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What is this lecture about? (1)

We give an overview on modal logics, which can be used in
many areas of computer science. Emphasis is on
theoretical-logical aspects, not on applications.

After a recap of propositional and predicate logic in
Chapter 1, we introduce modal languages and the main
technical notion, Kripke frames in Chapter 2. The
important idea is to relate properties of the accessibility
relation in frames to axioms in the modal language. We
also discuss the relationship between modal logic and
predicate logic (basic hybrid logic and the standard
translation). In Chapter 3, we introduce the basic modal
logics (normal modal logics) as axiomatic calculi, we state
sound- and completeness results (using canonical models),
and discuss the finite model property for modal systems.
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What is this lecture about? (2)

In Chapter 4, we apply our theories to epistemic logics (to
reason about knowledge), and introduce public
announcement logic (where common knowledge can be
described). We also investigate MSPASS, a modal logic
theorem prover.

We consider in more advanced topics. While we have seen
before that many properties can be expressed as modal
formulae, we show in Chapter 5 that even more cannot be
expressed. To this end, we consider w; «~ w,, the notion
of modally equivalent worlds, and its relation to
bisimulation, which leads to the Hennessy-Milner theorem
and van Benthem's characterization of standard translation
of basic modal formulae.
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1. Introduction

Introduction
m Overview
m Propositional Logic
m Inferences
m Predicate Logic
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Content of this Chapter

We present a modern view to modal logic. After a short
overview about important historical events, we define what
a logic is. Then, we introduce the semantical perspective
on logic and show that there is more than one logic. After
demonstrating the use of relational structures we specify
our first logic, propositional logic, and describe a calculus to
do inferences. We end with an introduction to predicate
logic (also called first-order logic).
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1.1 Overview
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The Journey to Modal logic

The first to invent a modal logic was Aristotle.

He developed the syllogisms and
the idea of necessity and
possibility:

Example 1.1

p is possible if —p is not necessary.

Figure: Aristotle
(384 BC-322BC)
L
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Birth of Modal Logics

In 1918 Clarence Irving Lewis published his Survey of
Symbolic Logic.

Figure: C.I. Lewis (1883 - 1964)
[ < ]
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Improvements by Kurt Godel

However, Kurt Godel first proposed the standard system for
classical propositional logic with the rule of generalization.
He also proved the completeness of logic, solving a famous
problem of Hilbert.

Figure: Kurt Godel (1906 - 1978)
[ < ]
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What is a Logic?

We present a framework for thinking about logics as:
m languages for describing a problem,

m ways of talking about relational structures and
models.

These are the two key components in the way we will
approach logic:
Language:
fairly simple, precisely defined, formal languages.

Model: or relational structure
simple “world” that the logic talks about.
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1.1 Overview
Semantical Perspective

Our perspective on logic is fundamentally semantical, i.e.
the meaning of an expression.

This perspective is often
called model-theoretic
perspective or Tarskian
perspective.

Figure: Alfred Tarski (1902-1983)
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Modal Logic Fundamentals

Saul Aaron Kripke’s papers A Completeness Theorem in
Modal Logic and Semantical Considerations on Modal
Logic was a breakthrough in the 60ies: “Londres est jolie.”

Figure: Saul Aaron Kripke (1940 -)
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Logic or Logics

The semantical perspective leads us to the following
question:
How many logics are there?

The Monotheistic Approach
Choose one of all possible logical languages as the only
one.

The Polytheistic Approach
Investigate different logical languages.
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Monotheism in the 20th Century

Logical monotheism was a powerful force for much of the
twentieth century.

First-order classical logic is
the one and only logic we
need.

Figure: Willard van Orman
Quine (1908-2000)
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Polytheism in the 21st Century

m Polytheism gradually became the dominant thread as
time went by.

m Logic found its way into:

computer science,

artificial intelligence,
economics and

cognitive science as well as
natural language semantics.
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Polytheism and Semantics

The semantical perspective gives us an natural way to look
at polytheism:

m Once we have fixed the model or relational structures
(our “world”) it becomes natural to play with different
ways of talking about it.

m Indeed one can talk about relational structures without
bothering too much about the logic at all.
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1 Introduction
1.1 Overview

What are Relational Structures?
Example 1.2 (UML Class Diagram)

Structure
Diagram

[ [ T
Class Diagram ’ Component ‘ ’ Object ‘
Diagram Diagram
Composite
Structure Deployment Package
i Diagram Diagram
Diagram
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Behaviour
Diagram
JA

[ [ ]
Activity Use Case State Machine
Diagram Diagram Diagram

Interaction
Diagram

[ -
Sequence ‘ ’ Interaction ‘

| Overview
Diagram "
Diagram

Communication
Diagram

Timing
Diagram
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Example 1.3 (South Park Relational Structure)

friends

friends

annoys annoys

Cartman

annoys
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Example 1.4 (Finite State Automaton for a"0™)

Given the formal language a"b™ with n,m > 0. The
relational structure is then:

@ N\ L Here, r is the start state and ¢ is

the only final state.
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Three Big Topics

In this course we use the model-theoretic perspective to
provide a window on the following issues:

Inference: The methods for deriving new information by
working with the logic.

Expressivity: What can be described using this logic?

Computation: Which price do we have to pay for this
expressivity?

Prof. . Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 24



0,13 i
@4 TU Clausthal S eron

Muddy Children

Example 1.5 (Muddy Children)

m A group of playing children is called back by their father. They
gather around him.

m Some of them have become dirty:

they may have mud on their forehead,
children can only see whether others are muddy,
and not if there is any mud on their own forehead.

m All this is commonly known, and the children are perfect logicians.
m Father: “At least one of you has mud on his or her forehead.”

m Father: “Will those who know whether they are muddy please step
forward.”

m If nobody steps forward, father keeps repeating the request.
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1.2 Propositional Logic
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Syntax

The propositional language is built upon

Propositional symbols: p,q,r,...,p1,p2,ps3,- .-
Logical connectives: —and Vv
Grouping symbols: (,)

Often we consider only a finite, nonempty set of
propositional symbols and refer to it as Prop.

Logical connectives are used to construct formulae from the
propositional symbols.
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Definition 1.6 (Propositional Language Lp;)

The propositional language L pr(Prop) (over the set of
propositions Prop) is given by the formulae defined by the
following grammar

pu=p|lpleVe
where p € Prop.

Example 1.7
Blackboard.
In the following we assume that Prop is fixed and omit it.

What about the other connectives? They are defined as
macros.
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Definition 1.8 (Macros)

We define the following syntactic constructs as macros
(p € Prop):

1L = pA-p

T = =l
pAY = (V)
p=Y = e VY
pory = (=2 Y)A Y — )

Example 1.9
Blackboard.
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1 Introduction
1.2 Propositional Logic

How to determine whether a propositional logic formula

is true?

Intuitively, we have: (t stands for true, f for false)

-
1

—pist
pVyist
pNAYist
p—ist
pist

iff
iff
iff
iff
iff

ist

is f

pisf

@ or (or both) are t
pandy are t

either pisforyist

¢ and v are both t, or both f

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 = 30



ity 1 Introducti
u I[J UClaHSt‘hal 1.2 Proposirt]iorgalufolé)ir(]

Firstly, we fix the truth value of propositional symbols.

Definition 1.10 (Valuation)

A valuation (or truth assignment) v : Prop — {t,f} fora
language Lp.(Prop) is a mapping from the set of
propositional constants defined by Prop into the set {t, f}.

A valuation fixes the value of individual propositional
variables.

But we are particularly interested in the truth of formulae
like (pV ) Ar.

So, it remains to define the semantics of the Boolean
connectives.
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Again, we do only give the semantics for the basic
connectives. The semantics for the macros is derived from
these basic cases.

Definition 1.11 (Semantics v = ¢)

Let v be a valuation. Inductively, we define the notion of a
formula ¢ being frue or satisfied by v (notation: v = ¢):

v = p iffv(p) =tandp € Prop,
v | e iff noto =,
viEeVY iffviEporv =y

Givenaset X C Lp, wewritev =X iff v = p forall p € X.
We use v [~ ¢ instead of not v |= ¢.

Exercise: Write down the appropriate clauses for the other
connectives previously defined as macros.
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1.2 Propositional Logic
Truth Tables

Truth tables are a conceptually simple way of working
with PL (invented by Wittgenstein in 1918).

pla|-p|pVa|pAg|Pp—=q|pg
tit] f| t t t t
fle| t]| t f t f
t|f| f t f f f
flf| t f f t t
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Fundamental Semantical Concepts

m Ifitis possible to find some valuation v that makes ¢
true, then we say ¢ is satisfiable.

m If ¢ is true for all valuations v then we say that ¢ is valid
and write |= ¢. ¢ is also called tautology.

m A theory is a set of formulae: ' C Lpy.

m Atheory T is called consistent if there is a valuation v
with v |= T'; or, analogously, if for all valuations v we
have that v j= T.

m Atheory T is called complete if for each formula ¢ in
the language, either p € T or ~p € T.

How do these definitions relate to truth tables?
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Example 1.12 (Satisfiability)
Is p A —b satisfiable?

Example 1.13 (Validity (Tautology))

aV —a

Definition 1.14 (Propositional Tautologies)

The set of all tautologies of propositional logic is denoted
by Tautpr,.

The latter will be important in Section 2.4 where we show
how new formulae can be derived from old ones in the
modal calculus.
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Model

m Remember: The valuation fixes the truth values of the
individual propositional variables. By doing this the
valuation describes our “world”: The state we want to
model.

m Taking the truth table into account we can say, each
row is a possible state or a possible world. Speaking in
model-theoretic terms, each row is a possible model.

Therefore we can interpret a valuation v as a model 9t and
use them synonymously.
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Models Are Complete!

An extremely important property of a model (valuation) is
that it makes each formula either true or false.

