa A: is there some input string that causes both M
and A to terminate on it.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 108

8,01

1 The Chomsky Hierarchy
" Iq uClaHSt\hal 1.4 DPDA/DCF

Theorem 1.49 (DPDA do not hang)

For each DPDA M there is an equivalent DPDA M/
which does not hang: it scans the entire input (for
all inputs).

Lemma 1.50 (DCF is closed under complementation)

The complement of a DCF language is also a DCF
language.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 109

8,01 1 The Ch Hierarch
w: TU Clausthal B S GS
Clausthal University of Technolog .

Lemma 1.51 (DCF »n Regular = DCF)

The intersection of a DCF language with a regular
language is in DCF.

Proof: Exactly the same construction as for a PDA.

Lemma 1.52 (DCF not closed under operations)

DCF is not closed under u, n, homomorphisms,
concatenation, Kleene closure.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 110

@Kw B 1 The Chomsky Hierarchy
'TU ‘(JlauSthal 1.4 DPDA/DCF

u, n: Consider the proof in Informatik Ill, that £, is not
closed under n: the languages used there are all
in DCF. As DCF is closed under complements, it
can not be closed under U because we have

Ll N L2 = _'(_'Ll U _'LQ)

concatenation: Consider L; = {a'b’¢ : i,j = 0},
L2 = {azb]cj ; Z,j = 0}, and L3 = OL1 U LQ, which
is DCF, but 0* L3 is not. Assume it is. Then
L, = 0*Ls n 0a*b*c* is also DCF. But
Ly =0L, u0Ly, so Ly U Ly is also DCF:
Contradiction.

]

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 1M

8,01

1 The Chomsky Hierarchy
" Iq uClaHSt\hal 1.4 DPDA/DCF

(Part 2).
homomorphism: Ls :=0L; u 1L, is DCF. Let i be the hom
that maps 1 to 0 and leaves all other symbols as

they are. Then h(Lg) = L4, which is not DCF.
Kleene closure: Lg := {0} u L3 is DCF, but Lf is not (why?).
]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 112

8,01

1 The Chomsky Hierarchy
" Iq uClaHSt\hal 1.4 DPDA/DCF

Theorem 1.53 (Decidability of some DCF problems)

Let L be dcf and R regular. Then the following
problems are decidable:

Bi/sL=R?
BRisRcL?
BilsLc R?

Compare with Theorem 1.41.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 113

L 1 The Chomsky Hierarch
&l TU Clausthal « homsly Herarcty

BL=Riff Li=(LnR)u(LnR)=¢.ButlL,
is cf. Eliminate useless symbols. If useful
symbols remain, the language is not empty.

B Rc L iff LnR=.Again, L n Ris cf.
BLCRIiff RnL=.Again, Rn Lis cf.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 114

8,01

1 The Chomsky Hierarchy
" Iq uClaHSt\hal 1.4 DPDA/DCF

Theorem 1.54 (Undecidability of some DCF problems)

The following problems are undecidable. For dcf
L, L

IsLnL = g?

IsL < L'?

Is L n L' dcf?

Is L n L' cf?

Is L u L' dcf?

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 115

@Ku r([iy‘ ‘Qla USthal 1 The U]OTXYDESX;SEE

Observe that the languages used in
Theorem 1.39 are in fact DCF.

BFroml.byLc L' iff LnL = .

Use Theorem 1.42. Then the intersection is
either finite or not cf. Thus decidability of the
problem in question would imply decidability
of finiteness for L(M).

Same as for 3.

Closure under complementation: reduces 3.
to 5.

[]

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 116

@KW D 1 The Chomsky Hierarchy
" TU (JlaUSthal 1.4 DPDA/DCF

m We will show later (Theorem 2.14) that it is
undecidable to determine, given any
contextfree grammar G, whether the language
generated by G is deterministic contextfree.
Compare with Theorem 1.41, 5.

m However, the problem to determine whether
two dcf languages, represented by their
contextfree grammars, are identical, is
decidable.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 117

Mw 1 The Chomsky Hierarchy
" IU ‘ClaPSt\hal 1.4 DPDA/DCF

Theorem 1.55 (Senizergues, 1997)

Given two DPDA’s, it is decidable whether they
generate the same language. The upper bound on
the decision procedure is primitive recursive.

Theorem 1.56 (Valiant, 1966)

Given a dcf language L, it is decidable whether L is
regular or not.

We’ll show later (Corollary 2.14) that if we only
assume that L is cf, then it is undecidable whether
L is reqgular.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 118

A TU Clausthal 1 The Chomsly Hierarchy

Clausthal University of Technology

1.5 LBA/Type 1

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 119

@KH' THY ‘Ql‘a USthal 1 The Chor]n;kKBl—Al/cTr;;(eh]y

We have introduced in Informatik Il languages of type O

(arbitrary grammars) and of type 1 (contextsensitive
grammars).

What exactly is the difference?

m We have shown in Informatik Ill that type O languages
are exactly the r.e. languages (i.e. acceptable by
DTM’s).

m We show in this section, that type 1 languages are a
strict subset of the decidable (recursive) languages. We
also provide a machine model that fits for this class: the
linear bounded automaton (LBA).

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 120

F B ~ he Ct ky Hierarct
@Ku ([‘F‘J‘ ‘g‘l‘au’S‘thal 1The C wquBAl/pTryaFrj(enl/

contextsensitive (cs) iff VP — Q € R:
= either (Ju,v,a e (VUT)* 34V (P = udv

and Q = uav with |a| > 1)), or the rule has

the form S — ¢
m S does not occur in any conclusion of a rule.

That means:
m Avariable A is transformed into a string « of
length at least 1. The word does not get
shorter, unless ¢ € L.

m The replacement of A by « is only done, if
the context left and right, is there.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 121

l@l!f% TU Clausthal 1 The Chomsky Hierarchy

1.5 LBA/Type 1
A language that is not of type 2
Example 1.57 (Powers of 2)

We consider the following language

21’

Lpowers of2 1= {a” | i € N}

This language is not contextfree (pumping lemma
for CFL’s).

How to define a contextsensitive grammar for
Lpowers of 2?

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 122

@u’w . 1 The Chomsky Hierarchy
d TU ‘(Jlausthal 1.5 LBA/Type 1

Consider the following grammar G:

S
Ca
CB
CB
aD
AD
aE
AE

ACaB
aaC
DB

E
Da
AC
Ea

€

R

e A i ol e

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 123

@KM’ r’lw‘p‘ g;lka u St h a 1 1 The ChoTsSkE/BI—Al#;F;(:\l/

m A, B are endmarkers. C' moves through between them
and doubles the number of a’s.

® When C hits the B, it becomes D or E.

m In the case of D, D goes left and introduces a C when
the start is hit: the process starts again.

m In the case of E, it also goes left, leaves the a’s
unchanged and leads to a terminal word: a string of a’s.
m Show by induction on the number of steps, that the

following holds (if 4. is never used): all generated
strings are of the form

m S,

m Aa’Ca’ B, where i + 2j is a power of 2,

® Aa’Da’ B, where i + j is a power of 2.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 124

@Ku ':[‘“”l{ ‘Ql’a USthal 1 The Choq]‘zk{gl—/;if;;;ceh{
But G is not contextsensitive (or is it)?

To create a contextsensitive grammar G’, we introduce
composite variables and rewrite the rules of grammar G:

transform w = AaaaaCaaaB into w' = [Aalaaa|Cala[aB].

We need the following new composite variables: [ACaB],
[Aa], [ACal, [ADal, [AEa], [Cal, [Dal, [Eal, [aCB], [CaB],
[aDB], [aF], [DaB], [aB].

Rules 1, 3, 4, 6, and 8 remain unchanged:

1. S - [ACaB]

3. [aCB] — [aDB]
4. [aCB] — [aF]
6. [ADa] — [ACq]
8. [AFa] — a

Prof. Dr. Jirgen Dix * Department of Informatics = TU Clausthal WS 16/17 125

@u’w . 1 The Chomsky Hierarchy
.TU Qlausthal 1.5 LBA/Type 1

Rules 2, 5, and 7 are as follows:

2. [Cala — aa[Cal
[CallaB] — aa|CaB]
[ACala — [Aa]a[Ca]
[ACal][aB] — [Aa]a[CaB]
[ACaB] — [Aa][aCB]
[CaB] — alaCB]
5. a[Da] — [Dala
[aDB] — [DaB]
[Aa][Da] — [ADala
a|[DaB] — [DallaB]
[Aa]|DaB] — [ADallaB]
7. a|Eal — [Fala
E] - [Fa]
[Aa][Ea] — [AFa]a
Then: S =¢ wifand only if S =7, w'.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 126

@KW 1 The Chomsky Hierarchy
- [V Claysthal T3 (BATType

m Given a language L and a grammar G with
L = L(G).

m How does a DTM accept L?

m It just simulates a derivationin G:

m Given an input w,

m a NTM starts with S and guesses an arbitrary derivation.

m If it has derived a terminal word w, this is compared with w. If
u = w, then itis accepted.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 127

@[W 1 The Chomsky Hierarchy
- 11 Clasthal 15 UsAType

We repeat the correspondence of type 0 and
DTM'’s from Informatics Ill.

Theorem 1.58 (DTM corresponds to type 0)

Let L be of type 0. Then there exists a DTM which
accepts L.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 128

@Kw D 1 The Chomsky Hierarchy
" TU ‘(Jla USthal 1.5 LBA/Type 1

It suffices to construct a NTM, because it can be simulated
by a DTM.

m Let L be a language over T of type O.
m Then thereis G, = (V, T, R, S), generating L.

m We construct a indeterministic 2-DTM M, which
accepts L: It guesses a derivation G.

m M, reads input w on the first tape.

m It generates on tape 2 the start symbol S of the
grammar.

50, iwﬁ |_>l]\</lo S0, ﬁg«]ﬁ

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 129

@u’w . 1 The Chomsky Hierarchy
d TU ‘(Jla usthal 1.5 LBA/Type 1

Proof (continued)

m Then M, guesses on tape 2 a derivation in Gj.
For S =* u =" ... it computes as follows

L Hwd |
s T dudt

m M, guesses indet. arule P — @ € R.

m It searches in the string on tape 2 indeterministically for
P

m It replaces this P by Q.

m If Q is longer or shorter than P, M, uses the shift
machines Si and S, to adjust the rest of the word
accordingly.

® M, chooses the next rule.

|_

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 130

MW 1 The Chomsky Hierarchy
- LU Clausthal 15 LBATType

Proof (continued)

m M, guesses indeterministically to compare the word
on tape 2 with w.
If w = w, then M, halts, otherwise M, does never stop.
Then:

M, halts at input w
iff
There is a derivation S =7, w
(which can be simulated by M, on tape 2)
iff
w € L(Gy).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 131

Q@EW 1 The Chomsky Hierarchy
- 1Y Claysthal 15 UsAType

Theorem 1.59 (DTM languages are of type 0)

Let L be a language that is accepted by a DTM.

Then L is of type O, i.e. L is generated by a
grammar G.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 132

@u’w 1 The Chomsky Hierarchy
d TU ‘Clausthal 1.5 LBA/Type 1

Given L and DTM M accepting L.

We construct G generating L:
m It generates an arbitrary word A; ... A,
m and simulates M on Input a; . . . a,.

m If wis accepted from M, then G transforms
Al...Aninthl...an.

mIfa;...a,is notaccepted by M, then G does
never transform A; ... A, into terminals.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 133

@KW 1 The Chomsky Hierarchy
- [V Claysthal T3 (BATType

Proof (continued)

Turing machines in a special format:
m Normally for input va the start configuration is

s, #vaft

m Our DTM'’s use the following start
configuration for input va:

Cva >

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 134

MW 1 The Chomsky Hierarchy
- LU Clausthal 15 LBATType

Proof (continued)

m During the whole computation:

m the left end is marked with € und
m the right end is marked with 3.

m If it needs more space to the right, it should
move the 3.

m For each “normal” DTM M accepting a
language L, there is a M’ in the new format.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 135

HYB 1 The Chomsky Hierarchy

TU ‘Clausthal 1.5 LBA/Type 1

Example 1.60 (TM with endmarkers)
The following TM M accepts {a" | n € N}:

mlet M = ({¢1},{a,b},0,q1)

m with ¢:
(q1,0) »q1, L —
(Q1,b) = q1,b
(¢1,E) — h, €

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 136

@KW D 1 The Chomsky Hierarchy
" Tu (Jla ‘Ll'S‘t‘haI 1.5 LBA/Type 1

The grammar G works for M as follows:

m (G guesses a word. G also codes the state and
the head position of M.

m G starts as follows:

a
w

S=>Z@ a D .
w

S0

How to describe this with rules?

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 137

e U Glausthal e taype 1
m The following rules suffice to produce (any)
input:
#
S —-CA| E(#)D
S0
c
A=A (¢)D Ve e {a,b}
S0

The second rule in the first line is for input e.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17

138

@Ku r([iy‘ ‘Qla USthal 1 The C}]OI]T],SSRKB'X/C'II:;;(:;/

m The two and three level symbols are variables
of G!
State and head position are coded in the third

m Example:

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17

139

1 The Chomsky Hierarchy

@Hf* TU Clausthal 1.5 LBA/Type 1

If (q,a)A(q,d’): YbeT U {#}:
~ blackboard 1.10.
If (¢,a)A(q, R): Yb,c,de T u {#}:

< el ()

If (¢,a)A(q, Vb, c,de T U {#}:

):
(el

If (¢, ©)A(¢, R): vC,deTU{#}:<§>ga@<f>.

Note that all these symbols are variables!

U
~_
e o

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 140

- 5 he Ct ky Hierarct
@KM’ ([p‘&,l‘aus‘thal 1 The Qwol]n.sSYB/_\l/LTryxgenl/

If M halts, then the input is some element
from V*. Then we do the following:

m We clear the lower track.

m We only keep the upper track, the
original input.

m Blanks and &, 3 have to be removed.

m This has to be done with appropriate
rules.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 141

el TU Clausthal R
In general, a grammar is not bounded:

m The simulated DTM may move the 3 to the right or left

as needed.
m So we have a derivation

S:*@u a @:*@ul b UQ##@
@ u ¢ T $2# c. #
S0 h

m The additional blanks have to be removed, as well as

the 5 and the & (the word gets shorter)! We need ¢

productions for that: €— ¢, 32— ¢, # — e
m What remains is just the word w, the original input.

Thus G generates w iff the DTM M accepts w.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 142

@KW 1 The Chomsky Hierarchy
-1V Clausthal TS LBAType

Theorem 1.58 and Theorem 1.59 taken together
can also be reformulated as follows:

Theorem 1.61 (r.e. corresponds to DTM’s)

A language is recursively enumerable (r.e.) if and
only if it as accepted by a DTM.

The importance of the construction in the proof
of Theorem 1.59 is that almost the same
construction works for LBA’a and
contextsensitive grammars.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 143

1 The Chomsky Hierarchy

@Kl% TU Crl’au's‘t‘hal 1.5 LBA/Type 1

Definition 1.62 (Linear bounded automaton (LBA))

A linear bounded automaton (LBA) is an
indeterministic Turing machine (NTM) M which
satisfies:

m Initial configuration of M:

S0, € wa D, forinput wa # ¢
s0, € # 3, forinpute.

m If M reads G, it makes a step to the right.
m If M reads 3, it makes a step to the left.
m M never writes € or 3.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 144

@[W 1 The Chomsky Hierarchy
- 1Y Claysthal 15 UsAType

Consider again Example 1.57.How to define a
LBA that decides Lyowers of 27
Use an LBA with 4 tapes (or tracks).

Theorem 1.63 (Type 1 languages correspond to LBA’a)

L is contextsensitive iff L is accepted by a LBA.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 145

@u’w 1 The Chomsky Hierarchy
d TU ‘Clausthal 1.5 LBA/Type 1
Proof

LBA'a accept languages of type 1:

m LBA with 2 tracks. Upper track: Input, lower
track: simulating a derivation of G.

m GG ist bounded: the derived word does not get
shorter.

m It suffices to consider derivations of length up
to the length of the input.

m So the space between € and D suffices.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 146

@KW 1 The Chomsky Hierarchy
- [V Claysthal T3 (BATType

Proof (continued)

LBA'a accept languages of type 1:
m We build on (and modify) the proof of Theorem 1.58.

m The simulated DTM got the input between € and 3 but
the © could be moved (to enlarge the storage).

m Now we construct a bounded grammar, which
simulates the computation of the LBA M.

b 7"
n Problem1:ru|es< a >@—> 2< # >@.

q q

m Problem 2: rules€— ¢, 2> ¢, # — e

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 147

1 The Chomsky Hierarchy

@IHB TU Clausthal 1.5 LBA/Type 1

Proof (continued)

Solution: Hide 3, € within the variables by introducing new

4- and 5-level symbols.
Guessing the word w is now done by the rules (compare

with Slide 138):

<
c D)
S —>< a >A1| < a >
s0
D)
A1—>ZA1|< ¢ >© YaeT
50

~ blackboard 1.11

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 148

!@KW 1 The Chomsky Hierarchy
-1V Clausthal 15 LBATType

Lemma 1.64 (Comp(M) is of Type 1)

Let M be a Turing machine (indeterministic or not).
Then the following holds:

Comp(M) is contextsensitive.
Compnair(M) is contextsensitive.

Corresponding LBA'a as well as cs grammars can
be efficiently constructed.

Compare this Lemma with Theorem 1.39.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 149

@u’w . 1 The Chomsky Hierarchy
d TU ‘(Jlausthal 1.5 LBA/Type 1

Proof

Given an arbitrary TM M, we construct an LBA B as follows.
B gets a huge string #c,#c# . .. # and has to decide
whether this is an accepting sequence of configurations of a
word w for the DTM M.

It is easy to verify that this can be done (just moving the
head on the input): zig-zagging between ¢; and ¢;;; to
verify that ¢;,, is a legal successor configuration.

By Theorem 1.63 we can construct a cs grammar as well.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 150

K 1 The Ch Hierarch
S TU Clausthal = Chomsky isarchy
Clausthal University of Technolog .

The problem to determine for a given LBA M
whether L(M) = ¢ is undecidable.

The problem to decide for a given contextsensitive
grammar G whether L(G) = & is undecidable.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 151

@[W 1 The Chomsky Hierarchy
- LU Clausthal T3 (BATType

Lemma 1.66 (LBA’a as deciders)

The following problems can be decided by an LBA:
Does a dfa M accept a word w?
Does a cf grammar generate a word w?
Givenadfa M, is L(M) = &?

Proof: ~~ exercise

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 152

@[W 1 The Chomsky Hierarchy
- LU Clausthal T3 (BATType

Theorem 1.67 (Type 1 languages are recursive)

A contextsensitive language is recursive. For each
contextsensitive grammar G, one can construct a
DTM M which solves the word problem for G.

In other words: the word problem for LBA'a is
decidable.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 153

@Kw 1 The Chomsky Hierarchy
.TU ‘Clausthal 1.5 LBA/Type 1

There are two possibilities.

Grammars: To check a given word w of length » for
derivability in the grammar, it suffices to check
all possible words up to length » (because the
grammar is bounded). These are finitely many.

LBA: If a LBA does not terminate, it has to repeatedly
go into the same configuration. But there are
only finitely many configurations, so that can be
checked.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 154

MW 1 The Chomsky Hierarchy
- LU Clausthal 15 LBATType

Theorem 1.68 (Diagonalisation)

Let M{,Ms,...,M,,...an enumeration of DTM’s
which decide certain languages L(M;) (over an
alphabet containing {0, 1}).

Then there is a recursive language L,.. over {0, 1}
which is not decided by any of the machines.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 155

@KW D 1 The Chomsky Hierarchy
" Tu (Jla ‘Ll'S‘t‘haI 1.5 LBA/Type 1

Let L,.. over {0, 1} defined as follows (val(w) is the
value of w written in binary):

W € Lye. iff Myaiwy prints “N” for input w

If L,.. would be decided by some M;, (k € N), then
one consider w with val(w) = k:

M, prints “Y” for input w
iff
W E Lyee
iff
Muai(w) = My prints “N” for input w, Contr.ll.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 156

!@KW 1 The Chomsky Hierarchy
-1V Clausthal 15 LBATType

Theorem 1.69 (Type 1 strictly contained in Rec)

There is a recursive language which is not contextsensitive.

Proof

We have to show that all DTM’s that decide languages of
type 1 can be enumerated. Obviously, all type 1 languages
over {0, 1} can be represented: godelisation of grammars.
Thus the contextsensitive grammars are enumerable.
With Theorem 1.67 the respective DTM’s can be effectively
constructed.

A more natural example is the set of true formulae in
Presburger arithmetic. Itis recursive, but any decision
procedure is at least double exponential (so it can not be
decided by a LBA (see Section 3).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 157

MW 1 The Chomsky Hierarchy
- LU Clausthal 15 LBATType

Lemma 1.70 (Closure properties of Type 1)

The contextsensitive languages are closed under
union, intersection, inverse homomorphisms,
concatenation, e-free homomorphisms, and Kleene
closure.

Proof.
This is best done with LBA’a: ~~ exercise.]

Lemma 1.71 (Type 1 not closed under hom)

The contextsensitive languages are not closed
under homomorphisms. The same is true for the
class of recursive languages.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 158

@KW D 1 The Chomsky Hierarchy
" Tu (Jla ‘Ll'S‘t‘haI 1.5 LBA/Type 1

Proof.

We consider Comp(M) fora TM M. In Lemma 1.64, we have
shown that this set is contextsensitive. We modify this set
slightly, by putting a copy of the first ID in front of each

string. This copy is using a different alphabet >’ which is
isomorphic to 3. So we consider the set

{whwi B Hw#wfH .. Hw,| wiHof ool # . Hw, € Comp(M)}

We define a homomorphism on ¥’ U 3 (~ exercise) such
that h(Comp(M)) is the set

{w}h| M terminates when started with w, }
U {wi|w] is an initial ID of M}

This set is not contextsensitive, not even recursive (the
halting problem is reducible to it). H

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 159

@KW 1 The Chomsky Hierarchy
- [V Claysthal T3 (BATType

m We have just seen, that the class of recursive
languages, Rec, is inbetween the
contextsensitive and the recursively
enumerable classes.

m What can we say about closure properties of
Rec?

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 160

@KW 1 The Chomsky Hierarchy
- [V Claysthal T3 (BATType

The following theorem was open for several
decades. It was proved independently at the end
of the 80’ies by Neil Immerman and Rébert
Szelepcsényi.

Theorem 1.72 (Type 1 closed under complements)

Contextsensitive languages are closed under
complements.

The proof follows from a more general theorem
later (Theorem 4.4 on Slide 533).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 161

HKE TU Clausthal 1 The Chomsky Hierarchy

Clausthal University of Technology 1.6 re = hom(cs)

1.6 re = hom(cs)

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 162

Mu TU Clausthal 1 The Chomsky Hierarchy

1.6 re = hom(cs)

What is the relation between type 1 and type O
languages?

Theorem 1.73 (Each r.e. L is of the form L(typel))

Each type 0 language is the homomorphic image
of a contextsensitive language. I.e. each r.e.
language has the form h(L) where h is a
homomorphism and L is a language of type 1.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 163

@u’u TU C‘]auskthal 1 The Chomsky Hierarchy

1.6 re = hom(cs)

Let L ber.e. and M a DTM that accepts L. Let ¢ be a new
symbol not in ¥ and

L' ={wc| M acceptsw by a sequence of
moves in which the head never moves
more than i positions to the right of w}

m Obviously, L is accepted by a LBA (it simulates M, treats
c as blank and halts when it goes beyond the sequence
of ¢’s).

m Define h as follows: h(a) = aforall a € 2, h(c) = €. Then
L = h(L).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 164

HKB’ 1 The Chomsky Hierarchy
= TU ClaUSthal 1.7 Ehrenfeucht

Clausthal University of Technology

1.7 Ehrenfeucht

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 165

1 The Chomsky Hierarchy

]
" IH LElravlf/lTe«S\ntﬁpal 1.7 Ehrenfeucht

m For a given language L, we call two morphisms
equivalent, if they agree on L.

m Is there a smaller set 7' — L so that checking
L-equivalence can be reduced to just check 77

m Such a T is called test set.

Ehrenfeucht Hypothesis for languages L

For each language L < ¥* there is a finite test set 7.

An interesting question is, whether such a set can be
effectively constructed.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 166

Mu TU Clausthal 1 The Chomsky Hierarchy

1.7 Ehrenfeucht

We have defined the notion of a (homo-)
morphism f from X* in I'*. An interesting notion
is to define the equivalence of two morphisms
with respect to a language L.

Definition 1.74 (f, g equivalent wrt. L < ¥*, f =/ g)

Two morphisms f, g : ¥* — I'* are equivalent wrt.
L < ¥*, written f =, g, ifforall w e L:

f(w) = g(w).

Given two morphisms f, g. Is it decidable
whether they are equivalent wrt. ¥*?

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 167

! TU Clausthal 1 The Chomsly Hierarchy
Example 1.75
Let > =T = {a,b} and let

f(a)
f(b)
g(a)
g(b)
Then we have f # g but

I

bb
abb

J =(abb)* 9-

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 168

Mu TU Clausthal 1 The Chomsky Hierarchy

1.7 Ehrenfeucht
Lemma 1.76

f =1 gimplies f(L) = g(L) but the converse does
not hold.

Lemma 1.77 (Undecidability of f(L) = g(L))

The following problem is undecidable. Given a cf
language L and two morphisms f, g, decide
whether f(L) = g(L).

Proof.

Reduction of equality of contextfree languages.

~ blackboard 1.12.]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 169

8,01

1 The Chomsky Hierarchy
" ’:[\:H Lg;plraﬁlvlﬁ§ntapal 1.7 Ehrenfeucht

Lemma 1.78 (Undecidability of f =, ¢)

The following problem is undecidable. Given a
language L of type 1 and two morphisms f, g,
decide whether [=1, g.

Reduction of PCP (next chapter).
~> blackboard 1.13]

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 170

@u’u TU C‘]auskthal 1 The Chomsky Hierarchy

1.7 Ehrenfeucht

Does it suffice to test the equality of morphisms
on a subset of L only?

Definition 1.79 (Test-Set)

AsetT < L of alanguage L < ¥* is called
Test-Set, if for all morphisms f, g the following
holds:

f=rgifandonlyif f =1 g

In Example 1.75, the set {abb} is a test set. Our first

result is to determine a test set for for regular
languages. While the proof is elementary, it is a
bit complicated and makes use of the following
lemma.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 171

mw 1 The Chomsky Hierarchy
" THV ‘Qlauysythal 1.7 Ehrenfeucht

Lemma 1.80 (Solving the equation zy = y=z)

Let V = {z,y, z} a set of variables and X an
alphabet. We are interested in determining
morphisms h : V* — ¥* such that h(xy) = h(yz):
such an h is called a solution of the equation

zy = yz. For h(zx), h(z) # e the following are
equivalent:

m /1 is a solution of the equation xy = yz.

m Therearer,s € ¥* and k € Ny with
m h(z) =78, h(y) = (rs)*r, h(z) = sr.

Proof.
~5 exercise []

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 172

MW 1 The Chomsky Hierarchy
" ’:[\:Hu xgl‘(aupsntwhal 1.7 Ehrenfeucht

Theorem 1.81 (Test set for regular languages)

Let L be a regular language given by a deterministic
finite automaton A = (K, X, 6, so, I). Then the
following set is a finite test set for L:

fw: | < 2|k}

Proof

Let f,g:X* > I and f =1 g. We assume

w =ay...a, € L aword of minimal length

s.t. f(w) # g(w) and n = 2|K]|. O

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 173

@Kw B 1 The Chomsky Hierarchy
.’:[:u[{ SJlrauSthal 1.7 Ehrenfeucht

Proof (cont.)

As w € L, there must exist a state ¢ which is visited at least three
times. Therefore we can split w into four parts w = ujugusuy:

6(qo,u1) = q = 0(q, uz) = 0(q, u3)

and d(q, us) € F. Obviously the three words ujugus, uiugus, uiug
are also all in L. We also have uy # € # u3 which means that f and
g coincide on these three words.

In the following we will use these identities:

flur)f(u2) f(ua) = g(u1)g(uz)g(ua)
fur) f(us) f(ua)
fu1) f(ua) = g(u1)g(ua)

We compare f(u1) with g(up).
We get 3 cases: [f(u1| = |g(ual, [f(u1] = |g(ual, | f(u1] < |g(ua]-

Il
Q
—~

£
[
S—
<
—~

£
w
~—
Q
—~

IS
Ny
~—

Prof. Dr. Jirgen Dix * Department of Informatics = TU Clausthal WS 16/17 174

@u’u TU C‘laus‘thal 1 The Chomsky Hierarchy

1.7 Ehrenfeucht

Proof (cont.)

Case 1: |f(u1| = |g(u1|. Then, using the identities, we have
flur) = g(wr), fus) = g(ua), f(us) = g(us), and thus

f(w) = furuguzua) = f(ur)f(u2)f(us) f(us) =
g(u1)g(uz2)g(us)g(us) = g(urugusus) = g(w)

which is a contradiction

Case 2: and Case 3: are similar. It suffices to do one of them.

In case 2 (| f(u1] > |g(us]), we have f(u1) = g(u1)z and g(us) = xf(ua)
for a x € I'*. Then we have g(u1)x f(u2) f(us) = g(ur)g(uz)x f(uy).
Therefore x f(uz) = g(uz)x or: g(uz)x = x f(us).

In the same way, we can show z f(u3) = g(ug)x or: g(usg)x = = f(us).

We also have f(uz) # € # g(uz2): were f(uz) = ¢, then e = g(uz) and thus
f(w) = ... = g(w), a contradiction.

We are now in a position to apply Lemma 1.80 (twice, for each
equation). Putting this together and computing f(w) and g(w) gives us
the contradiction f(w) = g(w) (~ blackboard 1.14).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 175

Q@EW 1 The Chomsky Hierarchy
" I)H xglgmliﬁntopal 1.7 Ehrenfeucht

Can we effectively construct test sets for
regular languages?

Corollary 1.82 (Test set for regular languages)

The problem to decide for a given regular
expression ex and morphisms f, g whether [= g
is decidable.

Proof.

Obvious. []

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 176

8,01

1 The Chomsky Hierarchy
" ’:[\:Hu Lg:plraulf/lhsnt’ﬂ}r—rlal 1.7 Ehrenfeucht

We note without proof: (Albert/Culik 1980)

Theorem 1.83 (Test set for contextfree languages)

m For each contextfree language L one can
effectively construct a finite test seft.

m The problem to decide for a given
contextfree language L and morphisms f, g
whether f =; g is decidable.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 177

Mw 1 The Chomsky Hierarchy
" ’:[\:Hu Ag:rlralf/lﬁsntﬂ}—lal 1.7 Ehrenfeucht

It would be nice to always guarantee a finite test
set: this was stated as a hypothesis by
Ehrenfeucht.

Theorem 1.84 (Lawrence, Albert, Guba 1985)

For each language L = Y* there exists a finite test
set T c L.

Before turning to the proof, we note a few simple
consequences.
Corollary 1.85 (Decidability for fixed L)

Let L = 3* be given. Then the problem to decide for
given morphisms f, g whether f = g is decidable.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 178

@IH@ TU Claustha] 1 The Chomsky Hierarchy

1.7 Ehrenfeucht

Another interesting implication is by considering
Lemma 1.78.

Corollary 1.86 (Test sets for Type 1 are not computable)
The problem to compute for a given contextsensitive
language a finite test set is not algorithmically
solvable.

Note that here we consider the language as a
parameter: it is part of the input (represented as
a contextsensitive grammar (which is a finite
object)).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 179

1 The Chomsky Hierarchy

MI* TU Clauﬁst‘hal 1.7 Ehrenfeucht

Definition 1.87 (Ehrenfeucht for Z[z,, ..., z,])
Let Z[x, ..., z,] be the ring of polynomials in

L1y yLpe

The Ehrenfeucht hypothesis for Z[z1, . .., z,] is
the following. For all Q < Z[x1,...,z,] thereis a
finite Q' < Q such that for all ze Z" the following

holds
(Vge@: q(2) =0) iff (V¢ e Q" : ¢'(2) =0)

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 180

@Kw B 1 The Chomsky Hierarchy
.T“[{ SJlrauS,thal 1.7 Ehrenfeucht

Definition 1.88 (Ehrenfeucht for word equations)

Let V' = {v1,...,v.} be a set of r variables.

The Ehrenfeucht hypothesis for V is the
following. For all S < V* x V* there is a finite

T < S such that for all morphisms & : V' — ¥* the
following holds

h is solution of S iff A is solution of T’

The set S constitutes a set of equations. Simple
example is (zy, yz), i.e. the equation considered in
Lemma 1.80.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 181

@KW 1 The Chomsky Hierarchy
" IHV ‘Qlauysyt‘hal 1.7 Ehrenfeucht

Lemma 1.89 (Word equations vs standard hypothesis)

The Ehrenfeucht hypothesis for word equations implies the
standard hypothesis.

Proof.
For £ = {as,...,a,} we define copies % and ¥ and natural
embeddings ¥, : ¥* — ¥*, Uy : 3* — ¥*. Let

S = {{¥1(w), Ya(w)) | we L}

be a (possibly infinite) system of word equations. By
assumption, there is an equivalent finite set S” involving
only finitely many words {wy, ... w;} =: T. We claim T is a
test set for L. ~» blackboard 1.15 O]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 182

@Kw 1 The Chomsky Hierarchy
" THV ‘erausythal 1.7 Ehrenfeucht

Lemma 1.90 (Z[z1, ..., x.] and word equations)

The Ehrenfeucht hypothesis for Z[x1, ..., x| implies
the Ehrenfeucht hypothesis for word equations.

|

Proof ()

How do we encode a word equation in the polynomial ring? We
code each single word as an m-ary object, but we also have to
make sure that each position in the whole word is unique:
m a word apa; . ..a,—1 € X" of length n is written in the
polynomial ring as pol(w) = ag + a1 X' + ... + a,—1 X"}, and
®m aword w; ... wy, € ¥* is written as pol(w; ... wy,) =
pol(wy) + pol(wo) X 111 . 4+ 4 pol(wy,) X | w1w2-wm-1]
In that way, we assign each h and S a set () of polynomials s.t. A is
a solution of S'iff (Vg€ Q : ¢(2) = 0) (for any z'€ Z"). So a finite
Q rin induces a finite Sy;,. O

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 183

1.7 Ehrenfeucht

@Kﬂ TU C‘laus‘thal 1 The Chomsky Hierarchy

m So we are left with an algebraic
problem.

m Consider QQ < Z[xy, ..., z,]. Can we
show that each such) has a finite
base?

m Then the Ehrenfeucht hypothesis for
Z|z1,...,z,] follows (exercise).

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 184

@Ku TU Clausthal 1 The Chomsky Hierarchy

1.7 Ehrenfeucht

It suffices to show the existence of finite bases
for ideals (invented by Kummer as an
analogue for prime numbers).

Aring R with the property that each ideal in R
has a finite base is called noetherian.

Z is a noetherian ring with 1.

Hilbert’s Basisssatz: If a ring R with 1 is
noetherian, then so is R[z] (famous theorem
of Hilbert). And so is R[x1,...,x,].

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 185

@Kw B 1 The Chomsky Hierarchy
.’:[;Hy SJl’aUSthal 1.7 Ehrenfeucht

Definition 1.91 (Ideal Z, noetherian ring)

A subset Z of a commutative ring R with 1 is
called ideal if it satisfies the following:

0eZ,
ifa,be Zthena—beZ,
ifaeZand r € R thenraeZ.
If all ideals of R have a finite base, the ring is
called noetherian.

For our purpose, the ring R we need is Z. A
typical ideal is the set of all even numbers 27Z.