Lemma 1.15 (Models Are Complete)

For any model (valuation) v and any formula ¢ over any Prop,
the following holds

Eitherv = ¢ or vl —¢

Blackboard [
D
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Semantical Consequence (1)

Given a theory T we are interested in the following
question: Which facts can be derived from 7'? We can
distinguish two approaches:

semantical consequences, and

syntactical inference.
In this section we are mainly concerned with the first notion.

Definition 1.16 (¢ Follows Semantically From T')

Let 7" be a theory and ¢ be a formula. We say that ¢ is a
semantical consequence of T if for all valuations v:

v ET implies v | ¢.
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Semantical Consequence (2)

The analogue of Lemma 1.15 is not true for theories 7. In
fact, for most theories we have

m neither T |= ¢
m norT | —¢.
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Syntactical Consequence

If new facts can be derived from old ones in an algorithmic
fashion, we say that such a fact is syntactically derivable.

What do we need to provide? How to derive new facts?

We need inference rules which allow to derive new facts
from old ones.

Consider the follwing example:

Example 1.17

We know that Bill is drunk and that if Bill is drunk he should
not drive.

Can we derive that Bill should not drive?
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In the previous example we used the modus ponens rule:

(MP) 4 1/}‘)0—>¢

where ¢, ¢ are arbitrarily complex formulae.

On top of the line are the preconditions; below the line is
the conclusion. If the preconditions are fulfilled the
conclusion can be derived.

¢ and v are not formulae of the language, but schemata.
They can be replaced by any well-formed formula of the
underlying language. In Definition 3.10 we will be more
precise about that.

Example 1.18
Blackboard.
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Expressiveness

What can we express with this language?
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The Tweety and Friends Problem
Example 1.19

You want to throw a party for Tweety, his friend Gentoo and
Tux. Unfortunately, they have different circles of friends and
dislike different penguins. Therefore, Tweety tells you that
he would like to invite either his friend the King or to
exclude Gentoo’s Adelie. But Gentoo proposes to invite
Adelie or Humboldt or both. Tux, however, does not like
Humboldt and the King too much, so he suggests to
exclude at least one of them.

m Can we model this using propositional logic?
m What do we gain by doing that?
m What kind of questions can we “ask” our model?
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Propositional Symbols

K :=invite The King - K := exclude The King
A :=invite Adelie —A := exclude Adelie
H :=invite Humboldt —H := exclude Humboldt

Problem Formalized

Tweety: K V —A :=invite The King or exclude Adelie, but
not both: =(K A -A),

Gentoo: AV H := invite Adelie or Humboldt or both,

Tux: =H V =K := exclude Humboldt or The King or both.

Resulting Formula

o= (KV-A)AN-(KAN-A)AN(AV H)A(-HV-K)

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 44



Clausthal Universi

T Clausthal

1 Introduction
1.2 Propositional Logic

K A H|KV-A|~(KA-A) VH | -HV-K || ¢
t t t t t t f f
t t f t t t t t
t f t f t t f f
t f f t f f t f
f t t f t t t f
f t f f t t t f
f f t t t t t t
f f f t t f t f

Truth tables have 2" rows, where n is the number of

propositional symbols.
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GraphCoIoring Problem

Given a fixed number £ of colors and a graph G = (IV, E),
where N is the set of nodes and E the set of edges.

Can we color each node so that

m we only use the k colors, and

m no two adjacent vertices have the same color?
Can we express this problem as a set of formulae?
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Figure: Petersen Graph
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Propositional Symbols: Prop, ;.

Given agraph G = (N, E) and a k € N, we consider |N| x k
propositional symbols that we write as p;;.
Meaning: Node i has color j

Problem Formalized: T
Each node has one color: p;; V...V pyforl <i <|N|

Each node has no more than one color: —p; V —p;m, for
1<i<|Nland1<Iism<k

Adjacent nodes have different colors: —p; V —p; for i
and j adjacentand 1 <[ <k
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Relating Graphs and Sets of Formulae

Lemma 1.20 (Formalizing Graphs)

For each graph G = (N, E) and k € N, we consider the
language Prop , and the set of formulae T ;.. Then the
k-colorings of GG = (N, E) are in one-to-one correspondence
with the models of T, ;. over the set of propositions

Propg .-

In particular: there is a k-coloring of G = (N, E) if and only
if the set T, is satisfiable.
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1.3 Inferences
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Inference Tasks: The Three Questions

Given a certain logical description ¢. The semantical
perspective allows us to think about the following
inference tasks:

I CRENS

Model Checking: Given ¢ and a model 97, does the
formula correctly describe this model?

Satisfiability Checking: Given ¢, does there exist a
model in which the formula is true?

Validity Checking: Given ¢, is it true in all models?
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Model Checking

m This is the simplest of the three tasks.
m Nevertheless it is useful, e.g. for hardware verification.

Example 1.21

Think of a model 9t as a mathematical picture of a chip. A
logical description ¢ might define some security issues. If 9t
fulfills ¢, then this means that the chip will be secure wrt.

these issues.
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Model checking for PL

Given a valuation v and a description . Is v = ¢ true?

Example 1.22
Given a model v in which aistand bis f.
Is o := (a VvV —b) — b true?

m(Tv-l)— 1

m(TVT)— L1

T — 1

m L

Complexity
Exercise.
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Satisfiability Checking

m One can interpret the description as a constraint.

m Is there anything that matches this description?

m We have to create model after model until we find one
that satisfies ¢.

m In the worst case we have to generate all models.

Example 1.23

Given a sudoku. Is there a solution and how does it look
like?

One has to describe (maybe not actually build) all models,
i.e. all possible configurations, until one is found that fulfills
all constraints.
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Satisfiability Checking for PL

Given a description . Is there a valuation v s.t. v = @ is
true?

Complexity

How complex is that?
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Validity Checking

m The intuitive idea is that we write down a set of all our
fundamental and indisputable axioms.

m Then, with this theory, we derive new formulae.

Example 1.24

Mathematics: We are usually given a set of axioms.

E.g. Euclid’s axioms for geometry. We want to prove
whether a certain statement follows from this set, or can
be derived from them.
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Validity Checking for PL

Given a description ¢. Does v |= ¢ hold for all valuations v?

Complexity

How complex is that?
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Satisfiability Checking With the
Tableaux Method

m A tableau is a tree-like structure to visualize attempts
to create a model.

m For building a tableau there exist some rules to
systematically split the input formula into subformulae.

m Each branch of this tree represents a way of trying to
build a model:

m closed branches don’t lead to models,
m open branches do.
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1.3 Inferences
Clausthal University of Technology

Rules

For splitting the input formula into subformulae we need
the following rules:

A1 1 e
P '
oV —y ==
v ol ®
Rules for —, <
Exercise.
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Example 1.25 (Satisfiability Checking)

Given the input formula (a Ac) A (—a V b). Is there a
valuation v s.t. this formula holds?

(aAc)A(—aVb)

A 2
¥

\/ (A%
@l

-1 e

—p

-2 e
)
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Validity Checking

1 Introduction
1.3 Inferences

Theorem 1.26 (Satisfiability, Validity are Dual)

A formula ¢ is valid iff = is not satisfiable.
~» We can use the tableaux method for checking validity.

Blackboard.
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Example 1.27
Given formula (a A b) — a. Is this formula valid?
formula: (aAb) —a=-(aAb)Va
negated: —(—(aAb)Va)=-—-(aAb)A—a
—2and A: aAband —a
A: aandb
Contradiction! = —(a A b) V ais valid!
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SPASS

m an Automated Theorem
Prover for First-Order
Logic with Equality,

m from MPI, Saarbriicken

\ ._.f : -
“If you are interested in sex, drugs, rock’n roll or fish [...],
you may be disappointed by the performance of SPASS. If
you are interested in first-order logic theorem proving, the
formal analysis of software, [...] modal logic theorem
proving, SPASS may offer you the right functionality.”
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1 Introduction
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DFG-Syntax

The syntax of an input file has to be of the following type:

problem ::= "begin_problem(" identifier ")."
description
logical _part
settings*
"end_problem."

The overall structure of a problem therefore contains a
description about a problem, the formalisation and further
settings.
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1.3 Inferences

The logical part is mainly defined by:

logical_part ::= [symbol_list]
[declaration_list]
formula_listx*
etc. ..

While the first two are optional the formula_list has to
describe at least one formula.

Prof. . Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 65



el TU Clausthal ! troduction

The symbol_list is constructed as follows:

symbol_list ::= "list_of_symbols."
functions*
predicatesx*
TG - o
"end_of_list."

This means, symbols can either be functions or predicates.
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formula_list ::= "list_of_formulae(" type ")."
("formula(" [term] [label] ").")x*
"end_of_list."

type ::= "axioms" | "conjectures"

Thus, a formula can be an axiom or a conjecture.
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Example 1.28 (TweetyGentooTux (1))

begin_problem(TweetyGentooTux) .
list_of_descriptions.
name ({* TweetyGentooTux *}).
author ({* Michael Koester x}).
status(unsatisfiable).
description({* - Tweety and Friends - *}).
end_of_list.
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Example 1.29 (TweetyGentooTux (2))

list_of_symbols.
predicates[(Adelie,0), (Humboldt,0), (King,0)].
end_of_list.
list_of_formulae(axioms) .
formula(or (King,not (Adelie))).
formula(or(Adelie,Humboldt)) .
formula(or (not (Humboldt) ,not (King))) .
end_of_list.
list_of_formulae(conjectures).
formula(and(Adelie,King)) .
end_of_list.
end_problem.
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Example 1.30 (TweetyGentooTux (3))

SPASS beiseite: Completion found.

The saturated set of worked-off clauses is :
7[0:MRR:3.1,6.0] || King*x+ ->
5[0:MRR:4.0,2.1] || Adeliex+ -> .
6[0:MRR:1.1,5.0] || -> Humboldtx.
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1.4 Predicate Logic
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Motivation

For the formal description of a problem we often need a
higher expressiveness than what the propositional language
offers.

Example 1.31 (Continuity)
For the definition of the continuity we need:
m Variables,
m functions,
m relations, and
m quantifiers.

w:=Ve>036>0 (Vz (| z — 2o |<9) =| f(z) — f(z0) |< €)
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Predicate logic

In addition to the propositional language (on which the
modal language is built as well), the first-order language
(FOL) contains variables, function-, and predicate
symbols.

Definition 1.32 (Variable)

A variable is a symbol of the set Var. Typically, we denote
variables by z¢, 4, . . ..

Example 1.33
p = FwoVa1(Fs (fo (z0), 21) A Py (/1))
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Functions

Definition 1.34 (Function Symbols)

Let k£ € Ny. The set of k-ary function symbols is denoted by
Func®. Elements of Func* are given by fF, f¥.... Such a
symbol takes & arguments. The set of all function symbols is

defined as
Func = LJ]-"unc’C
k

An 0-ary function symbol is called constant.

@ = Aoy (PF(fo (o), 21) A Py (f7))
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Predicates

Definition 1.35 (Predicate Symbols)

Let k£ € Ny. The set of k-ary predicate symbols (or relation
symbols) is given by Pred”. Elements of Pred” are denoted

by P, P¥.... Such a symbol takes k arguments. The set of
predicate symbols is defined as

Pred := U Pred”
k
An 0O-ary predicate symbol is called (atomic) proposition.

@ = Aoy (PF(fo (o), 21) A Py (f)))
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Syntax

The first-order language with equality Lroy, is built from
terms and formulae.

In the following we fix a set of variables, function-, and
predicate symbols.

Definition 1.36 (Term)

A term over Func and Var is inductively defined as follows:

Each variable from Var is a term.

If t,. ..t are terms then f*(t,,...,t.) is a term as well,
where f* is an k-ary function symbol from Func*.

@ = Aoy (P (fo (20), 21) A Py (f)))
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Definition 1.37 (Language)

The first-order language with equality
LrorVar, Func, Pred) is defined by the following grammar:

=Py, te) |~ | oV |z(e) [ t=r

where P* € Pred” is a k-ary predicate symbol and 4, ..., t;
and t, r are terms over Var and Func.
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1 Introduction
1.4 Predicate Logic

Definition 1.38 (Macros)

We define the following syntactic constructs as macros

(P € Pred®):

1
T
AP
=Y
Py
Vz(p)

PA-P

_\J_

(= V )
VY
(=)A= p)
—Jz(—yp)
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Notations

m We will often leave out the index k in fF and P}
indicating the arity and just write f; and P,.

m Variables are also denoted by u, v, w, ...

m Function symbols are also denoted by f, g, h, ...

m Constants are also denoted by a,b,¢, ..., ¢, cy,. ..

m Predicate symbols are also denoted by P,Q, R, . ..

m We will use our standard notation p for 0-ary predicate
symbols and also call them (atomic) propositions.
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Example 1.39

Let d be a constant, g € Func?, and f € Func®, and
P € Pred>.
Which of the following strings are terms?

f(x,a,2),y), f(z,y,9(x,y))),a)
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Binding Strength

We assume an order between the binding strength of
Boolean connectives. The order is as follows:

-, Vz, Vy bind most tightly;
then A and v;
then —.

Prof. . Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 81



e’ TU Clausthal

1 Introduction
1.4 Predicate Logic

Example 1.40 (From Semigroups to Rings)

We consider Lror({x,y,2},{0,1,+,-},{<}}, where 0,1 are
constants, +, - are binary function symbols and < a binary

relation. What can one express in this language?

Ax1: VaVyVz 4+ (y+2)=(r+y) +=2
Ax 2: Vzx (x4+0=0+4+2z) A (0+2=1)
Ax 3: Vady (x+y=0) A (y+2=0)
Ax 4: VaVy T+y=y+zx

Ax 5: VaVyVz x-(y-2)=(z-y)- 2

Ax 6: VaVyVz z-(y+z2)=x-y+x-z
Ax7: VaVyVz (y+z2) - z=y-x+z-x

Axiom 1 describes a semigroup, the axioms 1-2 describe a
monoid, the axioms 1-3 a group, and the axioms 1-7 a ring.
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Example 1.41
Formalize the following sentence:
Every student x is younger than some teacher y.

m S(x): xis astudent
m 7'(z): z is a teacher
m Y (z,y): x is younger than y

Ve(S(z) = Fy(T(y) NY (2,9))))
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Example 1.42
Formalize the following sentence:
Not all birds can fly.

m B(x): zis a bird
m F(x): x can fly

~(Va(B(z) = F(x)))

Can we do it without negation?

Jz(B(z) N =F(x))
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Example 1.43
Formalize the following sentence:
Andy and Paul have the same maternal grandmother.

m a: Andy
m p: Paul
m M(z,y): xisy’s mother

VaVyVuvv(M (z,y) A M(y,a) A M(u,v) AN M(v,p) = x = u)
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Semantics

Definition 1.44 (Model, Structure)

A model or structure for FOL over Var, Func and Pred is
given by 9t = (U, I) where
U is a non-empty set of elements, called universe or
domain and

I'is called interpretation. It assigns to each function
symbol f* € Func* a function I(f*) : U* — U, to each
predicate symbol P* € Pred" a relation I(P*) C U*; and
to each variable x € Var an element I(z) € U.

We write:
IM(P*) for I(PF),
M (f*) for I(f*), and
M(x) for I(z).
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Note that a structure comes with an interpretation 7, which
is based on functions and predicate symbols and
assignments of the variables. But these are also defined in
the notion of a language. Thus we assume from now on
that the structures are compatible with the underlying
language: The arities of the functions and predicates must
correspond to the associated symbols.

Example 1.45

= Qx) VVz(P(z,9(2)) V 32 (Vy(P(f(z),y) A Q(a)))

U=R

I(a) : {0} — R, 0 — 7 constant functions,

f):I(f)=sin: R —-Rand I(g) =cos: R = R,
={(r,s) eR*:r <s}and I(Q) =[3,0) CR,

x)=72%,1(y) =1and I(z) = 3.

H B E H ©H
~
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Definition 1.46 (Value of a Term)

Let £ be a term and 9t = (U, ) be a model. We define
inductively the value of ¢ wrt 01, written as 9(¢), as follows:

M(z) = I(x) foravariable t = z,
M(t) == I(fX)OM(tr), ..., M(t)) ift = fEts, ..., te).
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Definition 1.47 (Semantics)

Let Mt = (U, I) be amodel and ¢ € Lro.. ¢ is said to be
true in 901, written as M |= ¢, if the following holds:

M = PH(ty,...tg) iff (OM(t1), ..., TM(tx)) € M(P*)

M =~ iff Nt M =

MEeVY iffME=porMEY

M |= Ja(p) iff M/9=  for some a € U where 9tl2/4
denotes the model equal to 9 but M1/ (z) = a.

M =t = iff M(t) = M(r)

Given aset X C Lo, we write Mt |= X iff M = ¢ for all

Y E .
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Example 1.48
¢ = Q(z) VVz(P(z,9(2))) vV Iz(Vy(P(f(2),y) A Qa)))

mU=R

m [(a): {0} — R, 0 — 7 constant functions,
mI(f):I(f)=sin:R—Rand I(g) =cos: R =R,
mI(P)={(r,s) eR*:r<s}and I(Q) =[3,0) CR,
m[(r)=7%,I(y)=1and I(z) = 3.

Is ¢ true in Mt = (U, 1)?
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m M~ Q(x) because M(Q) = [3,00) and
M(z) = 5 € [3,00),

m O A Vz2(P(x,g(2))) because (M(x), M(g)(M(2))) =
(Z,cos(u)) € M(P) ={(r,s) e R* : r < s} and
cos(u) < 5 for all w.

B M E Q(a) because M(a) =7 € M(Q) = [3,00) is
satisfied.

B M = Jx(Vy(P(f(z),y))) because not for all v’ € R exists
a u € R such that
G, ) = ((tulw),af) €I = i 5) €
R? | r < s} is fulfilled (e.g. v’ = —2).

= M @
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FOL without function symbols

In the next chapter we extend ML such that it will be as
expressive as FOL.

In order to give a clear presentation of the translation it is
beneficial to first syntactically restrict FOL as much as
possible without losing expressiveness.

We will show that it is enough to consider a FOL language
without function symbols but constants.
How do we simulate function symbols?

~ blackboard

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 92



Mu TU Clausthal 1 Introduction

1.4 Predicate Logic

Let T C Lror(Var, Pred, Func) be a first-order theory (set of
formulae).

We encode function symbols as predicate symbols. This
seems to be straightforward as functions can be seen as a
special case of relations.

Example 1.49 (Function + as Relation @)

We consider the binary function
+:N? = N, (n,n) — n + n’. We can easily write this as a
ternary relation & C N*:

®(n,m,l) iff n+m =1.

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 93



i TU Clausthal 1o hgisdcton

Clausthal Unive

Let /¥ € Func® be a function symbol of arity k > 0 occuring
in some predicate symbol P' € Pred':

Plty, ooty 58, ) b, o 1)

where 1 <i < [. Now, we replace P!(...) by the following
conjunction:

vy(F(t,b = 7t;§7y) — Pl<t17 s >ti71ay7ti+17' - >tl))

where y ¢ Var is a new variable and F' ¢ Pred is a new
predicate symbol.
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Assume that there are n occurrences of % in 7. If we apply
the previous procedure to each of these n function symbols
in which language can 7" be formulated?

This procedure allows to express the theory T" over
LrorVar U{y,. ..., yn}, Pred U{F}, Func\{f"})

What did we achieve?
Removal of f*
Tradeoff: n new variables and one new predicate
symbol

We did not yet address the soundness of the translation!