Ideals date back to Kummer ~ blackboard 1.16

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 186

MW 1 The Chomsky Hierarchy
" ’:[\:Hu ‘Ql:auhsnt‘hal 1.7 Ehrenfeucht

Theorem 1.92 (Hilbert)

If R is noetherian, then so is R[x1, ..., x,].
It suffices to prove the result for n = 1.

The main idea is to relate ideals in R[x] to
ideals in R: by using the coefficients of the
highest powers of the polynomials.

Let Z be an ideal in R[x]. We have to show that
there is a finite basis.

[]

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 187

@u’u TU C]austha] 1 The Chomsky Hierarchy

1.7 Ehrenfeucht

Proof (cont.)

The set of coefficients of the highest powers:
T ={a: az® + b+ ... eT}} u{0}

forms an ideal (why?): by assumption, it is finitely generated
by a set {a,...,a,}.

We denote by pol(a;) = a;z™ + ... the polynomial for a;. Let
N be the maximum of the n,.

Let Basey = {pol(ay),...,pol(a,)}. Our final base will be a
finite union Basex U ... U Basey.

(1) All polynomials in Z of degree > N can already be
obtained from Basey.
~~ blackboard 1.17

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 188

@Kw 1 The Chomsky Hierarchy
" THV ‘erauswthal 1.7 Ehrenfeucht

Proof (cont.)

(2) The coefficients of V! in all polynomials in Z (plus 0)
form an ideal in R (why?) So there is a finite base
{a;41,..., a5} of it.

(3) Let Basen_1 = {pol(a,+1),...,pol(as)}. All polynomials
of degree N — 1 can be written as a linear combination
of these base functions and functions of degree at most
N —2: see (1).

(4) We then consider the coefficients of 2V=2, ... 2% and
add all the corresponding polynomials which gives us
Basey_s, ..., Baseg: the union constitutes the final
base.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 189

HKB TU Clausthal 1 The Chomsky Hierarchy

Clausthal University of Technology 1.8 Lindenmayer

1.8 Lindenmayer

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 190

@KH' TU Clausthal 1 The Chomsky Hierarchy

1.8 Lindenmayer

As opposed to the grammars in the Chomsky
hierarchy, for Lindenmayer systems the following
holds:

m Production rules are applied in parallel, not
sequentially.

m There is no distinction between terminals and
non-terminals.

http://www.jjam.de/Java/Applets/Fraktale/
Lindenmayer.html

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 191

http://www.jjam.de/Java/Applets/Fraktale/Lindenmayer.html
http://www.jjam.de/Java/Applets/Fraktale/Lindenmayer.html

1.8 Lindenmayer

@u’u TU C‘]auskthal 1 The Chomsky Hierarchy

m Aristid Lindenmayer (1968): Mathematical
models for cellular interaction in
development, | and Il;, J. Theoret. Biol. 18,
280-315.

m Modelling the development of simple
organismes.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 192

@Kﬂ TU C‘laus‘thal 1 The Chomsky Hierarchy

1.8 Lindenmayer

Definition 1.93 (Lindenmayer System G, (OL, DOL))

A Lindenmayer system is a tuple G = (2, R, w) with:
¥ is the alphabet,
€ # we N*,

R is a finite set of rules R of the form: R = ¥ x X*. For
(P,Q) € R we write P —¢ Q.

We assume that for each v € X there is at least one word w’ with
v —q w' (otherwise we add v —¢ v). If there is for each v € &
exactly one word w’, v —¢ w’, then G is called deterministic.

A Lindenmayer system G is also called 0L. A deterministic system
is called DOL. The language generated by G is the set of all words
that can be derived from w with all the rules in G.

A language L is called 0L-language (resp. D0L-language), if there
is a 0L system (resp. DOL system) that generates L. The class of
languages is denoted by OL, resp. DOL.

Prof. Dr. JUrgen Dix x Department of Informatics = TU Clausthal WS 16/17 193

1.8 Lindenmayer

Mu TU Clausthal 1 The Chomsky Hierarchy

Are there 0L (D = L) grammars for the
following languages?

ml={a": n=2}

m L, = {(ab)® : n =0}

~» blackboard 1.18

The language {a" : n = 2} is no DOL
language.

~ blackboard 1.19

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 194

! TU Clausthal e e
Some interesting examples

m {€,a,a*} € OL but {¢,a’, a'’} ¢ OL,
m {a} and {a®} € OL but {a, a®} ¢ OL,
m ({a": n=2}n{a,a'}) ¢ 0L,
m {a} and {¢,?a} € OL, but

{a}{e,a’} = {a,a’} ¢ OL,
m {a"b": n>1} ¢ OL,

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 195

Mu TU Clausthal 1 The Chomsky Hierarchy

1.8 Lindenmayer

Lemma 1.95 (Non Closedness of OL)

OL is not closed under
m c-free homomorphisms,
m union,
m intersection with reqular languages,
W concatenation.

~ blackboard 1.20

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 196

1.8 Lindenmayer

Lemma 1.96 (Incomparability of OL)

OL is incomparable wrt. set inclusion to
the following classes:

m finite languages,
m infinite regular languages,
m contextfree, non-regular languages.

~+ blackboard 1.21

Mu TU Clausthal 1 The Chomsky Hierarchy

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 197

el TU Clausthal R
We note without proof:

Lemma 1.97 (OL < CSL)

OL is strictly contained in the class of
contextsensitive languages.

Does that imply, that the word problem
for 0L-languages is decidable?

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 198

Mu TU Clausthal 1 The Chomsky Hierarchy

1.8 Lindenmayer

Lemma 1.98 (Derivation bounded by k)

Let G = (X, R, wy) be a OL system. Then there is a kg € N
(which can be effectively computed from G) such that for each
e # w € L(G) there exists a derivation

Wy =g W1 =g ---—~>qg Wy =W
with: |w;| < kg|w| fori =0,1,...,m.

Let L*(G) be the set of words derivable after : steps, and

Hn. .= |E|,7’1= maXryles ¢ — x ER{‘x| }'

B S = MaXyeri(@),i=0,1,.n1 | Z| }»
B kg := max{s,r"*1}.
~» blackboard 1.22 -

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 199

'HIB TU Clausthal 1 The Chomsky Hierarchy

Jausthal University of Technology 1.8 Lindenmayer

Corollary 1.99 (Word problem for OL)

The word problem for 0L systems is decidable.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 200

@Kw B 1 The Chomsky Hierarchy
" T“[{ SJlrauSthal 1.8 Lindenmayer

Proof.

Let w # ¢ (why?). Compute the bound kg which exists according
to Lemma 1.98. We define K,,(G,w) as the set of all v € £* which
satisfy (fori =1,...m)

wo = V] = ... = vy = v withm < nand |v;| < kg|w|
Kp+1(G,w) is the union of K,,(G,w) and the set
{v:3ze K, (G,w) : z=vand|v| < kg|w|}

We have 1 = |Ky(G,w)| < ... < |Kn(G,w)| < ... < |¥|Felvl+1, The
sequence gets stationary: there is a t such that forall m > 1

Ki(G,w) = Ki1m (G, w)

This we can reduce the check “w € L(G)” to “w € K;(G,w)".
Ol

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 201

@Kl% TU Clausthal 1 The Chomsky Hierarchy

1.8 Lindenmayer

Lemma 1.100 (Undecidability of 0L-equivalence)

It is undecidable whether two 0L systems generate
the same languages.

Proof.

We reduce the PCP (next chapter) to this problem. Therefore let
I = {{uy,vi)1,{ua, v2)2, ..., {uk, vk K} an instance of PCP over
{a,b}. We define OL systems G, H s.t.

m L(Gy) 2 {wDu®: w,ue *,w # u},
m L(H;) = L(Gy) U {wDv®: w=wy ... w5, v =0 ...0, t >
1, i1,...0 € {1,...,n}}.
Obviously: L(Gy) # L(Hj) iff I has a solution.

It remains to define the OL systems G, H;:
~ blackboard 1.23 O

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 202

‘i@ll!@ TU Clausthal 2 (Un-) Decidability

Clausthal University of Technology

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 203

!@KH TU Clausthal 2 (Un-) Decidability

2. (Un-) Decidability

(Un-) Decidability

m Universal DTM

m PCP
Tiling the Plane
Recursive Functions
Random Access Machines
Hilberts 10. Problem
Theorem of Rice
Recursion theorem
Oracle TMn
Reductions

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 204

!@KH TU Clausthal 2 (Un-) Decidability

Content of this chapter:

Universal DTMs.

Post's Correspondence-problem: PCP.
Partial recursive functions.

The Grzegorczyk Hierarchie.

Yet another machine model: Random Access Machines.
Loop-, Goto- und While-Programs.

A Hilbert's 10. problem.
Theorems of Rice and Greibach.
B smn- and Recursion- Theorem.
B Oracle Turingmachines.
Reductions.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 205

@IH'B} TU ‘Claustha] 2 (Un-) Decidability
Reduction of one problem P, to another one P,

We have to construct a total, computable
function f, which assigns

m to each instance p; of P,
m an instance p, of P, such that

m the answer to p; is “yes” iff the answer to p,
is also “yes”.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 206

2 (Un-) Decidability

el TU Clausthal

Definition 2.1 (Reduction)

Let Ly, L, be languages over > = {|} (so that

¥* =N).

We say L; reduces to L, (denoted by L, < L),
iff

there is a DTM-computable function f : N — N,
such that:

VneN (ne Ly iff f(n)e Ly).

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 207

!@[l% TU Clausthal 2 (Un-) Decidability

The most important property of reductions is the
following.

Lemma 2.2

If L < Ly, and L, is undecidable, then L, is also
undecidable.

We will introduce more reductions later in this
chapter (Slides 430 and Slides 416).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 208

@IH@ TU Claustha] 2 (Un-) Decidability

Definition 2.3 (Turing machine (DTM))

A deterministic Turing machine (DTM) M is a
tuple M = (K, X%, 4, qo), where
m K is afinite set of states h ¢ K,
m XY an alphabet with L, R ¢ ¥, # € %,
B KxY—->(Ku{h})x(Xu{L,R})a
transition function, and
m ¢ € K the initial state.

Number of states: |K| — 1 (initial state is not
counted). A is the final state.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 209

'I‘U Clausthal 2 (Un-) Decidability
Inad step d(q,a) = (¢’,x) aDTM can,

m depending on the current state ¢ € K and

m depending on the letter a € ¥, that is currently scanned,
do the following

m move left, if x = L, or

m move right, if z = R, or

m overwrite a, which is currently scanned, by b € %, if

r=beX.

In addition, the state is changedto ¢’ € K u {h}. Ash ¢ K,
there is no transition after i has been reached.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 210

!@H@ TU Clauﬁst‘hal 2 (Un-) Decidability

Important:

Note that our notion of a DTM cannot print and
move at the same time. Also, there is only one
halting state h, not several. This is done
differently in other approaches in the literature.
Of course this does not change any theorems, but
it affects some proofs.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 211

@Kﬂ TU C‘laus‘thal 2 (Un-) Decidability

The following is known from Informatics 3:
Enumeration of DTM’s: There is an enumeration
M1, M, ... of all DTM’s.

Enumeration of >X*: There is an enumeration
wy, wo, . .. of all inputs.

Universal DTM U: There is a universal machine U
which simulates any DTM:
U(i, j) = M,;(w;). l.e. U takes as input
two numbers and then starts the
machine M, on input w;.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 212

lU C‘laus‘thal 2 (Un-) Decidability

We now consider DTM’s that are deciders: on

each input, either Y or N is printed.

Enumeration of deciders: Is there an
enumeration M, M,, ... of all DTM’s
that are deciders?

Cantor: Assume there is an enumeration. Then
we define M,,.,, as follows. On input w
we first compute j with w = w; and then
we compute M;(w;). Finally we switch
the result (from N to Y and vice versa).

There are countably many deciders My, .. ., but they can not be
enumerated by any DTM: The function that assigns to each natural

number the Gédelnumber of a decider is not computable.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 213

@KH' TU C‘laus‘thal 2 (Un-) Decidability

Enumeration of LBA’a: Is there an enumeration
Ml, MQ, ... of all LBA’a?
There is certainly an enumeration of all
DTM'’s that are not LBA’a. If there were
an enumeration of all LBA’a, then the
following problem would be decidable:
check for a given DTM whether it is an
LBA (simply check whether it belongs to
one list or the other). But this problem is
undecidable (see one of the exercises).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 214

@Kﬂ TU C‘laus‘thal 2 (Un-) Decidability

Modified Enumeration of LBA’a as deciders: Is
there an enumeration M, M., ... of
LBA’a that are deciders with the
following property: for all
contextsensitive languages, there is at
least one LBA in the enumeration that
accepts this language.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 215

'l‘U C‘laus‘thal 2 (Un-) Decidability

Indeed, there is such an enumeration:
Enumerate all grammars, check out those that
are contextsensitive and compute the
respective LBA.

What happens with the Cantor
construction? It simply shows us that this
enumeration can not be done by a LBA.

Why is the Cantor construction not applicable
to the enumeration of all DTM’s? Well, it is.
But we do not get a contradiction because we
can not implement the switch of the outputs:
DTM’s simply do not have to terminate.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 216

] 2 (Un-) Decidability
'TU ClaUSthal 2.1 Universal DTM

Clausthal University of Technology

2.1 Universal DTM

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 217

2.1 Universal DTM

@IH@ TU Clausthal 2 (Un-) Decidability

m There is a DTM U which can simulate
arbitrary DTM's:
U gets as input

m the program of a DTM M and

m a word w on which M works.

U simulates M by looking which ¢
transition M would do.

Such a DTM U is called universal
Turing Machine.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 218

@Kw D 2 (Un-) Decidability
" T“l{ SJlra USthal 2.1 Universal DTM

Question: What is the best format of the rules of a
DTM M to feed them to a universal DTM?

Or: What do we need to describe a DTM
completely?

m its alphabet,

m its states,

m its) function and
m its starting state.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 219

'l‘U C‘laus‘thal 2 (Un-) Decidability

2.1 Universal DTM
We now standardize the alphabet, the states and the start
state for all DTM’s. Then it suffices to just state the
o-transitions. Therefore:
m We consider an infinite ¥, = {ag, a1, ...}, such that the
alphabet of each DTM can be seen as a subset of ..
m The names of the states do not matter. We assume they
are denoted by ¢y, .. ., ¢,, where the n can differ from
DTM to DTM.

m We also denote by ¢, the starting state and by ¢, the
halting state.

We have achieved the following:

A DTM is completely described by listing its ¢
transitions.

Prof. Dr. Jirgen Dix * Department of Informatics = TU Clausthal WS 16/17 220

@Kw D 2 (Un-) Decidability
" T“[{ SJlra USthal 2.1 Universal DTM

How can a description look like?

The DTM Ly has the rules

Q17#'_)q27[/ Q2,#'—>QO,#

Q17| = g2, L Q27’ — g, L
Assume # is the sign g, and | is a;. We can describe DTM
L. as follows:

[o

¢ || g2, L | g2, L orshorter:

g2 || go, a0 | q2, L

Z 52\ 82\
Z S 0a0 S 2\

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 221

lU C‘laus‘thal 2 (Un-) Decidability

2.1 Universal DTM

We use

m Z for “next line”

m S for “next column”

m)\ for “left”,

m p for “right”,

m a for the the sign a,

m the number n for the n-th state and the n-th sign of ¥.
We write n as a sequence of n strokes || ... |.
We need « to distinguish the state from the sign that is
printed: |||a|| stands for gsas (without a we could not
distinguish gya3 from gsas).
So we have described the DTM by a single word:

Z5||AS||AZS0a0S || A

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 222

8,01 2 (Un-) Decidability
" ’:[\:H Lg;plraﬁlvlﬁ§ntapal 2.1 Universal DTM

Example 2.4 (Godelisation)

We denote by Godelisation any fixed
procedure to assign each DTM a natural
number or a word (Godelnumber,
Godelword) in such a way, that the DTM
can be effectively computed given the
number (or the word).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 223

2.1 Universal DTM

@KH' TU C‘laus‘thal 2 (Un-) Decidability

We give a detailed construction of a universal
Turing-Machine U.

m Uisa3-DTM.
m U gets the input on 2 tapes:
m Tape 2 U contains the Gadelization g(M) of a DTM M.

m Tape 1 of U contains the Gédelisation g(w) of the input w for
M

| Durihg the computation the tapes are used as
follows:

m Tape 1 contains the (contents of the) tape of M as a
Godelword.

m Tape 2 contains the Godelword of M.

m Tape 3 contains the Godelword of the actual state of M.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 224

el TU Clausthal B e
During the simulation the following holds for all
€ (X \{#})™:
iff M computes sy, #w# 3 b, uav
iff U computes

su, # g(#w#) #, #9M)#, #
hy #g(w)al*g(v), #9M)#, #
and
iff M started on input sy, #w# never halts.
iff U started on -
su, # g(#wH#) #, #9M)#, #
never halts.
Thus:

m If the head of M is located on a cell with «;,

m then q; is godelised by a|**!, and

m the head of tape 1 of U is located on the first letter 'a’ of
g(a;).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 225

@KW D 2 (Un-) Decidability
" T“l{ ‘ng’aUSthal 2.1 Universal DTM

Overview of U
We use NOP for the DTM that does nothing:

NOP = > RWLW

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 226

¥y ~ 2 (Un-) Decidability
2 TU Clausthal 2.1 Universal DTM

Clausthal Unive

U:=> Ui

#9(Fw)a |
{ #9(M) }
#|

nitialise

— Jﬁ((%ﬁg)ﬂ@l,g%# on tape 3: # = g(h) — halts. }
#g(u)a [’ g(v)
{ #9(M) }

#l |i—1
U,
; search
#g(wa /| g(v) ’
#a_. o BE ;...
#|"#
Unew state
#g(uwa|...|g(v)
#a...Blla... o =aorjorporf
#1 A@)
OP—>Ujer—

(2)

\—a’ Uwrite character |
Py e #ohal...| g

8 { #9(M) }
#|*

Figure 3: The structure of the universal DTM U

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 227

@KB} TU Claustha] 2 (Un-) Decidability

2.1 Universal DTM
The submachine Uinitialise:
When U starts, the 3 tapes are:

#Ho(Fw#)#

#9(M)#
#

Uinitialise = > Lg)—» R(3)|(3)L(3)—> LM

Figure 4: The submachine Ujp;tialise

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 228

e’ TU Clausthal 2 ety
Usinitiatise WOrks as follows:
m The head on tape 2 is immediately left to g(M).
m It writes the number of the starting state on tape 3: |.
m On tape 1 the head is put on the gddelisation of the
symbol, on which the head of M sits,
namely on the first symbol of the gddelisation: "a’.
So the tapes look as follows:

#9(#w)al
#9(M)#
#|

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 229

¥y ~ 2 (Un-) Decidability
2 TU Clausthal 2.1 Universal DTM

Clausthal Unive

Assume,
® M is in state ¢;, and
m M sees the symbol a;.
Then the tapes are as follows, when Us.,,.», Starts to work:

#g(u)a ' g(v)
#9(M)
#l |i—1

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 230

mw 2 (Un-) Decidability
" IHV ‘Qlauysyt‘hal 2.1 Universal DTM

(3) {right line i}
Usearch 5 1= > Rg)R(g)] #(3) {searchin g(M)}
{ | o {rightentry E; ;}
NOP —— R(l)4,| R(ﬂ2) {to serach in line i}
l £ |
LM

Figure 5: The submachine Uscoreh s

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 231

! TU Clausthal 2 ey
The machine U, y,chn 5:
Usearen s does the following:

m It looks for the i-te line, which corresponds to
qi, by counting the a.

m Then it looks for the entry of ¢; and a;, by
counting the occurrences of S.

The tapes of U now look:

#g(u)a |'|g(v)
.. -éEi,j

#|'#

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 232

@Kw D 2 (Un-) Decidability
" T“[{ SJlra USthal 2.1 Universal DTM

The machine U,,c,state:
When U,y state Starts:

#g(u)a | g(v)
#Oé...éEiJ’...
#['#

e J
Unewstate := > L(S) |4> #(3) { clear g(ql) on tape 3 }

l #3)
()

R®) —— R®) — |®RE) J { write g(q;)}
ii‘@) {ontape3}

® .
{ and place head left of it }

Figure 6: The machine U,,cystate

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 233

iy [N 2 (Un-) Decidability
. ([U ‘%l‘aUVS‘thal 2.1 Universal DTM

Unewstate does the following:
m The old state is removed from tape 3
m The entry E; ; starts with a number of strokes: the new
state. It ends with the first non-stroke symbol.
The new state is copied to tape 3.
The tapes of U look as follows:

#g(u)a || g(v)
#Ha.. . B'S... ¥ = a or)\ oderporf3
#I

If ¥ = 3, then the entry E; ; was empty and U hangs, like
the simulated machine M.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 234

@Kw D 2 (Un-) Decidability
" T“[{ SJlra USthal 2.1 Universal DTM

The machine U,.y;:
When U, starts, the tapes are:

#g(u)al’| g(v)

Ha.. BN,
#
e
Utepe := > RO —— LY — LVLY
A
l #(1)
€8
LM LM { to the right in the Gédelword }
l e
#ORMHM®) { onablank }

Figure 7: The machine Up.y;

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 235

! TU Clausthal 223 Universal DTN
Ui+ does the following:

m The gddelisation of each symbol starts with "a’.
To simulate a step of M to the left, U, takes two steps
to the left, to the next 'a’.

m Special case: U is on the blank of a gédelword to the
extreme right of the described tape.
Tape 1 in this case:

#g(u)a|#. ..

U has to clear the last 'al’.
m U moves the head of tape 2 to the left immediately
before g().
The tapes of U are:

#g(al...|g(v)
#9(M)
#|'

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 236

@Kw 2 (Un-) Decidability
" THV ‘erausythal 2.1 Universal DTM

The machine U,.;4p+:
When U, starts:

#g(u)a '] g(v)
#a... Blp...

#I
e
Unright 1= > RM LY
l ey J
aWRM|W L) { To the right in the Godelword }

{ write g(#)}

Figure 8: The machine U,;gp:

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 237

el TU Clausthal S

U,ignt does the following:

m The head of U of tape 1 is on the last stroke of
the actual symbol.

The next symbol to the rightis a ’a’, the start
of the next letter.

m If there is no ’a’, then U is on a blank to the
right of the gédelword of the tape contents. U
writes g(#) = a|.

m U moves the head of tape 2 to the left before
9(M).

The tapes of U are:

#g(u)al. .. g(v')

Prof. Dr. Jurgen Dix x Department of |H[OHHdULSjééTp]{LAAMh WS 16/17 238

8,01 2 (Un-) Decidability
-TU Clausthal 2.1 Universal DTM

Clausthal University of Technolog

The machine Uritesymebor:
When Uw'ritesymbol starts:

#g(ua || g(v)
#a...fla...
#

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 239

¥y 2 (Un-) Decidability
TU (JlauStha] 2.1 Universal DTM

Clausthal

. (1)
Uwritesymbol = > Lg

l /m @ {compare length}
R —— R {old symbol}
£ |(1) £ |(2)

{old char. longer}

#(UR(Uﬂ #0 5W 5(1)

T AN
' (2)
R 7| . IO
(2
l |) { new char. longer }
NOp -2 0)5(1) (1)

Figure 9: The machine U ritesymbol

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 240

2 (Un-) Decidability

@Hf* [U "g'jl‘aus‘thal 2.1 Universal DTM
Uwritesymbol doO€s the following:

m The gédelword a|’™! on tape 1 has to be
replaced by the gédelword a|"t1.

m j < r: Godelisation of the new letter is longer
than the old one.
g(v) has to be shifted to the right.

m For each "‘additional" stroke on tape 2:

m Shift g(v) by one cell to the right:
Use the shift-right machine Si.
Separate the word-to-be-shifted with #, remember the
overwritten symbol.

m Write a’|” in the free cell.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 241

@Hf* '([‘U Clausthal 2 (Un-) Decidability

2.1 Universal DTM

m j > r: Godelisation of the new symbol is
shorter than the one of the old one. g(v) has
to be shifted to the left.

m Here only strokes have to be removed.
g(v) starts with a or # an.

m Shift the word to the right of the head of tape 1 by one cell to
the left.
Use the shift-left machine Sy..
Separate the word to be shifted with #, remember the
overwritten symbol.

m Repeat shift-left, until a non-stroke is reached.

m Finally: Position the head of tape 1 to the q,
with which the current tape symbol starts.
Head of tape 2left before g(M).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 242

8,01

2 (Un-) Decidability
" ’:[\:H Lg;plraﬁlvlﬁ§ntapal 2.1 Universal DTM

The tapes of U are:

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 243

2 (Un-) Decidability
aLlSU]al 2.1 Universal DTM

e TU CI

Summary:

m We use for the simulated DTM M a
godelisation via a word over {«, 3, p, A, a, 0, |}.

m o, J are separators between the descriptions of
the J-transitions.
Then U can easily find the right §-transition.

m The input word is gédelised with the same
method as the DTM M. The alphabet is

{a,0,|}.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 244

@KW lU ‘C l‘a LlSU] al 2 (Un-) Decidability

2.1 Universal DTM

m In each step U works as follows:

m Given the state of M and the currently scanned
symbol of M, U searches for the godelisation of the
right o-transition.

m It changes the state according to the entry in g(M).

m It changes the contents of the tape according to the
entry in g(M).

When the tape symbol is changed, then the
godelword of the tape contents right to the head
has to be moved to the right or the left:

Different tape symbols have godelisations of
different length.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 245

A TU Clausthal 2 (Un) Decidabllty

Clausthal University of Technology

2.2 PCP

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 246

!@KH TU Clausthal 2 (Un-) Decidability

2.2PCpP

Content of this section:

Posts Correspondence problem is an interesting
example of an undecidable problem.

It can be reduced to many problems (which are
therefore also undecidable).

In particular PCP can be reduced to the problem
whether a contextfree grammar is unique or not.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 247

2 (Un-) Decidability

el TU Clausthal

Definition 2.5 (Correspondence system, PCP)

A correspondence system P over an alphabet X is a finite,
indexed set of rules:

P = {Cu1,v1)1,{ua, v2)2; - - -, Uk, Vi)k}

with U, V; € .
A solution of P is a finite sequence of indices iy, .. ., i,
(1 <iy,...,1, < k) such that

Uiy Wig - - - Uy, = Vi Vg - - . U4

n n

This PCP problem (Post’s Correspondence Problem) is the
following. Given any correspondence system P over an
alphabet ¥, determine whether there is a solution of it.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 248

el TU Clausthal 2 Um)Decorlty

m Emil Post.

m A variant of a recursively unsolvable
problem.

m Bulletin of the AMS, 52:264—-268,
1946.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 249

!@KE TU Clausthal 2(Un,) Decidabily

Definition 2.6 (Variants of PCP: 01-PCP, PCP,,)

The problem 01-PCP is the PCP problem over the
alphabet {0, 1}.

The problem PCP,, for fixed k € N, is a PCP where
each input consists of exactly £ pairs.

Example 2.7

What about the following correspondence
systems?

P = {{a,ab)1,{b,cays,{ca,ays,{abc,cys}
Py, = {{ab,a)y,{bcc,bbcys, {ba, cb)s,{c,babc)y}

Pi: 12314, P»: 123114

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 250

l@l!f% TU Clausthal 2 (Un-) Dec;j;bgg

Example 2.8
Some more correspondence systems.

Py = {{a? a®b)1,{b? ba)s,{ab? bys,{abc, cys}
Py = {{a*b,a*)1,{a,ba*)s}

P3: 1213, P,: no solution Exercise

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 251

Q@!f% TU ‘Clausthal 2 (Un-) Decidability

2.2 PCP

lausthal University of Technology

Lemma 2.9 (PCP over one alphabet)

The PCP over a one element alphabet (|X| = 1) is
decidable.

Proof: Exercise.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 252

2 (Un-) Decidability

el TU Clausthal

Note that when a PCP has one solution, then it
has infinitely many. Can you find a solution of the
following one:

(001, 0), (01,011), (01, 101), (10, 001)

The shortest solution has length 66 and starts
with 2,4,3,4,4,21,2,4,3.
This one is even worse

(0,0000), (00,001), (0111, 000), (1001, 1)

The shortest solution has length 698l!

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 253

2 (Un-) Decidability

el TU Clausthal

Theorem 2.10 (Undecidability of PCP)

There is no algorithm to determine for a given
correspondence system P whether it has a solution
or not: PCP is undecidable.

Proof (Part 1).
We consider the following variant of PCP, called
MPCP. Input is as for PCP, but we ask whether
there is a solution iy, ..., 4, with i; = 1.
We show that

m H < MPCP,

m MPCP < PCP.

[]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 254

0,13 ~ 2 (Un-) Decidabilit
»TU Clausthal e

Proof (Part 2).

We introduce new symbols $ and # and denote
forw=a;...q,€X":

W = Ha#...HayFF
W = ... HFapH#
w = Ha# ... H#Fay,

To each instance I = (z1,v1),. .., (z&, yx) Of length
k for MPCP we assign an instance f(I) of length
kE+1

f(I) = (37_1, gl)? ('l:l) y\l)7 (.’fg, @/\2)7 R (CE’]{, yk‘)? ($7 #$)
]

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 255

@Ku TU Clausthal 2 (Un7) Decidabiity

Proof (Part 3)

I has a solution with i; = 1 iff f(I) has (any)
solution.The idea is to use the fact that all LHS’s
end with the # while all RHS’s start with it.

To start with a # we need to use the 0’th pair as a start and
the k& + 1’th as the last (for the last #).

To be precise, (1) if I has a solution 1,44, ... ,14,, then f(I)
has a solution 0,41, ...,i., k + 1 and (2) if f(I) has a solution
i1,...,i, then I has a solutlon 1,49 .., 0_1.

Therefore MPCP < PCP.]

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 256

.1 ~ 2 (Un-) Decidabilit
= 1U Clausthal e

Proof (Part 4).
It remains to show H < MPCP.

For each DTM M and input w we have to construct a
correspondence system (z1, 1), .. ., (2, y,) such that this
system has a solution iff M halts on w.

The MPCP is over the alphabet K U ¥ U {#}:
words code configurations.

Suppose M halts on w. Then there is a series of
configurations from the initial one into an
accepting one. We have to simulate this in our
sequence of indices. []

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 257

2 (Un-) Decidability

el TU Clausthal

Proof (Part 5).

The sequences we build should look as follows

Tiy ... Ty, = FHSoHSI1HS2H
Yiy - Yi; = FHSoEs1#softss##

|.e. the first is one configuration short of the
second. We start with (#, #wqo#) (MPCP).

We need to find pairs (z,y) to simulate the
running of the DTM and to construct

LHS: #wqo# . .. #Far1qx—10k1#
RHS: #wqo# . .. #arq.Br#
[]

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 258

.1 2 (Un-) Decidabilit
= 1U Clausthal e

Proof (Part 6).

The following pairs allow us to achieve this:

B (#,#), (z,x)forzeT,
m for each ¢ # h, p any state (including k), xz,y,z € I':

(qr,py) ifo(q,) = (p,y)
(gr,zp) ifd(q,x) = (p, R)
(zq,px) ifd(q,x) = (p, L)

By induction on k one verifies: If the DTM accepts w then
we can build a sequence

LHS: #wqo# ... #op_1qr—10k—1#
RHS: #wqo# . .. #aphBi#

[]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 259

0,13 ~ 2 (Un-) Decidabilit
»TU Clausthal e

Proof (Part 7).

We need to make both sides identical in order to get a
solution to the MPCP.

Up to now, all pairs ensure that the LHS can not get longer
than the RHS. The following pairs make sure that this can be
repaired:

(xhy, h), (hy, h), (xh,h), and (h##, #).

With these pairs, we can always extend the LHS such that
the two sides get identical. In addition, we can easily state
additional pairs in the MPCP such that this can be achieved.

~ blackboard 2.1 []

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 260

s TU Clausthal 2 (Un) Decidability

Lemma 2.11 (Undecidability of 01-PCP)

PCP can be reduced to 01-PCP, therefore 01-PCP is
undecidable as well.

Proof: Exercise
Lemma 2.12 (Undecidability of PCP; (Senizergues,

Matjiasevic, 1996))
The problem PCP,, for fixed k > 7, is undecidable

Lemma 2.13 (Decidability of PCP, (Ehrenfeucht,

Karhumaki, Rozenberg, 1982))
The problems PCP,, PCP, are decidable.

Nearly proved in Stacs 2015, that also PCP5 and
PCP¢ are undecidable.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 261

0,13 ~ 2 (Un-) Decidabilit
»TU Clausthal e

Theorem 2.14 (Undecidability of various problems)

Let G, G4, G5 be contextfree grammars. Then the
following problems are undecidable:

Is L(G1) n L(Gs) = &7

Is |L(G1) n L(G5)| infinite?

Is L(G1) n L(Gs) contextfree?

Is L(G1) < L(G9)?

Is L(Gh) = L(G2)?

A Is L(G) deterministic contextfree?
Is L(G) regular?

B Is L(G) deterministic contextfree?

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 262

*m TU Clausthal 2 (Un) Decidabilty

Proof (Part 1).

We assign to each PCP [= {(z1,v1), ..., (zx, yx)} over {0, 1}
two contextfree grammars G, G5 over {0,1,$,a4,...,a;}
as follows. GG; consists of the rules

S — A$B

A — aAx| ... |apAzy
A — a1x1| |ak$k
B — yfBa,|...|yfBay
B — ylfal... |yl

Obviously, L(G,) is as follows
{ : L . $ R R : >1<4..7 < k}
@iy« - Qi Ty -+ - T DYy o Y5 Ay - GG, [T, M 2 1 <1, Jg < K

]

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 263

!@KE TU Clausthal 2(Un,) Decidabily

Proof (Part 2).

G5 consists of the rules

S — alSa1|...|akSak|T
T — 070|171 |$
Obviously, L(G5) = {uv$vfultju € {ay, ..., a.}*, v e {0, 1}*}.

m The function I — (G, G») is a reduction of PCP to
L(G1) n L(Gs) = &.

m Itis also a reduction of PCP to L(G;) n L(G3) = o (if the
intersection is nonempty, then it must be infinite).

]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 264

0,13 ~ 2 (Un-) Decidabilit
»TU Clausthal e

Proof (Part 3).

For (4) and (5), we note that both grammars determine
languages that are deterministic contextfree (and DCFL
is closed under complements). Thus we can effectively

construct G, G, with L(G}) = L(G;). Then

L(Gi) nl(G) = « L(G1) € L(Gy)
< L(Gh) v L(G)) = L(Gy)
= L(Gs) = L(Gy)

G5 is not necessarily deterministic contextfree but can be
effectively constructed.

Thus I — (G4, GY)) is a reduction of PCP to L(G;) < L(G3)
and I — (G3,GY) is a reduction of PCP to L(G,) = L(Gy). [

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 265

@IH@ TU Clausthal 2 (Un-) Decidability

2.2PCpP

Proof (Part 4).

We can certainly effectively construct G4 with
L(Gy) = L(GY) v L(GY).

Then I — (G,) is a reduction of PCP to "L(G) is
deterministic contextfree” (because I has a

solution iff L(G) n L(G2) = L(Gy4) is not
contextfree).

It is immediate that I — (G,) is also a reduction of
PCP to “L(G) is regular” as well as to “L(G) is
deterministic contextfree”.

[]

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 266

2 (Un-) Decidability

el TU Clausthal

Because the two grammars constructed in the proof of
the last theorem generate deterministic cf languages, we
get:

Corollary 2.15 (Undecidability of various problems (2))

Let Gy, G5 be two cf grammars that correspond to DCFL
languages. Then the following problems are undecidable:

Is L(Gl) N L(Gg) =
B Is |L(G1) n L(G2)| infinite?