By now, there is no formal relation between I’ and f*!
E.g. what happens if M(F) is not a function?
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Firstly, we need to specify that F' represents a function. So,
we have to add the following "function axiom":

V.. Ve Wy F(zq, ..., 2k, Y)

Note that such an axiom is added to a given theory for each
newly introduced predicate symbol F'.

Remark 1.50 (Macro for “there is exactly one”)
JlzQ) denotes that there is exactly one z; i.e.

Nx@ = FaVy(Q(z) A (Qy) — = =vy))
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Following this procedure recursively allows to translate the
theory T over Lror(Var, Pred, Func) to a new theory 7" over
Lror(Var', Pred’, Func®) where

Var':= VarUVar' U - - U Var® where

g Yyl :
Var' .= U {yj717 s 7yj,n,f%}
J

/]' e FuncinT

and n;; denotes the number of occurences of f;f inT.
J

Pred:= PredU{F™" | f/ € Func' N T} for1 < j < k.
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We formally define the translations given of the previous
slides.

Definition 1.51 (Translations tryars, t7preds)

Let 7" be a theory over Lo, (Var, Pred, Func). We define the
following functions:

B tryas(T, Var) = VarUVart U - - - U Var® where

Var® = {y;h o ,y;n Z}
£

f]Z € FunciNT

and 7, denotes the number of occurences of f; in T..
J

W trpreds (T, Pred) = PredU{F/*" | f] € Func’ N T} for
1<) <k
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Definition 1.52 (Translation function triheory)

Let 7" be a theory over Lror,(Var, Pred, Func). Then,
Ttheory (1) denotes the theory over

Lror (trvars(Ta Var)? trpreds (Ta Pmd)? ‘Funco)

which is constructed by recursively replacing function
symbols by the procedure described above.

Definition 1.53 (Axz(7T))

Let 7" be a theory over Lo (Var, Pred, Func). By Az(T) we
denote the set of all “function axioms” (as described above),
one for each for each (new) predicate symbol in

Pred N trpreas(T, Pred).

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 99



1 Introduction

.
= Iq U(jlag's‘t‘hal 1.4 Predicate Logic

Example 1.54

Consider the theory T'= {P(f(r(z))} over
»CFOL({x}a {P}7 {fa T})

Firstly, we remove function symbol f yielding the theory 7"
consisting of the following formulae:

Yy (F(r(z), 1) = P(y1))

Vo, 3y (F(, 1))
Secondly, we remove the function symbol r yielding theory
T":

V1 (Vy2(R(z, y2) = F(y2,91)) = P(y1))

Vo, 3y (F(z, 1))

Va1 3ya (R(, y2))
NOW, we have that 7" - ;CFOL({JI, Y1, yg}, {P, F, R}, @)
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Before we prove the main result of this section we state a
lemma which is essential for its proof.

Definition 1.55 (Model Update ¢rmodel)

Let 7" be a theory, and 20t a model over Var, Pred, Func.
According to the previous construction we modify 91 to a
model M = t7yodel (M) OVer tryars (T, Var), troreds(T, Pred),
and Func® such that 9 interprets each new predicate
symbol F arisen from a function symbol f € Func* as
follows:

M (F) = {(ur, - wegr) [ wegn = T(f)(ur, - un) }

The interpretation of the new variables can be any element:
It does not matter as each occurrence is bound.
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Lemma 1.56 (Functions Can Be Eliminated)

Let T C Lror(Var, Pred, Func) be a theory and 9t be a
compatible model. Then, triheory (T) is a theory over

Lror(trvars(T, Var), T preds (T, Pred), ]:unco)
and it holds that

m ): T iff 1T model (f)ﬁ) ): zfTTheor‘y(T) U Ax(T)'

Proof: ~~ Exercise (structural induction).

Note, that the new theory does not contain any function
symbols but constants.

This theorem shows that function symbols are not
necessary. Everything can equivalently be encoded by
predicate symbols.
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Example 1.57
Again, consider the theory T'= {P(f(r(x))} over
Lror({z},{P},{f,r}) and model 9 = (N, I') where
BEN(f): N>NM(f)lz)=z+1
B (r):N—=N,M(r)(z) =2z
mN(P)={2r+1|zeN}
m M(z) =2
Then, the new model M := tr 40/ (N) is given as follows:
B (F)={(z,x+1) |z e N} CN?
m M'(R) = {(z,27) | x € N} C N?,
m M(P) =M(P)
B M(z) =2, and M(y1), M(y-) arbitrary.
It holds that I =T iff 9 =1".
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1.4 Predicate Logic

Theorem 1.58 (Function Free FOL)

Let T U {¢} C Lror(Var, Pred, Func) be a theory. Then,
trtheory(T' U {p}) is a theory over

Lror(trvars(T, Var), LT preds (T, Pred), ‘Funco)

and it holds that

T'=¢ ff trineory(T) U Az(T U{p}) = trtheory({#})
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Proof sketch (1).

We have to show the following

VMM =T = M=)
VU (M |= trineory (T') U AfU(Tizf{SO}) = M = treneory({¢}))
where models 9t range over models over Var, Pred, and

Func and models D' over tryges(T', Var ), trpreds (T, Pred), and
Func®. O
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Proof sketch (2).

“=7: Assume M |= trineory (1) U Az(T'U {4}) and

M’ = trtheory({@})-

Let 9t be a model with trmoge (M) = M. (Such a model has
to exist because of the function axioms!) According to the

previous lemma, we have that 0t |= 7" and 91 [~ ¢.
Contradiction!

“«<": Assume that the right direction holds and that there is
a model 9t with 9 = T and M }~= . According to the
previous lemma we also have that

trmodel (M) = triheory (1) U Az(T'U {¢}) and

trmodel (M) F~ trineory ({¢})) Which contradicts the
assumption. ]
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2. Languages and Semantics

Languages and Semantics
m Basic Modal Language Lz,
m Modal Language Ly
m Extending ML to FOL
m The Standard Translation
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Content of this Chapter

Firstly, we talk about relational structures in detail and
introduce the basic modal language. Secondly, we extend
this language by multiple relations: This leads us to the
modal languages. If we extend the modal logic further, we
get a new logic equivalent to first order logic: Basic Hybrid
Logic. This raises the question as to which class of
first-order formulae does the basic modal logic
correspond? The answer can be given with the standard
translation.
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2.1 Basic Modal Language
LML
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What is a Logic?

We present a framework for thinking about logics as:
m languages for describing a problem,

m ways of talking about relational structures and
models.

These are the two key components in the way we will
approach logic:
Language:
fairly simple, precisely defined, formal languages.

Model (or relational structure):
simple “world” that the logic talks about.
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Various modal logics

knowledge — epistemic logic,
beliefs — doxastic logic,
obligations — deontic logic,
actions — dynamic logic,

time — temporal logic,

and combinations of the above.

Most famous multimodal logics:
BDT logics of beliefs, desires, intentions (and time).
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2.1 Basic Modal Language L g s,
Relational Structures
A relational structure is given by (W, {R,,...,R,}) and
consists of:
m A non-empty set I/, the elements of which are our
objects of interest. They are called points, states,
nodes, worlds, times, instants or situations.
m A non-empty set {R,,...,R,} of relations,
R: CW x W.

Example 2.1 (Finite state automaton for a"b™)

Given the formal language a"b™ with n,m > 0. The

relational structure is: /Q &

Here, r is the start state and t is the only final state.
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The Basic Modal Language

m Standard propositional logic can be seen as a
one-point relational structure.
m But relational structures can describe much more. We
can talk about points, lines etc.
m Therefore, we introduce the basic modal language.
We build the basic modal language on top of the

propositional language by extending £p1.(Prop) with two
new operators:

Possibility and necessity

O ¢ s possible
(We see one or more states where ¢ holds.)

O ¢: @ is necessary
(In all reachable states ¢ holds.)
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A Language for Relational Structures

Definition 2.2 (Basic modal language Lgwm)

Let Prop be a set of propositions. The basic modal language
Lemi(Prop) consists of all formulae defined by the following
grammar:

pu=p|lop|leVe|dp
where p € Prop.

Boolean macros are defined in the standard way.
Additionally, we have the dual O (called “box”) of ¢ :

Oy = =0 —p
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2.1 Basic Modal Language L g s,

We can talk about attributes by adding labels to nodes
(e.g. painting them in a particular color).

Example 2.3 (Colored graph I)

Imagine standing in a node of a colored graph. What can
we see?

T~

O blue @ [ )
o ®
O blue
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2.1 Basic Modal Language L g s,

Example 2.4 (Colored graph II)

We imagine standing in a node of a colored graph. What

' OP OB
&

O

O (black A red) A O ¢ green
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Colored graph Il
Example 2.5

(o)

blue — Olblack

green — [black yellow = ¢ yellow
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Definition 2.6 (Kripke frame)

A Kripke frame is given by § = (W, R) where
m W is a non-empty set, called set of domains or worlds,

m R C W x W is abinary relation.

Frames are mainly used to talk about validities: They stand
for a whole set of models.

Definition 2.7 (Kripke model)
A Kripke model is given by 0t = (W, R, V') where
m (W, R) is a Kripke frame,

m V : Prop — P(W)is called labelling function or
valuation. We also use V : W — P(Prop).

Kripke frames (resp. models) are simply relational
structures (resp. with labels)!
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Example 2.8

Consider the frame § = ({wy, wa, w3, wy, ws}, R) where
Rwiwj |ff] =4+ 1and V(p) = {wg,w3},
V() = {w1, ws, ws, wy, ws}, V(r) = 0.

q q

O —E—E—E—®
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Frames vs. Models?

Frames

Mathematical pictures of ontologies that we find
interesting. That is, frames define the fundamental
structure of the domain of interest.

For example, we model time as a collection of points
ordered by a strict partial order.

Models

Frames are extended by contingent information. That is,
models extend the mathematical structure provided by
frames by additional information.

Can Kripke models be used to interpret the propositional
language?

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 120



e’ U Clausthal o1 e
Formal semantics of L.

Definition 2.9 (Semantics 9, w |= )

Let 2t be a Kripke model, w € Wy, , and ¢ € L. ¢ is said to
be locally true or satisfied in 9 and world w, written as
M, w = ¢, if the following holds:

M, w = p iff w e Vig(p) and p € Prop,

M, w = - iff not M, w = ¢

MwE= eV iffMwpEporMwEy

M, w = O ¢ iff thereis a world v’ € W such that Rww’ and
M w' = ¢

Given a set ¥ C Ly we write 0, w = X iff M, w | ¢ for all

pEe.

What about Cly? ~~ blackboard
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Internal and Local
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Satisfaction of formulae is internal and local!

Internal: Formulae are evaluated inside models at some
given world.

Local: Given a world it is only possible to refer to direct
sucessors of this world.

How does first-order logic compare to that?
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2.1 Basic Modal Language L g s,
Some Examples

Example 2.10

3/ - ({wb Wa, W3, w47U)5},R) where R/LUZ/LU] |ff] =7+1 and
V(p) = {wa, ws}, V(q) = {wr, wy, w3, ws, ws}, V(r) = 0.

({0 ()
H 9w E00p

B w EFO00Op—p

m?wQ):O(p/\_\r)

A Nw EqAQ(@AO (QAC (QADa))))
BMEDOq
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2.1 Basic Modal Language L g s,

Vaylidit‘y and (Global) Satisfaction
We take on a global point of view.

Given a specification like ¢ := 00 —crash. In which states
should it be true?

Definition 2.11 (Validity)

A formula ¢ is called valid or globally true in a model 9t iff
M, w = ¢ for all w € Wy, We write M |= .

@ is satisfiable in 9 if M, w = ¢ for some w € Wy.

Analogously, we say that a set 3 of formulae is valid (resp.
satisfiable) in 9t iff all formulae in X are valid (resp.
satisfiable) in 9.

Validity and satisfiability are dual concepts! a
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2.1 Basic Modal Language L g s,

Example 2.12

In which models is the following formula true?

O(pP—aq) — Op—0aq)

Mw =0 (p—aq)
iff Vo' (wRw' = M, w' Ep — q)
iff Vo'(wRw' = (M, w' Ep = M, Eq))
implies Vo' (wRw' = M, w' = p) =
Vu'(wRw' = M, w' = q)
iff MwpEOp=MwE=DOq
iff MwpEOp—0q
The formula is true in any frame and hence in any model.  &»

Prof. ]. Dix, Dr. N. Bulling Department of Informatics * TU Clausthal Clausthal, WS 10/11 125



Mu TU Clausthal 2 Languages and Semantics

2.1 Basic Modal Language L g s,

Modal Consequence Relation

Up to now we verified formulae in a given model and state.
Often, it is interesting to know whether a property follows
from a given set of formulae.

Definition 2.13 (Local Consequence Relation)

Let M be a class of models, ¥ be a set of formulae and ¢ be
a formula.

m ¢ is a (local) semantic consequence of X over 91,
written ¥ = ¢, if forall 9t € M and all w € Wy it
holds that M, w = X implies M, w = ¢ .

m If M is the class of all models we just say that ¢ is a
(local) consequence of ¥ and write ¥ |= ¢ .

~ blackboard
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Example 2.14

Let M be the class of transitive models. Then:
OO0pFEMOP
Dp):MDDp,but
O0Op = Op does not hold.

Is there a class of models M for which ¢ ¢ p = ¢ p holds,
but no model in M is transitive?
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Definition 2.15 (Global Consequence Relation)

Let M be a class of models, X be a set of formulae and ¢ be
a formula.
m Recall that for Mt € M, we denote by 01 |= X that for all
weM: Mw 2.
m ¢ is a global semantic consequence of X~ over M
(written as ¥ =, ¢) if for all M € M it holds that
M = X implies M = .
m If M is the set of all models we just say that ¢ is a global
consequence of X and write ¥ =9 .
m Aformulais globally true, or valid in M, if itis true in
all models in M.
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Example 2.16

Consider the formulae p and Cp and the class M of all
models.

p does not locally imply Op in M.
p does globally imply Op in M.
Note that global validity of a formula ¢ is difficult to achieve:

m ¢ has to be true in all models 99t in 991. And truth in 9
means truth in all 91, w for all w.

In the next chapter, we will describe such formulae in much
more detail.
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Frames and Validity

In Example 2.32 we have seen that a formula can be
true/false for all valuations. We can speak about structural
properties ignoring contingent information.

Definition 2.17 (Frame Validity: § E ¢)

Let § be aframe and ¢ € L.

@isvalid in § and w € W5, written §, w = ¢, if
M, w | ¢ for all models M = (F, V) based on §F.

@isvalid in §, written § = ¢, if §,w | ¢ forall w € Ws.

Let & be class of frames. ¢ is said to be valid in &, if ¢ is
valid in each frame § € &.
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Example 2.18

Validity differs from truth in many ways:

m When ¢ V ¢ is true at point w this means: Either ¢ or ¢
is true at w.

m If o V¢ is valid on a frame § this does not mean: Either
@ or 4 is valid on §.

m Counterexample: q V —q.

Note that the last counterexample is similar to the example
on Slide 39.
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Example 2.19

Is & T valid in all frames? In which class is the formula

valid? @ @ @ @

What about [0 T? ~~ blackboard

Example 2.20
IsO Op— O ptrueinw,?

p P p

Is there a class of frames in WhICh formula is valid? ~~
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Example 2.21

In which frameis ¢ (pV q) — (O pV ¢ q) valid?
In all Kripke frames!

Let § be a frame, w € Wj, and V' be any valuation where
M = (F,V). We have to show that

Mw =0 (pVa) impliess MwpE=OpVOoq

Assume that the antecedent holds. Then, there is a state w’
with Rww’ and M, w' = p V q. Hence, we have
MwpE=OpVOa.
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Lemma 2.22 (Distribution Axioms)

The two formulae

O(pPVva) = (OpVvoa)
H(p—a) — Op—0Uaq)

are both valid in all Kripke frames §. The last formula is also
called axiom K.

~~ Examples 2.12 and 2.21. H
o
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2.2 Modal Language Ly
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Multiple Relations

We have just introduced two basic modalities:
¢ (there exists a successor) and [ (for all successors).

How many different relations can we describe?

We define a very general logic for talking about relational
structures with multiple relations.
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Multiple Modal Operators
A graph contains multiple relations:
R1,R2,Rs, ..., Riikes, Rdislikes - - -
and for each relation we need a diamond operator

(1),(2),(3),...,(likes), (dislikes), . ..

Sometimes we also write (R;) for (i).
Set of modalities: Op

(m)e : There is a m-sucessor in which ¢ holds.
[m]e : Every m-sucessor satisfies .

m € Op
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Syntax

Up to now we considered binary relations: R C W x W

We generalize this to arbitrary arities. Let Op be a set of
modalities.

Can you think about a sensible ternary relation?

Definition 2.23 (Modal Similarity Type)

A modal similarity type is given by 7 = (Op, p) where Op is
a non-empty set and p is a function p : Op — N.
We also write m € 7 instead of m € Op.

Remark 2.24

If the arity is clear from context we omit the function.
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Definition 2.25 (Modal Language L)

Let 7 = (Op, p) be a modal similarity type and Prop be a set
of propositions. The modal language Lmy (7, Prop) is given by
all formulae defined by the following grammar:

pu=p|-@|leVe|mip ...,
—

p(m)-times
where p € Prop and m € Op.

Definition 2.26 (Macros)
[m](e1, .-+, n)i=(m) (=1, . .., —pn)

[m] is called the dual of (m) and vice versa.
What can we model with this language?
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Definition 2.27 (7-Kripke Frame)

A 7-(Kripke) frame is given by § = (W, {R,, | m € 7})
where

m IV is a non-empty set, called set of domains or worlds,
m R, C W+ are (7(m)+1)-ary relations for m € .
7 is @ modal similarity type.

7(m) + 1 corresponds to the reachable states 7(m) with (m)
and the current state (+1).

Frames are mainly used to talk about validities: They stand
for a whole set of models.

Kripke frames are simply relational structures!
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Example 2.28
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We extend frames by valuations for propositional variables.

Definition 2.29 (7-Kripke Model)
A 7-(Kripke) model is given by 9t = (W, {R,,, | m € 7}, V)
where

B (W, {R,, | m € Op}) is T-frame

m V : Prop — P(W) is called labeling function or
valuation

Kripke models are simply relational structure with labels.

Remark 2.30

Sometimes we use an analogous definition of valuations:
Vi W — P(Prop).
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Formal semantics of L.

Definition 2.31 (Semantics M, w = ¢)

Let 9t be a Kripke model, w € Wy, and ¢ € L. ¢ is said to
be locally true or satisfied in 9 and world w, written as
M, w = o, if the following holds:
N, w = p iffw e Vip(p) and p € Prop,
M, w = - iff not M w = ¢
Mw =V iff MwbEporIM w1
M, w = (m)(p1, ..., 0-m)) iff there are worlds
Wy, ..., W) € W such that R, ww, ... w. and M, w; = ¢
foralli=1,...,7(m)
Given a set ¥ C Ly we write 01, w |= X iff M, w = ¢ for all
Y E .
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Some Examples

Example 2.32

Three unary operators: (a), (b), (c)
Three relations: R,, Ry, R.

O O O8
What can be said about (a)p — (b)p?

It does not depend on the valuation!

Assume V(p) = {wa, w3}?
What can be said about (a)p — (a)(b)p?