B /s L(G1) n L(G,) deterministic contextfree?
@ /s L(G1) v L(G,) deterministic contextfree?
B /s L(G1) n L(Gs) contextfree?

A Is L(G,) u L(G3) contextfree?

| Is L(Gy) < L(Gs)?

B Is L(Gy) regular?

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 267

@KB} TH‘ ‘Qlausthal 2 (Un-) Dcd;;bli)lé[y)
Plane tiling

Given: A finite set of tiles of different shape.
Wanted: Tiles can be put together, provided they fit

together (valid tiling).
Y Vv v v
rAvAvAvA

A A A A

Figure 10: Simple periodic tilings.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 268

iy 2 (Un-) Decidabilit
= TU Clausthal 2.3 Tiling the Plane

Clausthal University of Technology

2.3 Tiling the Plane

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 269

] 2 (Un-) Decidabilit
= TU Clausthal 2.3 Tiling the Plane

Clausthal University of Technology

Aperiodic Plane tiling

Figure 11: Aperiodic tiling (Penrose).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 270

8,01 2 (Un-) Decidabilit
= TU Clausthal 2.3 Tiling the Plane

Clausthal University of Technology

Aperiodic Plane tiling

Figure 12: Tiling of the plane after Heesch.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 271

iy TU Clausthal 2 (Un-) Decidability

2.3 Tiling the Plane

Are there sets of tiles that allow only aperiodic
tilings? Here is a set of tiles introduced by
Robinson with this property.

:fgjLJl‘HLJi—HLJHTL‘H—\LjF
e A S AN
;?7 e o i
T T
:_li_‘ AT O e
B BB e
T
% SN Ee-ON e By Ha
SE B S

Figure 13: Robinson tiles and tiling.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 272

@Kl* [U Lhustlnl i%’ﬂ)%ﬂ oo

The Domino-Problem (1)

m Plane tiling dates back to Hilbert’s 18th
problem (and was solved by Reinhardt in
1928).

m Hao Wang considered it in 1961 again and
came up with an algorithm to compute a
periodic tiling or give out no if it does not exist
(for any set of tiles). However, he assumed that
if the plane is tileable, it is also periodically
tileable.

m In 1964, one of his PhD students showed the
problem to be undecidable (and thus the
assumption to be false).

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 273

A T Clausthol LRty
The Domino-Problem (2)

Given: A finite set of different quadratic tiles, edges are
colored (Wang tiles).
Wanted: Tiles can be put together, provided the colors of
the edges match (valid tiling). Tiles can not be
rotated.

The following set tiles the plane aperiodically.

X D [K KX
X (X P4 Il PR DX

Figure 14: A set of Wang tiles.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 274

2 (Un-) Decidability

@Ku T“l{ ‘Ql’aUSthal 2.3 Tiling the Plane
The Domino-Problem (3)

Plane Tiling: Can the whole plane be covered with tiles
(tiling of the plane)? We assume we have
infinitely many tiles of each sort.

Finite Plane tiling: Given a finite set of Wang tiles and a
color col. Is there a tiling of a finite rectangular
part, where the boundary is colored with col?

Periodic: Atiling is periodic, if there exists p, ¢ € N, such
that the tiles at positions (¢, j) and (i +p, j + q)
are identical (for all i, j € Z).

Aperiodic: A tiling is aperiodic if it is not periodic and there
is no arbitrarily large part that is periodic.

Periodic Plane Tiling: Given a finite set of Wang tiles, is
there a periodic tiling of the plane?

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 275

s TU Clausthal 2 (Un-) Decidability

The Domino-Problem (3) |

For fixed p, q, {p, ¢)-tileability of the plane is decidable (try all
finitely many possibilities of the p x ¢ rectangle).

Lemma 2.16 (Periodic Plane Tiling)

Periodic plane tiling is recursively enumerable.

Lemma 2.17 (Plane Tiling)

If plane tiling is not possible, then there exists a finite rectangle
of the plane that cannot be tiled.

Corollary 2.18

Plane tiling is co-recursively enumerable.

Proof of Corollary 2.18: ~~ exercise.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 276

@Kw 2 (Un-) Decidability
'TU ‘ClauStha] 2.3 Tiling the Plane

Proof of Lemma 2.17 (1).

Let a set of tiles be given.

We construct a theory T such that (1) any model of T’
induces a plane tiling, (2) any unsatisfiable finite subset
Ty of T induces a finite rectangle that cannot be tiled.

Then we apply the compactness theorem: T is satisfiable iff
each finite subset is satisfiable. So if there is no plane tiling,
T is not satisfiable, so there must be a finite subset T;, of T’

that is not satisfiable. But then 7}, induces a finite rectangle

that cannot be tiled.
L]

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 277

¥y 2 (Un-) Decidability
= TU (JlaUSthal 2.3 Tiling the Plane

Clausthal

Proof of Lemma 2.17 (2).

We represent a tile by the constant ¢, . 4 where a, b, c, d are from
a finite set C'ol = {coly, cola, . .., coly,}: the firstindex represents
east, the second west, the third south and the fourth north (i.e. the
respective side of the tile). For the given set of tiles, we include
the appropriate constants into 7" (as well as the negations of all
possible tiles that are not given).

The fact that a tile is located at position i, j (Where i, j € Z) is
represented as loce]“’ S We add loce;” P — tewsn to T forall
i,J,e,w,s,n (to make sure that such a tile exists): axioms for
Iocahon.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 278

@Kw D 2 (Un-) Decidability
'TU ‘(JlaUSthal 2.3 Tiling the Plane

Proof of Lemma 2.17 (3).

It remains to encode that we have a valid tiling: axioms for valid
tiling. These axioms come in three groups.

We must ensure that there is exactly one tile on each position i, j:

coly ,colq,coly ,coly coly ,coly ,coly ,cola coln ,c0ln g ,c0lny ,coln

loc; y v locw V...V loci’j ,
e, w,s,n e w S n / / / /
and: —(locy’;”™" A loc; ;) for (e, w, s,n) # (', w',s',n"). We

introduce the notation loc; " for the first disjunction. If we fix
coll,*,
i.j

The tiles fit to each other:

l e,w,s,n (l k,e,%, % l
Oci’j OCZ+1 g A LOC

Obviously, by construction, any model of 7" induces a {p, ¢)-tiling
of the plane (by the loc;’/"* n that are true).

one colour, we use loc; “* for the appropriate disjunction.

EERES
dgarll

*,%, %, S

%%
7,7—1 -)

N locl_lj

A loc;

O]

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 279

mw 2 (Un-) Decidability
'TU ‘ClaUStha] 2.3 Tiling the Plane

Proof of Lemma 2.17 (4).

Suppose Tj is a finite subset of T" that is unsatisfiable. So Tp
contains finitely many axioms. Let i,,i,,, imaz (F€SP. Jmins Jmaz)
the minimal and maximal ocurring i index (resp. j index). We
consider the rectangle with lowest left corner (i,in, jminy and
highest right corner (i,naz, jmaz)-

If this rectangle were tileable, then T would be satisfiable (in fact,
an extension of Ty, namely the one that contains all locj”"*" facts
of the tiling, would be satisfiable). This is a contradiction.

O]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 280

Mu TU Clausthal 2 (Un-) Decidability

2.3 Tiling the Plane

Theorem 2.19 (Un-) Decidability of Plane Tiling)

Plane tiling as well as finite plane tiling are
undecidable.

Instead of the original problem, we consider the
following, slightly modified one.

Definition 2.20 (Plane Tiling with Restricted Origin)

Given a set of tiles and one distinguished tile ¢, is
there a tiling of the plane that uses ¢, at least
once?

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 281

A5 TU Claysthal LRty
Idea of UndeC|dab|I|ty Proof
Find for each DTM a set of tiles that can simulate the DTM:

DTM M accepts a word w iff the corresponding set tiles
the plane.

a b O a b m] a b
#HXH| | FEKFHE [FEXH] [RKH| |RoCH#] [RoX#H | |FKH] |PX#
a b O Zpa 20 %o Z1 z1b
O a b] a b O a
zZX(H# zoX(# zo X(H# zo X(# z3 (# z3 > # z3 5 # # X 24
Zy 29 Zob Zo 23 Z3 Z3 Zy
b O 204, 200, zob Z1a 22b
H#H K 24 #H K 2y # < =0 #X 21 # < 20 #H# X 22 #HX 23
Zy Zy a a b a b

z3a, z3b 23 zaq, z4b 2|
< z3 H#H < z3 z4 2y X# za (F H#HXH#
a b [m]] d q

Figure 15: Simulating a DTM with Wang Tiles.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 282

8,01 2 (Un-) Decidability
" IU AClaPSt‘hal 2.3 Tiling the Plane

Lemma 2.21 (DTM described by Wang tiles)

For each DTM M there is a finite set of tiles,
including a distinguished tile t,, such that the
following are equivalent:

m the plane can be tiled using tile t, at least once,
m M does not tferminate on empty input.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 283

8,01 2 (Un-) Decidability
" IU AClaPSt‘hal 2.3 Tiling the Plane

Corollary 2.22 (Plane Tiling with Restricted Origin)

Plane Tiling with Restricted Origin is
undecidable: Given a finite set of Wang tiles, there
is no algorithm to decide whether the plane can be
tiled with them (with a distinguished tile to be used
at least once).

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 284

2.3 Tiling the Plane

Proof of Lemma 2.21 (1).

The first step is to show the following: For each
DTM M there is a finite set of tiles, including a
distinguished tile 7, s.t.

m the upper right quarter of the plane can be
tiled using tile ¢, at least once, iff

m the TM M does not terminate on empty
input.
In the second step we add just one new tile with
which we can tile the remaining three
quarters. [

@Ku TU C‘laus‘thal 2 (Un-) Decidability

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 285

@KW D 2 (Un-) Decidability
" T“l{ ‘ng’aUSthal 2.3 Tiling the Plane

Proof of Lemma 2.21 (2).

The idea is to start with the initial configuration of the
one-way infinite tape at the bottom (x-axis). The next
line describes the configuration after the first move, the
following line the second move etc. Only when the machine
never terminates (on empty input), will this quarter of the
plane be covered completely.

We need therefore

tiles for the initial configuration,

tiles to propagate the contents of the tape for “going
up”, and

tiles describing the moves of the DTM.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 286

mw 2 (Un-) Decidability
" TU ‘ClaUSt‘hal 2.3 Tiling the Plane

Proof of Lemma 2.21 (3).

Initial tiles: These are the only tiles with a “white” lower side: they
must be placed on the z-axis. Only one tile has two
“white” sides: it must be placed in the origin with ¢, next
to it (exactly as the initial configuration of a DTM):
(second one is tg)

(q0.#)
U

*7 *l:‘07 < <

Tiles to go up: “Copy the content of the tape to the next level”
(respect current position and current state).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 287

8,01 2 (Un-) Decidability
" IU ‘ClaUSt‘hal 2.3 Tiling the Plane

Proof of Lemma 2.21 (4).

Tiles describing 6: The first tile describes a simple write
action, the second one a move to the right, the
third one a move to the left. Note, that in our
model we do not allow to write and move in
the same step.

(p:b)

0 ford(g,a) = (p,b),

(7:0)

i‘p for 5(q7 a) = (p7 R)r

(g.2)

”(l;‘) for 5(Qa a) = (p7 L)

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 288

@IH@ TU Clausthal 2 (Un-) Decidability

2.3 Tiling the Plane

Proof of Lemma 2.21 (5).

To tile the upper quarter of the plane, the lowest line is fully
determined (note we have to use ¢y, which means it has to be the
second tile on the bottom)

(q0,#) # # #

l:‘* *I:‘() ODO ODO ODQ Ol:‘() e
Then the next line up is also determined, when we require that

exctly one tile in each line shows a pair (p, a) on its top: above
to either one of the following types has to be placed:

(p:b) # #
) D Py or P D a
(q0.#) (q0,#) (q0,#)

If it is of type 1, then all others are é . If itis of type 2, then p(ﬁ) has to
be placed left to it, and all the others are again 7] . For the third type,
#
(], must be placed as the first tile and all others are 0.
#

(p,a)

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal \/\J; 6/17 289

@KH' TU C‘laus‘thal 2 (Un-) Decidability

2.3 Tiling the Plane

Proof of Lemma 2.21 (6).

~- blackboard 2.2

We also note that there is a tiling (with t,) iff there is a tiling
(with to) and exactly one tile in each line shows a pair (p, a)
on its top (the problem is that instead of the tiles [] one could also

a

place alternately the tiles 7, and {1).

By induction, one shows easily that each line corresponds
exactly to a configuration of the DTM started on empty
input. Thus the whole quarter will be tiled iff the DTM does
never terminate.

The last step is to tile the whole plane. This can be
obtained by simply adding the tile 7 , which is white at all

sides. This allows to tile the remaining three quarters of the
plane with only this tile. H

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 290

el TU Clausthal 3 T e o
Domino-Problem for finite areas (1)

Fixed rectangle: We fix a finite rectangular area of the
plane (n, m € N) and a particular color col for the
boundary. The Domino problem turns out to be
NP-complete.

Quasi-fixed rectangle: We fix n € N and two colors
coly, coly. We also fix two n-vectors of colors. Is
there an m € N and a tiling of the n x m
rectangle respecting the two vectors (as upper
and lower parts) and the two colors on the two
sides? This problem is PSPACE-complete.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 291

el TU Clausthal 3 T e o
Domino-Problem for finite areas (2)

Square: Suppose we fix an ng-vector of colors
and a particular color col. Is there n e N
and a tiling of the n x n square that
respects the ny-vector (as initial segment
of the upper side and color col on all the
remaining boundary? This problem is

NEXPTIME-complete.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 292

KIKB TU Clausthal 2 (Un-) Decidability

Clausthal University of Technology 2.4 Recursive Functions

2.4 Recursive Functions

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 293

@IH@ TU Clausthal 2 (Un-) Decidability

2.4 Recursive Functions

Content of this section:

We introduce the class of primitive recursive functions
PR and the Grzegorczyk Hierarchy: | J, £ = PR. The
fourth class, £ is also called the class of elementary
functions.

The Ackermann function is not primitive recursive, but
still DTM computable. This motivates the class of
(partial) p-recursive functions R. This class
corresponds to WHILE programs and functions
computable by DTMs.

&1 corresponds to LOOP programs with i nested
LOOP statements.

Both primitive and p-recursive functions satisfy certain
boundedness conditions: they cannot grow as fast as
possible. This is the reason why they are computable.

Prof. Dr. Jirgen Dix * Department of Informatics = TU Clausthal WS 16/17 294

@IH@ TU Claustha] 2 (Un-) Decidability

2.4 Recursive Functions

m In Informatics 3 we introduced the important notion of
a DTM computable function.

m Note that we also considered partial computable
functions. They might not be always defined (when the
DTM does not terminate).

m This and the next section is about dif ferent
characterizations of this notion.

m We show that the ;-recursive functions are exactly the
functions (1) computable by Turing machines, and (2)

computable by WHILE programs.
m Note that a set W
m is re iff thereis a partial computable function f with
Def(f) = W.
| is recursive iff thereis a fotal computable function f with
Range(f) =W.

~+ blackboard 2.3

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 295

2.4 Recursive Functions

@IH@ TU Clauystha] 2 (Un-) Decidability

Definition 2.23 (Primitive recursive functions PR)

The class of primitive recursive functions is the smallest class that
contains the functions listed below and is closed by applying the
operations below.

Null 0: N - N, () ~ 0,
Successor S: N —» N,n +—n + 1,
Projections ¥: N¥ — N, (ny,...,ngy — n; for 1 <i < k.

Simultaneous substitution: Ifg: N" - N, h; : N* - N, ...,
h, : N*¥ — N, are primitive recursive, so is

fiNF SNy g(ha(m),. .., he (7)),

Primitive Recursion: If g : N* — N, h : N**2 — N are primitive
recursive, so is f : N¥+1 — N with

f(@,0)

Prof. Dr. Jurgen Dix * Department of Informatics f*%tmst-ltall)

WS 16/17 296

.1 2 (Un-) Decidabilit
" THV ‘erausythal ’ Llnct'\‘olnys

2.4 Recursive F

What about the following definition of a function
add? Is this a primitive recursive function?

add(0,) =
add(y + 1,2) = add(y,x)+1

Yes, but the definition above does not show it.

add(zx,0) = 7i(x)
add(z,y +1) = h(x,y,add(y,x))

where h(z,y, 2) = S(m3(z,y, 2)).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 297

2.4 Recursive Functions

@Kl% TU Claustha] 2 (Un-) Decidability

letneN, f:N* - N, h: N2 » N and define the
following function ¢g : N**! — N:

g(x1,...,2,,0) =f(z1,...,2,)
g(xlw' .,.’L'n,y+ 1):h(y,$1,...,1‘n,g(ﬂf1,.. . 7xn7y)>

How to show that this function is primitive
recursive?

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 298

el TU Clausthal I ki

Defining new functions using only Definition 2.23 can be difficult.

With more functions and operations it would be easier.

Base functions: The functionsn +m, —1, n — m, n™, n x m etc
are all in PR.

Modifying variables: The scheme of primitive recursion is strict
on the handling of arguments. For example
f(n) = n? + 1 cannot be defined in that form (all
functions have to be defined on all arguments).

Case distinction: A nice tool to have is definition by cases.

Sum and product: It would also be nice to allow building sums
and products out of old functions.

Simultaneous recursion: The schema of primitive recursion
only allows to define scalar functions. It would be
better to have functions that map into N*.

These extensions are treated on the following slides.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 299

Mu TU Clausthal 2 (Un-) Decidability

2.4 Recursive Functions

Lemma 2.24 (More base functions)

The following functions are in PR: n + m, —1 (predecessor),
n = m (modified subtraction), |(n,m)|, n x m, n™, nl.
Proof: ~ blackboard 2.4

Lemma 2.25 (Modifying variables)

PR is closed under permutation, doubling and omitting of
variables when using simultaneous substitution.

Proof: For a tuple @ we can produce any 7, that is obtained
by permuting or doubling certain variables by

my = (m}, (), ... m;, (7))
Additional applications of the projections allow us also the
omitting of variables.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 300

@Kl% TU Clauyst‘hal 2 (Un-) Decidability

2.4 Recursive Functions

Definition 2.26 (Case distinction)

Assume g;, h;, 1 < i < r are functions from N* — N
and for all m there is exactly one 1 < j < r with
h;(m) = 0. Then we define the following function
by case distinction:

g(n), if hy(m) = 0;
f(n) = : :
g-(m), if h.(7) = 0.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 301

!@Hf)} TU Clausthal 2 (Un-) Decidability

2.4 Recursive Functions

Lemma 2.27 (PR is closed under case distinction)

Any class of functions which contains PR and is
closed under substitution and prim. recursion is also
closed under case distinction.

f@) = (@A = m@) + ...+ g.(A)(1 = he(7))
[]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 302

!@[l% TU Clausthal 2 (Un-) Decidability

2.4 Recursive Functions

Definition 2.28 (Bounded sum and product)

Let g : N**! — N. Then we define functions f;, f, from N*+1
into N as follows:

_ |0, if m = 0;
fl(n, m) B Zi§m g(ﬁ72)7 If m -—.>f: 0.

B (o, if m = 0;
fo(m,m) = Hi§mg(ﬁ’ i), ifm=0.

Lemma 2.29 (PR closed under bounded sum/product)

Any class of functions which contains PR and is closed
under substitution and prim. recursion is also closed under
bounded sums and bounded products.

Proof: ~~ exercise

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 303

2 (Un-) Decidability

]
- ’:[\‘,Hj Lg:plfl)fl,{s,,tﬂ};lal 2.4 Recursive Functions

Definition 2.30 (Simultaneous recursion)

Assume there are functions g : N" — N,
h : N*t+m _, N™_ Then there is exactly one
function f : N**! — N™ defined by

f(z,0) = g(7)
f(Z,y+1) = h(@,y,f(Tv)

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 304

!@[l% TU Clausthal 2 (Un-) Decidability

2.4 Recursive Functions

Definition 2.31 (PR for non-scalar functions)

A function f : N* — N™ is called primitive
recursive, if all component functions f;, where
£(Z) = (f1(T),..., fm(T)), are primitive recursive.

Lemma 2.32 (PR and simultaneous recursion)

Any class of functions which contains at least PR is
closed under simultaneous recursion as defined
in Definition 2.30.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 305

el TU Clausthal 2R o
Fibonacci numbers

How to define Fibonacci numbers
m using the basic functionality, and
m using simultaneous recursion?

The idea is to store the last two numbers and thus to use a
function into N2:

f(0) = (1,0) FO) = (1,0)
[= (1,1) Fly+1) = (+(F(), 1 (F(y))
f2) = (2,1 +(x1,22) = add(ri(z1,72),75(21,22))

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 306

"1 Claysthal ok
How to prove Lemma 2.32?

The idea is to code a vector by a single number.
Compare with godelisation (see Slide 223).

Lemma 2.33 (Coding Functions)

For each 2 < m € N there exist functions
C,,:N*" - Nand D,, : N — N™ with:

D, C,, are bijections between N and N™.
D,,, Cy, are primitive recursive.
= id = C,, 0 D,,

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 307

@IH@ TU Clauystha] 2 (Un-) Decidability

2.4 Recursive Functions

Proof of Lemma 2.33

First we reduce the statement to the case m = 2:

Cm-l—l(xl; o0 7xm+1) = Cm(xh - Tim—1, CQ(xmn xm—i—l))
Duii(2) = (id, ..., id, Ds)D(2)

These two functions are obviously inverse to each
other. They are both primitive recursive if C;, and
D5 are.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 308

2 (Un-) Decidability

.
" THV ‘Ql‘,ausythal 2.4 Recursive Functions

Proof of Lemma 2.33 (2)

For the case m = 2 we consider the enumeration as shown
in Figure 16, which is defined by Cs(z,y) = o(2) + y where
we set o(z) = W = x + y is the number of the
diagonal contalnlng (z,y). We haveo(z +1) =o0(2) + 2+ 1,
thus o is primitive recursive and so is Cs.

For fixed z, Cy(x, y) takes on the values
o(z), o(z) +1,...,0(2) + z. But the next value is already
o(z) + z + 1 which is o(z + 1) so we have a bijection.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 309

!@KB} TU Clausthal 2 (Un-) Decidability

2.4 Recursive Functions
Clausthal Univers

Proof of Lemma 2.33 (3)

Similarly we show that D, is primitive recursive: writing
k = Cy(z,y) as a function of k, we get
z(k) = peex{o(t) = k = 0}.

m=2

Figure 16: Bijection of N and N2.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 310

ml* TU Clausthal » g (Un-) Deci dab lity

eeeeeeeeeeeeeeeee

Proof (of Lemma 2.32)

We define for 7 € N™:
¢ (@) = Chg(™) and W'(z,y, 2) = C,,h(T,y, Dy2)

Finally we define

f(,0) = ¢'(7)

f@y+1) = W@y f(7y)
It remains to show that
o f'

(by induction on the variable y).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 311

!@KH TU Clausthal 2 (Un-) Decidability

2.4 Recursive Functions

We consider the following functions Ack,,, called branches
of the Ackermann function.

Definition 2.34 (Ackermann and its Branches)

For n € Ny we define the following functions Ack, : N* — N:

Acko(x,y) = y+1
x, ifn=0;
Ackpiq(2,0) = 0, ifn=1,
1, else.

Ackpii(xz,y +1) = Acky(x, Ackni1(z,9))

The Ackermann function Ack : N — N is defined by
Ack(x) := Ack,(z,x).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 312

8,01 2 (Un-) Decidabilit
TU ClaUSthal 2.4 Recursive Fu‘ncti:JInys

We get
m Acko(z,y) =y + 1,
m Acki(z,y) = x + v,
B Acks(x,y) = xy,
m Acks(z,y) = oV

Lemma 2.35 (Monotonicity of Ackermann)

All branches Ack,, of the Ackermann function are
primitive recursive functions. They are also
strictly monotone in both arguments.

~ exercise

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 313

¥y 2 (Un-) Decidabilit
" THV ‘Ql,ausythal 2.4 Recursive Fun(t'\onys

m The function Ack(n,n,n) : N — Nis not primitive
recursive. Itis contained in the larger class of recursive
functions. Proof later.

m Grzegorczyk's idea: Use the Ack, to build a hierarchy
of classes which finally yield the whole class PR:
Definition 2.37.

m Define the classes analog to PR but with a limited
form of primitive recursion plus the function Ack,.

m Thus each subclass consists of prim. recursive functions
that are dominated by a constant number of
applications of Ack,.

m The larger class R of (partial) recursive functions is
obtained by adding another operation to PR: the
p-operator.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 314

] TU Clausthal 2.4 Recursie Function,
~+ blackboard 2.5

Definition 2.36 (Bounded operations)

The schema of primitive recursion in Definition 2.23 does
not constrain the functions &, g. The following variant puts a
bound on the function to be constructed.

Bounded Primitive Recursion: If g : N* — N, b : N*¥2 » N

and b : N**! — N are primitive recursive, so is
f: Nk N with

f(@,0) = g(n)
f(@,m+1) = h(®@ m,f(w,m))
f(@,m) < b(m,m)

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 315

8,01 2 (Un-) Decidability
" ’:[\:Hj ‘Ql‘(auhs,,t‘hal 2.4 Recursive Functions

Definition 2.37 (Grzegorczyk Hierarchy £")

E™ is the smallest class of functions which
contains the null function, the successor function,
the projection functions 7¥ and the function Ack,
and is closed under substitution and bounded
primitive recursion.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 316

2 (Un-) Decidability

]
- ’:[\‘HE{ ‘Ql‘rauﬁs,,tﬂhal 2.4 Recursive Functions

Theorem 2.38 (Growth)

E": forall f e E" there is c¢; such that for all t:

f(t) < Ackpi1(max {2, ¢}, cy)

Proof.

Induction on n and the construction of functions in £".
Monotonicity properties of Ack, are important too.

Note that for f € £°, we can use the upper bound

max{1l,t} + ¢y, for f € £' we use (max{1,t}) x ¢; and for

[€ & we use (max{1,}). O

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 317

8,01 2 (Un-) Decidability
" IH Lglraﬁlylﬁ§”tqpal 2.4 Recursive Functions

Corollary 2.39 (Grzegorczyk Hierarchy is strict)
gcllc.. g8 S PR

Proof.
Apply Theorem 2.38 and diagonalisation.

Assume Ack,,.1(x,z) € E". Then there is c¢r such that
Ackp1(z,x) < Ack,1(x, cr) forall z = 2. This is
contradicting the monotonicity condition on the second
argument.]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 318

mw 2 (Un-) Decidabilit
.IH ‘ClaUSthal 2.4 Re(cu?s?veelzﬂnztilcylnys

lausthal University of Technology

Example 2.40 (Fibonacci)

Consider the function fib: N — N, which assigns
to a number i the i + 1’th Fibonacci number.
Show that (1) fib e &3, (2) fib(2n) = 2" forn = 0
and (3) fib ¢ &2,

~ exercise

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 319

¥y 2 (Un-) Decidability
- IH, ‘Qlau,s,t‘hal 2.4 Recursive Functions

Here is another characterization of £2 which we
note without proof.

Lemma 2.41 (Characterization of £3 = £)

3 is the smallest class of functions containing
the null function, the successor function, the
projection functions, modified subtraction, and is
closed under substitution, bounded sum and
bounded product.

Such functions are also called elementary.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 320

W TU Clausthal
~+ exercise
Show that f : N? - N; (x,y) — 2¥™lisin &.

Show that f : N — N defined by f(0) =1,
f(n+1) =2/ isnotin &.

Non-elementary functions

Are non-elementary functions really needed in
ordinary mathematics?

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 321

l@!@ TU Clausthal 2 (Un-) Decidability

2.4 Recursive Functions

Theorem 2.42 (Grzegorczyk and primitive recursion)

The Grzegorczyk Hierarchy characterizes PR,
the class of primitive recursive functions:

Ogi - PR
i=0

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 322

@IH@ TU Clausthal 2 (Un-) Decidability

2.4 Recursive Functions

It suffices to show (why?) that for each prim. rec. function f
there is a ny € N with

f(t) < Ack,,(max {2,},ny) forallte NF.

We show this by induction on the construction of prim. rec.
functions.

Base functions: For S choose ng := 1. This ng works also
for all other base functions.

Substitution: Let f(¢) = g(f1(¢), ..., fr(t)). We choose
ny = max(ng, maz(ng,...,ng) — 1) + 2.
~ blackboard 2.6

Prim. Recursion: Let f(¢,0) =

(
fEy+1) = h(z,y, (X,
ny = max(ng,ny) + 3.

x),
f(t,y)). We choose
~s exercise

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal V\Btﬁ/w 323

@Kl% TU Claustha] 2 (Un-) Decidability

2.4 Recursive Functions

Often, the Ackermann-function is replaced by the
following one, which is very similar.

Definition 2.43 (Ackermann-Péter function)

The Ackermann-Péter function AP : N2 — N is
defined as follows:

AP-1 AP(0y) = y+1
AP-2 AP(x +1,0) AP(z,1)
AP-3 AP(x+1,y+1) = AP(zx,AP(z+1,y))

~ exercise: Give a (good) lower bound on
AP(4,y).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 324

!@H@ TU Clauﬁst‘hal 2 (Un-) Decidability

2.4 Recursive Functions

Lemma 2.44 (Minimal set of initial functions for PR)

To define the class PR, not all projections

k
UL

are needed. It suffices to have 7} and 73, ,

i =0,1,...as initial functions.

Together with null and successor, this set is minimal:
if any of these functions is left ouft, the class
obtained is strictly smaller than the class of
primitive recursive functions.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 325

2 (Un-) Decidability

i [
" (l\ w, nga USthal 2.4 Recursive Functions

m We defined the class PR and gave a hierarchy for it.

m We are now switching to the next subsection and
consider machines that are closer to real computers:
random access machines.

m We show that PR corresponds to LOOP programs.
Indeed, £ corresponds to LOOP programs with at
most n — 1 nested loops.

m But how to define the Ackermann function? We need
WHTILE constructs in our programs. Is there an
equivalent extension of the class PR?

m Yes, the class R of (partial) recursive functions. Itis
obtained from PR by adding the pi-operator. This
operator in a sense simulates a WHILE loop.

We switch to Slides 343-351.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 326

l@l!f% TU Clausthal 2 (Un-) Decidability

2.4 Recursive Functions

Theorem 2.45 (PR = LOOP)

The primitive recursive functions are
exactly those that can be defined by LOOP
programs.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 327

2.4 Recursive Functions

@Kl% TU Clauyst‘hal 2 (Un-) Decidability

Proof of Theorem 2.45: PR < LOOP.

Straightforward. Give LOOP programs for the
base functions and show that the operations
substitution and primitive recursion can be
implemented by LOOP programs. Substitution
of functions corresponds to composition of
programs.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 328

2 (Un-) Decidability

iy ~
" T“l{ ng’a USthal 2.4 Recursive Functions

Proof of Theorem 2.45: LOOP < PR (1).

Induction on the construction of LOOP programs.

Problem: We have to deal with the registers of RAM’s, but
primitive recursive functions map into N.

Solution: Use the coding functions of Definition 2.33 to
code all registers into one natural number. Incrementing
or decrementing these registers can be done with primitive
recursive functions. Thus the LOOP constructs can be
simulated by functions in PR.

We finally have to show

P (ag,.ax] = b0, - -, bk] iff gp(ao, ..., ax) = (bo, ..., k)

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 329

!@KH TU Clausthal 2 (Un-) Decidability

2.4 Recursive Functions

Proof of Theorem 2.45: LOOP < PR (2).

The primitive recursion corresponding to a LOOP
program P : loop z; do) end is as follows.

h(z,0) = x
h(z,n+1) = ggo(h(xz,n))
gp(n) = h(ni,n)

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 330

¥y 2 (Un-) Decidabilit
" THV ‘Ql‘,ausythal 2.4 Recursive Funct'\onys

Definition 2.46 (u-Operator)

Let g : N**1 — N be a partial function. We say that the
function f : N* — N is obtained from g by applying the
unrestricted p-operator if the following holds:

f@) = pi{g(m, i) = 0}
where 1 is defined by
10, if g(ﬁ, Zo) =0and

= V0<j<ip g(m,j)is defined and # 0;
undef, otherwise.

f is obtained from g by applying the normal p-operator, if g
is total, f(n) = pi{g(m,7) = 0} and for all 7 there isa j € N
with ¢g(7, j) = 0.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 331

@KB} TU Claustha] 2 (Un-) Decidability

2.4 Recursive Functions

Definition 2.47 (u-recursive functions, R, RP**)

The class of total pu-recursive functions, R, is the
smallest class which contains the primitive
recursive functions and is closed under
simultaneous substitution, primitive recursion
and applying the normal p-operator.

The class of partial p-recursive functions, RP*,
is obtained by using the unrestricted p-operator
in the definition above.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 332

2.4 Recursive Functions

lU C‘laus‘thal 2 (Un-) Decidability

m Why are we so picky about distinguishing
both variants?

m Diagonalisation only leads to a contradiction if
a function is total!

m M prints f(n) iff M prints f(n) + 1is no
contradiction, if M does not halt at all.

m The unrestricted p-operator corresponds to
arbitrary WHILE constructs.

m The normal p-operator corresponds to
WHILE constructs that always terminate

Back to Definition 2.56 on slide 352.

Prof. Dr. Jirgen Dix * Department of Informatics = TU Clausthal WS 16/17 333

2.4 Recursive Functions

Mu TU Clausthal 2 (Un-) Decidability

Theorem 2.48 (R = WHILE, R?*"* = WHILE ")

The total recursive functions are exactly those
total functions, that can be defined by WHILE
programs.

The partial recursive functions are exactly

those partial functions, that can be defined by
WHILE programs.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 334

2 (Un-) Decidability

.
" THV ‘Ql‘,ausythal 2.4 Recursive Functions

Proof of Theorem 2.48: R = WHILE.

The proof is an extension of the proof of
Theorem 2.45.
The WHILE program corresponding to g = puf is

Tog - — 0

y = f(T, w)

while y # 0 do

To =Ty + 1; y := f(T, o)
end while

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 335

@EW 2 (Un-) Decidabilit
- IH ‘ClaUSthal 2.4 Re(cu':s?vechL:nztilolnz

lausthal University of Technology

Proof of Theorem 2.48: WHILE c R.

The p-operator corresponding to a WHILE
construct is done as
~+ exercise.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 336

@KH' TU C‘laus‘thal 2 (Un-) Decidability

2.4 Recursive Functions

Lemma 2.49 (Minimal set of initial functions for R?*"*)

The class of partial recursive functions R?** can
also be defined in the spirit of Lemma 2.44.

Rrert js the smallest class containing the null
function, the successor function, the projection
and any infinite subset of 72, i > 2 as initial
functions and which is closed under substitution,
the unrestricted u-operator and primitive recursion.

This set is minimal: if any of these functions is left
out, the class obtained is strictly smaller than
Rpart.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 337

@IH@ TU Clauystha] 2 (Un-) Decidability

2.4 Recursive Functions

Theorem 2.50 (Grzegorczyk and LOOP programs)

The class £"! corresponds exactly to the class of all
LOOP programs with up to n nested LOOP
statements.

Proof.

By induction on n. The main part is to show that
computing Ack, 1 given a Loop program for Ack,
can be done by wrapping the Loop program with
another Loop construct. This increments the
nesting by 1. ~~ exercise]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 338

8,01 2 (Un-) Decidability
" ’:[\:Hj ‘Ql‘(auhs,,t‘hal 2.4 Recursive Functions

What does all this have to do with Turing
machines?

Theorem 2.51 (R = DTM’ Rpaq-t — DTM])a,Tt)

The total recursive functions are exactly those
total functions, that can be defined by Turing
machines.

The partial recursive functions are exactly
those partial functions, that can be defined by
Turing machines.

Therefore all notions of computability are
equivalent!

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 339

2 (Un-) Decidability

" <[\ w, ‘91‘8 USthal 2.4 Recursive Functions

(1): Using our previous results, it suffices to
show that GOTO programs can be
simulated by DTM’s.
~ exercise

(2): Quite some coding!!
[]

This finishes Sections 2.5 and 2.6.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 340

R TU Clausthal 2R o
Universal functions

m We know that there exists a universal DTM
for the class R***. In other words, there is a
partial recursive function which is universal for
the class RP¥,

m Is there a universal function for the class R
in R?

m Is there a universal function for the class PR
in PR?

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 341

KIKB TU Clausthal 2 (Un-) Decidability

Clausthal University of Technology 2.5 Random Access Machines

2.5 Random Access Machines

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 342

@Kl% TU Clauyst‘hal 2 (Un-) Decidability

2.5 Random Access Machines

Content of this section:

We introduce Random Access Machines. These are
more similar to real computers than Turing machines.

We also introduce three different classes of programs.
They can be seen as simplified versions of Pascal or C
programs.

LOOP programs correspond to primitive recursive
functions.

WHILE programs correspond to general recursive
functions.

GOTO programs are equivalent to WHILE programs.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 343

@KW o 2 (Un-) Decidability
" TH, ‘ng’aUSthal 2.5 Random Access Machines

Definition 2.52 (Random Access Machine)

A random access machine (RAM) consists of

a finite set of registers x1, 2o, . . ., z,, where
each register can store an arbitrarily large
natural number,

a finite program (to be specified below).

Initially all registers are set to 0 (if not explicitly
said otherwise). The machine follows program
instructions in the order given.

We now describe several program constructs.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 344

!@KH TU Clausthal 2 (Un-) Decidability

2.5 Random Access Machines

Definition 2.53 (LOOP construct)

LOOP programs are inductively defined:

Induction base: The following are LOOP statements as
well as LOOP programs (for all z;):

W=z +1,
Wy = — 1.
Induction step: If P, and P, are LOOP programs then
m P; P, is a LOOP program,
® loop z; do P, end is a LOOP statement as
well as a LOOP program for all registers ;.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 345

@IH@ TU Clausthal 2 (Un-) Decidability

2.5 Random Access Machines

Definition 2.54 (Semantics of LOOP programs)

Let M be a RAM. M executes LOOP programs as follows:
B z; := z; + 1: M increments register z;.

m x; = x; — 1: If x; > 0 then M decrements register z;.
Otherwise x; keeps the value 0.

® loop z; do P, end: M executes P n-times, where n is the
value stored in z; before the first execution of the loop.

m P;; P,: M first executes P, and then, with the numbers
stored then in the registers, the program P,.

m Stop: If there are no more statements, the execution of
the program terminates.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 346

@Kw 2 (Un-) Decidability
" THV ‘Ql‘rausythal 2.5 Random Access Machines

Definition 2.55 (LOOP computable)

Afunction f : N* — Nis LOOP computable, if there is a RAM
M with LOOP program P, such that for all (ny,...,n;) e N*
and all m e N:

f(nlv"'ank) =m <=

M started with input n; in register z; for 1 <i < kand0in
all other registers, terminates with n; in z; for 1 <i <k, min
register x;, and 0 in all remaining registers.

We denote by LOOP the set of all LOOP computable
functions.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 347

Clausthal Universit 2.5 Random Access Machines

@IH@ TU Clau's‘t‘hal 2 (Un-) Decidability

| new command | simulation as LOOP command |

[/set z; to zero
loop x; do x; := x; — 1 end;
€= c T =x; + 1
: c — times
T, =x; +1
[Iset x,, 10 x;
loop x; do x,, 1= x,, + 1 end;
z; = 0;
rii=xjFc loop x,, do x; := x; + 1 end;
Ty 1= C
loop x,, do x; := x; £ 1 end;
T, =0

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 348

TU Clausthal

Clausthal University of

2 (Un-) Decidability
2.5 Random Access Machines

] new command

simulation as LOOP command

|

if ©; = 0 then P else Py end

[[lfx; =0thenz, =1

//and x,,+1 = 0, and vice versa
Ty =15 Tpy1 =15

loop z; do x,, := x, — 1 end,
loop x,, do 41 := 241 —1 end;
//execute P; respectively P,
loop x,, do Py end;

loop k41 do Py end,

if ©; > c then P end

Ty =05 xpe1:=0
Tp = T; — C,

loop x,, do 41 :=1 end,;
loop xy, 41 do P end;
Ty =05 2pq1:=0

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal

WS 16/17 349

¥y ~ 2 (Un-) Decidability
: TU (JlaUSthal 2.5 Random Access Machines

Clausthal Universit

new command | simulation as LOOP command |

;= 1z + 0;

Ti =T T Ty loop xy, do x; :=x; £ 1 end
z; = 0;

Ti =T Tk loop 1, do =y := x; + xj end

[/This command does nothing
NOP Tp =Ty —1

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 350

.'VI‘L‘J ‘gil‘auskthal

2 (Un-) Decidability

2.5 Random Access Machines

new command

simulation as LOOP command

x; = xj; DIV x,
xy = x; MOD xy,

[/each time z,, counts up to zy,

//If z, is reached, z; is once

//more dividable by z},

//x,+1 is used to test whether z,, = x,
z; = 0;

loop x; do

Ty 1= Tp + 1

LTn+1 '= Tk — Tn;

if The1 =0thenx; :=x;+1; ,:=0
else NOP;

endif

enddo;

Ty = Tp;

Ty :=0; xpe1:=0

And now back to Slide 327.

Prof. Dr. Jurgen Dix * Department of Informatics = TU Clausthal

WS 16/17 351

@IH@ TU Claustha] 2 (Un-) Decidability

2.5 Random Access Machines

We extend the class of LOOP programs by introducing more
constructs.

Definition 2.56 (WHILE construct)

WHILE programs are inductively defined
Induction base: The following are WHILE statements as
well as WHILE programs (for all z;):
Wz =z +1,
Wy =ux — 1.
Induction step: If P, and P, are WHILE programs then
m P; P, is a WHILE program,
m while z; # 0 do P; end is a WHILE

statement as well as a WHILE program for
all reqisters z;.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 352

!@[l% TU Clausthal 2 (Un-) Decidability

2.5 Random Access Machines

What is the semantics of WHILE programs?

Definition 2.57 (Semantics of the WHILE statement)

Let M be a RAM. M executes "while z; # 0 do P, end" as
follows:

If the value of z; is different from 0, then M executes P,
otherwise it jumps to step 3.

M repeats step 1.

M executes the statement right after the WHILE
statement.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 353

@Kw D 2 (Un-) Decidability
" T“l{ ng’aUSthal 2.5 Random Access Machines

Definition 2.58 (WHILE computable)

A function f : N* — Nis called WHILE computable, if there is a
RAM M and a WHILE program P, such that for all
(n1,...,n,) € NFand all m e N:

f(nl,...,nk) =m <—

If M is activated with n; in register z; for 1 <i < kand0in all
other registers, then M terminates with n; in z; for 1 <i <k, min
register xx1 and 0 in all other registers.

f(ni,...,ng) undef <
M activated with n; in register x; for 1 < i < k and 0 in all other
registers, does never terminate.

WHILE is the set of all total WHILE computable functions.
WHILE”""" is the set of all partial WHILE computable functions.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 354

! TU Clausthal s S
m Can we implement the Ackermann function
with a WHILE program?

m Can we implement each Ack,, with a LOOP
program?

We implement Ackermann with stacks.
Stacks are not available in WHILE programs.

But we can simulate stacks as numbers using
the coding functions and the fact, that all
necessary operations on stacks can be done
with LOOP programs.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 355

o TU Clausthal 2 (Un-) Decidabily

2.5 Random Access Machin

Implementlng Ackermann/Peter with stacks

For convenience we consider AP from
Definition 2.43:

(2 1) 21
P(1, AP(2,0)) 1,2,0
(1, AP(1,1)) 1,1,1

AP (1, AP(0,AP(1,0))) 1,0,1,0
The stacks get larger and shorter and are not
bounded.

An algorithm for computing AP with a stack S is
shown on the next slide.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 356

@IH@ TU Claustha] 2 (Un-) Dcddab.ility

2.5 Random Access Machines

Implementing Ackermann/Peter with stacks

Let S[] denote a stack. Initially its length is 2. When the algorithm
terminates (I = 1), the value is stored in S[1].
while/ > 1 do
if S[l — 1] = 0 then
S[l—1]=S[I]+1;il=1-1
else if S[i] = (0 then
S[ll=1;S[I—-1]=S[l-1]-1
else
S[L+1]=S[l]-1;5[] =9S[l] -1
S[l—1]=S[l-1]-L;l=1+1
end if
end while

The idea is to use the coding functions from Lemma 2.33 to code tuples
{1, ...,lm) with C,, and to show, that push and pop on C,,, can be
realized as Loop programs.

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 357

s 2 TU Clausthal 2.5 Random e Mo,
A Beaver function

Length: Define the length I(P) of Loop programs by

counting the assignments and loops.
Normalized: Define normalized Loop programs by

requiring that all used registers in P are among
T1,...,Ty(p). There are only finitely many
normalized programs of fixed length /.

Beaver: Let val(P) by the value of z; after termination of
P when started on empty registers. Define

B(n):= max {val(P): P normalized of length < n}.
Loop program P

B is not primitive recursive, but while computable.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 358

@KB} TU Claustha] 2 (Un-) Decidability

2.5 Random Access Machines

Definition 2.59 (GOTO construct)

GOTO programs are constructed as follows:
Index: Anindex j is any natural number: j € N.
GOTO statement: For a register z; and an index j the following
are GOTO statements:

Wz =x+1,
W=z —1,
m if z; = 0 goto j.

GOTO program: GOTO programs are defined as follows:
m j: IisaGOTO program, if [isa GOTO

statement,

m P; P is a GOTO program, if Py, P, are already
GOTO programs.

Semantics of GOTO programs: as usual.

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 359

!@KH TU Clausthal 2 (Un-) Decidability

2.5 Random Access Machines

Theorem 2.60 (LOOP vs WHILE programs)

LOOP programs can be simulated by WHILE programs.
LOOP computable functions are a strict subset of the set of
WHILE programs.

Proof.

It is easy to show that the LOOP construct can be simulated
with three WHILE constructs.

We have seen that the Ackermann function is WHILE
computable but not LOOP computable. H

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 360

2 (Un-) Decidability

]
- ’:[\:Hj ‘Ql‘(auhs,,t‘hal 2.5 Random Access Machines

Theorem 2.61 (WHILE=GOTO)

Given f : N* — N the following are equivalent:
m f is WHILE computable,
m f is GOTO computable,

Corollary 2.62 (WHILE*®'=GOTO" ")

The last theorem is also true when we consider all
total functions that can be built with the
programming constructs.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 361

@KW D 2 (Un-) Decidability
" TH, ‘ng’aUSthal 2.5 Random Access Machines

Proof of Theorem 2.61: (1) = (2).

We have to simulate the WHILE construct with a GOTO
program. Wlog we simulate while z; # 0 do P end where
P does not contain any while, z,.,, is a new register, ji, jo, js
are new indices. Let P be the program P with indices in
front (starting with 1,2 3, ... until the last line). The GOTO

program simulating the WHILE is
j1:if z; =0 goto j;

A

P

Jo 1 if z,e, = 0 goto j;

j3 * Tpew = Lnew — 1
[]

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 362

@Kw 2 (Un-) Decidability
" THV ‘erausythal 2.5 Random Access Machines

Proof of Theorem 2.61: (2) = (1).

We cannot simply simulate each GOTO statement independently. We
choose a new variable zcoynt s.t: if its value is ¢ then in the GOTO
program to be simulated, the next line would be a GOTO statement
to index i.

For 1By ¢ ey o= gz I 1, let ‘Pz/ be T; := x; £ 1L;Zcount := Tcount + 1. If P; is of
the form if z; = 0 goto j, let P/ be

if ; = 0 then zcount := j; €lse Tcount := Tcount + 1 €nd.
The WHILE program looks then as follows:

Teount := 1
while zcount # 0 do
if Zcount = 1 then P| end

if Zcount = t then P/ end
if Zcount > 1 then zcount := 0 end

end
Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 363

@Hf* "[‘U C‘l aust hal 2 (Un-) Decidability

2.5 Random Access Machines

We consider the if construct defined as a macro
on Slide 351 with a LOOP program.

m It can also be defined with WHILE construct.

m However, it is more primitive (WHILE is not
definable with if).

m We therefore define the class of WHILE
programs, where if is a new primitive
construct.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 364

@Kw D 2 (Un-) Decidability
" T“[{ SJlrauS,thal 2.5 Random Access Machines

Definition 2.63 (WHILE" programs)

WHILE'f programs are inductively defined

Induction base: The following are WHILE™ statements as
well as WHILE' programs (for all z;):

mzx =z + 1,
Wz =ux —1.
Induction step: If P, and P, are WHILE'f programs then

m “P; P,” is a WHILE' program,

m “if z; = n then P, end” is a WHILE'
program,

m while z; # 0 do P, end is a WHILE
statement as well as a WHILE'f program for
all reqisters z;.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 365

8,01 2 (Un-) Decidability
" ’I:Hj ‘Qlauhs,,t\hal 2.5 Random Access Machines

Lemma 2.64 (WHILE=WHILE')

WHILE programs and WHILE" programs are equivalent: they
compute the same functions.

Theorem 2.65 (One WHILE loop suffices)

Each WHILE computable function can be computed by a
WHILE" program with only one WHILE loop.

Proof.

Consider again Theorem 2.61. The theorem states that each
WHILE program can be simulated by a GOTO program. The
proof of Theorem 2.61 ((2) — (1)) shows that we can

simulate this GOTO program by a WHILE program with just
one WHILE loop. O

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 366

@Hf* [U ‘C l‘a usthal 2 (Un-) Decidability

2.5 Random Access Machines

m Relation between WHILE computable
functions and DTM-definable functions?

m We could show that GOTO programs can be
simulated by Turing machines.

m The converse, however, is quite difficult.

m Instead, it is easier to show that

R < WHILE, and

RPe"t — WHILE, and then

each total DTM computable function is in R, and
each partial DTM computable function is in RP%".

Now back to Theorem 2.48 on Slide 334.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 367

] 2 (Un-) Decidability
= TU Clausthal 2.6 Hilberts 10. Problem

Clausthal University of Technology

2.6 Hilberts 10. Problem

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 368

el TU Clausthal 6 2 Deccbiy
Content of this section:
We introduce Hilbert's 10. Problem.

Instead of solving a set of diophantine
equations over N, we can also solve a single
diophantine equation over Z.

We reduce the halting problem of RAMs to the
solvability of a diophantine equation with
exponentiation over N.

Exponentiation can be eliminated
(Matiyasevich).

Thus Hilbert’s 10. Problem is unsolvable.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 369

2 (Un-) Decidability

[U ‘C‘l\a‘u‘S‘thal 2.6 Hilberts 10. Problem

Hilbert (1900), ICM talk in Paris

10. Entscheidung der Losbarkeit einer
diophantischen Gleichung.

Eine diophantische Gleichung mit ir-
gendwelchen Unbekannten und mit ganzen
rationalen Zahlkoefficienten sei vorgelegt:
man soll ein Verfahren angeben, nach
welchem sich mittels einer endlichen Anzahl
von Operationen entscheiden Idsst, ob die
Gleichung in ganzen rationalen Zahlen
lésbar ist.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 370

8,01 2 (Un-) Decidability
" ’I:Hj ‘Qlauhs,,t\hal 2.6 Hilberts 10. Problem

Definition 2.66 (Diophantine Equation)

A diophantine equation is an equation of the form
p(z1,...,x) = 0 where p is a polynomial in

x1, ..., 2 With coefficients in Z. Such an equation
is solvable over Z (resp. N) if there is a solution in
ZF (resp. NF).

~ blackboard 2.7

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 371

8,01

2 (Un-) Decidability
- I,H Lglraﬁliﬁntq{lal 2.6 Hilberts 10. Problem

Definition 2.67 (Diophantine Set)

A set M < Nis called diophantine if there is a
diophantine equation p(xzg, z1, ..., ;) = 0 over Z
with M ={x: J21... 2, € Z: p(z,xq,...,21) = 0}.

diophantine=re?

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 372

@Kl% TU Claustha] 2 (Un-) Decidability

2.6 Hilberts 10. Problem

The following problems can be restated as the
unsolvability of a certain diophantine equation:

m Goldbach conjecture,
m Riemann hypothesis,
m Four Color Conjecture.

In fact, each I1] statement (see Chapter 5) is
equivalent to the unsolvability of a particular
diophantine equation.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 373

8,01 2 (Un-) Decidability
" ’:[\:Hj Lg:plflﬁly{s,,tﬂ};lal 2.6 Hilberts 10. Problem

Lemma 2.68 (Reduction)

Solving a set of diophantine equations over N
can be reduced to solving a single diophantine
equation over Z.

Solving sets of equations over N or Z can be reduced
to each other.

~ exercise

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 374

2 (Un-) Decidability

@Ku TU ClaUStha] 2.6 Hilberts 10. Problem

Lemma 2.69 (Reduction to diophantine eq. with exp)

The halting problem for Random Access Machines
can be reduced to solving diophantine equations
with exponentiation over N.

Proof.
Given any GOTO program P with m instructions
over n < m registers, we construct a set of
diophantine equations with exzp, such:
P terminates when started with empty registers
iff
the set of equations has a solution over N

Prof. Dr. Jiirgen Dix » Department of Informatics = TU Clausthal WS 16/17 375

@Kw 2 (Un-) Decidability
'TU ‘ClaUStha] 2.6 Hilberts 10. Problem

Proof of Lemma 2.69 (2).

Idea of the Reduction (1)

The variables in the equations to be
constructed contain the values of all
registers for each timepoint of the
computation.

We encode such values wrt to a suitable basis
B (large enough):

S

ZaiBi,

1=0

S: number of steps until termination.

Prof. Dr. Jurgen Dix * Department of Informatics = TU Clausthal

@Kw D 2 (Un-) Decidability
'TU ‘(JlauStha] 2.6 Hilberts 10. Problem

Proof of Lemma 2.69 (3).

Idea of the Reduction (2)

We use the notion n << n’ to denote dominance:
if n = Zf:o a;B" and n’ = Zf:o b; B!, then n < n/
stands for a; < b; forall i = 0,...,S. This can

be defined with exponentiation.

The variable W; encodes the values of register
R; for all timepoints.

The variable N; encodes the sequence
ag, - --,as where q; € {0,1} and ¢; = 1 iff
instruction i is done in step I.

[]

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 377

@Kw D 2 (Un-) Decidability
'TU ‘(JlaUSthal 2.6 Hilberts 10. Problem

Proof of Lemma 2.69 (4).

Structure

In the following we are stating a finite set of equations
involving the variables B, S,C, W4, ..., W,, Ny, ..., Ny, T
that are all existentially quantified.

This set of equations is constructed in such a way, that

P terminates when started with empty registers is
equivalent to the existence of values for the variables such
that the set of equations has a solution. Exponentiation is
important as we have to simulate the working of the GOTO
program which can have an exponential number of
configurations.

Clearly, if we had available a single diophantine set which
can simulate exponential behaviour (so as to represent all
configurations), we could use it and would not need
exponentiation.

Prof. Dr. JUrgen Dix x Department of Informatics = TU Clausthal WS 16/17 378

@IH@ TU Clausthal 2 (Un-) Decidability

2.6 Hilberts 10. Problem

Equations (1)

In order to store the values of the registers as a
number in a B representation, we need B to be
large enough. For convenience we make B a
power of 2 (multiplying a number with B is then
just shuffling the entries by one).

B>S+1, B>m, B=2¢

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 379

@KW D 2 (Un-) Decidability
'TU (JlaUSthal 2.6 Hilberts 10. Problem

Equations (2)

The first eqution is to have available a number T
with the value 37 | B'. The second equation
makes sure that all entries of V; are 0’s or 1’s. The
third ensures that only one instruction is active at
each pointin time.

1+(B-1)T = B!
N; T
Ni+ ...+ N, T

A

[]

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 380

@KW D 2 (Un-) Decidability
'TU (JlaUSthal 2.6 Hilberts 10. Problem

Equations (3)

Here we ensure that the computation starts with
the start state (first equation), ends after step S
(second equation), and that the start
configuration is with all registers empty (third
equation: BS*' — B =0+ Y7 (B —1)BY).

1 < Ny
BY < N,
W; < BS"'—-B

[]

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 381

@Kw 2 (Un-) Decidability
'TU ‘ClauStha] 2.6 Hilberts 10. Problem

Proof of Lemma 2.69 (8).

Equations (4)

Finally we have to simulate the program using equations.
The first equation is for i : goto [, the next two are for

i+ x; = x; + 1 (for incrementing we define

I={1<i<m: i:x;=ux;+ 1} for decrementing
D={l1<i<m: i:x; =x; —1}), and the last two are for
i: If z; = 0goto l.

BN; <« N,
BN; < . Nii1
Wj = B(Bj +ZieINi_ZieDNi
BN; < N,’.,.l + N
BN; = Ni+1 + BT — 2W]
~ blackboard 2.8 H

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 382

@Kl% TU Claustha] 2 (Un-) Decidability

2.6 Hilberts 10. Problem

Theorem 2.70 (Matiyasevich (1970))

Diophantine equations over N with exponentiation can be
reduced to diophantine equations over N without jt.

Proof.

It suffices to show the existence of one diophantine set D
with

m (u,vy € Dimplies v < u",

m for each k € N there is (u,v) € D with v = u*.
This allows us to describe the exponentially many
configurations in the simulation of the GOTO program.

Matiyasevich proved this ingeniously with Fibonacci
numbers:

57L
1 <a,x2"! forn>3

O

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 383

mw 2 (Un-) Decidability
- IH, ‘Qlau,s,t‘hal 2.6 Hilberts 10. Problem

Corollary 2.71 (Hilbert’s 10th Problem is Undecidable)

Hilbert’s 10th Problem is undecidable.

All re sets are diophantine (and vice versa).

There is a polynomial p in 1, ..., xy such that
the positive values of p are exactly the prime
numbers. In fact, for each re set there is such a
polynomial.

Using a universal Turing machine, there is indeed
a particular polynomial p(z, z1,...,x;) such that
there is no algorithm to decide, given n,
whether p(n,z1,...,2;) = 0 has a solution.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 384

2 (Un-) Decidability

@Ku Tq ‘Cl’aUSthal 2.6 Hilberts 10. Problem

is obvious.

We use the same set of equations as in the proof of
Lemma 2.69. The only bit we have to change is to make
sure that the machine is not started with empty
registers, but with = contained in the first one. We only
have to change the third equation on Slide 381 into the
following two:

W, < ZC+BS+1—B,
T < Wl-

We use the polynomial p(x,7) of the diophantine
equation and transform it into ¢(z,7) = z(1 — p*(z,7)).

]

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 385

%IKB TU Clausthal 2 (Un-) Decidability

Clausthal University of Technology 2.7 Theorem of Rice

2.7 Theorem of Rice

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 386

@Kﬂ TU C‘laus‘thal 2 (Un-) Decidability

2.7 Theorem of Rice

Content of this section (1):

We introduce a powerful method for proving that
certain problems are undecidable: the Theorem of
Rice.

We already know that it is undecidable whether a
language (given as a Turing machine) is empty, finite,
regular, contextfree etc.

Rice’s theorem states that any nontrivial property of a
language is undecidable.

Greibach’s theorem is an analogue of Rice for language
classes and grammars.

With Greibach’s theorem, it is easy to show directly, that

it is undecidable whether a given contextfree grammar
is regular, inherently unique (or similar properties).

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 387

!@KH TU Clausthal 2 (Un-) Decidability

2.7 Theorem of Rice

Content of this section (2):

The smn-Theorem states that for each partial recursive
function ¢(z, y) there is an algorithm that computes for
each DTM for g and = another DTM, that computes
g(x,y) upon input of y.

The Recursion theorem tells us that there is always a
fixed point for total recursive functions that map
indices to indices.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 388

2 (Un-) Decidability

@KH' '[“‘LJ‘ ‘Cl‘a USthal 2.7 Theorem of Rice

m The following results are independent of a particular
godelization.

m Obviously, any godelization assigns to each
nondeterministic DTM a natural number. But often, not
all numbers encode a nondeterministic DTM.

m To deal with the last point, we introduce
Definition 2.72.

m We use the notation M(xy,...,x,) 1 to stand for “TM M,
started on the input z;# . . . #x,, does not terminate”.

m We use M(zy,...,z,) | yto stand for “TM M, started on
the input z1# . . . #z,, terminates with output y”. If the
output does not matter, we simply write
M(z1,...,2,) |.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 389

@Kw D 2 (Un-) Decidability
" T“l{ SJlra USthal 2.7 Theorem of Rice

Definition 2.72 (Godelization, Index)

Let M, be a fixed DTM which does not terminate (on any
input). For a particular godelization code() we define for

eeN)
M, = { M, if code(M) = ¢;

M., otherwise.

For e € Nand n € N, we define the partial recursive function
(also called Godel numbering) o™ Nt > N

(n) e Y, if Me(xlv---axn) l Y;
P (21, -, Tn) '_{ undef, if Me(z1,...,2,) 1.

WIlog, we denote by M, a DTM which does never terminate

(like M,). Similarly, we denote by cpé”) the partial function
on n arguments which is always undefined.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 390

o = TU Clausthal 2 (Un-) Decidability
Cla C ersit 2.7 Theorem of Rice
n)
Pe and W

m Each partial recursive function f : N* —» N
has the form " for some e € N. Forn = 1 we
often write ..

m The sets W) := Def (") constitute an
enumeration of all re sets of N".

m Is the following function computable?

u:N? - N, (i,n) — gogl)(n)
mls there(e)i total r(e)cursi(v)e function h : N2 - N
. 1 1 1
with Puiiy) = Pi 0P ?
This leads to the smn theorem.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 391

o *TU Clausthal b e Lo
Step function T,

m We also use the step function 7; : N — N which assigns
to n € N the number of steps it takes until the DTM with
goédelnumber i, M;, terminates on input n. If the DTM
does not terminate on n, then T;(n) is undefined. Thus
T; is a partial recursive function.

m The set {(i,n,ty: T;(n) =t} is recursive.

m The set {(i,n,j): p;(n) = j}is re but not recursive.
m The set H, = {{(i,n): ¢;(n) |} is re but not recursive.
m Theset H = {i: ¢;(i) |} is re but not recursive.

m What about Mon = {i : Vj (¢;(j) = wi(j +1))}?
m What about Dec = {i : ¥j ¢;(j) € {0,1}}?
m What about Eq = {(i,j) : @i = ¢;}?

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 392

2.7 Theorem of Rice

!@H@ TU Clauﬁst‘hal 2 (Un-) Decidability

Theorem 2.73 (smn Theorem)

For each m,n € N there are total recursive
functions s : N1 — N such that for all e € N,
zeN" ye N«

Given e and z, we do the following:

Construct new DTM M’: it gets n arguments, shuffles them to
positions m + 1, ..., m + n and puts Z on the first m arguments.

It starts M. (constructed from e) on the m + n arguments.
Godelnumber of the new machine = 57" (e, 7).

O

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 393

2 (Un-) Decidability

ml* TU Clauyst‘hal 2.7 Theorem of Rice

Definition 2.74 (Index)

Let L be a re language. Then there are denumerable many
DTM’s which accept L. The gédelnumbers of them form
the index of L.

Let S be any set of re languages. S is also called property of
re sets.

Then I(S) := {e: M, accepts a language L € S} is called
the index set of S.

Instead of re languages, one can also consider as set S

m aset R € RP** of partial recursive functions. Then the
index set is defined as follows: I(R) := {e: . € R}.
Note that [I(R)| = o, even if R is finite.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 394

!@H@ TU Clauﬁst‘hal 2 (Un-) Decidability

2.7 Theorem of Rice

Theorem 2.75 (Rice)

Let S be any property of of re languages (resp. of
partial recursive functions): S < type-0.

If S is nontrivial (i.e. & # S # type-0), then the
index set I(S) is undecidable.

Instead of “gddelnumber for M” we also say
“index of M”: for each DTM this is uniquely
defined.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 395

2 (Un-) Decidability

@KH' Tq ‘Cl‘a USthal 2.7 Theorem of Rice

Proof (of Theorem 2.75).

The nontriviality assumption gives us the existence of L, L'
with Le S, L' ¢ S. Therearee, ¢’ e Nwithee I(S), ¢ ¢ 1(S).
We reduce the Halting problem H = {i : ¢;(i) |} or the
complement of it, H = {i : ¢;(i) 1}, to I(S).

Case 1: I(S) does not contain an index corresponding
to M. We show that there is a (total)
computable function f with

we{i: (i) |} iff fz)e (S) (M

Case 2: I(S) does contain an index corresponding to
M,,. We show that there is a (total) computable

function f” with

ze {i: @i(i) 1} iff f'(x) e I(S) (2)

WS 16/17 396

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal

@Kw D 2 (Un-) Decidability
" T“l{ SJlra USthal 2.7 Theorem of Rice

Proof (of Theorem 2.75) (Case 1).

We define

. Qoe(y)> for ‘Px(x) "
9(z,y) == { undef, else.

g is computable: 3a € N s.t. g(z,y) = o (z,).

smn theorem: We get a total recursive functlon s(a,)
with g(z,y) = @) (). Let f(z) = si(a, z) in the first
equivalence on Slide 396.

=: Let (Px(x) i Then Qof(a:)<y) = Sos%(a,w)(y) = Qoe(y)
Because e € I(S): f(x) € I(S).

<: Let (P:v(x) T Then Pf(z) (y) = Ps2(a,x) (y) is the
function computed by M. But then
f(z) ¢ I(S), because we are in Case 1.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal \/\L; 6/17 397

@Kw D 2 (Un-) Decidability
" T“l{ SJlra USthal 2.7 Theorem of Rice

Proof (of Theorem 2.75) (Case 2).

We define

o we’(y)? for ‘Pm(x) l ’
9(@,y) = { undef, else.
g is computable: Ja € Ns.t. g(z,y) = cpgf)(x,y).
smn theorem: We get a total recursive function s?(a, z)
with g(z,y) = @) (). Let f'(z) = si(a, z) in the second
equivalence on Slide 396.

=: Let (Px(x) l' Then Qof’(w)(y) = ('Ps%(a,x)(y) = (Pe’(y)°
Because ¢’ ¢ I(S): f(x) ¢ I(S).

<: Let (P:v(x) T Then Pf(z) (y) = Ps2(a,z) (y) is the
function computed by M. But then
f(z) e I(S), because we are in Case 2.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal \/\L; 6/17 398

8,01 2 (Un-) Decidability
- ’:[\:H Lglaﬁ%?”tq{lal 2.7 Theorem of Rice

Applications of Rice

Example 2.76 (Using Rice’s Theorem)
Apply the theorem of Rice and state S and I(S) explicitly.

Does M accept a regular language?
Does M terminate on all inputs of even length?

Does M terminate on each input?

Does M ever print “HAPPY-2017“ during its computation on
tape? ~~ exercise

Is “HAPPY-2017“ accepted by M?

A Does M accept a language that can be also accepted with a
DTM M’ the number of states of which is a prime number?

Does M visit the start state 7 times?
~ blackboard 2.9

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 399

@Ku TU C‘laus‘thal 2 (Un-) Decidability

2.7 Theorem of Rice

m What if we take as set S an arbitrary set M of
Turing machines. And we define the index set
as follows:

IM) :={e: M, e M}?
Does that make sense?

m Can one apply Rice’s theorem to Does M run
in polynomial time on each input? What do
we get?

m Is the problem "Does M accept L" decidable
for particular languages L? What if L itself is
decidable?

~+ blackboard 2.10

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 400

!@[l% TU Clausthal 2 (Un-) Decidability

2.7 Theorem of Rice

Colloquial formulation of Theorem of Rice

Nontrivial properties of DTM's are undecidable.
What about the following properties:

m DTM has 17 states,

m DTM never ever moves the head to the right.

Beware!

Not all properties of DTM’s can be represented
as index sets! Not all sets A < N are index sets.

Rice is about properties of the language of a TM,
not about the TM itself or its behaviour.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 401

.1 2 (Un-) Decidability
TU ClaUSthal 2.7 Theorem of Rice

Other problems

Correctness: Let a function f be given. Is it
decidable, whether a DTM M
computes f?

Special case: f corresponds to M,

Specification: Given a specification for a
program to be developed. Is it
decidable, whether a program
satisfies it?

Equivalence: Is it decidable whether two
programs compute the same function?

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 402

8,01 2 (Un-) Decidability
" ’:[\:H Lg;plraﬁlvlﬁ§ntapal 2.7 Theorem of Rice

Example 2.77 (NP and P)

Let L be given by a grammar or a DTM.
Is L acceptable in polynomial time?
Is L decidable in polynomial time?

m Assume we know that L is in NP. Is the
problem "L € P?" decidable or not?

m What if we know that L is in PSPACE and
then ask whether "I can be decided in
deterministic logarithmic time"?

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 403

!@H@ TU Clauﬁst‘hal 2 (Un-) Decidability

2.7 Theorem of Rice

m The theorem of Rice helps us to determine that an
index set is not recursive.

m Is there an analogue to show that an index seft is not
even re?

Theorem 2.78 (When is an Index Set not even re?)

Let S be a property of recursively enumerable languages.

Then the index set I(S) is re, iff the following properties are
true

If Le Sand L < L' forsomere L', then L' € S.

If L is an infinite set in S, then there is a finite subset L' of
L with L' € S.

The set of finite languages in S is re.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 404

il TU Clausthal 240 ety
Applications
Example 2.79 (Showing an Index set to be re)
Which of the properties of re languages L are re?
m L=
m L contains at most 17 elements.
m L contains exactly 17 elements.
m L contains at least 17 elements.
mL#.
m L is not recursive.
m L isnotre.

~ blackboard 2.11

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 405

@IH@ TU Clausthal 2 (Un-) Decidability

2.7 Theorem of Rice

A class C of languages is effectively closed under
concatenation with regular sets (resp. union), if RL, LR and
L u L' can be effectively constructed from R, L, L'.

Theorem 2.80 (Greibach)

Let C be a class of languages which is effectively closed
under concatenation with regular sets and under union.
We also assume that the check for equality with ¥* is
undecidable for sufficiently large 3.

Let a nontrivial property S be given, which is (1) closed
under /a (L € S implies L/a := {w : wa € L} € S), and (2)
true for all regular languages.

Under these assumptions S is undecidable for C.

Typical application: class of languages = contextfree
languages. For a cf grammar G, it is undecidable whether
L(G) is regular (but we knew that already).

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 406

TU Clausthal 2 (Un-) Decidability

Clausthal University of Technology 2.8 Recursion theorem

2.8 Recursion theorem

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 407

@Kl% TU Clauyst‘hal 2 (Un-) Decidability

2.8 Recursion theorem

A simple (very destructive) game

m Player 1 writes programs, Player 2 manipulates them.

m Player 1 wins, when she can write a program that
behaves identical to its manipulated version.

m Would you like to be Player 1 or 2?

Theorem 2.81 (Recursion Theorem)

For each total recursive function o : N — N there is ny € N
(which can be effectively constructed) with

Pro (M) = Po(ne)(m) forall m e N.
Manipulate any TM in an algorithmic way: obtain M’ from

M. Then there is a DTM M, which computes the same as
M,’: the manipulation was useless.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 408

2 (Un-) Decidability

.
" IHV ‘Qlauysyt‘hal 2.8 Recursion theorem

Can you construct a DTM that writes its own index on
tape (on empty input) and stops?

Corollary 2.82 (Recursion Theorem: Kleene’s version)

To each partial recursive function p : N> — N there is ny € N
(which can be effectively constructed) with

Pno(m) = p(ng,m) forall m e N.