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 144



Q@!ﬁb TU Clausthal 2 Languages and Semantics

Clausthal University of Technology 2.2 Modal Language Ly

Example 2.33

Binary operator: (bin) Ternary operator: (ter)
Relatlons: Rbin - {<w17 wa, w3>}a Rter — {(wla W, W3, w4)}

bin, ter

What about (bin)(po, p1) — (ter)(po, p1, p2)?

Each triangle starting in w is part of a rectangle starting in it.
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2.2 Modal Language Ly
A Temporal Logic
Reasoning about time:

Example 2.34 (The Basic Temporal Language)

Two unary operators: Op = {F, P}.

Modal similarity type: 7 = ({F, P}, {(F,1),(P,1)}).
(F)¢ : ¢ will be true at some Future time point.
(P)p : There is a Past time point, where ¢ is true.
[Fle : ¢ will always be true.

It is common to use ¢ for (F'), O for [F], and ¢ ~! for (P).

What does the following formula express?

O lo =00 ' : Whatever has happened will always
have happened.

~ blackboard
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Example 2.35 (Bidirectional Frames, Models)

Recall the basic temporal logic. How many relations do we
need?
Rr and Rp should satisfy the following property:

Vay(Rrry <> Rpyz)

Given one, the other is fixed! We call this kind of frame
bidirectional.

What other conditions should be fulfilled to model “time”?
~ Exercise
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A Logic About Programs
Verification of programs:

Example 2.36 (Program 7)

T =
while true do
if ) then
p— ¢
Y= p
end if
if ¢ then exit
end if
end while
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Example 2.37 (Propositional Dynamic Logic)

Infinite collection of diamonds: Op = {r | 7 is a program}

What do the following operators express?

()¢ : Some terminating execution of 7 leads to a
state with information ¢

(7] : Each terminating execution of 7 leads to a
state with information ¢

It would be nice if we could combine simple programs to
complex ones:

U7 : Nondeterministic choice
m; 7' : Sequential composition
7* : Iterative execution
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What do the following statements express?

(m%)p <> p V (m; 7" )p : A state with information ¢ is reached
by executing 7 a finite number of times iff the
current state satisfies o or we can execute 7
once and reach a state in which ¢ holds by
executing 7 a finite number of times.

[7*](¢ = [7]p) = (¢ = [7*]p) : ~ Exercise.

Do these formulae always hold?

How can we actually use this logic?
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Example 2.38 (Regular Frames and Models (1))

How should models for roc look like? A relation for each
program?
We can create new relations by existing ones:

R7r1U7r2 - R7r1 U sz
Rm;m - Rm © Rﬁz
Ree = (Rﬂ)*
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Example 2.39 (Regular Frames and Models (2))
Let IT be the smallest set of programs containing the basic
programs and which is closed under U, ;, and *. Then a
regular frame for IT is a labeled transition system
(W, {R | m € I1}) such that:
m R, is an arbitrary binary relation for each basic
program a, and
m for all complex programs 7, R is the binary relation
inductively constructed with the rules above.
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Syntax & Semantics: Convention

To make life simpler we assume the following:

We have one unary modality (|Op| = 1, say Op = {m},
with arity 1)

We use ¢ (resp. OJ) for (m) (resp. [m]).

We do not explicitly mention the modal similarity type
and drop 7 from all Definitions, if it is clear from
context.

We use R for the binary relation between worlds. We
use both notations Rw;w, and w; Rw, to denote that
world w, is reachable from world w;.
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2.3 Extending ML to FOL
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Modal vs. First-Order Language?

What are the main differences between the languages?

First-order logic
contains constants.
contains predicate and function symbols.
allows global quantification.

On the other hand, modal logic
has modal operators.
is only local.

How can we extend our current modal language to FOL?
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Modal Language vs. First-Order Logic

Function symbols and k-ary relation symbols for k£ > 2 can
be encoded as relations as shown in the previous chapter.
Therefore, we restrict ourselves to FOL without function
symbols but constants.

The main idea is that we identify elements from the
first-order domain (constants) with worlds in the Kripke
model.

In the following we introduce syntactic means to refer to
these worlds.
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Basic Hybrid Language
Modal logic does not allow to name worlds. We cannot say

that some formula holds at a particular world.

For example, we cannot say that a specific state is blue and
black.

We introduce the basic hybrid language which has the
described feature.

What does a unique name for a point correspond to?

Constants!
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We add a second sort of propositional symbols to our
modal language.

The new symbols Nom = {i,j, k,1,...} are called nominals
and are used as labels for points. We require that they are
disjunct from the propositional symbols, i.e.

Nom N Prop = . In the models nominals are interpreted as
singleton sets, i.e. they are true at exactly one world.

In the language we treat nominals as ordinary propositions!

What can you say about the validity of the following
formulae?

O(rApP)AO(rAg) = O (PAQ)
O@EAP)AO(iNg) — O (pPAQ)
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What do we have to ensure with respect to the labeling
of nodes by nominals?
Each nominal has to be true at exactly one world!
Given a Kripke model 2t we call V(i) the denotation of i
where i € Nom.

In order to capture FOL, we must be able to “jump to a
specific world”. Therefore we use the satisfaction
operators Q;:

@, iff p holds at the world labeled with 1.
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Syntax of the hybrid language

Definition 2.40 (Basic Hybrid Language Lgy)

Let Prop be a set of propositions, Nom be a set of nominals,

and 7 = (Op, p) be a modal similarity type. The basic hybrid
language Ly (7, Prop, Nom) is given by all formulae defined
by the following grammar:

s=ple| o \Y m)(p, ..., @F
pu=pli|-p|eVel| (m)(e ©) | Qi

p(m)-times

where m € 7, p € Prop and i € Nom.
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Semantics

We say that a Kripke model is hybrid if, and only if,

V' : Prop U Nom — P (W) and each nominal is true at exactly
one world, i.e. [V (i)| = 1 forall i € Nom.

In the following, when considering the hybrid language we
implicitly assume that the models are hybrid.

Definition 2.41 (Semantics of LgyL)

Let M1 be a (hybrid) Kripke model, w € Wyn, Nom a set of
nominals and ¢ € Lgy,.

The semantics of the basic hybrid language extends the
semantics of modal logic by the following two clauses:
M, w =i iff V(i) = {w} and i € Nom

M, w = Qp iff M, w' = ¢ where V(i) = {w'}
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Comparing Nodes
Example 2.42 (Colored Graph II)

How to say: “We can come back to the same node”?

I" (@)
@0 0000 ‘o
- T
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Example 2.43

In ML we have seen how to describe frame properties by
modal formulae. It turns out that the hybrid language is
much more expressive in that respect. Consider a frame

(W, R) and give the corresponding property of R to each of
the following formulae:

i — O i (reflexivity)

O O 1 — ¢ i (transitivity)

O i — O ¢ i (density)

i — ¢ 4 (irreflexivity)

O O i — =0 i (intransitivity)
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Simulating FOL: 1. Attempt

We construct the following two translations
TR: Transformation of FOL models to Kripke models

tr: Transformation of FOL formulas to Modal
formulas

such that for a given FOL model Mo, and all FOL formulas
w it holds that

MeoL = iff TR(MpoL), w = tr(p)
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Translations of Models

Let 9 = (U, I) be a FOL model over Pred without function
symbols (constants are allowed).
We construct OV := TR(9M) = (W, R, V) as follows:
W = U U{wy} where wy is a new world not occurring
inU.
For each ¢ € Func® U Var label the world I(c) with ¢, i.e.
Ve) :={I(c)}. We set Nom = Func® U Var.

For each P € Pred' we label each world w € 9t(P) with
P and for p € Pred’ label w, with p.

For each P ¢ Pred” with k > 1 we add a k-ary relation
Rp to R (resp. to Op) such that Rpw w, . .. wy iff
(wy,we, ..., wg) € M(P).

We shall also identify Rp with P if no confusion occurs.
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2.3 Extending ML to FOL

Example 2.44

Consider the follwing FOL model: Mt = ({1, 2,3}, ) over
Func® = {a,b}, Var = {x}, Pred" = {P'}, and Pred* = {P?}
with

I(PY) ={1,3}

[(P2 = {(172)7(1>3)}
I(a) =2

@) =1

I(z)=2

Is the following formulae true in 9t?

JxP(b, z) A Vy—P(z,b)
How does the Kripke model look like? ~~ blackboard
[ <
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Translation tr : Lror — LphL
Equality: tr(s=t) := Qg
Unary predicates: tr(P(z)) := Q,P
Predicates: tr(R(xy,...,zx)) := Qu (R)(x2,...,xk)
Negation: tr(—y) := —tr(p)
Or: tr(p V) :=tr(e) V tr(y)
Quantification: tr(3zy) =7

We cannot yet say: There exists a world such that...!
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Renaming worlds

Recall the semantics of FOL:
M= vy iff M

for some a € U where 9t1*/9 denotes the model equal to 9t
but M/ (z) = a

We need a model update similar to the first-order case.
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Definition 2.45 (Model Update 9tl/*])

Let 9 be a hybrid Kripke model, w € Wy, and i € Nom
The define M11/*! to be the model equal to M but the
denotation of i is set to w, i.e. Viyii/uwi (1) = {w}.

Note that we use the same notation as for FOL.

M

o/ w]

Example 2.46

We still lack a syntactic counterpart!
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Extended syntax

Definition 2.47 (HL With Renaming Ly r)

Let 7 = (Op, p) be a modal similarity type and Prop be a set
of propositions, and Nom be a set of nominals. The hybrid
language with renaming Lyr(7, Prop, Nom) is given by all
formulae defined by the following grammar:

pu=i|p|p|leVel|lmp...,0) | Quplrp
——

p(m)-times

where m € 7, p € Prop and i € Nom.
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Semantics

Definition 2.48 (Semantics of LyRr)

Let 9t be a (hybrid) Kripke model, w € Wy and ¢ € Lay,.
The semantics of the basic hybrid language with renaming
extends the semantics of the hybrid language by the
following clause:

M, w = rip iff M/ w = o for some w' € W.