Proof.

We consider p as a function on N by fixing the first
argument: for each z, the function p(z, y) is a (partial)
recursive function in y, so it has the form ¢,(-) = p(z,-),
therefore, by the smn theorem, there is a total recursive
function f : N — N with ¢, (-) = p(z,).

We apply the Recursion theorem and get the result. O

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 409

!@H@ TU Clauﬁst‘hal 2 (Un-) Decidability

2.8 Recursion theorem

Proof (of Theorem 2.81).
We define

g(y,z) :== { w-(z), ifey(y) | z;

undef, else.

g is computable: Ja € N s.t. g(z,y) = 9022)(Y).
smn theorem: We get a total recursive functlon s(a,)

with g(z,y) = @200 (y)- Let f(z) = s7(a,), which is total
recursive. Thus:

W (), Ty (y) |;
e ={ T qee”

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 410

8,01 2 (Un-) Decidability
" ’:[\:Hu xgl‘(aupsntwhal 2.8 Recursion theorem

Proof (of Theorem 2.81) (2).

We define h : N — N, h(y) := o(f(y)), which is
total recursive. Thus there is 7o with
h = ;,.Therefore ¢, (iy) |. We get

P1(i0)(T) = Py (i0)(T) = Po(f(i0))(T)

Therefore it suffices to set e := f(iy). O

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 41

@Kl% TU Claustha] 2 (Un-) Decidability

2.8 Recursion theorem

m Kleene’s version says: each DTM can be modified so
as to get its own description (index) during a
computation and deal with it.

m Suppose you are working on a DTM M to compute a
function ¢ : N — N. But you need fo assume that you
have available an index of that very machine you are
constructing.

m So your DTM is really M’ that takes two inputs:
M'(n, m) but computes t(m), asssuming that » is an
index of a DTM for ¢.

m Kleene’s version assures there is indeed such a ny and
your assumption for using M/(ngy, m) is ok.

m So you can define a macro "get your own description”
and use that for any DTM.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 412

2 (Un-) Decidability

@Ku T“l{ Sjl’a USthal 2.8 Recursion theorem
Applications of the Recursion Theorem

In any enumeration My,..., M, ... of dll
DTM'’s, there are two consecutive DTM's
which compute the same function. ~~
exercise

There is e with ¢.(e) | and ¢, (7)1 for all i # e.

There is a DTM that outputs its own index.

Programs that print out their own source code
are also called quines (after Willard van Orman
Quine). Here are two for Python3 and Ruby:

a="a=Y,chs’c;print (a%%(34,a,34))";print (a%(34,a,34))
eval s=Yq(puts"eval s=}q(#s)")

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 413

@Ku TU C‘laus‘thal 2 (Un-) Decidability

2.8 Recursion theorem

Applications of the Recursion Theorem (2)

m While the halting problem is undecidable, we may
collect info about particular DTM’s and whether they
halt or not.

m Assume we consider a formal system (eg. set theory) in
which we can formulate and reason about DTMs. We
add more and more axioms about termination of
particular DTM’s.

m Can we ever reach a state of the formal system that
answers all questions about DTMs?

m We assume that such a formal system is correct: it
contains and proves only correct statements.

m In particular, if a TM stops after finitely many steps, the
system can prove that (it simulates it). If it does not
stop, the system does not claim it does.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 414

@Kl% TU Clauyst‘hal 2 (Un-) Decidability

2.8 Recursion theorem

Lemma 2.83 (No FS captures the whole truth)

For any consistent and correct formal system F'S there is a
DTM M and an input wy such that

there is no proof in F'S that M(wy) terminates,
there is no proof in F'S that M(w,) does not terminate.

Let p : N*> — N be the partial recursive (why?) function

) if FS proves that ¢;(5) 1
pi-J) = {undef, else.

By Kleene there is ny with ¢,,,(j) = p(no,j). Now p(ng,j) =1
iff ©,,(7)1. Therefore p(ng,j) must be undefined for all j,
but FS can't prove it. O

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 415

el TU Clausthal s e

Clausthal University of Technology

2.9 Oracle TMn

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 416

@Kw D 2 (Un-) Decidability
.’:[;Hy SJl’aUSthal 2.9 Oracle TMn

Content of this section:

An Oracle DTM is a DTM that can ask an oracle and get
back an answer that it can use in further computations.

Such an oracle can be a problem we want to show to
be undecidable. Maybe we can solve the halting
problem with such an oracle.

An undecidable oracle allows us to compute more
undecidable problems. Such machines can also accept
non re languages (eg. the complement of the halting
problem).

This gives us another notion of reduction that is very
useful: Turing reducibility,

We introduce a hierarchy of undecidable problems.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 417

qﬁu’u IU Llausthal 2<u£—; gﬁ:?a&tz
Motivation (1)

m To prove undecidability of a problem by reducing an
undecidable problem to it is a powerful technique,
see Definition 2.1 on Slide 207: A < B.

m However, it needs a computable function to do the
reduction and this makes the method more difficult to
apply.

m For example, H < H. Therefore H cannot be shown
undecidable through < alone.

m A better notion seems to use a language A as an oracle:
this allows to do more reductions.

m If we use H as an oracle, surely we can decide H and
vice versa.

Prof. Dr. Jurgen Dix * Department of Informatics = TU Clausthal WS 16/17 418

s TU Llausthal 2<u£—g ggﬁ:?a&tz
Motivation (2)

But < has its advantages: one can prove more (the price is
limited applicability).

m Assume A is re. Then A < A implies that A is re too.
Because y € A iff f(y) e A (for a computable function
f: A— A)and any enumeration of A (plus the check
that such an element has the form f(y)) gives an
enumeration of A.

m We already know from Inf. 3 that H is re but not
recursive and so H is not even re: therefore H £ H.

m If Ais notre and A < B, then B is not re. So we also
have H < H This is not true for oracles.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 419

2 (Un-) Decidability

@KH' TU LlaLlSthM 2.9 Oracle TMn
Motivation (3)

Consider the following undecidable problems:

Wy € L(M),

LM) = &,

L(M) = X7,

L(M) is a regular set.

Intuitively, the first problem seems to be the
easiest (just one check), while (2) and (3) need
an infinite number of checks in the worst case.
The fourth problem seems to be harder than the

first three.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 420

2 (Un-) Decidability

el TU Clausthal 33 Grnce

Definition 2.84 (Oracle DTM M%)

Let A < ¥*. A Turing machine with oracle A4,
denoted by M4, is a 1-tape DTM with 3
distinguished states ¢, g, ¢
If it reaches the state ¢, it checks whether the
string to the left of the head (until the start of
the tape) is contained in A:

Yes: if it is contained in A, the DTM switches

into ¢,
No: otherwise the DTM switches into g,,.

If Ais recursive, M4 can be simulated by an
ordinary DTM.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 421

@Kw T < 2 (Un-) Decidability
= TU Clausthal 2.9 Oracle TMin

m We have introduced in Definition 2.1 the
notion of a reduction < that we extensively
used in proving undecidability.

m In the next definition we distinguish between
two variants of < and introduce a third one:
TM reducibility.

m In the rest of this subsection, we only deal
with <TM-

m From Slide 431 on, we compare all three
notions.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 422

2 (Un-) Decidability

@Ku Tq Clausthal 2.9 Oracle TMn

Definition 2.85 (Reductions)

A set A, is reducible to A, iff thereis a
DTM-computable function f : N — N, such that:

VneN (ne A iff f(n) e A,).

<,: if the function is a bijection, also called
ohe-one.

<,,: if the function is any function, also

called many-one.

A; is TM-reducible to A,, written A; <7 As, if
A, can be decided by a DTM with oracle A,.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 423

@Kw 2 (Un-) Decidability
.’:[:Hy ‘erausythal 2.9 Oracle TMn

Definition 2.86 (Recursive, re in A)

Let A < ¥*. Alanguage L isre in A, if Lis
accepted by an oracle DTM M.

L is recursive in A, if the accepting oracle DTM
M4 always terminates (i.e. M4 is a decider).

Often we denote by L4(M) the language
accepted by machine M with oracle A: L(M4).
(The oracle A does not belong to M..)

m Are all languages re in the halting problem?
m Is each language re for an appropriate A?

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 424

mw 2 (Un-) Decidability
" IHV ‘Qlauysyt‘hal 2.9 Oracle TMn

Definition 2.87 (Equivalence wrt. Turing Reducibility)

We say that two languages L,, L, are equivalent,
iff each is recursive in the other. This leads to
the notion of degrees of unsolvability.

Thus L, is accepted by a DTM that takes L, as an
oracle and vice versa.

Definition 2.88 (Hierarchy)

We consider the language 51 = {e: L(M,) = &}.

Sy is not re. We define the ascending hierarchy:

Sit1:={e: L%(M,) = &}

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 425

8,01 2 (Un-) Decidability
" ’:[\:H Lg;plraﬁlvlﬁ§ntapal 2.9 Oracle TMn

By induction, one verifies easily that
S1E5 ... 25 Snus. ..

The following holds:

S, is equivalent to “w e L(M)”,
S, is equivalent to “L(M) = 3*”,
S is equivalent to “L(M) is a regular set”.

~ blackboard 2.12]

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 426

@IH@ TU Clauystha] 2 (Un-) Decidability

2.9 Oracle TMn

We use the notation H4 to denote the halting set
for TM’s with oracle A: the set of indices of all
TM’s with oracle A that terminate on their own
godelnumber.

For a recursive set A, H* is exactly the classical
halting set H. Obviously, for recursive A, B, the
sets H4 and HP are equivalent (wrt.

Definition 2.87).

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 427

2.9 Oracle TMn

@KB} TU Claustha] 2 (Un-) Decidability

Jump of a language

For a re set A, the jump of A, denoted by A, is the
set H4: the set of all gédelnumbers of machines,
that terminate on their own gédelnumber using
as oracle the set A.

So A, A', A", ... is a series of sets getting more
and more complicated/undecidable.

&' is the classical halting set. & is a new halting
set H'? obtained by machines that use the
classical halting set as an oracle.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 428

8,01

2TU Clausthal 2 (Un) Decidability
Clausthal University of Technolog .

Suppose we are given a problem that is
undecidable. Can we prove this by reducing the
halting problem to it?

Or, to put it differently:

Post’s problem

Is the halting problem the simplest undecidable
problem?

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 429

] 2 (Un-) Decidability
" TU ClaUSthal 2.10 Reductions

Clausthal University of Technology

2.10 Reductions

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 430

@IH@ TU Clausthal 2 (Un-) Decidability

2.10 Reductions

The Oracle DTM just introduced defines a

reduction from one set (language) to another
set (language): <), Turing reducibility.

We compare this reduction with two more
reductions, that can be derived from
Definition 2.1: <, one-one reducibility and
<,,» many-one reducibility.

We introduce the most difficult problems wrt.
these reductions: <- complete problems.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 431

2 (Un-) Decidability

@Ku TU (JlaUSthal 2.10 Reductions
Propertles of TM-Reduction

Let SAT be the problem to determine whether a
given formula in CNF is unsatisfiable.
Obviously, we have
m SAT <7, SAT, and
m SAT <7um SAT.
So both are equivalent: no one is harder than
the other.
m But this sort of equivalence is rather coarse.
m We know that SAT is in NP and SAT in co-NP.
m TM-equivalence does not imply anything
about finer complexity measures.

Prof. Dr. Jurgen Dix * Department of Informatics = TU Clausthal WS 16/17 432

@Kw 2 (Un-) Decidability
" THV ‘erausythal 2.10 Reductions

The following properties hold for all reductions
introduced in Definition 2.85.

Lemma 2.90 (=,,=,,,=7u)
The reductions < from Definition 2.85 are reflexive
and transitive.

We can therefore define, for all reductions, the
equivalence relations =1, =,,, =r).
We have seen on Slide 432 that SAT =, SAT.

Obviously H =r,; H, but not H =,, H (see the
discussion on Slide 418).

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 433

8,01

2 (Un-) Decidability

" ’:[\:Hu Lg:plraulf/lhsnt’ﬂ}r—rlal 2.10 Reductions

Definition 2.91 (=,..)

A recursive bijection on N is a recursive function that is
also a bijection.We define =,..on A, B < N:

A =,.. B iff thereis a recursive bijection with f(A) = B.

All relations =, =,,, =) are recursively invariant: If
A=,..Bthen A=, B, A=,, B,and A =1, B.

An interesting application of the proof of the
Cantor-Bernstein theorem shows the following.

Theorem 2.92 (Myhill)
A=,..B iff A=, B.

~ blackboard 2.13 O

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 434

8,01

2 (Un-) Decidability
" ’:[\:Hu Lg:plraulf/lhsnt’ﬂ}r—rlal 2.10 Reductions

Lemma 2.93 (Some facts about <, and <,,)
A <y B implies A <,,, B.
A <, Bimplies A <, B (also for <,,).
(A <,, B and B recursive) implies A recursive.
(A <,, B and B re) implies A re.

~ blackboard 2.14]

m Are there (nonrecursive) sets, that are
incomparable wrt <,,,?

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 435

&1 Claysthal Oy

Are there most difficult sets?

A c Nis <;-complete (resp. <,,-complete), if
Alisre, and
for all re sets B: B <; A (resp. B <, A).

m {(i,n): p;(n)|}is <, complete.
m{i: (i) |}is <, complete.

This is no coincidence!

Lemma 2.95 (<, complete = <,, complete)

Aset A is <1 complete iff Ais <,, complete.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 436

MU Clagsthal e
Relation between < m and <7,

Lemma 2.96

A <, Bimplies A <rp B.
(A <rn B and B recursive) implies A recursive.
If A<,, Band B <7, C, then A <7, C.

“A <ry Bimplies A <, B” is false: (see also Slide 419)
m{(i,ny: ¢;(n) |} <rm Si, but
m {{i,n): i(n) L} £m S1.
“(A <7y B and B re) implies A re.” is false:
m {Gi,n): i(n) L} <ra {{,n) : @i(n) 1}, and
m {{i,n): @;(n) |} is not re but can be recognized with

oracle {(i,n) : @;(n) |}.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 437

2 (Un-) Decidability

@Ku :l}{ g;la USthal 2.10 Reductions
We are now coming back to the question on Slide 427.

m How do the equivalence classes of =7, look like? They
are called Turing degrees.

m The Turing degrees form a poset, in fact a join
semilattice but not a lattice.

m The least element is the set of all recursive sets,
denoted by O (the equivalence class of all recursive
sets).

m For a degree d the jump of d, denoted by d’ is defined as
the degree consisting of the equivalence class of A’ (the
jump defined on Slide 427), where A € d.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 438

@KW o 2 (Un-) Decidability
" TH, ‘ng’a USthal 2.10 Reductions

m Thus O’ is the Turing degree of the halting problem.
Obviously d’ is not recursive in d, it is more
complicated.

m Post asked whether there are any re degrees between O
and O'.

m Friedberg and Muchnik solved this problem by
inventing the priority method: there are indeed such
degrees strictly between O and O'.

m Thus the halting problem is not the simplest
undecidable problem: in fact, there is no simplest
undecidable problem.

Prof. Dr. Jurgen Dix * Department of Informatics = TU Clausthal WS 16/17 439

@Hf)} TU Clausthal 3 SPACE versus TIME

3. SPACE versus TIME

SPACE versus TIME
m Basics
m Some Hierarchies
m Relating TIME and SPACE
m More Properties

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 440

@KB& TU Crlau's‘t‘ha] 3 SPACE versus TIME

Contents of this chapter

m While we investigated in the previous chapters the
boundary between decidability and undecidability, in
this and the next chapter we consider only decidable
languages.

m We show how to measure time and space complexity of
a given language.

m Such measurements make only sense up to a constant
factor: space compression and linear speed-up.
Restricting to 1-DTM’s results in a quadratic time
increase, while space complexity remains the same.

m We will see: (1) time-bounded problems are decidable
(trivial), and (2) space-bounded problems are
time-bounded and thus decidable (not so trivial).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 441

@IKB} TU Cﬁ}la»uys‘t‘ha] 3 SPACE versus TIME

Contents of this chapter (2)

m We show several tight, and strict hierarchies for space
and time.

m We investigate the precise relations between
nondeterministic und deterministic Space- and Time
classes, including Savitch's Theorem.

m We show that there are arbitrarily large gaps for space
complexity (Borodin's gap theorem) which leads to
unintuitive consequences.

m There are also languages that can be sped up
indefinitely (Blum's speed up theorem).

m We prove the Union theorem.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 442

@IH@ TU ClaLlst‘hal 3 SPACE versus TIME

Clausthal University of Te

Berechenbarkeitstheorie Komplexitatstheorie Formale Sprachen

Zahlenfunktionen Wortfunktionen

Generator Akzeptor

Sirmulation

Form ale Gram matiken

leterministisch.
Turingmaschine yum plexitatsklassen
ichtdeterministisch

WHILE-Programm

p-Rekursion

\ng\s(ermascmne

Autom aten

Rekusiv aufzahlbare
TYP O—marekursive sprachen Turingmaschine

zéit
Korntextsensitive Linear beschrankter
e L Automat
- E Chom sky- ‘
Chureh-Turing-These P S NP PSPACE = NPSPACE € EXPTIME [/ pierarchie Typ 2 Koptesree ellerastomat
Halteproblem unentscheidbar . e dtichen Actomat

Entscheidbarkeit-

semientscheidbarkeit. roblemesMengen

Figure 17: Some relations.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 443

A TU Clausthal 3 SPACE versys ts

Clausthal University of Technology

3.1 Basics

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 444

3 SPACE versus TIME

el TU Clausthal ST

Definition 3.1 (NTIME(T'(n)), DTIME(T (n)))

Base model: k.-DTM M (one tape for the input).

If M makes at most 7'(n) steps for each input of length n, it
is called T'(n) time-bounded.

The accepted language by M has time complexity 7'(n) (in
fact, we mean max(n + 1, [T'(n)])).

m DTIME(T(n)) is the class of languages, that are
accepted by 7'(n) time-bounded, DTM's.

m NTIME(T(n)) is the class of languages, that are
accepted by 7'(n) time-bounded NTM's.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 445

3 SPACE versus TIME

el TU Clausthal ST

Definition 3.2 (NSPACE(S(n)), DSPACE(S(n)))

Base model: k-DTM M (one special tape just for the
input, input remains there (of fline DTM)).
If M uses at most S(n) cells (on all tapes) for each input of
length n, it is called S(n) space-bounded.
The accepted language by M has space complexity S(n) (in
fact, we mean max(1,[S(n)])).

m DSPACE(S(n)) is the class of languages, that are

accepted by S(n) space-bounded, DTM's.

m NSPACE(S(n)) is the class of languages, that are
accepted by S(n) space-bounded, NTM's.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 446

.1 3 SPACE versus TIME

" ’:I\:H Lg:plraﬁl/}ss\wtﬁ\l:lal 3.1 Basics
Why offline-TM’s?

Space functions of less than linear growth.

To which time/space class belongs
Lmirror 1= {wew® : we (0 + 1)},

all words mirrored around c?

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 447

el TU Clausthal 3 SPACE vergus T
Time: DTIME(n + 1). Copy the input to the right of ¢ in

reverse order.
After finding ¢, just check the coming part.

Space: The machine described above gives DSPACE(|3]).

Can we do better?

Yes: L e DSPACE(lgn). Use two tapes as binary counters.
Checking that there is exactly one ¢ can be done with no
space. Then we check symbol for symbol on the right and
left side. We need the counters to keep track of the
positions.

One can easily do with one counter and one tape.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 448

@IKI% TU Cwlaus_thal 3 SPACE versus TIME

3.1 Basics

m How many tapes are needed?
m What is the influence of the size of the alphabet?
m What about the number of states?

Theorem 3.3 (Tapes, Alphabet, States)

Let L be a language accepted by an arbitrary TM (no

restriction on the number of tapes, number of states, number

of tape symbols).

Minimal Alphabet: L can be accepted by an offline NTM
(DTM) with only one tape and two tape symbols
{#,1}.

Small State Space: L can be accepted by an offline NTM
(DTM) with only one tape and only three
states.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 449

3.1 Basics

'lU ‘C‘l‘aU’S‘thal 3 SPACE versus TIME

Proof

Intuitively, it is obvious that one tape suffices: one can
always use tracks (see the proof of Theorem 1.63). Thus
instead of one symbol per cell, one can always use new
symbols that code finitely many symbols.

To minimize the number of tape symbols, one can certainly
simulate with 2 tape symbols a set of finitely many tape
symbols (simply as particular sequences). The finite control
of the program can then distinguish between the new
codes.

To minimize the number of states, the finite control can
easily be simulated with finitely many new tape symbols.
One needs only 3 states: one for the start state, one for the
halt state and a third one to distinguish it from the start
state. So there are effectively 2 states (to encode the finite
control with the tape symbols), plus the halt state.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 450

TU Qlaqstha] 3 SPACE versus TIE

.1 Basics

Important questions:

Time: Is DTIME(f(n)) contained in the class
of recursive languages?

Space: Is DSPACE(f(n)) contained in the class
of recursive languages?

Time/Space: What about NTIME(f(n)),
NSPACE(f(n))?

Of course, the answers depend on the
functions f. We require them to be recursive.
Later, in order to formulate more precise
relationships, we need more restricting notions
(Time/space constructible).

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 451

e TU Clausthal 3 SPACE versys ts

Only the growth rate in a complexity class counts:
Constant factors can be ignored.

Theorem 3.4 (Tape Compression)

Let L be accepted by a k-DTM (resp. k-NTM) M,
which is S(n) space-bounded.

Then for any ¢ > 0, L is also accepted by a k-DTM
(resp. k-NTM) My which is ¢S(n) space-bounded.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 452

el TU Clausthal 3 SPACE vergus IME

Proof

One direction is trivial. The other is by coding a
fixed number r (> 2) of adjacent cells on the tape
as one new symbol. The states of the new
machine simulate the movements of the head
as state transitions (within the new symbol). For
r cells of the old machine, we only use at most 2:
the worst case arises when one is forced to move
from one block in the adjacent one.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 453

¥y 3 SPACE TIME
= TU Clausthal verghlsBasics
Clausthal University of Technolog

Corollary 3.5 (Tape Compression)

For all ¢ > 0 and space functions S(n):

DSPACE(S(n)) = DSPACE(cS(n))
NSPACE(S(n)) = NSPACE(cS(n))

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 454

R 3 SPACE TIME
Wl TU Clausthal vergys TIME
Clausthal University of Technolog

Theorem 3.6 (Time Speed Up)

Let L be accepted by a k-DTM M, which is T'(n)
time-bounded. We assume that k > 1 and

inf,, @ = 0,

Then for any ¢ > 0, L is also accepted by a k-DTM
M, which is ¢T'(n) time-bounded.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 455

3 SPACE versus TIME

el TU Clausthal e

Proof

The proof is again by coding a fixed number r
(> %) of adjacent cells on the tape as one new
symbol. The states of the new machine
simulate the movements of the head as state
transitions (within the new symbol).

m The new machine has to copy and encode the
input: 7 moves.

m And || steps to print the new symbols
encoding the entire input.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 456

el TU Clausthal 3 SPACE vergus IME

Proof (2)

When simulating the old machine, the new one makes
11 instead of r steps:

m It starts with scanning the neighboring cells: one move
to the right, two moves to the left, and one to the right.
This information is stored in the finite control. 4 moves.

m Simulating the old machine: This takes no time, as it is
built-in to the transition rules. O moves.

m The machine moves only when the heads have to move
into neighbouring cells (to change them) or to change
the current one. One move to overwrite the current
symbol, one to move left, one to overwrite it, two to
move right, one to overwrite it, one to move back (in
the worst case). 7 moves.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 457

@KB} TU Claustha] 3 SPACE versus TIME

3.1 Basics

Proof (3)

Thus if the old machine does T'(n) moves, the new one does
at most

T T
n-l—[ﬁ]-i-ll[(n)]§n+2+11 (n)+2
r r r r

steps. Our assumptlon 1nfn_,OO Tf@ ") — o ensures that for
each constant d: n < T' Thus we get an upper bound of

11 2 1
It remains to choose d properly: d = £. Th|s glves an upper
bound of 1 + + 2 and together with r = 2 we get
Le+ £c + 2¢ = 1cwhichis £

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 458

¥y 3 SPACE TIME
= TU Clausthal ver;ﬂsBasics
Clausthal University of Technolog

Corollary 3.7 (Time Speed Up)

For each ¢ > 0 and time functions T'(n) with

: T
inf,, % = 0:

DTIME(T (n)) = DTIME(cT (n))
NTIME(T(n)) = NTIME(cT'(n))

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 459

!@Ku TU Claus_thal 3 SPACE versus TIME

3.1 Basics
Question:
What happens if less tapes are available?

Consider the language Lpjror: Linear complexity does not
hold any more, if there is only one tape.

However, we have
Theorem 3.8 (Tape Reduction for TIME)

If L e DTIME(T (n)), then L is accepted by a
m 1-DTM that is time-bounded by T?(n),
m 2-DTM that is time-bounded by T'(n)1g T'(n).

If L e NTIME(T(n)), then L is accepted by a

m 1-NTM that is time-bounded by T7(n),
m 2-NTM that is time-bounded by T'(n)lg T (n).

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 460

el TU Clausthal 3 SPACE vergus IME

How many steps are needed to simulate a
k-DTM with a 1-DTM?
Consider L := {ww® : we ¥*}.
1-DTM: How to decide L with a 1-DTM? l.e. for
m steps of a k-DTM, a 1-DTM uses m?
many steps (to be precise, 6m?).
We speed up by a factor of _-.
2-DTM: How to decide L with a 2-DTM? Here we
need a counter to count up to n: this
gives a factor of justlgT(n), not T(n).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 461

ot TU Clausthal SSPACE Ve e

The last theorem is also true for space-bounded functions.

Theorem 3.9 (Tape Reduction for SPACE)

m If L e DSPACE(S(n)), then L is accepted by a 1-DTM
that is space-bounded by S(n).

m /f L e NSPACE(S(n)), then L is accepted by a 1-NTM
that is space-bounded by S(n).

Proof.

Proof like the last one. While simulating a £-DTM with a
1-DTM one needs the same number of cells: no speed-up is
needed (we simply use more tape symbols). Compare with
the proof of Theorem 3.3. H

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 462

3 SPACE versus TIME

Mu TU C"lauhs_tﬂhal 3.1 Basics

Nondeterministic computations are shorter than
deterministic ones. But each NTM can be
simulated by a DTM. The following lemma gives
the precise relation.

Lemma 3.10 (NTIME vs. DTIME)

If L e NTIME(f(n)), then there is ¢ > 0 s.t.
L e DTIME(c/™),

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 463

3 SPACE versus TIME

el TU Clausthal ST

(Proof of Theorem 3.10 (1)).

It is obvious how to simulate a NTM with a DTM: simply
enumerate all possible paths. However, to get the precise
bound used above, we compute the number of ID’s for an
input of length n. Assume the NTM M has s states, k tapes,
the alphabet is based on ¢ symbols and the input is of length
n. Then in time f(n) at most f(n) tape cells can be visited.
Thus we have at most s(f(n) + 1)*¢*/(") many different ID’s.
For d := s(t + 1) we get for all n € N a simpler upper bound

s(f(n) + 1)ktkf(n) < df™,

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 464

el TU Clausthal SSPACE Ve e

(Proof of Theorem 3.10 (2)).

How can a DTM determine whether M accepts an input
of length n?

It constructs a list of all ID's accessible from the initial ID.

How much time is needed to do this?
It is bounded by the (length of the list)?.

There are at most ¢/(™ ID’s, each can be encoded with
1+ k(f(n) + 1) symbols. Thus the length of the list is at
most d/(™ (1 + k(f(n) + 1)). This gives a time bound of the

multitape DTM of (d/™ (1 + k(f(n) + 1)))”. And this is
bounded by ¢/ for a suitable c. O

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 465

LA U Clausthal 3 SPACE versus T

Clausthal University of Technology

3.2 Some Hierarchies

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 466

R TU Clausthal SSPASE s TINE
Theorem 3.11 (DSPACE(f(n)) < Rec)

Let f(n) be any total recursive function. Then there is a
recursive language L that is not in DTIME(f(n)) (resp.
not in DSPACE(f(n))).

Proof.

We use diagonalization. Let M be the DTM computing f(n).
Let My,..., M, ... be an enumeration of all DTM’s. Let
x1,...,%;, ... be an enumeration of all words of {a, b}*.
Define the language

L = {z; : M, does not accept z; within f(| z;) moves}

L is recursive but not in DTIME(f(n)).
The proof for DSPACE(f(n)) is similar. O

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 467

3.2 Some Hierarchies

@KB} TU Cﬁlau's‘t‘ha] 3 SPACE versus TIME

Well-behaved Functions

In the remainder of this chapter we state several relations
between complexity classes. Unfortunately, these do not
hold for arbitrary space or time functions. But they do
hold for almost all naturally occurring functions.

The technical notions we need to assume are:
Space: space functions S(n) need to be (fully) space
constructible: for each n there is an input of
length n s.t. @ TM uses on this input exactly S(n)
cells.

Time: time functions 7'(n) need to be (fully) time
constructible: for each n there is an input of
length n s.t. a TM runs exactly S(n) steps on this
input.

In the following, remember our assumption on space/time
functions (Definitions 3.1, 3.2).

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 468

el TU Clausthal SSPASE s TINE

Definition 3.12 ((Fully) Space Constructible)

A function S : N — Niis fully space constructible, if there is
a S(n) space-bounded Turing machine M such that on each
input of length n, M uses exactly S(n) cells.

S is called space constructible, if there is a S(n)
space-bounded Turing machine M such that on some input
of length n, M uses exactly S(n) cells.

Definition 3.13 ((Fully) Time Constructible)

Afunction T : N — N is fully time constructible, if thereis a
T'(n) time-bounded Turing machine M such that on each
input of length n, M runs exactly T'(n) steps.

S'is called time constructible, if there is a T'(n)
time-bounded Turing machine M such that on some input
of length n, M runs exactly T'(n) steps.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 469

R TU Clausthal SSPASE s TINE
Lemma 3.14

We consider space functions S(n).

Each space constructible function S(n) with
S(n) = nis also fully space constructible.

If a language L is accepted by a S(n)
space-bounded TM with S(n) = 1g(n), then L is
accepted by a S(n) space-bounded TM that
halts on all inputs.

~» exercise]

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 470

R TU Clausthal YA s e
Definition 3.15 (Well-behaved Functions)
Consider the following space of functions from N
in N. It contains [log, n] (a € N), n* (k € N), 2", n!
and is closed wrt. multiplication, exponentiation,
composition and multiplication by & (k € N). We
call such functions well-behaved.

Lemma 3.16

Well-behaved functions f with f(n) = lg(n) are
space constructible.

Proof.
~+ exercise []

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 471

@IKI% TU Cﬂlaus‘tha] 3 SPACE versus TIME

3.2 Some Hierarchies

Theorem 3.17 (Time/Space Hierarchies)

Let So(n) be space constructible and Ty(n) fully
time constructible. We also assume, that

Si(n) = lgn.

| /finf, Sg ; = 0 then
DSPACE(S;(n)) &£ DSPACE(S,(n)).

| Ifinf, .., % = 0 then

DTIME(T(n)) & DTIME(T(n)).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 472

@u’u TU Clausthal S e s e

Proof of Theorem 3.17

First we assume that S, is fully space constructible to
simplify the proof. The general version will be done in the
lab.

We fix an enumeration My, ..., M,,... of all offline DTM’s
over {0, 1} with (wlog.) one storage tape. Later we
represent these machines as words w over {0, 1}*.

Thus each word w (sequence of 0’s and 1’s) can be seen as a
DTM M,,, s.t. there are infinitely many machines occurring
in the enumeration that accept the same language (see last
chapter). We also assume, wlog, that the size of machine
M, in its binary representation is greater than i (adding
useless states). Thus, if machines corresponding to a
language L occur infinitely often, their sizes in the binary
representation get arbitrarily large (a property we need
later).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 473

el TU Clausthal SSPASE s TINE

Proof of Theorem 3.17 (2)

We construct a DTM M that uses S»(n) space and disagrees
on at least one input with any S;(n) space bounded DTM.

Given a word w, the machine M first marks Sy (|w|) cells on
the storage tape (this is where the fully space constructible
assumption comes in). Whenever the machine is about to

move beyond these bounds, it stops and rejects the input.

Then M simulates M,,, the TM encoded by w. If M,, is
S1(n) space bounded (and uses ¢ tape symbols), what is
the space required to do this simulation?

M needs [lg(t)]S1(n) space.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 474

@u’u TU Clausthal S e s e

Proof of Theorem 3.17 (3)

Now we define M accepts w iff (1) M can do the simulation in
time S»(n) and (2) M,, stops without accepting w.
Obviously, L(M) is in DSPACE(S2(n)).

To show that L(M) is not in DSPACE(S;(n)), we assume it is
and show a contradiction. By Lemma 3.14, there is a DTM M
accepting L(M), working in space S;(n) and always terminating.
Assume it(is)using t tape symbols, so t is fixed.

Si(n

infp, o0 S(m = 0 guarantees that there is a large enough w, such

that [lg(t)]51 (w]) < S2(w|) and L(M,,) = L(M) = L(M) (L(M)
occurs infinitely often in the enumeration: our assumption |w;|> i
ensures the inequation).

Thus M can do the simulation and accepts w iff M,, does not
accept w, which is a contradiction.

For the second part of the theorem ~~ blackboard 3.1.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 475

el TU Clausthal PASE Yo T
With the last theorem, we get:
DSPACE(n) & DSPACE(n?) & ... < DSPACE(n") & ...
and
DTIME(n) ¢ DTIME(r?) & ... < DTIME(n") & ...
as well as
DSPACE(Ilgn) & DSPACE(lg’n) & ... < DSPACE(lg" n) & ...
and

DTIME(lgn) & DTIME(Ig?n) & ... 2 DTIME(Ig" n) & ...

Prof. Dr. Jurgen Dix * Department of Informatics = TU Clausthal WS 16/17 476

8,01

3 SPACE versus TIME
] Iq UClaHSt‘hal 3.2 Some Hierarchies
Jausthal University of Technolog

How about nondeterministic Space and Time?

m The analogue of Theorem 3.17 holds.

m There is no simple proof. The resultis a
corollary to the Theorem of Immerman and
Szelepcsenyi.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 477

@IH@ TU Clausthal 3 SPACE versus TIME

3.2 Some Hierarchies

The proofrof the next theorem is straightforward.

Theorem 3.18 (Nondeterministic Hierarchies)

Let Si(n), Sa(n) and f(n) be fully space constructible. We also
assume that Sa(n) = n und f(n) = n forall n e N. Let
Ti(n), Ty(n) and f'(n) be fully time constructible.

NSPACE(S;(n)) € NSPACE(Sy(n)) implies
NSPACE(S,(f(n))) € NSPACE(S(f(n))).

NTIME(T: (n)) € NTIME(T(n)) implies
NTIME(T;(f'(n))) = NTIME(T3(f(n)))-

The proof uses a technique called padding that can be
applied in many situations (and ensures to get the same
results for deterministic complexity classes).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 478

el TU Clausthal YA s e

Proof of Theorem 3.18.

Let L, be a language accepted by M, in nondeterministic
space Si(f(n)). We have to show that L, can be accepted
in space S;(f(n)), using the hypothesis.

We associate to L, its padded version:

Ly = {w§" : M, accepts w in space S;(|w| +i)}.

L, can be accepted by a TM working in space S;(n): it
marks the S; (jw| +7) cells (S, is fully constructible) and
simulates M; on w. It accepts only if M; does and M, does
so not using more than S, (jw| +i) many cells.