Consider the analogy: Jzp(x) vs. 7;p(i)
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Simulating first-order logic

Prop. symbols: tr(p) := Q,,p

Equality: tr(s =t) := Q,t

Unary predicates: tr(P(z)) := Q,P

Predicates: tr(R(z1,...,2k)) := Qu (R)(z2, ..., Tx)
Negation: tr(—y) := —tr(p)

Or: tr(pVy) :=tr(p) vV tr(y)

Quantification: tr(3zy) := rytr(yp)
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Example 2.50

Let ¢ := Jx(banker(z) — Jy(customer(y) A spoofs(x,y))). We
translate ¢ to a ML formula.

tr(3z(banker(x) — Jy(customer(y) A spoofs(z,y))))
«(tr(banker(z) — Jy(customer(y) A spoofs(x,y))))
+((tr(banker(z)) — tr(Jy(customer(y) A spoofs(x,y)))))
+(Qgbanker — tr(Jy(customer(y) A spoofs(x,y))))

r
o
o
r.(Qgbanker — r,(tr(customer(y) A spoofs(x,y))))
r.(Qgbanker — r,(tr(customer(y)) A tr(spoofs(x,y))))
r.(Qgbanker — r,(Q, customer N\ Q,(spoofs)y))
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Example 2.51

Consider the model and formula from

Example 2.44:90 = ({1, 2,3}, I) over Func® = {a, b},
Var = {x}, Pred' = {P'}, and Pred® = {P?} with

1(PY) ={1,3}
1(P*) ={(1,2),(1,3)}
I(a) =2
I(b) =1

1( =5

Construct tr(¢) where
¢ = 3xP(b,x) AVy—P(z,b)
and show that TR(OM), wy = tr(p). ~ blackboard
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Theorem 2.52

Let Func contain only constants and let
v € Lror(Var, Pred, Func). Then, we have

MeoL = iff  TR(MroL), wo = tr(p).

By structural induction. ~ Exercise O
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Translation: The Other Direction

Have a closer look at the semantic clause of the hybrid
modal language:

M, w E (R)yp iff there is an w’ € Wy s.t. Rww' and
Muw' =

In which formal language can this be expressed?
In FOL! The translation is immediate:
tr,((R)p) = Fw' (B(w, w') A try(p))

We need v’ in tr,, to keep track of the current world.
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Translating models

Let Mt = (W, {R, | i € 7}, V) be a 7-Kripke model. We
construct the following FOL model 9V = (U, I):

U=W

Pred* := Prop

Var .= Nom U {xy,2z2,...}

Func® =W

I(p) := V(p) for p € Prop

A (i) :=w with V(i) = {w} fori € Nom

I(w) :==w

B Pred” .= {Pg | Ris a k-ary accessibility relation} (k > 2)
B I(Pg) := Rfor P € Pred®
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2.3 Extending ML to FOL
Translating models

Example 2.53

Let Prop = {p} and M = ({wy, wq, w3}, R, V) be a Kripke
model with R = {(ws,w3)} and V(p) = {ws}.

Which of the the following hold?
M, w1 = ri(R)p
M, wy = r;Q(R)p

Construct the FOL-model TR("M). ~ blackboard
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2.3 Extending ML to FOL
Translating formulae

Definition 2.54 (tr, : Lair — LrorL)

We define the translation recursively as follows:
Atomic Propositions:  tr,(P) := P(z)
Nominals: tr,(i) := (x = 1)
Negation: tr(—p) := —trz(p)
Disjunction: tr (e V1) := try(¢) V trz(¢)
Modality: tr.((R)(¢1,...,¢r)) ==

Fy1 - Fyk(Pr(@, 41 - ye) AN, try:(0i)
Satisfaction operator: tr,(Q;p) = tr;(v)
Renaming: try(r;p) := Fi(tri(p))
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Translating models

Example 2.55

Consider the model and formulae from Example 2.53:
mt? Wy ): TZ<R>p
M, wy = r; Qi (R)p

Translate the formulae to FOL and check whether they are
true in the FOL-model TR(9M). ~ blackboard
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Theorem 2.56

Let o € Lyr(7, Prop, Nom) and 9 be a compatible T-Kripke
model. Then, we have

Mw =@ iff TR(OM) = try,(v).

By structural induction ~ Exercise O
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2.4 The Standard Translation
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2.4 The Standard Translation
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The function tr, : Lyir = Lror is @ mapping from Ly to
Lror given a world w of the Kripke model. Here, we would
like to define the correspondent language of the (basic)
modal logic.

We would like to identify to which sublanguage of
first-order logic the (basic) modal logic corresponds to. Of
course, this should be a strict subclass of Lro;.
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Definition 2.57 (Correspondence Language £!)

Let Lmi(7, Prop) be given. The first-order language
corresponding to Ly (7, Prop), L:(Prop), is built over the
unary prediactes

Pred' = {P; | p; € Prop}
and the following n + 1 ary predicates
Pred"™ = {P,, | m € 7 and 7(m) = n}.

That is, for each n-ary modal operator m an + 1 ary
predicate symbol is defined.

©(x) denotes a first-order formula with one free variable,
that is, a variable which is not bound by any quantifier.
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We define the standard translation ST, as the restriction of
tr, to Ly(T, Prop).

Definition 2.58 (Standard Translation ST',)

Let z be a FOL variable. The standard translation
ST, : Ly (T, Prop) — ,Ci(Prop)

is defined as follows:

T.(p) = P(x)
( p) = ST ()
( V) = STu(p) V ST.(¥)
STy ({m >(901,‘-.,90n))= 1o 3Yn(Pr(Z, Y15 -« Yn) A

STy1(‘P1) A= ASTy, (¢n))
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Theorem 2.59 (Standard Translation = ML)

Let 9 be a T-model and 90 the FOL interpretation of 9%. Then,
the following holds

M, w = @ iff M/ = ST, ()
M E= o iff M EVeST.(p)

Proof: ~~ Exercise
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3. Basic Modal Logics

Basic Modal Logics
m Inferences and Properties
m Normal Modal Logics
m Sound- and Completeness
m Finite Models via Filtration
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Content of this Chapter (1)

In this chapter we introduce the most important modal
logics: normal modal logics. We define them, by giving
appropriate axiom systems. To this end, we have to
introduce proofs in modal logics (Definition 3.13). Then we
link these axioms to properties of the fransition relation
between worlds. It is much easier to work with these
semantical notions, than with proof-theoretical means.
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Content of this Chapter (2)

After stating and discussing the implications of the sound-
and completeness results, we formally prove them using the
idea of canonical models: Any modal logic is strongly
complete wrt its canonical model. Most completeness
results for modal logics (wrt. a particular class of frames)
are instances of this theorem. We end this chapter with a
discussion of the finite model property and a method, the
filtration theorem, to obtain finite models. Using this
method, many modal logics can be shown to be decidable.
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3.1 Inferences and Properties
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The Story So Far ...

We have introduced several languages: e.g, the
m propositional language,
m basic modal language,
m modal language,
m first-order language.

Truth of formulae in these languages was defined by
models: in a semantic way. Using this notion, we purely
semantically defined when a formula follows from a set
of formulae:

Y Epiffforallmodels Mt: MEY=ME ¢

In modal logic, we also distinguished between local and
global consequences: Truth in 91, w and truth in 1.
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Syntactic Inferences

First Question

Given a class F of frames (or models). Which formulae are
valid in all these frames?

Note that there might be classes of frames, where this
problem is undecidable: We can not find an algorithm to
determine whether a given formula is valid or not.
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Second Question

Can we define a calculus (like the Tableaux-method) to
systematically produce all valid formulae?

We will indeed define several systems of axioms, which

produce exactly the valid formulae in particular classes of
frames (see Theorem 3.29).
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3.1 Inferences and Properties

Valid Formulae in an Arbitrary Frame

Which formulae are true in the class of all frames F?
Axioms: Which formulae from propositional logic are
valid in it?
Certainly the tautologies of propositional logic.
And the axiom K:

O(p—aq —(EHp—=0aq)
Closure: What about Modus Ponens?

What about substitution? We know that p V —p
is a tautology. Then so should ¢ vV —¢ be, where
¢ is any modal logic formula.

Necessitation: Suppose the formula ¢ is true in the frame
F. Then so is (o.

We take a closer look at these (inference) rules soon.
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Validity in a Particular Frame (1)

Suppose we do know something about a particular frame.
Serial: Frames where the relation R is serial:
For all w there is a w’ with wRw'.

Reflexive: Frames where the relation R is reflexive:
For all w: wRw.

Transitive: Frames where the relation R is transitive:
For all w, w', w”: wRw" and w'Rw"” implies
wRw”.

Euclidean: Frames where the relation R is euclidean:
For all w, w', w”: wRw" and wRw" implies
w'Rw".

Symmetric: Frames where the relation R is symmetric:
For all w, w": wRw'" implies w'Rw.

Remember Slide 127 where we discussed transitivity.
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Varlidit'y in a Particular Frame (2)

Definition 3.1 (Important Formulae)

We assume that we have available one modality operator O
(corresponding to [J'). Later, we consider logics with several
operators each of which can satisfy certain properties. When
considering only one modality, we write (J instead of O.

K O(p—q)— (Op— Oq)
D -O(pA-p)

T Op—p

4 Op— 00p

5 -Op— 0-0p
B p— O0-0-p
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3.1 Inferences and Properties
Validity in Several Frames (3)

Lemma 3.2 (Appropriate Frames)

Let (W, R) be a Kripke frame. Then the following holds:

Ki (W,R)EO(p—q)— (Op—La).

D: (W,R) = -0 (p A —p) iff R is serial.

T: (W,R) =0p — piff R is reflexive.

4: (W,R) E0Qp— O0Opiff R is transitive.