By hypothesis, there is M3 which is Sy(n) space bounded
accepting L,. ~» blackboard 3.2 O

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 479

@Ku l U (JlaUSthal 3 SPACE versus TIME

3.2 Some Hierarchies

Applylng Theorem 3.18

Assume NSPACE(n*) = NSPACE(n?). We apply
Theorem 3.18 for n3, n* and n® separately:

NSPACE(n!?) c NSPACE(n?)
NSPACE(n!®) ¢ NSPACE(n'?)
NSPACE(n?) < NSPACE(n')

So we get:
NSPACE(n*) € NSPACE(n?).

Using Theorem 3.21 (coming soon on Slide 487) we know
that NSPACE(n’) € DSPACE(n'®). We also know that
DSPACE(n'®) € NSPACE(n'®) (trivial).

Using Theorem 3.17: DSPACE(n'®) ¢ DSPACE(n?),
which is a contradiction.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 480

el TU Clausthal SSPACE reps e
The last theorem implies the following hierarchies:
NSPACE(n) & NSPACE(n?) & ... < NSPACE(n") & . ..
and
NTIME(n) € NTIME(n?) & ... NTIME(n") & ...
similarly
NSPACE(lgn) & NSPACE(Ig?n) & ... S NSPACE(lg' n) & ...
and

NTIME(lgn) & NTIME(lg?n) & ... £ NTIME(lg"n) & ...

Prof. Dr. Jurgen Dix * Department of Informatics = TU Clausthal WS 16/17 481

3.2 Some Hierarchies

@KB} TU Claustha] 3 SPACE versus TIME

Theorem 3.19 (Deterministic Hierarchies)

Let Si(n), S2(n) and f(n) be fully space
constructible. We also assume that S;(n) > n and
f(n) =nforallneN. Let T1(n), To(n) and f'(n) be
fully time constructible.

DSPACE(S;(n)) < DSPACE(Sy(n)) implies
DSPACE(51(f(n))) = DSPACE(S:(f(n)))-

DTIME(T;(n)) € DTIME(T,(n)) implies
DTIME(T:(f'(n))) € DTIME(Ty(f'(n))).

Completely analagous to the proof of Theorem 3.18. []

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 482

0,13 3 SPACE TIME
gz TU Clausthal 3.3 Relating TIME and SPACE

Clausthal University of Technology

3.3 Relating TIME and SPACE

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 483

8,01 3 SPACE TIME
.IU ‘Claust‘hal 3.3 Relating TIVIE and SPACE

Theorem 3.20 (Relationship between TIME and SPACE)

DTIME(f(n)) =€ DSPACE(f(n)).

If f(n) = 1lgn and L e DSPACE(f(n)), then
there is ¢ > 0 s.t. L e DTIME(c/™),

If L e NSPACE(f(n)), then there is ¢ > 0 s.t.
L e DTIME(c/™),

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 484

.1 - 3 SPACE TIME
d I‘U‘ Clausthal 3.3 Relating TIME and SPACE

Proof
1. Obvious.

2. Assume there are s states and ¢ tape symbols. Using f(n)
cells, the number of ID’s for an input of length n is bounded
by (s + 1)nf(n)t/™ (using Theorem 3.9 we assume we deal
with a offline-DTM with one storage tape).

Because of f(n) > lgn there is ¢ such that for n > 1:

™ > (s + Dnf(n)t/™ (why?).

We use a 3-DTM: One tape to count up to ¢/(™, the others to
simulate the old machine. If no accepting state is reached
when the counter is maximal, the machine does not
accept. Otherwise the new machine accepts.

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 485

3 SPACE versus TIME

@H@ TU ‘Cilauys‘t‘haI 3.3 Relating TIME and SPACE

Proof (2)

3. Again we can bound the number of ID’s by ¢/, but by
using a depth-first search after that, we only get a double
exponential bound.
In the following we show that the tree can be pruned so
that each ID occurs only once. We do this by a recursively
defined list.
How many steps are needed to construct this list?

I many comparisons (I number of ID’s),

multiplied with their maximal length (¢ f(n)).

Altogether a bound of the form "/,

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 486

8,01 3 SPACE TIME
d Iq UClé\llr.}s‘t‘l’llal 3.3 Relating TIME and SPACE

Theorem 3.21 (NSPACE vs. DSPACE (Savitch))

For each fully space constructible function S(n) :

NSPACE(S(n)) < DSPACE(S%(n))

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 487

] - 3 SPACE TIME
@Kl% TU (Jrlaus‘thal 3.3 Relating TIME and SPACE

m Again there are ¢ different ID’s for an input
of length n.

m Their maximal length is S(n). If the input is
accepted, it is so in at most ¢° steps.

m Let Test([y, [5,1) the statement
I, can be reached from I; in at most 2 steps.

m Test([1, I, i) can be solved recursively, by
calling Test(I1,1',i — 1) and Test(I', I5,i — 1)
(for all ID’s I' of length at most S(n)).

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 488

L] 1~ 3 SPACE TIME
. [‘ u Clausthal 3.3 Relating TIME and SPACE

Proof (2)

We construct a DTM as follows.

m For the initial configuration I; and all
accepting configurations Iy (of length S(n)),
we check whether Test(ly, I, S(n)lgc) (the
third argument is the length of ¢°),

m This goes down recursively until the third
argument is 0: Test([,1’,0) is true iff either
I = I' or I’ is reachable from [in one step.

m original check is successful
iff
DTM accepts

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 489

el TU Clausthal 33 R T

The space used by the above DTM?

m There are O(S(n)) many calls of Test. For each
call we have to store two ID’s and the counter
(third argument).

m The ID’s have maximal length S(n) and the
counter lg S(n). So we need storage of
O(5(n)).

m With O(S(n)) many calls, we need space of
size O(S%(n)).

Prof. Dr. Jurgen Dix * Department of Informatics = TU Clausthal WS 16/17 490

8,01 3 SPACE TIME
.TU Clausthal 3.3 Relating TIME and SPACE

The following is a beautiful theorem from
Hopcroft, Paul and Valiant from 1975. No serious
improvements have been found until today.

Theorem 3.22 (DTIME(t(n)) € DSPACE(A%.))

lgt(n)

For all time functions t(n):

i
DTIME(t(n)) = DSPACE(-))
lgt(n)
In particular, for fully time/space constructible
functions, DTIME(t(n)) & DSPACE(t(n)).
The proof on the next slides follows closely the original paper of Hopcroft, Paul

and Valiant from 1977.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 491

L] 1~ 3 SPACE TIME
. [‘ u Clausthal 3.3 Relating TIME and SPACE

m We simulate a DTM running in time ¢(n) by
walking through a graph.

m The graph has ¢(n)3-many nodes. These nodes
are fime segments A of length exactly ¢(n):.

m For simulating, we need the content of the
tape. By a tricky argument we ensure that only
a fraction of the whole content is needed (~
pebble game).

m We have to minimise space, not time. By
storing less (but the right) content, we can
reconstruct what is needed for the simulation.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 492

8,01 3 SPACE TIME
.TU Clausthal 3.3 Relating TIME and SPACE

Proof (1).

We are playing a game by placing pebbles on the vertices
of such a graph.

The goal is to be able to place a pebble on a particular
vertex, determined in advance, before the game starts.

This should be done in such a way, that the maximum
number of pebbles in the graph (at any moment in time) is
below a certain bound.

In the general case, we must place a pebble on all (but one)
nodes. Therefore we need more structure: let G, be the set
of all finite, directed, acyclic graphs (dag) with indegree at
most k. Vertices with indegree 0 are input vertices.

~ blackboard 3.3

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 493

3 SPACE versus TIME

@H@ TU ‘Cilauys‘t‘haI 3.3 Relating TIME and SPACE

Proof (2).

Rules for placing and moving the pebbles:
A pebble can always be placed on an input vertex.
If all in-nodes of a vertex v have pebbles, then a pebble
can be placed on v (the vertex fires).
Any pebble can be removed at any time.

Let Px(n) be the maximum over all graphs in G, with n
vertices of the number of pebbles required to place a
pebble on an arbitrary vertex of such a graph.

Lemma 3.23
For each k, P,(n) = O(n/lgn).
The bound is tight. ~~ blackboard 3.4

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 494

A TU Clausthal 3.3 Rei ST ACE versus TIME
Proof (3)

We simulate a .-DTM of time complexity ¢(n) by a NTM
of space complexnty lgt (Th|s gives us the result for

NSPACE(4L): DSPACE(

e ())) will be done separately.)

Each tape is partitioned into blocks of size ¢(n)s3.
Modify k-DTM so that it respects blocks (add one more tape

as a clock: blocks are crossed only at multiples of time t(n)% (if a crossing is
attempted at other times, simulation is stopped). The new machine
works still in time ¢(n): it is only slower by a constant.
What if a head crosses all the time the boundary? Slow down of t(n)%.

lg t(

How to repair? ~~ blackboard 3.5

The new DTM runs in segments A of time periods of
length ¢(n)3. There are t(n)s such time segments A.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 495

] - 3 SPACE TIME
@IKB TU (Jrlausk‘thal 3.3 Relating TIME and SPACE

For h(i, A) being the position of the head of tape i after
segment A, we define h(A) = [h(1,A),...,h(k,A)] and
h=[h(1),..., h(t(n)5)].

Directed graph: The t(n) vertices v(A) correspond to
the time segments A of the computation of the DTM.
For tape i let A; be the last segment (prior to A) where
head i scanned the same block (as for A).

The edges are: from v(A — 1) to v(A) and for 1 <i < k:
from v(A;) to v(A).

What is the space needed to describe this graph? It is
(k + 1)t(n)3 lgt(n).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 496

] - 3 SPACE TIME
@IKB TU (Jrlausk‘thal 3.3 Relating TIME and SPACE

We denote by ¢(A) = [¢(1, A), ..., c(k,A)], where c(i, A)
is the content of the block which tape i is scanning
during segment A. Let also f(A) be the initial contents
of those blocks which are visited by the DTM for the first
time during the time segment A.

We use ¢ = [¢(1),...,q(t(n)3)], where ¢(A) is the state
after time segment A. The result of the computation is
determined by the state after the final segment.

How can we verify a guessed sequence of head
positions and states?

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 497

8,01 3 SPACE TIME
.TU Clausthal 3.3 Relating TIME and SPACE

Proof (6).

DTM is deterministic and respects blocks: (1) ¢(A),
h(A), and ¢(A) can be uniquely determined from
g(A —1), h(A—=1),and c(Ay),...,c(Ax) and f(A) b
simulating time segment A. This requires space
O(kt(n)3). (2) Storing ¢(A) also requires space
O(kt(n)?).

f(A), (A —1),and h(A — 1) can be determined from
the guessed sequences ¢ and h. The edges into vertex
v(A) in the graph Gy, give us the vertices associated with
c(Ay),...,c(Ag). How do we simulate the DTM? We
first compute ¢(1), then ¢(2), etc.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 498

ﬁu@ TU Clausthal 3 SPACE versus TIME

3.3 Relating TIME and SPACE

For the simulation we do not need to store the
contents of the blocks that correspond to all
vertices (that would be too much): we can
always reconstruct them. What is the minimal
number of blocks that must be stored (at
any time) fo do the simulation?

This is exactly the pebble game.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 499

3 SPACE versus TIME

@H@ TU ‘Cil’au'S‘FhaI 3.3 Relating TIME and SPACE

Proof (8).

We aim to show

t(n))
lgt(n)

How can we build a NTM M’ that simulates our ¢(n) lgt(n)
time bounded k-DTM M in space t(n)?

Using the results above, we may assume that M respects
blocks. We now guess a sequence of states ¢’ and a
sequence of head positions . These sequences have
length at most ¢(n)3 and it takes space ¢(n)3 to write down
¢ and space t(n)3 lgt(n) to write down /'

DTIME(t(n)) € NSPACE(

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 500

' . 3 SPACE TIME
@IH@ Tu Clausthal 3.3 Relating TIME and SPACE

Proof (9).

From i’ we construct the graph G from

Slide 496. This graph has ¢(n)s many nodes and
can be written down in space ¢(n): g t(n).
Lemma 3.23 ensures that there is a strategy to
move a pebble to the output node by never
using more than ¢(n)3 lgt(n) pebbles. For this

we need at most 2 many moves, because this
is also the number of patterns (and repeating a
pattern does not make sense).

The simulation is given on the next slide.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 501

] - 3 SPACE TIME
@IKB TU (Jrlausk‘thal 3.3 Relating TIME and SPACE

Proof (10).

Guess ¢’ and A/.
1
For1 <i<2'™° do

Guess move i of the above strategy.
If a pebble is placed on v(A), then

Compute and store g(A), h(A), and c¢(A).
If g(A) # ¢'(A) or h(A) # h/(A) then reject.
If the space used is greater or equal to n, then reject.

If a pebble is removed from v(A) then erase ¢(A), h(A), and
¢(A) from the working tape.

If the simulation is not complete, then reject.

Only those ¢(A) are stored (after move m), for which there is a pebble on the
corresponding vertex after this move. Storing ¢(A) requires space O(kt(n)%),

multiplied with t(n)% lgt(n) proves the intermediate result.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 502

KJHRe ~ 3 SPACE TIME
. TU Clausthal 3.3 Relating TIME and SPACE

Proof (11).

We have two nondeterministic steps in our simulation.

Guessing ¢’ and 2/: We cycle through all sequences.

Guessing the pebble move: Construct NTM: Given G, a pattern
D of pebbles on G, and a number m between 1 and
Qt(”)%, it prints out the first move of a strategy that
starts with D and moves the pebble on the output
node of G (never using more than O(t(n)% lgt(n))
pebbles and making at most 2t(m) lgt(n) — m
moves, provided such a strategy exists. This NTM
needs nd. space O(t(n)é lgt(n)). By Theorem 3.21
(Savitch) there is a DTM using O(¢(n)35 1g2 t(n))
det. space. So the overall machine is below the space

bound and the next move can be determined
deterministically.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 503

8,01 3 SPACE TIME
.TU Clausthal 3.3 Relating TIME and SPACE

Proof (12).

We have shown that for space constructible functions
t(n): DTIME(t(n)) < DSPACE(lgt n))

The assumption space constructible can be lifted: We
successively simulate the proof of the Theorem for
t(n) = 1,2,... until the simulation gets through.

We note without proof that the following holds. If ¢(n)

and 6(n) are both space constructible and
lim,, o 6(n) = o,

DTIME(t(n)) € DSPACE(t(n)) n DTIME(S(n)t(n)lgt(n))

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 504

.1 3 SPACE TIME
-TU Clausthal 3.3 Relating TIME and SPACE

What about

NTIME (¢(n)) € NSPACE(lgt%)l))?

Might be true but up to now (2017) it has not
been proved.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 505

3 SPACE versus TIME

!@Hf* IU ‘C‘lauhs_tﬂhal 3.3 Relating TIME and SPACE

Here is one of the very few results of strict
containment (without proof).

Theorem 3.24 (Linear det. # linear nondet.)

We have the following strict containment between
the deterministic and the nondeterministic
linear time complexity classes:

DTIME(n) & NTIME(n)

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 506

A TU Clausthal 3 $PACE versus TIME

Clausthal University of Technology

3.4 More Properties

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 507

Ty

R 3 SPACE TIME

- TU Clausthal 3.4 Mo;/efli;srgysz)erties
Clausthal Uniersy of Technelog

Theorem 3.25 (Union Theorem for SPACE)

Let fi(n), i = 1,2,... be an enumeration of recursive
functions with f;(n) = fi.1(n) for all n € N. Then
there exists a recursive function S(n) with

DSPACE(S(n)) = |_JDSPACE(f;(n)).

=1

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 508

W TU Clausthal T T
Construct a function S(n) satisfying
For all i: S(n) > f;(n) almost everywhere
(a.e).
If S;(n) is the space complexity of a DTM M;
and for each i: Sj(n) > fi(n) for infinitely
many n’s, then S;(ng) =z S(ny) for some ny.
Note that a language is accepted by a TM that is S(n) space bounded
iff itis accepted by a TM that is S(n) space bounded a.e.

Therefore (1) proves “2”, (2) proves “<”.
~ blackboard 3.6

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 509

W TU Clausthal T T

Proof of Theorem 3.25 (2)

Note that setting S(n) = f,,(n) leads to a class that is too big
(condition (2) is not satisfied). How can we modify S(n) so that
it is less than S;(ng) for some ny (which might be different for
each)?

We guess for each M; ai; s.1. f;;(n) > Sj(n) a.e. This guess can
be made deterministic: if it was wrong, we guess a larger value
and for some n’ we define S(n’) to be less than S;(n/).

m Case 1: S; grows faster than any f;: S is infinitely often less
than S;.

m Case 2: Some f; is almost everywhere greater than S;:
Eventually we guess such an f; and stop assigning values of S
less than S;.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 510

W TU Clausthal T T

Proof of Theorem 3.25 (3)

List = (%)
for n= 1,2,...do
if forall i; = k on List, fi(n) = S;(n)
then add i, = nto List and set S(n) = f,(n)
else
begin

Among all guesses on List with f;(n) = S;(n),
let i; = k be the guess with the smallest £ and
the smallest j (for that k).

Let S(n) = fx(n).

Replace i; = k by i; = n on List.

Add i,, = n to List.

end

This defines exactly the S we need.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 51

!@Kl% TU Clausthal 3 SPACE versus TIME

3.4 More Properties

Theorem 3.26 (Union Theorem for TIME)

Let fi(n), i = 1,2,... be an enumeration of recursive
functions with f;(n) = fi.1(n) for all n € N. Then
there exists a recursive function S(n) with

DTIME(S(n)) = | DTIME(f;(n)).

1=>1

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 512

.1 3 SPACE TIME
] TU LClaHSt‘hal 3.4 Mo::li;srgysz)erties
Clausthal University of Technolog

m For particular functions (fully space/time
constructible), time and space hierarchies are dense.

m This is not true for all functions: there can be arbitrarily
large gaps.

Theorem 3.27 (Borodin’s Gap Theorem)

Let g(n) be a total recursive function with g(n) = n. Then there
exists a total recursive function S(n) such that

DSPACE(S(n)) = DSPACE(g(S(n))).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 513

e TU Clausthal 3 $PACE versus TIME

Proof

For an enumeration M, ..., M,,... of DTM’s, we denote by
S;(n) the maximum number of cells used by M; on an input
of length n (why is this a partial recursive function?). We
define S : N — N as follows: for all

(1] S()/S()a'e'r
Si(n) = ¢g(S(n)) infinitely often.

Assume now the two complexity classes are not identical,
i.e. there is a language L in DSPACE(g(S(n))) but not in
DSPACE(S(n)). Then L = L(M;) for some i with

Si(n) < g(S(n)) for all n. Together with the first condition
we have S;(n) < S(n) a. e., which means L is in
DSPACE(S(n)). O

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 514

3 SPACE versus TIME

@Ku T[{ Clgusthal 3.4 More Properties

Proof of Theorem 3.27 (2)

How can we define the function S with the above
properties?

Given n, we cannot simply compute the largest finite value
of S;(n) (for 1 < i < n) because the S;(n) might be
undefined.

Consider the following procedure to define S:
j=1
while IM; (<i<n) st.j+1<5Sin)<g(y)
do = Si(n)
S(n) =j

This is a total recursive function as can be seen by counting
ID’s.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 515

Mu TU Clausthal 3 SPACE versus TIME

3.4 More Properties

While we have proved Borodin’s gap theorem
only for DSPACE, its analogues for NSPACE,
DTIME and NTIME are true as well.

Corollary 3.28 (Unintuitive Consequences)
There exist total recursive functions f such that

DSPACE(f(n)) = DTIME(f(n)) = NSPACE(f(n)) = NTIME(f(n))

~ blackboard 3.7

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 516

ﬁu@ TU Clausthal 3 SPACE versus TIME

3.4 More Properties

m Any DTM can be sped up by a linear factor (time and
space): see Theorem 3.4 and Theorem 3.6.
m But there are languages where no best program exists:

they can always be sped up significantly (not just by a
constant).

Theorem 3.29 (Blum’s Speed-Up Theorem)

For each total recursive function r(n), there is a recursive
language L such that the following holds.

For each DTM M, accepting L in space S;(n), there is another
DTM M, accepting L in space S;(n) with:

r(S;(n)) < Si(n) a.e.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 517

3 SPACE versus TIME

@Ku TU Clausthal 3.4 More Properties

Proof

WIlog we assume r(n) is monotonically nondecreasing, fully
space-constructible and r(n) > n?. We define the fully
space-constructible function h

h(1) = 2,h(n) = r(h(n — 1))

Let My, ..., M;,... be an enumeration of offline DTM’s.
We construct L such that
| If L(M;) = L, then S;(n) > h(n —1) a.
for each £ there is a DTM M, with L(j) = L and
Sj(n) < h(n — k).
These conditions imply (choose j s.t. S;(n) < h(n —i — 1))
for each M; accepting L there is M; accepting L with:
Si(n) = r(Sj(n)) a.e.
~ blackboard 3.8 0

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 518

!@[I% TU Clausthal 4 EXPSPACE

4. EXPSPACE

EXPSPACE

Complexity classes

m Reductions

m Structure of NP

m Oracles for P, NP

m PH: Polynomial Hierarchy
n

u

Structure of PSPACE
EXPTIME/EXPSPACE

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 519

@KE TU ‘Crlauks‘t‘hal 4 EXPSPACE

We consider the structure of EXPSPACE=NEXPSPACE and its
subclasses: EXP, PSPACE, NP, P, L and NL. We also
investigate:

The notion of (1) polynomial many-one reduction
(Karp), and (2) logarithmic space many-one reduction.
A problem is reduced to a second one: It is at most as
difficult as the second one.

The notion of a complete/hard problem in a complexity
class: such a problem is among the most difficult in
this class.

Can diagonalization settle the P =NP question?

The polynomial hierarchy PH. Alternating TM’s and
Oracle TM's.

Beyond PSPACE: EXP, NEXP, EXPSPACE.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 520

TU Clausthal

Clausthal University of Technolog;

4 EXPSPACE

Brief Kurt Godels an Johann von Neumann

Princeton, 20./IIl. 1956
Lieber Herr v. Neumann!

Ich habe mit gréRtem Bedauern von Ihrer Erkrankung gehdrt. Die Nachricht kam
mir ganz unerwartet. Morgenstern hatte mir zwar schon im Sommer von einem
Schwacheanfall erzahlt, den Sie einmal hatten, aber er meinte damals, dass dem keine
gréssere Bedeutung beizumessen sei. Wie ich hore, haben Sie sich in den letzten
Monaten einer radikalen Behandlung unterzogen u. ich freue mich, dass diese den
gewiinschten Erfolg hatte u. es Ihnen jetzt besser geht. Ich hoffe u. wiinsche lhnen,
dass Ihr Zustand sich bald noch weiter bessert u. dass die neuesten Errungenschaften
der Medizin, wenn méglich, zu einer vollstandigen Heilung fishren mégen.

Da Sie sich, wie ich hére, jetzt kraftiger fiihlen, machte ich mir erlauben, Ihnen iiber ein
mathematisches Problem zu schreiben, iiber das mich Ihre Ansicht sehr interessieren
wiirde: Man kann offenbar leicht eine Turingmaschine konstruieren, welche von jeder
Formel F des engeren Funktionenkalkiils u. jeder natiirl. Zahl 1 zu entscheiden
gestattet, ob F einen Beweis der Lange 7 hat [Lange = Anzahl der Symbole]. Sei
W (F, n) die Anzahl der Schritte, die die Maschine dazu bendtigt u. sei ® (1) =
max fr ¥ (F, n). Die Frage ist, wie rasch & () fir eine optimale Maschine
wachst. Man kann zeigen ®(7) = km. Wenn es wirklich eine Maschine mit
@(n) ~ kn (oderauch nur ~ kmn?) gibe, hitte das Folgerungen von der
grossten Tragweite. Es wiirde namlich offenbar bedeuten, dass man trotz der Unlds-
barkeit des Entscheidungsproblems die Denkarbeit des Mathematikers bei ja-oder-nein
Fragen vollstandig durch Maschinen ersetzen konnte. Man misste ja bloss das 7 so
gross wahlen, dass, wenn die Maschine kein Resultat liefert, es auch keinen Sinn hat
iber das Problem nachzudenken. Nun scheint es mir aber durchaus im Bereich der
Méglichkeit zu liegen, dass @ () so langsam wiichst.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal

Denn 1) scheint #(n) > kA die einzige Abschitzung zu sein, die man durch

eine Verallgemeinerung des Beweises fiir die | des Entsc

erhalten kann; 2.) bedeutetja ® (1) ~ km (oder ~ km?)bloss, dass die Anzahl

der Schritte gegeniiber dem blossen Probieren von N auflog N (oder (log IN')?)

verringert werden kann. So starke Verringerungen kommen aber bei anderen finiten

Problemen durchaus vor, z.B. bei der B eines

durch des Es wire i 2u wis-

sen, wie es damit z.B. bei der Feststellung, ob eine Zahl Primzah it, stet u. wie stark im
bei finiten hen die Anzahl der Schritte gegentiber

dem blossen Probieren verringert werden kann.

Ich weiss nicht, ob Sie gehort haben, dass “Posts problem” (ob es unter den Proble-
men (3y)®(y, «) mit rekursivem & Grade der Unlésbarkeit gibt) von einem ganz
jungen Mann namens Richard Friedberg in positivem Sinn geldst wurde. Die Losung,
abgesehen von der Aufstellung der Axiome, ist sehr elegant. Leider will Friedberg nicht
Mathematik, sondern Medizin studieren (scheinbar unter dem Einfluss seines Vaters).

Was halten Sle dbrigens von den Bestrebungen, die Analysis auf die verzweigte
wieder in Schwung gekommen sind?
Es \sl Ilhnen wahrs(hemllch bekannt dass Paul Lorenzen dabei bis zur Theorie des
Lebesgueschen Masses vorgedrungen ist. Aber ich glaube, dass in wichtigen Teilen
der Analysis nicht sdl ich wiirde
mich sehr freuen, von Ihnen personlich etwas zu héren; u. bitte lassen Sie es mich wis-
sen, wenn ich irgend etwas fir Sie tun kann.

Mit besten Griissen u. Winschen, auch an Ihre Frau Gemahlin.
Ihr sehr ergebener

Kurt Godel

PS. Ich gratuliere Ihnen bestens zu der Auszeichnung, die Ihnen von der amerik.
Regierung verlichen wurde.

WS 16/17 521

Lt

TU Clausthal 4 EXPSPACE

Clausthal University of

A useful blog: https://rjlipton.wordpress.com.

Lipton maintains a very interesting blog. There is a translation
from Godels lost letter, many more historical remarks as well as
very recent developments, e.g. the quasipolynomial complexity
of graph-isomorphism claimed by Bobai in November 2015).

Princeton, 20 March 1956

Dear Mr. von Neumann:

With the greatest sorrow | have learned of your illness. The news came to me as quite unexpected. Morgenstern already last summer told me of a bout of weakness you once had,
but at that time he thought that this was not of any greater significance. As | hear, in the last months you have undergone a radical treatment and | am happy that this treatment was
successful as desired, and that you are now doing better. I hope and wish for you that your condition will soon improve even more and that the newest medical discoveries, if
possible, will lead to a complete recovery.

Since you now, as | hear, are feeling stronger, I would like to allow myself to write you about a mathematical problem, of which your opinion would very much interest me: One can
obviously easily construct a Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there s a proof of F of length
n (length = number of symbols). Let ¥ (F,n) be the number of steps the machine requires for this and let ®(n) = max; ¥(F,n). The question is how fast &(n) grows for an optimal
machine. One can show that W(n) = kn. If there really were a machine with ®(n) ~ k n (or even ~ k n?), this would have consequences of the greatest importance. Namely, it
would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be completely
replaced by a machine. After all, one would simply have to choose the natural number n so large that when the machine does not deliver a result, it makes no sense to think more
about the problem. Now it seems to me, however, to be completely within the realm of possibility that %(n) grows that slowly. Since it seems that ®(n) = k n is the only estimation
which one can obtain by a generalization of the proof of the undecidability of the Entscheidungsproblem and after all ©(n) ~ kn (o ~ kn?) only means that the number of steps
as opposed to trial and error can be reduced from N to log N (or (log N)*). However, such strong reductions appear in other finite problems, for example in the computation of the
quadratic residue symbol using repeated application of the law of reciprocity. It would be interesting to know, for instance, the situation concerning the determination of primality of
a number and how strongly in general the number of steps in finite combinatorial problems can be reduced with respect to simple exhaustive search.

Ido not know if you have heard that “Post’s problem”, whether there are degrees of unsolvability among problems of the form (3 y) ©(y,x), where & is recursive, has been solved in
the positive sense by a very young man by the name of Richard Friedberg. The solution is very elegant. Unfortunately, Friedberg does not intend to study mathematics, but rather
medicine (apparently under the influence of his father). By the way, what do you think of the attempts to build the foundations of analysis on ramified type theory, which have
recently gained momentum? You are probably aware that Paul Lorenzen has pushed ahead with this approach to the theory of Lebesgue measure. However, | believe that in
important parts of analysis non-eliminable impredicative proof methods do appear.

1 would be very happy to hear something from you personally. Please let me know if there is something that | can do for you. With my best greetings and wishes, as well to your wife,
Sincerely yours,

Kurt Godel

P.S. I heartily congratulate you on the award that the American government has given to you.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 522

https://rjlipton.wordpress.com

7, 4 EXPSPACE
TU Clausthal 4.1 Complexity classes

Clausthal University of Technology

4.1 Complexity classes

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 523

el TU Clausthal
Here are some classical complexity classes:

Definition 4.1 (From L to NEXPSPACE)

L := DSPACE(logn)

NL = NSPACE(logn)

P = >, DTIME(n')
NP = U, NTIME(n')
PSPACE := |J.., DSPACE(n))
NSPACE = |J,.; NSPACE(n')
EXP = U», DTIME(2")
NEXP := |J., NTIME(2")
EXPSPACE := |J,., DSPACE(2")

NEXPSPACE := | J., NSPACE(2")

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 524

R 4 EXPSPACE
.I[\J ‘ClaUSt\hal 4.1 Complexity classes

The unions are complexity classes

Note that it is not clear that the unions on the preceding
page are indeed complexity classes, i.e. they have the form
C(f(n)) for a function f(n) . We need Theorem 3.25 on
Slide 508 to establish this fact.

Definition 4.2 (co-C)

Let C be any of the above complexity classes. We define
co-C as the class of languages L, where the complement L
(=X*\L)isin C.

Obviously, all classes C defined on deterministic TM’s are
closed under complements. For those classes, co-C = C.

Nondeterministic classes

If C(f(n)) < co-C(f(n)) then C(f(n)) = co-C(f(n)),

because I = L.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 525

@KM TU ‘C‘l\a‘u's‘thal 4 EXPSPACE

4.1 Complexity classes

We define a co-C machine M. This is a machine M which
passes its input to a machine M’ running in C, waits for the
answer and switches the result: reject becomes accept
and vice versa.

m This is uncritical, if the machines considered are
deterministic: M accepts an input w iff M’ does not
accept it.

m If Cis any non-deferministic class, which means that
M’ is a NTM, then there might be accepting and
non-accepting computations.

m Remember that a NTM does not accept an input w, if
all computations end in non-accepting states. We also
say that the machine rejects the input.

m We define: M accepts an input iff M’ rejects it.

M does not accept w iff M’ accepts w (i.e. if there is at
least one accepting computation).

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 526

| ~ 4 EXPSPACE
@Ku [U (J‘laus‘thal 4.1 Complexity classes

For all nondeterministic classes, with the
exception of

m NEXPSPACE, which is identical to
EXPSPACE = co-EXPSPACE,

m NSPACE, which is identical to
PSPACE = co-PSPACE,

m NL, where NL = co-NL follows from the
famous result of Immerman/Szelepcsényi
(Theorem 4.4, Slide 533, see also
Theorem 1.72 on Slide 161),

it is unknown whether they are closed under
complements.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 527

Knp¥ 4 EXPSPACE
Mu TU ‘Clausthal 4.1 Complexity classes

Question:
What are the relations between the classes from
Definition 4.1?

With Savitch’s Theorem 3.21 (Slide 487), we get
(using the hierarchy on Slide 476, Theorem 3.18):

PSPACE = NSPACE
-, DSPACE(n) = |J,., NSPACE(n')

Similarly, we get
EXPSPACE = NEXPSPACE

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 528

1 . 4 EXPSPACE
@Ku Tu ‘({laurs‘t‘hal 4.1 Complexity classes

m Using Theorem 3.20 (3), we have NL c P.
m We get (Theorem 3.17):
LS NL <SP < NP c PSPACE

where at least one inclusion is strict (which
one is unknown): the hierarchy
DSPACE(log' n) is strict (see Slide 476).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 529

| ~ 4 EXPSPACE
@Hf* [U Llausthal 4.1 Complexity classes

Similarly:

P < EXP ¢ EXPSPACE

(because the hierarchies DTIME(n’) and
DTIME(2") are strict), and

PSPACE < EXPSPACE
(because the hierarchy DSPACE(n?) is strict).

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 530

K . 4 EXPSPACE
- TU ‘(Jlausthal 4.1 Complexity classes

Obviously
EXP < NEXP < EXPSPACE.

With Theorem 3.20 (2), we have
PSPACE < EXP.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 531

0, 4 EXPSPACE
] Iq UClaHSt‘hal 4.1 Complexity classes

Lemma 4.3 (NSPACE(n) =Type-1)

The class of contextsensitive languages is exactly
the class NSPACE(n).

The class CSL is defined as a particular class of
grammars. By Theorem 1.63 we get the
connection to NSPACE(n). O

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 532

] 4 EXPSPACE
_ -Iq ‘Clausthal 4.1 Complexity classes

I University of Technology

Theorem 4.4 (Immerman/Szelepcsényi)

Let S(n) = logn. Then
NSPACE(S(n)) = co-NSPACE(S(n)).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 533

R 4 EXPSPACE
.I[\J ‘ClaUSt\hal 4.1 Complexity classes

Corollary 4.5 (CSL is closed under complements)

The class of contextsensitive languages is closed
under complements.

Corollary 4.6 (Tight Space Hierarchy for NSPACE(S(n)))

Let Sa(n) be space constructible. We also assume,
that both Si(n) and Sy(n) are = logn.

m Ifinf, ., 3 = O then

NSPACE(S; (n)) € NSPACE(S»(n)).

Therefore we have an analogue of Theorem 3.17
for NSPACE(f(n)).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 534

W - 4 EXPSPACE
- (l‘ u ‘(Jlausthal 4.1 Complexity classes

(Proof of Corollary 4.6).

The proof follows the analogous statement for
DSPACE(S(n)) (see Theorem 3.17). There we used the fact
that a DTM can easily switch between acceptance and
rejection. This is not true for a NTM. Therefore we reword
our definition on the top of Slide 475 as follows:

M accepts w iff (1) M can do the simulation in time Sy(n)
and (2) M,, terminates and accepts w (for a contradiction,
we will use the complement of the language instead).
Obviously, L(M) is in NSPACE(S;(n)).

Assume L is accepted by M in NSPACE(S;(n)). So there is
M accepting L (Theorem 4.4). Choose w where M,, = M

and 2 {ZB is small enough. Then M accepts w iff M, = M

does Th|s is a contradiction.

]

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 535

R 4 EXPSPACE
.Iq ‘ClaUSt‘hal 4.1 Complexity classes

(Proof of Theorem 4.4).

The original formulation required that S(n) be space
constructible. But this is not needed. We base the proof on
two lemmas, that are of independent interest and are
somehow related to the proof of Theorem 4.15.

Lemma 4.7 (Number of Reachable Nodes)

Given a directed graph with n nodes and a particular node z,
the number k of nodes reachable from x can be computed
in NSPACE(logn).

]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 536

@KI% TU Cﬂlauys‘t‘hal 4 EXPSPACE

4.1 Complexity classes

(Proof of Theorem 4.4 (2)).

The key in the proof of the theorem is the following lemma.
This is exactly the concept of a co-C machine as introduced
on Slide 526.

Lemma 4.8 (Rejecting NTM)

Given a directed graph, two nodes x,y of the graph and the
number k of nodes reachable from z, there is NTM working in
log n space for which the following holds:

If y is reachable from z, then all computations end in
non-accepting states;

if y is not reachable from z, then there is at least one
accepting computation.

]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 537

K . 4 EXPSPACE
- TU ‘(Jlausthal 4.1 Complexity classes

(Proof of Theorem 4.4 (3)).

Let L be a language in NSPACE(S(n)). So there isa NTM
machine M, space bounded by (S(n)), accepting L. We have to
construct a machine M/, space bounded by S(n), accepting L.
Given input w, we consider the following directed graph

nodes: all configurations of M.

edges: there is an edge from config to config’, if M can reach
config’ from config in one step.

Wlog we assume there is only one accepting configuration (we
can assume that the NTM has only one accept state). Note that
w e L iff there is no computation ending in the accept state.
We define the NTM M’ as follows:

Compute the number of nodes reachable from configinitiai-

Use this number and check, whether configgccept is reachable
from configinitiai- In that case reject, otherwise accept.

O]

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 538

1 . 4 EXPSPACE
@Ku Tu ‘({laurs‘t‘hal 4.1 Complexity classes

(Proof of Theorem 4.4 (4)).

Note that we do not explicitly construct (and write down)
the graph: it is implicitly represented by M.
Obviously the following holds:
m M’ accepts L.
m M'is logn space-bounded in the number n of nodes in
the graph (the two lemmas).
How many nodes are there?

0O(c*™), where c is the size of the alphabet.
Thus M’ is S(n) space-bounded.

Therefore L € co-NSPACE(S(n)), thus:
NSPACE(S(n)) < co-NSPACE(S(n)). The converse
implication follows from that immediately (see the remark
on Slide 525).

]

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 539

W - 4 EXPSPACE
- (l‘ u ‘(Jlausthal 4.1 Complexity classes

(Proof of Lemma 4.7 (1)).

Let S; be the set of nodes reachable from x in at most ¢
steps. We compute Sk from Sy ;.

The problem in doing this is to determine whether a node is
reachable in one step from Sk by only knowing |Sk4|: and
doing itin NSPACE(logn).

The algorithm to achieve this follows on Slide 542.

m The outer loop (for k) first gets | So| = |{z}| = 1. The next
iteration, k = 1, determines |.S;|, the neighbours of z. In
each iteration, the nodes from the previous one, Sy,
are counted again.

m The [-counter is incremented (or not) for each w (if the
flag is true) and thus counts Sk.

m For fixed w, the counter i counts the number of nodes
in S; that have been tried.

]

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 540

K . 4 EXPSPACE
- TU ‘(Jlausthal 4.1 Complexity classes

(Proof of Lemma 4.7 (2)).

m The inner for-loop (lines 6—15) guesses nodes v in S;.
When one of them is adjacent to w, the flag is set to
true. If there is none, i is incremented and the search
goes on. So eventually an i, small as possible, is
computed. This i is compared to |Sy4|: if itis smaller
then not all possible candidates have been tried. This
is because the nondeterministic guesses were wrong
and some v’s were discarded. In that case, one has to
start all over again (reject).

m At the end of the for-loop, the flag tells us whether
w € Si+1.

m [is only incremented, when all nodes in S; have been
checked.

O

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 541

3 ~ 4 EXPSPACE
TU Llausthal 4.1 Complexity classes

Clausthal L

1: fork=0, ..., n-1do

2 l:=0

3 for all nodes w of G do

4 i:=0

5 flag := false

6 for all nodes v of G do

7 nondeterministically goto line 8 or line 14:

8 if v is reachable from « in at most ¢ steps then

9 if w is a neighbour of v then

10 flag := true

1 else

12: i:=1i+1 % only when v € S; and w not adjacent to v
13: end if

14: end if

15 end for % if flag is true, then w € S; ;1

16 if i £ |Sk.1| then

17 reject % because not all candidates have been checked (line 7)
18 else

19 if flag = true then

20 l:=1+1 % the wis counted as an element of Sy
21: end if

22: end if

23: end for

24: end for

25: |Sk| =1

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 542

1 - 4 EXPSPACE
@Ku Tu ‘(J‘l\a usthal 4.1 Complexity classes

(Proof of Lemma 4.8).

It is easy to define a machine which accepts if the
two nodes are reachable: see the proof of
Theorem 4.15. Here we do not even need the
number k.

But we want a NTM that rejects. The idea is the
following

m If there are k different nodes reachable from z
and they are all different from y, then y is not
reachable from z.

The algorithm to achieve this follows on
Slide 544. O

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 543

e U Clausthal

1:=0
: for all nodes v of G do
nondeterministically goto line 4: or line 11:
if v is reachable from x then
if v = z then
reject
else
1:=1+1
end if
10: end if
11: end for
12: ifi £ k then
13: r‘eJec’r
14: else
15: accept
16: end if

NS REWDN 2

©

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 544

mﬁ TU Clausthal 4.3 Reductons

Clausthal University of Technology

4.2 Reductions

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 545

@Hf* TU C"lauhs_tﬂhal 4 EXPSPACE

4.2 Reductions

We have already introduced in Chapter 2 several
notions of reduction. We have also defined the
most difficult problems in a given class: those,
which all others in the class can be reduced to.

We need fine-grained reductions.
The notion of a most difficult problem depends
on the underlying notion of reduction.

Such problems are called complete in the given
class wrt the notion of reducibility.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 546

el TU Clausthal AR

Definition 4.9 (P-Time-, log-Space Reducibility)

Let L,, L, be two languages.

Polynomial Time: L, is P-time reducible to L, if there is a
polynomial time-bounded DTM M such that for
each input w a M(w) is generated, such that

w e L2 m M(w) € L1 (L2 ﬁpol Ll)

Logarithmic Space: L, is log-space reducible to L, if there
is a log space-bounded offline-DTM M, such
that for each input w an output M(w) is
generated, such that

w € L2 Ef M(U}) € L1 <L2 ﬁlog Ll)

The output tape is “read-only” and the head
never moves to the left.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 547

¥y 4 EXPSPACE
g2 TU Clausthal 4.2 Reductions
Clausthal Uniersy of Technelog

How does this notion relate to the ones defined in
Definition 2.85 (Slide 423)?

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 548

W TU Clausthal RS

Lemma 4.10 (P-Time- and log Space Reductions)

Let L2 ﬁpol Ll. Then: L2 e NP if L1 S NP,
L2 eP if L1 e P.

Let Ly <05 Ly. Then
L, €P if L, eP
L, e DSPACE(log"n) if L, e DSPACE(log" n)
L, e NSPACE(log"n) if L, e NSPACE(log"n)
The composition of two log space reductions is again a
log-space reduction. Similarly for polynomial time
reductions.

log-space reducibility implies polynomial time reducibility.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 549

el TU Clausthal I

Definition 4.11 (Complete, Hard)

Let C be any complexity class. For classes below or equal to
NP, we define:

m Alanguage L is called C-complete if L € C and each
language L' € C is log-space reducible to L.

m Alanguage L is called C-hard if each language L' € C is
log-space reducible to L.

For classes above or equal to PSPACE, we define:

m Alanguage L is called C-complete if L € C and each
language L' € C is P-time reducible to L.

m Alanguage L is called C-hard if each language L' € C is
P-time reducible to L.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 550

W TU Clausthal RS

Attention:

m If there exists one NP-hard problem in P, then
P =NP.

m If there exists one PSPACE-hard problem is
in P, then P =PSPACE.

m If P # NP, then no NP-complete problem is
solvable in polynomial time.

m All problems in L are L-complete (wrt. <ju).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 551

A TU Clausthal 43 sruchEXEIRACE

Clausthal University of Technology

4.3 Structure of NP

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 552

qﬁu’u TU Clausthal 43 Structure of B

Intuitively:

m Problems in P can be efficiently solved.
Those in NP need most probably exponential
time.

m NP is the class of statements with easily
verifiable proofs.

m PSPACE is a huge class, much bigger than P
or NP.

m L=DSPACE(ogn) is a small class in P and
even smaller in PSPACE.

m NL=NSPACE(logn) is also small in P and
even smaller in PSPACE.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 553

4.3 Structure of NP

Search Problems

On the next few slides we introduce the P = NP problem in
terms of search problems.

@Hf* TU C"lauhs_tﬂhal 4 EXPSPACE

m A binary relation R < ¥* x ¥* is called
polynomially-bounded if there is a polynomial p such
that for all (z,y) € R: |y| < p(|z]).

m Given a polynomially-bounded binary relation R, the
associated search problem is the following: Given «
find y such that (z,y) € R or show that such y does
not exist.

m P consists of those relations, that can be computed
in polynomial time.

m NP*“"" consists of those relations, where a potential
candidate (z,y) can be verified in polynomial fime.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 554

4 EXPSPACE

el TU Clausthal PP

Definition 4.12 (Psearch, NPsearch)
Let R < ¥* x ¥* be a polynomially bounded binary relation.

Peerch: s the class of associated search problems that
are solvable in polynomial time: There is a
polynomial time algorithm that given x
computes y such that (z,y) € R if it exists, or
outputs “No” otherwise.

NP*“"": is the class of associated search problems that
are verifiable in polynomial fime: There is a
polynomial time algorithm that given (z, y)
determines whether (z,y) € R or not.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 555

A TU Clausthal 43 sruchEXEIRACE

Clausthal University of Technology

Theorem 4.13

P =NP '_ff Psearch :NPsearch

~» exercise]

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 556

el TU Clausthal o3 s EEE
We define:
Definition 4.14 (Reachability: STCON, USTCON)

How to decide whether there is a path between fwo
vertices in a graph. This problem can be stated for
directed and for undirected graphs.

Lstcon := {{G,s,ty: G directed graph, s, vertices
there is a directed path from s to ¢}

Lystcon := {{(G,s,t): G agraph, s,t vertices
there is a path between s to ¢}

While STCON is complete for NL (relatively easy), USTCON
is even in L (and thus complete for this class). The latter is a
highly nontrivial result and was open for several decades.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 557

R 4 EXPSPACE
&l TU Clausthal o3 s
Clausthal University of Technolog

Theorem 4.15 (Completeness of STCON and USTCON)

While USTCON (see Definition 4.14) is complete for
L = DSPACE(logn), STCON is complete for

NL = NSPACE(logn) (both under log space
reductions).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 558

el TU Clausthal 3 sl AR

(Proof of Theorem 4.15).

We only do STCON, the other result is too difficult for this
course (note that USTCON € L is the difficult part). Given a
directed graph with n nodes and two nodes s, t.

m Start with s and nondeterministically guess the next
node (it is also allowed not to move at all in this step).

m Keep only the current node on the tape, not the whole
path, and the counter. Both need only logn space.

m Terminate after exactly n — 1 steps.
m Check, whether t is the current node.
m If yes: accept, else reject.

This shows that STCON is in NL.]

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 559

el TU Clausthal o3 srct XS

(Proof of Theorem 4.15 (2)).

We have to show completeness of STCON under log space
reductions. Let L be any language in NSPACE(logn). Thus
there is a NTM M accepting L and working in log space. We
consider the ID’s (instantaneous descriptions) of M when
started with an input z.

m The length of an ID is 4 log n: the storage tape, the
current state, the position of the input head and the
position of the storage head.

m Note that we do not consider the input z, only the
position of the input head (otherwise it would not be
in logn space).

]

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 560

@u’u TU Clausthal 43 Structure of B

(Proof of Theorem 4.15 (3)).

m We describe a log n space-bounded offline DTM M/,
which works on an input z and produces a directed
graph G, with nodes s, ¢ such that

M(z) | iff sisreachablefromtin G,

m Nodes of G, are the ID’s of the previous slides

m It starts with the initial ID (M started on x) and cycles through
the ID’s by simulating M.

m But how does it know which ID next: z is not part of an ID?

m It does so by positioning its head on the right place of its input
x (which is encoded in the current ID).

m Itis obvious how and when to generate the edges from one ID
to all possible successor ID’s (note M is a NTM).

m The right hand side is an instance of STCON. Therefore
we have reduced L (which was any language in
NSPACE(logn)) to STCON.

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 561

el TU Clausthal o3 s EEE

To motivate the above intuitions we consider the problem to
decide whether a given formula is satisfiable (satisfiability).

Definition 4.16 (Boolean Expressions)

Let g5t := {A, v, —, (,), 2,0, 1}. This alphabet suffices, to
define arbitrary boolean expressions w over the infinite
variable set {z1, xo,...}. A variable z; is encoded by the sign
x followed by i in binary notation.

As usual each boolean expression can be assigned a
truthvalue t (true) or f (false) depending on the valuation of
the variables.

Prof. Dr. Jurgen Dix * Department of Informatics = TU Clausthal WS 16/17 562

4, -~ 4 EXPSPACE
q‘m l‘ U Clausthal 4.3 Structure of NP

Here are a few examples:

(x1 v —x9) A —x7 evaluates to t for x; = f and
xy = f.

(1 v —x9) A —z evaluates to f for x; = t (and
the value of 15, does not matter) or for x; = f
and z, = t.

xr1 v —x always evaluates to t.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 563

K
' IU ‘C‘lauﬁs.tﬂhal 43 Structurs of NB

The satisfiability problem is the problem to decide whether
a given boolean expression can evaluate to t, i.e. to find an
appropriate valuation of the variables.

Definition 4.17 (Satisfiability: SAT)

Lot := {we X%, : wisawell formed formula,
there is a valuation for the z;,
s.t. w evaluates to true }

Often it is simpler to assume that a formula is in a certain
normalform. In particular, formulas of the form

(x1 v —x2) A (—x1 Vv 23) A (T2 v —I3)

play an important role.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 564

!@[I% TU Clausthal 4 EXPSPACE

4.3 Structure of NP

Definition 4.18 (SAT, k-CNF, k-DNF)

A literal I; is a variable z; or its negation —z;. A clause is a
disjunction of literals. We define

DNF: Aformulais in disjunctive normalform, if it is of
the form (111 A ooo llnl) V...V (lml A ooo lmnm)

CNF: Aformulais in conjunctive normalform, if it is
of the form

(lllV---Vllnl)/\-~~/\(lmlv~--\/lmnm)-

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 565

4 EXPSPACE

el TU Clausthal PP

Definition (Continued):
k-DNF: A formulais in k-DNF if it is in DNF and each
disjunction contains exactly k literals.
k-CNF: Aformulais in k-CNF if itis in CNF and each
disjunction contains exactly k literals.

Note that we could also define these normalforms by
defining at most & literals. The reason is that we can always
do padding and fill the formulae by dummy variables. While
the formulae get longer, they only get longer by a constant
amount (k is fixed and the length of the formulae is not
restricted).

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 566

8,01

4 EXPSPACE
-Iq UClaHSt‘hal 4.3 Structure of NP

We define:
Definition 4.19 (Satisfiability: £-SAT)

Lisat := {we X%, wisin k-CNF,
w is a well formed formula,
there is a valuation for the z;,

s.t. w evaluates to true}

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 567

¥y 4 EXPSPACE
b Iq U(:laH.S‘t‘hal 4.3 Structure of NP

Lemma 4.20 (DNF and 2-SAT)

DNF: Satisfiability of formulae in DNF is in
DTIME(nlogn).

2-SAT: Lyqt is NL-complete.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 568

el TU Clausthal o3 srct XS

Proof.

The first part is trivial. For the second one, it suffices to
show that L, ¢ is in NL. Consider a directed graph: The
nodes are the literals (and their negations) occurring in the
formula. For each clause L, v L, we add a directed edge
from L, to —L, and from L, to —L, (in case L is already
negated, i.e. of the form —C, then —L is considered as C).
It remains to compute the strongly connected components
of the graph. The formula is satisfiable iff no strongly
connected component contains a literal and its negation.
In that case, we get a valid valuation by setting A to true, if
—A is not reachable from A. Otherwise it is set to false.
This shows that STCON log space reduces to Lj g,t. O

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 569

el TU Clausthal o3 s EEE

How to show that a given problem is in a certain complexity
class?

Answer
Reduce it to a known one

The same with a complete problem.
But we need one to start with!

NL: In that case, we used STCON and showed
directly, that all NSPACE(log n) languages
reduce to it.

NP: Here Cook showed in 1971 how to simulate the
computation of any NTM that is polynomially
time-bounded, by SAT.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 570

Rl TU Clausthal o sk SESEE

Theorem 4.21 (Characterization of NP)

Alanguage L is in NP iff thereis a language L' in P and a
k>0,s.t forallweX:

we L iff thereisac: (w,cye L’ and |c| < |w|".

c is called witness or certificate) of w in L. A DTM accepting
L' is called verifier of L.

Proof.
~+ @exercise]

Colloquial formulation:

A decision problem is in NP iff each yes instance has a
small certificate (i.e. its length is polynomial in the input),
which can be verified in polynomial time.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 571

4 EXPSPACE

el TU Clausthal PP

Theorem 4.22 (SAT is NP-complete)

Lqt is NP-complete.

Proof.
The original proof was given by Cook in 1971. That
L € NP is simple: just guess a valuation. Verifying it is
trivial (in linear time).
Now let L be any language in NP. Then there isa NTM M
accepting L and a polynomial p(n) such that M is p(n)
time-bounded.

m In the following we describe a log space algorithm that,

on input z produces a formula ¢, with

M accepts x iff ¢, is satisfiable
]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 572

el TU Clausthal 3 sl AR

(Proof of Theorem 4.22 (2)).

We simulate computations of M.
Wlog each computation has exactly the form (where for

each ID |3, = p(n)): #Bo#b1# - - - #Bpn)

B Wlog we use new symbols that encode in each 3;: (1)
the state, (2) the symbol currently scanned, (3) the
number mz e N encoding which move is taken in ID :
to get to f3,,1. Let F be the set of symbols encoding an
accepting state.

For each symbol X occurring in the computation and
each 0 <i £ (p(n) + 1) we use boolean variables ¢; x.
The idea is that ¢; x is true iff the i’th symbol in the
computation is identical to X. E.g.

Co,#5 Cp(n)+1,45 - - - s Cp(n)(p(n)+1),# are all true.
O]

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 573

el TU Clausthal o3 s EEE

(Proof of Theorem 4.22 (3)).

We construct £, such that
E, is true for a valuation val of the ¢; x
iff
{cix : val(c;x) = true} corresponds to a valid com-
putation of M.

Our aim is to ensure that £, expresses the following:
(1) String: For each j with ¢y € {¢; x : val(c; x) = true} (Y

arbitrary), there is exactly one Y; such that ¢, y, is
true.

(2) Initial: g, is the initial ID for M with input z.
(3) Final: The last ID contains an accepting state.

(4) Move: Each ID follows from the previous one by the
move that is indicated by m,.

Prof. Dr. JUrgen Dix x Department of Informatics = TU Clausthal WS 16/17 574

Rl TU Clausthal o sk SESEE

(Proof of Theorem 4.22 (4)).

E is the conjunction of the following
M
/\ [\/ ci,x A= (\/ (ci,x A C¢,y)>]
i | x X#Y
(2) ~ blackboard 4.1
3)
<\/ Ci’X>
p(n)(p(n)+1)£iz(p(n)+1)2 \XEF

(4) We can easily define a predicate Q(W, X, Y, Z) which says that “symbol Z
could appear in position j of some ID, if W, X, Y are the symbols in
positions j — 1,7, j + 1 of the previous ID”. We can also arrange that
Q(W, #, X, #) is always true.

V (Cpm—2w A Cipm)—1,X A Cimp(m),y A 2
p(M)5i5(p(n)+1)? \QW,X,Y,2)

O
Prof. Dr. Jiirgen Dix » Department of Informatics = TU Clausthal WS 16/17 575

8,01

4 EXPSPACE
£ TU Clausthal 4.3 Structure of NP

Clausthal University of Technology

Example 4.23 (More NP-Complete Problems)
m Is a 3-SAT formula satisfiable?
m Is a directed graph hamiltonian? (hamiltonian circle)
m s there a clique of size k in a graph? (maximum clique)
m Is a graph colorable with 3 colors? (3-colorability)

m Given a finite set of numbers and a number n. Is there a
subset which sums up to n?
(subset sum)

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 576

@Ku TU Clausthal 4.3 Structure of NB
The following relations are unknown:
P # NP.
NP # co-NP.
P # PSPACE.
NP # PSPACE.
L # NL.
A L # NP.

But the following holds:

If P = NP then EXP = NEXP.
L # PSPACE.
P # EXP.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 577

.1 4 EXPSPACE
-Iq UClaHSt‘hal 4.3 Structure of NP

Lemma 4.24 (Ladner, 1975)

If NP +# P, then there are problems in NP that are
not NP-complefte.

Proof.

~+ blackboard 4.2 O

Candidates for such problems are Graph-Isomorphism (are
two given graphs isomorphic?), or Factorization.

Is the complement of Graph-lsomorphism in NP?

Note (added in proof): Graph-lsomorphism is
quasipolynomial (Nov. 2015, Bolyai). Many people expect it
to be in P (might take another decade to prove).

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 578

.1 4 EXPSPACE
-Iq UClaHSt‘hal 4.3 Structure of NP

Lemma 4.25

If NP n co-NP contains a NP-hard language,
then NP =co-NP.

Proof.

~ blackboard 4.3]
Lemma 4.26

If NP # co-NP, then there are non-trivial
languages in NP that can not be reduced to any set
in co-NP.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 579

4 EXPSPACE

ml* TU ‘Claust‘hal 4.3 Structure of NP

Proof (of Lemma 4.26)

Let L' € co-NP. Let L be nontrivial such that

L <,5 L'. Thus L < pol L’ via a reduction f. But
then L € NP (because {(z,y): {(f(z),y)e R"}is a
NP relation: R” corresponds to L’)). Then

L € co-NP. []

In fact, it is conjectured that

P & NP nco-NP

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 580

@u’u TU Clausthal 43 Structure of B

Other known facts:

TAUT € co-NP. Itis not known whether
TAUT e NP.

Primes € co-NP (trivial), and Primes € NP
(Pratt 1975).

In fact Primes € P
(Agrawal/Kayal/Saxena 2002).

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 581

A TU Clausthal 44 OrasXESEACE

Clausthal University of Technology

4.4 Oracles for P, NP

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 582

el TU Clausthal 04 oSS

m We have seen that diagonalization is a
powerful method.

m Maybe one day one can settle the P =NP
question using diagonalization?
m Unfortunately, this is not the case.

m Any proof of NP & P by diagonalization
relativizes: for all oracles C: NPY ¢ PC.

m One can define oracles A, B such that both
P4 = NP* and P # NP

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 583

R TU Clausthal rsond SIS

The idea of an Oracle TM has already been introduced in
Definition 2.84.

Definition 4.27 (P4, NP%)

Let A < ¥* be any language.

P“: P4 is the set of all languages that are accepted
by a DTM with oracle A in polynomial time.

NP“: NP“ is the set of all languages that are accepted
by a NTM with oracle A in polynomial time.

Observation

If diagonalization can be used to show NP & P, then for
each language A: NP* ¢ P4,

~+ blackboard 4.4

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 584

.1 4 EXPSPACE
] Iq UClaHSt‘hal 4.4 Oracles for P, NP

Is there an oracle A such that P4 contains
undecidable languages? ~~ exercise

Theorem 4.28 (Baker/Gill/Solovay)

There exist oracles A, B with:
m P4 = NP4,
m PP« NP?,

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 585

@Ku TU Cﬁlaukswt‘hal 4 EXPSPACE

4.4 Oracles for P, NP

P4 = NP": Let A be any PSPACE-complete problem.
Then

NP4 < NSPACE = PSPACE c P4

which implies equality.
P? + NP”: Foralanguage B let

L(B) = {z| 3w (|z| = |lw| A we B)}.

Obviously, L(B) e NP”. We want to construct a
B with L(B) ¢ PB.
Enumerate all Oracle TMs My, ..., M,, ... and
construct a language B with L(B) # L(MZ) by
diagonalization. ~~ exercise

O

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 586

7, 4 EXPSPACE
TU Clausthal 4.5 PH: Polynomial Hierarchy

Clausthal University of Technology

4.5 PH: Polynomial Hierarchy

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 587

| ~ 4 EXPSPACE
@Hf* [U Llausthal 4.5 PH: Polynomial Hierarchy

The SAT problem gives rise to a natural extension.
Instead of asking for a valuation of the variables,
why not asking questions of the form

Is there for all =,y an assignment for = such
that (x vy v z) A (—x v —z) is true?

We can write this in more compact form as

VeVydz ((zvyvz) A (—x v —2))

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 588

k%3 4 EXPSPACE
@IHB TU Clausthal 4.5 PH: Polynomial Hierarchy

We define the language Ly of quantified boolean
formulae as follows:

Definition 4.29 (Lopr)

Quantified boolean formulae are defined inductively:
m A variable z is a QBF. The occurrence of z is free.

m If ¢, are QBF, then so are —¢, ¢ A 1, ¢ v). The
occurrence of variables in these expressions is the same

asin ¢, .

m If ¢ is QBF, then Jx¢ and Vz¢ are as well. The scope of
v, d are all free occurrences of z. The occurrence of z in
Jx¢ or Vz¢ are bound.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 589

4 EXPSPACE

ml* TU ‘Claust‘hal 4.5 PH: Polynomial Hierarchy

Definition 4.30 (Satisfiability: TQBF)

Lrqer :={¢: ¢ € Lopr is a well-formed formula,
¢ does not have any free variables,
¢ is true}

How can we decide whether a given ¢ € Lgpr
without free variables is true or not?

We systematically get rid of all quantified variables by instantiating
them to (all combninations of) true or false (and keeping in mind
whether they are universally or existentially quantified). We end
up with a (finite) set of boolean formulae that we can all check.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 590

iy 4 EXPSPACE
b Iq ‘ClaU’Sthal 4.5 PH: Polynomial Hierarchy

I University of Technology

Theorem 4.31 (L1qgr is PSPACE-complete)

The problem whether a QBF is true is
PSPACE-complete.

~ blackboard 4.5]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 591

k%3 4 EXPSPACE
@IHB TU Clausthal 4.5 PH: Polynomial Hierarchy

Remember that the original SAT problem
concerned arbitrary (existential) formulae. k-SAT
required the formulae to be in a certain form
(CNF). Can we define an analogue for TQBF?

Definition 4.32 (Satisfiability: QSAT)

Lasat := {{Q121Q2 . .. QnZn, @) : ¢ € X3,

(; alternating quantifiers of the form ¥ bzw. 3,
all variables in ¢ are among z1, ..., z,,
such that the formula Q121Q> . .. @z, ¢ is true }

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 592

W - 4 EXPSPACE
- I U (J;laus;thal 4.5 PH: Polynomial Hierarchy

Why do we require that the quantifiers are
alternating? Could we also allow formulae of the
form:

(VaVy(x v —y)) A (2Vw(z A w))

Can we transform any Lgpr formula into one of
the form required for Lqsat? l.e. does the
following hold

Lrqer <pol LQsat?
Yes, here is an algorithm (~~ exercise).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 593

@Ku TU Cﬁlau's_t‘hal 4 EXPSPACE

4.5 PH: Polynomial Hierarchy

The last algorithm leads to the notion of an
alternating Turing machine.

Let us consider the acceptance of an NTM. We can
view such an NTM as consisting of existential
states:

m such a state is accepting, if there is at least
one outgoing path that is accepting,

m it is non-accepting, if all outgoing paths are
either rejecting or infinite.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 594

3 ~ 4 EXPSPACE
@Ku TU ({‘laUS“thal 4.5 PH: Polynomial Hierarchy

We are now ready to define the notion of an
Definition 4.33 (Alternating Turing Machine (ATM))

An alternating Turing machine, ATM for short, is a NTM where
the following holds:

each state is either an V state, a 3 state or a normal state,
V and 3 states have exactly two children (outgoing paths),
a normal state has exactly one child.

A state s is accepting, iff
sis an V state and all its children are accepting states,

s is an 3 state and at least one of its children is an accepting
state,

s is a normal state and its child is accepting.
An ATM is accepting, if its start state is accepting.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 595

K . 4 EXPSPACE
- TU (J;laus;thal 4.5 PH: Polynomial Hierarchy

Definition 4.34 (Polynomial Hierarchy, ATM version)

We define APTIME to be the set of all languages that can
be recognized by alternating Turing machines in
polynomial time. We also define:

m I17: the set of languages that can be recognized by
ATM’s in polynomial time, where the first special state is
an V state, and there are at most i changes between the
states

m ©F: the set of languages that can be recognized by
ATM’s in polynomial time, where the first special state is
an 3 state, and there are at most i changes between the
states.

Finally: PH := | | (117 U %))

€N

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 596

R 4 EXPSPACE
- TU Clausthal 4.5 PH: Polynomial Hierarchy

Lemma 4.35 (Relation between NTM’s and ATM’s)

NP = X! and co-NP = 11

Proof.

We use Theorem 4.21.

NP c XI": The ATM guesses the witness ¢ (from
Theorem 4.21) and verifies whether (w, ¢) isin L'.
¥I' € NP: The ATM has only 3-states, so it is a
NTM.

co-NP = II7 is similar.]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 597

@IH’B& TU Cplauys_t‘hal 4 EXPSPACE

4.5 PH: Polynomial Hierarchy

Analogously to the sequential classes,
APTIME(f(n)) consists of all languages
acceptable by an f(n) time bounded ATM.

Theorem 4.36 (APTIME(f(n)) vs. DSPACE(f(n)))

Let f(n) = n.

It holds that

APTIME(f(n)) < DSPACE(f(n))
It holds that

DSPACE(f(n)) € APTIME(f2(n))

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 598

1 - 4 EXPSPACE
@Ku Tu (J;laus;thal 4.5 PH: Polynomial Hierarchy

Proof.

Let M be a f time-bounded ATM. We construct a f
space-bounded DTM M’ that simulates M on input w: it
does a depth-first search on the tree of all configurations
looking for the accepting states. It only accepts if the root
corresponds to an accepting state.

Problem: to store the configuration we need f(n) space,
but the depth is also f(n), so this gives f2(n)!!!

Todoitin f(n) space, we do not store the configuration
itself, but just the indeterministic choice that led to the
actual configuration (this is done in constant space).

The second result is proved similar to Savitch’s theorem. [

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 599

] 4 EXPSPACE
] IqHCIKaHS‘t‘hal 4.5 PH: Polynomial Hierarchy

Corollary 4.37 (PSPACE = APTIME)

It holds that PSPACE = APTIME.

Corollary 4.38 (Relation between ATM’s and TQBF)

Lrqsr is APTIME-complete.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 600

K . 4 EXPSPACE
- TU (J;laus;thal 4.5 PH: Polynomial Hierarchy

Consider our notion of an oracle TM introduced
in Definition 2.84 on Slide 421. ATM with a
language L as oracle can compute more
languages than the TM alone.

Now suppose L is NP-complete. Then a TM with
oracle L can do as much as a TM with any '
oracle, where ' € NP.

Consequently we define NP™F as the class of
languages that can be recognized by a NTM with
oracles in NP in polynomial time. Thus we can
make a polynomial number of calls to arbitrary
NP oracles.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 601

0, 4 EXPSPACE
] Iq ‘Clagst‘hal 4.5 PH: Polynomial Hierarchy

Definition 4.39 (MinDNF)
LMinDNF = {<¢, k> : ¢ S E:at, Wff, keN
thereis a) € X% ,such that
|| < k and 1, ¢ are equivalent }

MinDNF is certainly in NP™* (Oracle TM of
Definition 2.84) and in ©£ (Hierarchy of
Definition 4.34). In fact, we have the following:

Lemma 4.40

MinDNF is NPNY -complete.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 602

R 4 EXPSPACE
- TU Clausthal 4.5 PH: Polynomial Hierarchy

Definition 4.41 (Polynomial Hierarchy, Oracle version)

For a complexity class C' we denote by P (resp.
NPY) the class of problems solvable in
deterministic polynomial (resp. nondeterministic
polynomial) Time using C-oracles. Let

Yo =1l := P and

Y1 = NP
I, = co-NP>
AVERIES P

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 603

Ky - o 4 EXPSPACE
- [U (J‘laus‘thal 4.5 PH: Polynomial Hierarchy

Thus >, is NP with queries to a P-oracle,
i.e. X; = NP.

Similarly we have II; = co-NP and A, = P.

A problem is in Ay = PN if it can be solved in
deterministic polynomial time with subcalls to
an NP-oracle.

Although the index is 2, A, is considered to
belong to the first level of the polynomial
hierarchy.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 604

f R ~ 4 EXPSPACE
@Ku U (J‘laus‘thal 4.5 PH: Polynomial Hierarchy

The second level of this hierarchy consists of
22, I, and Ag.

Here 3, := NPNP: nondeterministic
polynomial time with queries to an NP-oracle.

Il, := co-NPNP and A; := PINP™T,

It is immediate that

Ypully € Apyr © g 0 g

It has not yet been proved that the inclusions
are proper. That s, it is not known whether
the hierarchy collapses at some point or not.

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 605

3 4 EXPSPACE
@Ku TU Clausthal 4.5 PH: Polynomial Hierarchy

Theorem 4.42 (ATM’s and oracle TM’s correspond)

The hierarchies introduced in Definition 4.41 on
Slide 603 and in Definition 4.34 on Slide 596 are
identical.

~+ blackboard 4.6

EXP can also be reformulated as the space class
APSPACE, the problems that can be solved by
an alternating Turing machine in polynomial
space. This is one way to see that

PSPACE < EXP.

Which problems are PH-complete?

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 606

3 4 EXPSPACE
@Ku TU Clausthal 4.5 PH: Polynomial Hierarchy

Lemma 4.43

If there is a PH-complete language, then PH collapses.

If ¥y =1l for a k € N, then PH = X, and the hierarchy
collapses.

If P = NP, then the polynomial hierarchy collapses
completely, to the Oth level, P.

If NP = co-NP, then the polynomial hierarchy collapses
to the first level, NP.

If Graph Isomorphism is NP-complete, then the
polynomial hierarchy collapses to the second level,
NPNP,

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 607

HKB TU Clausthal 4.6 Structure ofzi:’ESXl[;XuC\Jc]S

Clausthal University of Technology

4.6 Structure of PSPACE

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 608

qﬁu’u TU Clausthal 4.6 Structure of PADAGE

What do we know about PSPACE?
PSPACE is a strict superset of the set of all
context-sensitive languages.

PH < PSPACE, but itis not known whether
the containment is proper.

If PSPACE = PH, then the polynomial
hierarchy collapses (why?).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 609

.1 4 EXPSPACE
.I[J LClz\l%_ﬁt‘hal 4.6 Structure of PSPACE

We have already considered the word problem
for Typ 1 languages on Slide 153.

Definition 4.44 (Lcsc)

Lese := {{G,w) : G a contextsensitive grammar
w a word generated by G }

Lemma 4.45 (CSG < PSPACE)

Lcsg is PSPACE-complete.

But Lcsc is contained in DSPACE(n?), the bottom of PSPACE:
a contradiction?
Compare with Lemma 4.43: here we talk about space, not about

time.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 610

@Ku TU Clausthal 4.6 Structure of PADAGE

Proof.

Let L by any language in PSPACE, accepted by a
DTM M in space p(n). We apply padding and
define

I = {y§p(\y|) cye L}

Obviously, L' is contextsensitive, so let G be a
grammar for it. Then the function

f: L~ Lesgyy — (G, y82D)

is a polytime reduction and proves the
completeness of L¢sg for PSPACE. H

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 611

el TU Clausthal o swucare o HEESCASE

We define a generalized version of Tic-Tac-Toe. It
is played on an m x n board. The winner has to
produce k crosses (or naughts) in a row.

Definition 4.46 (Generalized LrtictacToe)

The problem is to decide whether there is a
winning strategy for player 1:

Lrrr :={{m,n, ky:m,n, keN,
player 1 has a winning strategy
for the Tic-Tac-Toe game
played on the m x n board
(k stones in a row win).}

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 612

.1 4 EXPSPACE
d IU ‘C‘lags_t‘hal 4.6 Structure of PSPACE

Obviously, generalized Lrictactoe is in DSPACE(mn). In
fact, this is no surprise:

Theorem 4.47 (PSPACE completeness)
Generalized Lrictac-0e is PSPACE-complete.

~ exercise

We refer to Slide 274 for the Domino problem.

Lemma 4.48 (Quasi-fixed rectangle)

We fix n € N and two colors coly, cols. We also fix two n-vectors
of colors. Is there an m € N and a tiling of the n x m rectangle
respecting the two vectors (as upper and lower parts) and the
two colors on the two sides? This problem is
PSPACE-complete.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 613

A TU Clausthal o7 exomme ESERACE

Clausthal University of Technology

4.7 EXPTIME/EXPSPACE

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 614

@IKI% TU C"laus‘t‘hal 4.7 EXPT|ME/E§B§FQEE

m Obviously, P & EXP and P & NEXP.
m If P = NP then EXP = NEXP.

Lemma 4.49 (DTM accepting in % steps Lprm accept)

The problem to decide whether a DTM accepts an
input in at most k steps:

Lptm accept := {{M,w,k): M aDIM ke N,
w the input for M,
M accepts w in
at most k steps}

is EXP-complete.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 615

el TU Clausthal o7 exerve R PACE
EXP: Itis in EXP because a trivial simulation
requires O(k) time, and the input k is
encoded using O(log k) bits.

Complete: Itis EXP-complete because, roughly
speaking, we can use it to determine if a
machine solving an EXP problem
accepts in an exponential number of
steps; it will not use more.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 616

@IKI% TU Clausthal 4.7 EXPTIME/EXPSPACE

m The game of Checkers (“English Draughts”) is
usually played on a 8 x 8 board.
m It has been recently solved: with perfect play,

it ends in a draw.
m However, it can be easily generalizedtoan x n

board.

Lemma 4.50 (n x n Checkers)

Solving the game of checkers on a n x n board is
EXP-complete.

The game of Go is also EXP-complete.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 617

@IKB TU ‘Cil’aqs_ﬂt‘hal 4.7 EXPTIME/EXPSPACE

Here are two problems that turn out to be complete for
NEXP and EXPSPACE.

Definition 4.51 (Regular expressions Lyegex)

The problem is to decide whether two regular expressions
represent the same languages:

Lregex 1= {{r1,72) : 11,72 regular expressions ,

J(r1) = 3(ra)}

Lregex, no « := {(r1,72) : 11,75 NOt cONtaining =,
I(r1) = I(r2)}

While the first problem is EXPSPACE-complete, the
second is NEXP-complete.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 618

@IKI% TU C"laus‘t‘hal 4.7 EXPT|ME/E§B§FQEE

We refer again to Slide 274 for the Domino
problem.

Lemma 4.52 (Square Domino)

We fix a ny-vector of colors and a particular color
col. Is there n € N and a tiling of the n x n square
that respects the ny-vector (as initial segment of the
upper side and color col on all the remaining
boundary? This problem is NEXP-complete.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 619

.'l‘U C‘laus‘thal 4.7 ExpTlME/EﬁEégﬁEE

In the following we introduce first-order theories of several
interesting structures. A knowledgeable reader can switch
to Slide 632.

m Given a language £ consisting of constants, function-
and predicate symbols, we define the set of £-terms and
L-formulae (and, most importantly, of £-sentences).

m We then consider the set of all £-sentences that are
true in a certain model: the natural numbers N, the
integers Z, the rationals Q or the reals R.

m These sets are also called theories, or, more precisely,
L-theories.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 620

!@KE TU C"laus_t‘hal 4.7 ExpTlmf/gggmgg

Language

What is the influence of the language £? Which
theories are r.e. or even recursive and what is
their complexity? How can one prove
(un-)decidability or precise (lower bounds) for
decidable theories?

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 621

el TU Clausthal o exerd BFSACE
In the following definition, we need a base
language, or signature L. Such a signature
consists in general of a set of
B constants,
m function symbols, and
m predicate symbols.

In particular, we consider £ consisting of
Constants: 0, 1,

Functions: binary function symbol +,
Predicates: binary predicates =, and <.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 622

@H@ TU ‘Crl’au's‘t‘hal 4.7 EXPTIME/EXPSPACE

The following definitions define the set of £-terms, as well
as the set of first-order sentences that we can interpret in
N, Z,R,Q or other interesting structures.

Definition 4.53 (First order logic L)

The language of first order logic wrt. a signature L is
defined as follows:
B,y 2,21,22,...,L,,.... acountable set Var of variables,

m the predicate symbols of the signature £, and the 0-ary
predicates true and false,

m the constants and the function symbols of the signature
L,

® —, A, v, —: the sentential connectives,
m (,): the parentheses,
m v, 3: the quantifiers.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 623

@IKB TU ‘Cil’aqs_ﬂt‘hal 4.7 EXPTIME/EXPSPACE

Definition (continued)
The concept of an L-term ¢ and an £-formula ¢ are defined
inductively:
Term: L-terms ¢ are defined as follows:
each variable is a £L-term.

if f*is a k-dimensional function symbol from £ and ¢,,
.t are L-terms, then f%(t,,... 1) is a L-Term.

The set of all £-terms that one can create from the set
X < Varis called Term,(X) or Terms(X). Using X = ¢
we get the set of basic terms Term (&), short: Term,.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 624

@IKI% TU C"laus‘t‘hal 4.7 EXPT|ME/E§B§FQEE

Definition (continued)

Formula: £-formulae ¢ are also defined inductively:

if P* is a k-dimensional predicate symbol from £ and ¢,
.t are L-terms then P*(t,,... t;) is a L-formula

for all £L-formulae ¢ is (—¢) a L-formula

for all L-formulae ¢ and v are (p A ¥) and (¢ v)
L-formulae.

if 2 is a variable and ¢ a £L-formula then are (3x ¢) and
(Vx ¢) L-formulae.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 625

@IKI% TU C"laus‘t‘hal 4.7 EXPT|ME/E§B§FQEE

Definition (continued)

Atomic L-formulae are those which are composed
according to 1., we call them At.(X) (X < Var). The set of
all L-formulae in respect to X is called Fmi.(X).

Positive formulae (F'ml/ (X)) are those which are
composed using only 1, 3. and 4.

If ¢ is a L-formula and is part of an other £-formula ¢ then
p is called sub-formula of .

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 626

@IKB TU ‘Clausthal 4.7 EXPTIME/EXPSPACE

Here are a few examples of formulae we can build:
B Vely(y=x+1),
BVYeVyly=z v Izz<zarz<y) v Iz(y<zAz<uz)),
H yWr(zx<yvaz=y),
|

Adydz[(z+y=14) A (z+2x+z+y=15)].

If we have multiplication - available, we could also consider
the following formulae

mdzdydz (v xv-z +y-y-y=z2-2-2),
mdrzx-x =2
W Vody dyodysIys v =y -1 + Y2 Y2 + Y30 Y3 + Ya - Ya-

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 627

@IKI% TU C"laus‘t‘hal 4.7 EXPT|ME/E§B§FQEE

Obviously, the more expressive the language, the more
formulae can be expressed.

Definition 4.54 (Presburger/Peano Arithmetic)

Let £, = {0,1,+,%,<}and L;,y = {0,1, +,-, =, <}.

Th({Z,0,1,+,=,<)) = all L,-sentences true in Z.
Th({N,0,1,+,=,<)) = all £L,-sentences true in N.

These two theories are called Presburger arithmetic.
Peano arithmetic is obtained when we add multiplication.

Th({Z,0,1,+,-,=,<)) = all L, -sentences true in Z.
Th({N,0,1,+,-,=,<)) = all L,)-sentences ftrue in N.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 628

@IH’B& TU Cplauys_t‘hal 4 EXPSPACE

4.7 EXPTIME/EXPSPACE

Definition 4.55 (R with addition/multiplication)

let £, ={0,1,+,=,<}and L,y = {0,1,+,-,=,<}.

Th({R,0,1,+,=,<)) = all L,-sentences true in R.
Th({Q,0,1,+,=,<)) = all £L,-sentences frue in Q.

These two theories are called the reals (resp. rationals)
with addition only.

When we have multiplication, i.e. £,), we can express
much more.

Th({R,0,1,+,-,=,<)) = all L,)-sentences true in R.
Th({Q,0,1,+,-,=,<)) = all L -sentences true in Q.

The first theory is called theory of real closed fields.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 629

@Kl* TU Clausthal 4.7 EXPTIME/EXPSPACE

Give a L, -sentence that distinguishes Z and N.
Give a L, -sentence that distinguishes Q and N.
Give a L,)-sentence that distinguishes Q and R.

Define a transformation from £, -sentences ¢ to
L -sentences ¢', such that the following holds

¢ Th(N) iff ¢/ € Th(Z)

Thus N and Z are very closely related and therefore they
are both called Presburger Arithmetic (although they
are formally different).

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 630

.'l‘U C‘laus‘thal 4.7 ExpTlME/EﬁEégﬁEE

m It is well-known that multiplication can be
reduced to addition: z- (n +1) =z -n + z, and
z-(04+1) =

m Can we use this and define multiplication - in
the language £.?

m No, this is not possible. Try to construct a
formula in the language L, .

m Itis not possible to come up with such a
formula, because each formula has a fixed
length and can not depend on the value of a
variable occurring in it.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 631

@IH@ Tu Llausthal 4.7 EXPTIME/EXPSPACE
The theories we have introduced are quite complicated:
arbitrary sentences that can be formulated in the underlying
language.

In the following we will show:

Presburger arithmetic is recursive.

Peano arithmetic is undecidable (this leads to the
arithmetical hierarchy introduced in the next section).

The theory of reals with addition only is recursive. Its
nondeterministic time complexity is at at least
exponential.

It remains recursive (unlike the transition from

Presburger to Peano arithmetic) when multiplication is
added.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 632

Q‘m TU C"lauhs_tﬂhal 4 EXPSPACE

4.7 EXPTIME/EXPSPACE

An important technique to show decidability of a
first-order theory is quantifier elimination.

Definition 4.56 (Quantifier Elimination)

A theory T of L-sentences admits quantifier
elimination, if each sentence can be transformed
into an equivalent one which does not contain
any quantifiers (and hence also no variables).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 633

R 4 EXPSPACE
' IU ‘C‘lal{s.tﬂhal 4.7 EXPTIME/EXPSPACE

Importance of Quantifier elimination

m Most theories do not allow QE in their base
language.
m All theories allow QE in an extended language

(see eg. Henkin’s proof of completeness of
FOL).

m It remains to find a suitable extended
language.

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 634

@IKB TU ‘Cil’aqs_ﬂt‘hal 4.7 EXPTIME/EXPSPACE

Suppose we have shown that the theory of reals with
addition only admits quantifier elimination. What can we
conclude from that?

m The atomic sentences are very simple: just equalities
and inequalities of fixed rational numbers. These are
easily decided to be frue or false. And thus any
disjunction, conjunction negation etc. is also easily
detectable.

m Therefore the theory of reals with addition only is
decidable.

m A complexity bound is obtained by inspection of the
complexity of the quantifier elimination method.

The same conclusions can be drawn from quantifier
elimination of Presburger arithmetic.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 635

@m TU ‘Clausthal 4.7 EXPTIME/EXPSPACE

Lemma 4.57 (Quantifier Elimination (QE))

To show that a theory admits QE, it suffices to
show that each formula of the form

Elx/\¢i(x7y17 o yr)

where ¢;(x,y1, . . . y,) are atomic formulae with
possibly additional variables y;, is equivalent o a
formula without the variable x and without any
quantifiers.

Proof
Use the usual rules for modifying formulae.]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 636

s TU Clausthal 4.7 EXPTlME/&EEFﬁEE

Lemma 4.58 (Reals with addition)

The theory of reals with addition only admits
quantifier elimination.

~ blackboard 4.7 N

Corollary 4.59 (Q and R are indistinguishable in £)

Th({Q,0,1, +,=, <)) = Th((R,0, 1, +, =, <)).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 637

¥y

TU Clausthal 4.7 EXPTIME/E%EEFQEE

Corollary 4.60 (Axioms for R,Q in L)

The following is a complete axiomatization of
Th({R,0,1,+,=,<)) in the language L. . I.e. each sentence
of Th((R,0,1, +, =, <)) follows from this axiomatization.

Axioms expressing that < is a dense linear order
without endpoinfts.

Axioms expressing that (R, 0, +) is a group with neutral
element 0.

BOo<lVz(z<y > z+1<y+1).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 638

W TU Clausthal o7 exerve R PACE

of Technolox

Lemma 4.61 (Reals with addition and multiplication)

The theory of reals with addition and multiplication
admits quantifier elimination.

Proof

~ blackboard 4.8 O

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 639

!@KE TU C"laus_t‘hal 4.7 ExpTlmf/gggmgg

|

Corollary 4.62 (Axioms for Rin L,)

The following is a complete axiomatization of
Th({R,0,1,+,-,=,<)) in the language L. .,. l.e. each
sentence of Th((R,0,1, +, -, =, <)) follows from this
axiomatization.

Axioms expressing that R is an ordered field.
HVz(z>0 — Jyz=y?).
All polynomials of odd degree have a zero (this is an

axiom schema: for each fixed odd order n, we can write
down an axiom expressing the existence of a zero).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 640

!@KM TU C"laus_t‘hal 4.7 ExmlME/&Egmgg

Often, it is convenient to extend the language a little and
show QE in this extended language.

Lemma 4.63 (Presburger arithmetic)

The theory of Presburger arithmetic admits quantifier
elimination in the following language: 0,1, +, <, —, | ,1, where
— is a unary function symbol, | and 1 are binary predicates
between a positive integer k =1+ 1+ ...+ 1 (k times) and a

term t. Equality t = t' can be defined by t <t' A t' <t.
The unary function symbol satisfies —t +t = 0.
k | tis defined by 3x (t = kx). k { t is defined by —(k | t).

Proof
~+ blackboard 4.9]

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 641

@IHB TU Clausthal 4.7 EXPTIME/EXPSPACE

Corollary 4.64 (Axioms for Nin L)

The following is a complete axiomatization of
Th((N,0,1,+, =, <)) in the language L. . l.e. each sentence
of Th({N,0,1, +, =, <)) follows from this axiomatization.
Th({N,0,1,+, =, <)) is therefore decidable.

B Vrz+0=z,
BO0+1=1Vr—-0=x+1,
BVizVyz+y=y+uz,
Az+l=y+1 —-z=y,
BYxVy(x+y)+1l=z+(y+1),

A Let ¢(z) be a formula in L. that contains at most a free
variable z. Then the following is an axiom

$(0) A Va (¢(z) = ¢(z +1)) — Vyo(y).

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 642

@H@ TU ‘Cil’aqs_xhal 4.7 EXPTIME/EXPSPACE

A closer inspection of the QE procedure yields the following
results.

Theorem 4.65 (Complexity of Arithmetic and R)

Any decision procedure for Presburger arithmetic requires
at least nondeterministic time 2*".

Any decision procedure for the reals with addition only
requires at least nondeterministic time 2.

Presburger arithmetic can be decided in 2>
.. . o c e e
nondeterministic space and in 2> nondeterministic time.

The theory of reals with addition only can be decided in
2¢" nondeterministic space and in 22" nondeterministic
time.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 643

5 More advanced topics

Q‘m TU ‘Clausthal

I University of Technology

5. More advanced topics

More advanced topics
m Arithmetical Hierarchy
m Analytical Hierarchy
m Descriptive Complexity

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 644

5 More advanced topics

@Ku TU ‘Crl’au's‘t‘hal

Motivation

In this section we consider several advanced topics. They are
all closely related to logics variants of first-order logic (FO)
and to second-order logic (SO).

We consider:

The arithmetical hierarchy, based on the first-order
(undecidable but r.e.) theory of the natural numbers.

The analytical hierarchy, based on the second-order
(undecidable and not even r.e.) theory of the natural
numbers.

Descriptive complexity: we describe complexity
classes by certain (fixpoint) logics. More precisely, we
show that problems in certain classes are exactly those
that can be expressed in certain logics.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 645

TU Clausthal 5 More advanced topics

Clausthal University of Technology 5.1 Arithmetical Hierarchy

5.1 Arithmetical Hierarchy

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 646

@KB} TU C‘laUS‘thal 5 More advanced topics

5.1 Arithmetical Hierarchy

The arithmetical hierarchy is based on the
theory Th(N) of the natural numbers in the
language L.) (see Definition 4.54).
We note that we can
m eliminate 1 (see next two slides), and
meliminate <tz <yiffdz (-2 =0 A 2+ 2 = y),
m so that we can assume wlog. that the
language of Peano arithmetic consists of just
{0,+,-,=}.
Later we show that we can also get rid of =, at
least for our purposes.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 647

@IH@ TU Clausthal 5 More advanced topics

5.1 Arithmetical Hierarchy
An illustrating example
We are now distinguishing between formulae in a certain
language (these formulae may contain the symbols 0, +, -)
and their interpretation in a certain structure A': 0V is the
neutral element in this structure, +V is a function on this
structure while 0, + are just symbols.

Example 5.1 (Natural numbers in different languages)
B Np, = (No, 0V, +V, =N (, Presburger Arithmetic”),
B Npa = (No, OV, +V, N =N (Peano Arithmetic”),
B Npa = (No, OV, 1V, 4V N =N (variant of NVpy).

These sets each define the natural numbers, but in different
languages.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 648

ml% TU Claustha] 5 More advanced topics

5.1 Arithmetical Hierarchy

If the language is bigger then we can express more.
Is L1+, -y more expressive then Ly, -)?

Answer:

No, because one can replace the 1V by a L, , . -y-formula:
thereis a Ly, , . -,-formula ¢(x) so that for each variable
assignment p the following holds:

Ni+,.2) Fp 0(2) iff p(z) = v

m Thus we can define a macro for 1.
m Each formula of £y, , . -, can be transformed into an
equivalent formula of L, . . -;.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 649

mw 5 More advanced topics
" IH, ‘Qlau,s,t‘hal 5.1 Arithmetical Hierarchy

Question:

Is L1,+,.-y perhaps more expressive than
Lo1,+,23, or can the multiplication be defined
somehow?

We will see later that Ly, . . -y is indeed more
expressive:
m the set of sentences valid in N, , - is
decidable (see Corollary 4.64), whereas
m the set of sentences valid in N . -y is not
even recursively enumerable.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 650

el TU Clausthal 53 Mt roriy
Arithmetical formulae
Recall Definition 2.66 on Slide 371: consider a

polynomial p(xy, ..., z;) in the variables x1, ..., z; with
coefficients in Z.

The set of all tuples {(ny, ..., n;) of natural numbers that
are zeroes of p(zy,...,xy;) is called an arithmetical
predicate.

We can rewrite the equation p(z1,...,z;) = 0 and put

all negative terms on the right hand side. This results
ina Ly, . -y-formula that can be evaluated in the
natural numbers.

We call any Ly ; , . --formula arithmetical.

On the next slide we define a finer grained hierarchy
of arithmetical formulae.

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 651

@KB} TU C‘laUSthal 5 More advanced topics

5.1 Arithmetical Hierarchy

Definition 5.2 (Arithmetical Hierarchy)

We call an arithmetical formula 3} (resp. I17) if it
is of theform 3V... ¢ (resp. V3 ...¢) where ¢ is a
quantifier-free Ly, , . -y-formula and there are at
most k£ — 1 alternations of quantifier-blocks.

We call a set M < N of natural numbers
¥?-definable (resp. I1{-definable), if M is
definable by a X)-formula (resp. II)-formula). I.e.
there is a X.0-formula (resp. II)-formula) ¢(z) with
one free variable x such that

N = ¢(i) iff ie M.

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 652

@Ku ,lU Clausthal 5 More advanced topics

5.1 Arithmetical Hierarchy

m Y)-definable = I1)-definable = recursive sets.

m YV-definable = r.e. sets (Hilbert’s 10th
problem, see Corollary 2.71).

m [1{-definable = complements of r.e. sets

m An example of a X! definable set: the set # of
all Godel numbers of those Turing-machines
that stop on their own Gddel number.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 653

@KW B 5 More advanced topics
" TH, ng’a USthal 5.1 Arithmetical Hierarchy

m The higher a problem lies in the hierarchy, the
more undecidable it is. For example a
problem located at the second level, say X9,
can be thought of as being recursively
enumerable using an oracle which solves
y!-problems (like the halting problem).

m Analogously to the polynomial hierarchy we
have the notions of 3)-complete and
I1)-complete. As an example, the halting
problem is X{-complete.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 654

@[W 5 More advanced topics
" ’:[\‘,Hj Lg:plfl)fl,{s,,tﬂ};lal 5.1 Arithmetical Hierarchy

In contrast to the polynomial hierarchy, the arithmetical
hierarchy is strict. From now on we use ¥)_, and IT)_, not
only as a set of syntactically defined formulae, but also as a
set of arithmetical predicates, that can be defined by
respective formulae.

Theorem 5.3 (Arithmetical Hierarchy is Strict)
We denote by A} the intersection of ¥ | and II} ,. We have

For each k € N: X\I1Y # .
ForeachkeN, X} UII) & A) =X) | n1IY, .

~+ blackboard 5.1 O

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 655

@IKB} TU Clausthal 5 More advanced topics

5.1 Arithmetical Hierarchy

m In the rest of this section, we change our
treatment of Peano arithmetic slightly.

m We show that we do not need the equality
symbol.

m We show that we can consider +, - as
predicates, not functions.

m Therefore we need an additional unary
function symbol: s(), the successor function.

m We can then show that our previous results,
which involve the infinite theory Th(N), carry
over to a finitely axiomatizable theory PAy;,.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 656

ml* TU Clausthal 5 More advanced topics

5.1 Arithmetical Hierarchy

Can = be simulated in “FO without ="?

Answer:

We can try to axiomatize =. We consider FO without = with

an additional binary predicate eq and require the following
axioms:

B VY eq(z,x),
m for each function symbol f with adequate arity:

Vo ... xp,y1 - yn (eq(x1, 1) A oo Aeq(Tn, Yn))
- 6(](_]0(171, 000 7xn)7f(y17 cee 7yn))7

m for each predicate symbol P with adequate arity:

Vo .. xpyr - yn (eq(,11) A oo A eq(Xn, yn))
o (P11 0) = Py, 1 yn):

Prof. Dr. Jurgen Dix » Department of Informatics = TU

lausthal WS 16/17 657

!@[M TU Clausthal 5 More advanced topics

5.1 Arithmetical Hierarchy

Important:

This set of axioms depends on the underlying language L,
we call it EQ,.

Question

Let ¢ be a formula in FO with = and let ¢[= /eq] be obtained
from ¢ by replacing each appearing = with eq.
Does the following equivalence hold?

T . ¢ iff T[= /eq] VEQ, = ¢[= /eq] ?

|

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 658

@IH@ TU Clausthal 5 More advanced topics

Clausthal Unive 5.1 Arithmetical Hierarchy

Answer:

Unfortunately not, because:

The axioms EQ/ leave open the possibility, that the
interpretation of eq in a structure A consists of A x A
(thus all elements are equivalent).

Models may contain elements which can not be
represented by terms of the considered language — we
can make only limited statements about such elements.

It can be shown that we are not able to completely
axiomatize the identity even with additional axioms.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 659

@IKB} TU Clausthal 5 More advanced topics

5.1 Arithmetical Hierarchy
We dealt with the natural numbers with addition and

multiplication before. There were two problems that we can
improve:

m the set of terms is infinite and quite complicated and
m there is no finite axiomatization (not even for
Presburger arithmetic, see Corollary 4.64).
We now look at them differently and consider the language
EPA with
m a constant 0 and a unary function symbol s,
m a binary predicate symbol eq and two ternary predicate
symbols ® and ®.
Before defining some axioms about @ and ® we define the
following abbreviation: the formula 3!z ¢(z) stands for

32 (d(2) A Yy oly) — eq(y, 2)).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 660

@L‘a TU Clausthal 5 More advanced topics

5.1 Arithmetical Hierarchy

Definition 5.4 (Peano arithmetic PA;;,)

PAyi,, consists of EQ.,, and the following axioms:

Vavydlz ®(z,y,2)
Vi ®(x,0,0)
VaVyVz3z ®(z,y, 2)

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 661

@KM’ '[U Clausthal 5 More advanced topics

5.1 Arithmetical Hierarchy

In contrast to Definition 4.54, we have the
following properties:

m There is no equality symbol with a fixed
interpretation (it is just any binary relation
satisfying certain axioms).

m The set of terms is quite simple:
s(0), s(s(0)),

m We have a finite axiomatization.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 662

@KM’ TU Clausthal 5 More advanced topics

5.1 Arithmetical Hierarchy

Obviously N := (N, 0V, sV @V, @V, eqV) is a
model of all these axioms:

m 0V is the “right” 0,
m sV is the successor function,
m @V is the addition,

m ®" is the multiplication of natural numbers
(each considered as a relation), and

m eV the identity.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 663

@[ﬂ TU Clausthal 5 More advanced topics

5.1 Arithmetical Hierarchy

The following holds:

m Theset {¢: PAy;, = ¢} is recursively
enumerable but not recursive (decidable).

m The set {¢ : N = ¢} is not even recursively
enumerable.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 664

ml* TU Clausthal 5 More advanced topics

5.1 Arithmetical Hierarchy

The following is the famous result from Kurt
Godel.
m Each set of formulae which contains P Ay, and
has N as one of its models is not recursive.

m Each recursively enumerable set of formulae ®
which contains PAy;, and has N as one of its
models is incomplete, i.e. there is a ¢ with:

N = but @ H= 9.

m N can never be axiomatized completely.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 665

HKB TU Clausthal 5 More advanced topics

Clausthal University of Technology 5.2 Analytical Hierarchy

5.2 Analytical Hierarchy

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 666

mw 5 More advanced topics
" ’(]_:Hw ‘Qlauﬁs,,t\hal 5.2 Analytical Hierarchy

What does the superscript 0 mean in X9?

It means that we consider first-order formulae
(we do not allow our arithmetical formulae to
contain second-order quantifiers).

This remark gives rise to the analytical hierarchy,
denoted by 333, TI;, where we consider
second-order arithmetical formulae.

We only count the number of alternations of the
quantifiers over sets. So any X0-formula is in 2,
for any k.

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 667

@KW T B 5 More advanced topics
" (l\ w, nga USthal 5.2 Analytical Hierarchy

m For the arithmetical hierarchy the identity
¥ = X n 1I{ holds.

m The analogue for the analytical hierarchy does
not hold. A counterexample is given by the
theory of the natural numbers A: the set of
true sentences in arithmetic is in X} n I} but
not in 3}. This set is also called
hyperarithmetical for obvious reasons.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 668

TU Clausthal 5 More advanced topics

Clausthal University of Technology 5.3 Descriptive Complexity

5.3 Descriptive Complexity

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 669

@Kw B 5 More advanced topics
" T“[{ SJlrauSwthal 5.3 Descriptive Complexity

Motivation

In this section we take a completely different look
at complexity classes. We try to describe them
with certain logics, hence the name descriptive
complexity.

m In traditional logic, the set of all models of a sentence
or a theory matters: Mod(T"). We get completeness and
compactness results wrt. appropriate calculi.

m For the existence of a calculus, it is important that
infinite models exist! Given a first-order theory 7" that
allows finite models the size of which is not bounded,
there must exist an infinite model.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 670

WA TU Clausthal vk
Finite models
m In computer science however, only finite models
matter. For example our complexity classes consist of

languages and each language consists of finite words
(or finite structures).

From strings to structures

How can we encode a finite string over an alphabeft as a
finite structure over an appropriate signature(in the sense of
first-order logic)?

From structures to strings

How can we encode a finite structure over a signature (in
the sense of first-order logic) into a finite string over an
appropriate alphabet?

Prof. Dr. Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 671

5.3 Descriptive Complexity

@IH@ TU C‘laUS‘thal 5 More advanced topics

Definition 5.6 (Language expressible by a logic)

We say that a language L consisting of words over
an alphabet ¥ is expressible in a logic with
signature 7, if there is a 7-sentence ¢ such that
the following holds

L=1{A: Aisfinite and A |= ¢}

Strictly speaking we have to encode the
T-structures as words over Y. However, this can be
done in a straightforward way using a linear order
in the structure and appropriate normalization.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 672

el TU Clausthal S e o
Finite models

NP for example contains the class of all 3-colorable
undirected graphs (viewed as a language of finite words).
Such graphs can be seen as first-order structures consisting
of (1) a finite universe, the set of nodes, and (2) a binary
relation on them (describing the edges between the nodes):

G ={{1,...,n},edge(-,-))

Question 1: Is there a first-order sentence ¢, such that the
finite models of ¢ are exactly the finite 3-colorable graphs?

That would give us a description of Lj.co1 49 With purely
logical means.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 673

el TU Clausthal S e o
Finite models

As another example we consider the language Lstcon On
Slide 557. The models here are also graphs (directed), but
here we have in addition two explicit nodes s, t given:

G ={{1,...,n},s%,t5 edgeS(-,-))
And we are interested in those graphs where there is a
directed path from s to t.

Question 2: Is there a first-order sentence ¢, such that the
finite models of ¢ are exactly the finite directed graphs
where s¢ and t© are connected?

That would give us a description of Lstcon With purely
logical means.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 674

el TU Clausthal S s
Finite models

m The answer to question 1 is “No”, but if we
allow second order logic, then it is “Yes”.
m The answer to question 2 is also “No”, but if

we allow an operator that describes transitive
closure, then it is “Yes”.

m What if we stick to classical first-order logic?
Then we can describe all constant-depth
unlimited fan-in circuits.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 675

e U Clausthal 5 55ore advanced topics

m How to define a 3-coloring of a directed graph?
m It can be described with three unary predicates Col;,
Cols, Cols and the conjunction of the following

sentences (we denote it by p3.o(Coly, Cols, Cols)):
Va (Coly(x) v Coly(x) v Cols(x)) 3)
VaVy ((Coly(z) A Coli(y)) — —edge(x,y)) (4)
VaVy ((Coly(z) A Coly(y)) — —edge(x,y)) (5)
Vay ((Cols(z) A Cols(y)) — —edge(x,y)) (6)

m Each model {{1,...,n},Colf, ColS,Col§, edgeS(-,-))
satisfying ¢3.co1(Coly, Cols, Cols)) is a 3-coloring of G.

m But this can not be expressed as a property in the
language just using edge(-,).

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 676

el TU Clausthal 5.3 e oty

m We consider the second order sentence ¢3so:
C0l13C0lyAC 015 3.0/ (Coly, Coly, Cols). Finite
models satisfying @350 are exactly the finite
3-colorable graphs!

m This works as well for graphs with a
hamiltonian cycle, or a vertex cover etc.

m Given any existential second order sentence
@350 over a signature and an appropriate finite
structure.

How complex is it to test whether the
structure satisfies it or not?

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 677

W TU Clausthal e
Finite models

m We can guess the existential parts (with a
NDTM) and then check the rest. By suitably
normalizing the encoding of the structure we
can make sure that this check can be done in
polynomial time (in the size of the structure).

m So the whole test is in NPIII
m Therefore 350 < NP.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 678

W TU Clausthal
FO and L STCON

m How to express in FO that s and ¢ are connected?
m What by defining a binary relation conn(z,y) by

Vay (edge(z, y) — conn(z,y)) (7)
VaVy ((conn(z,y) < 3z (conn(x, z) A conn(z,y)) (8)

m Unfortunately, this does not imply that conn is always
the smallest relation satisfying this (i.e. the transitive
closure of edge). Take any finite graph, let conn by the
transitive closure of edge and let conn* be the relation that is
true for all pairs of nodes. Clearly, conn* also satisfies the two
axioms. There is no set of first-order sentences to
distinguish between conn and conn* in the base language.

m Intuitively, we want to express that conn should be the
smallest relation satisfying the two axioms.

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 679

W TU Clausthal 53 Deseapie Compry
FO and LSTCON

m We extend first-order logic by a transitive
closure operator TC. If r is a binary relation,
then TC(r) is the transitive closure of r.

m In the language FO(TC) (but not in FO alone)
we can easily express the fact that s and t are
connected: TC(edge)(s,t).

m Given any FO formula with TC over a
signature and an appropriate finite structure.

How complex is it to test whether the
structure satisfies the formula or not?

Prof. Dr. Jurgen Dix » Department of Informatics = TU Clausthal WS 16/17 680

@KW T Al 5 More advanced topics
- ([‘[‘J‘ g{l\a‘u‘s‘thal 5.3 Descriptive Complexity

Finite models

m We have to evaluate formulae involving the TC
operator. Whether two elements are in the
transitive closure can be guessed by a finite
path connecting them. This guess can be
easily verified by a polynomial number of
checks: to store the nodes we only need three
counters requiring log space.

m So the whole test is in NLIII

m Therefore FO(TC) < NL.

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 681

@Hﬁl TU Clausthal 5 More advanced topics

5.3 Descriptive Complexity

Theorem 5.7

Let ACO be the set of languages recognized by
polynomial-size circuits of bounded depth (and
unlimited fan-in AND and OR gates). Then:
ACO corresponds exactly to FO.

Theorem 5.8 (Fagin (1974))

NP corresponds exactly to existential second order
logic 350.

Theorem 5.9

NL corresponds exactly to existential first order
logic with transitive closure FO(TC).

Prof. Dr. |Jirgen Dix » Department of Informatics = TU Clausthal WS 16/17 682

@Ku ,lU Clausthal 5 More advanced topics

5.3 Descriptive Complexity

There are many more logics inbetween
first-order and second-order logic than just
FO(TC) We consider the following:

m FO plus a commutative transitive closure

operator: FO(CTC).

m FO plus a least fixpoint operator: FO(LFP).

m SO + transitive closure: SO(TC).

m SO + Ifp: SO(Ifp).

Transitive closure is of course a special case for a
least fixed point operator.

Prof. Dr. Jurgen Dix x Department of Informatics = TU Clausthal WS 16/17 683

@KB} TU Clausthal 5 More advanced topics

5.3 Descriptive Complexity

Theorem 5.10 (Complexity Classes and their logics)

We have the following correspondences

ACO ~ FO
L ~ FO(CIC)
NL ~ FO(TC)
P ~ FO(LFP)
NP ~ 3S0O
co-NP =~ VSO
PH ~ SO
PSPACE =~ SO(TC)
EXP ~ SO(LFP)

Prof. Dr. Jirgen Dix x Department of Informatics = TU Clausthal WS 16/17 684

	The Chomsky Hierarchy
	Makanin's Algorithm
	Minimal DFA
	cf = hom(Dyckreg)
	DPDA/DCF
	LBA/Type 1
	re = hom(cs)
	Ehrenfeucht
	Lindenmayer

	(Un-) Decidability
	Universal DTM
	PCP
	Tiling the Plane
	Recursive Functions
	Random Access Machines
	Hilberts 10. Problem
	Theorem of Rice
	Recursion theorem
	Oracle TMn
	Reductions

	SPACE versus TIME
	Basics
	Some Hierarchies
	Relating TIME and SPACE
	More Properties

	EXPSPACE
	Complexity classes
	Reductions
	Structure of NP
	Oracles for P, NP
	PH: Polynomial Hierarchy
	Structure of PSPACE
	EXPTIME/EXPSPACE

	More advanced topics
	Arithmetical Hierarchy
	Analytical Hierarchy
	Descriptive Complexity