5: (W,R) E-Op— 0O-0Opiff R is euclidean.
B: (W,R) =p— OO piff R is symmetric.
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Validity in Several Frames (4)

Proof: (1).

The first fact has been proved in Lemma 2.22.

We identify in Kripke models (W, R, V') the mapping V'
with subsets S of /: V/(p) = S (note that we only need to

consider V' that make p true or not).
Then (W, R) = -0 (p A —p) iff

VS CWVYw e W (z(wRzx A (x € SVaxgSs)))
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Validity in Several Frames (5)

Proof: (2).

(W,R) EOp— piff VS C WVYw € W:
Ve(wRx -z €S) > weS.
(W,R) =0 p— O0Opiff VS C Wyw € W:
Ve(wRz — z € §) =»Ve(wRx—Vy(zRy—y € 9)).
(W,R)E-Op—-0O-0piffvVsS C Wvw e W:
Jrx(wRzx Az & S)—=Ve(wRe—Jy(xRy Ay &€ 59)).
W,R)Ep—-0O0piff VS C WYw e W:

(we S) = Vex(wRx — Jy(xRy N y € 9)).
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Validity in Several Frames (6)

Proof: (3).

The proof is now simple. The “<” is trivial. The other
direction is by choosing the right Kripke model (resp. the
right set S C W). For reflexivity and transitivity, we choose
S :={x : wRx}. For euclidean, we set S := {w"}. For
symmetry we set S := {w}. O
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Recall that
® a binary relation R is irreflexive, if there is no = with
xRz,
m a preorder R is a binary relation that is reflexive, and
transitive,

m a partial order R is a preorder that is antisymmetric
(i.e. VaVy((zRy AyRx) — = = y)),

m a finite partial order R is a partial order defined on a
finite set,

m an equivalence relation R is a preorder that is
symmetric (i.e. VaVy(zRy — yRx)).

Lemma 3.3 (Characterising Equivalences)

A binary relation is an equivalence relation if and only if it is
reflexive and euclidean.

~ Exercise D
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Preserving Truth/Validity
Definition 3.4 (Preserving Frame Validity)

An inference rule £:2:£= s called frame validity preserving,
if given a frame F with F = o1 A ... A g, then F =1 as
well.

Similarly, a rule is called locally fruth preserving for a class
of models M, if for 9t € M and all w € Wyy it holds that
M w =1 A... A g, implies M, w = 1.

Analogously, a rule is called globally truth preserving for a
class of models M, if for 9t € M it holds that

M =1 A... A, implies N = .
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3.1 Inferences and Properties
Modus Ponens

This rule was already introduced on Slide 41.

Definition 3.5 (Modus Ponens)

Let o, ¢ € Lm. Modus ponens denotes the inference rule
which allows to derive ¥ from ¢ and ¢ — ¥:

o ey
(]
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Example 3.6

We consider the set 7' = {p, 0 —p vV ¢ q}. Atfirst sight,
Modus Ponens does not seem to be applicable. However

O —p VO qisequivalentto Up — O g

Therefore we can derive from 7" the formula ¢ q.

Note that if we look at it from a semantical perspective, the
derivation is trivial: If p is true in all reachable worlds, then
itis also true in at least one reachable world.
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Lemma 3.7 (MP is Locally Truth Preserving)

The Modus Ponens rule is locally truth preserving and
therefore also preserving frame validity.
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3.1 Inferences and Properties
Generalization (Necessitation)

There is another important rule: The generalization or
necessitation rule.

Definition 3.8 (Necessitation (N))

The necessitation rule says that whenever ¢ is valid then so
is O ¢:

R

Uy
It is easy to see that necessitation preserves frame validity.
But differently from the modus ponens rule, it is not locally
truth preserving!

~ Exercise: Prove that the rule is frame validity preserving,
but not locally truth preserving!
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3.1 Inferences and Properties

A first Application of Necessitation

We are using the necessitation rule to prove the following

Lemma 3.9 (An (In-)Formal Proof)

The formula O (¢ A ¢') — (O ¢ ADO ¢') is valid in all frames.
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We could show this directly, as in Lemma 2.22. However, in
view of the formal calculi to come, we choose a more
syntactical method.
(pN¢')— ¢and (¢ A ¢') — ¢ are propositional
tautologies.
Using necessitation, we have O ((¢ A ¢') — ¢) and
O(¢Ag¢)— ).
Using the Distribution axiom from Lemma 2.22, we get
O@A¢)—>0O¢andO(pA¢) —O¢.
The last step follows by using the propositional
calculus: If we have ¢ and ¢’ then we also have ¢ A /.
O
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3.1 Inferences and Properties

Inference Rules versus Implications

What about the following deduction?

What Went Wrong?

Let us assume that p is true (although it is obviously not
valid on all frames). Then we use necessitation and obtain
O p. So, we have proven that p — O p!
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Uniform Substitution

The last method to obtain new formulae from old ones is
called uniform substitution. This is the formalization of
formula schemata.

Let us consider the tautology p — —p. Itis easy to see that it
does not depend on the particular proposition p. We should
be able to substitute any formula for p. The notion of
uniform substitution formalizes this observation.

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 210



!@KE TU Clausthal 3 Basic Modal Logics

3.1 Inferences and Properties

Definition 3.10 (Uniform Substitution)

A basic substitution is a mapping o : Prop — Ly (Prop). A
basic substitution induces a (uniform) substitution

(-)o* : Lm(Prop) — LmL(Prop)

over formulae as follows:

(L)o* = L

(p)o™ = o(p)

()™ = =(p)o”
(pV)o™ = (p)o™V (P)o

)
(O p)o” = O (p)o”

We identify o* with o and omit the parentheses. a
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Definition 3.11 (Substitution Rule (Subst))

We say that ¢ is a substitution instance of ¢ if there is some
uniform substitution o* such that v = po*.
The uniform substitution inference rule is as follows:
¥
po*

where ¢* is some uniform substitution.

Example 3.12
The formula Oy vV =0y is a substitution instance of p V —p.

And so is the formula OO0 —¢ vV =0 —p.
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Provability

Definition 3.13 (X-Proof, X)

Let X be a set of modal formulae and Rul a set of inference rules. A
ER”'—pr‘oof for ¢ is afinite sequence of formulae ¢, ..., ¢, s.t.

» = ¢y, and

p; is either from X, or a propositional tautology or obtained
by applying the rules in Rul to some formulae ¢; (j < 7).

We consider Rul = {MP, Subst} and, for normal modal logics,

Rul = {MP, Subst, N}. When clear from context, we write 3 for
the calculus based on Rul. Formulae ¢ € ¥ are called axioms of X.
We write -5, . For a set I of formulae, we also write I" 5, ¢ for
Fsur ¢ ¢ can be proved from I' in the system X.
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3.1 Inferences and Properties

We have already seen an informal proof of the statement in
Lemma 3.9. The reverse implication is also true and we give

a formal proof of it. The only axiom we need is the formula
K introduced on Slide 194.

Lemma 3.14 (Consequence of Axiom K)
Fig (Do A0 ¢) =D (oA )
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3.1 Inferences and Properties

L O(p—q)— (Op—0aq)

2. OB—-AAB)—
(OB — O (AAB))

3. A»(B— (AAB))

4. OA—(B—=(AAB)))

5. A= (B—(AAB))) —
(OA—-0O(B— (AAB)))

6. OA — (OB — (AAB)))

7. OA - (OB—O(AAB))

8. (HAAOB) - O(AAB)

Axiom K

Subst. on 1.: B/p, AAB/q

Tautology

Necessitation on 3.

Subst. on 1.

MP on 4. and 5.

Prop. Logic on 6. and 2.
Prop. Logic on 7.

Here we have used two meta steps, namely 7. and 8. Both
can be replaced by proofs (several steps) to obtain a proof

wrt. Definition 3.13.
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Theorem 3.15 (A Proof from {K})

F{K}D((P1/\.../\g0n)<—>(D(pl/\.../\D(pn).

Proof.

Using Lemmas on Slide 194 and Lemma 3.14, we have the
equivalence of the formulae for n = 2. Then we use this
equivalence n — 1 times and get the result. H
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3.1 Inferences and Properties

Finally, a modal logic is a set of formulae with the following
properties

Definition 3.16 (Modal Logics)

A modal logic A is a set of modal formulas that
contains all propositional tautologies,
is closed under modus ponens, and
is closed under uniform substitution.
Elements of ¢ € A are called theorems of A, we write -, .

How many formulae does a modal logic contain?

Can a modal logic be represented by a finite set?
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The following result is obvious: A set of formulae A is a
modal logic iff A is closed under all A-provable formulae.

Definition 3.17 (Axiomatization)

Let A be a modal logic and ¥ be a proof system over X such
that A and the set of all X-provable formulae coincide.
Then, we say that X is an axiomatization of A. If 3 is finite
we call it a finite axiomatization.

Note that we do not require an axiomatization for the
underlying propositional tautologies: We simply took all of
them (in part 2 of Definition 3.13).
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Provable formula

Note that if a formula can be proved in a calculus 33, then its
proof requires only finitely many formulae. Even if we
consider infinitely man axioms, a proof can only require
finitely many of them.
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Sound & Completeness

Definition 3.18 (Semantic Set Ar)

Let 7 be a class of frames (or models). We define A~ to be
the set of all valid formulae over F, i.e.

Ar={p|FEpforall e F}

Is Ar a modal logic?

In the following we are interested in the following question:
Are there syntactic mechanisms for generating A z?
( Fis a class of frames)
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Definition 3.19 (Soundness)

Let F be a class of frames or models. A modal logic A is
sound with respect to F if for all formulae ¢

o p implies =x ¢.

Recall that =7 ¢ means forall § € F: § = .
Recall also that in case § is a frame, § = ¢ means that ¢ is
true in all models that can be built on §.

Exercise: Show that this definition is equivalent to the
following: A is sound wrt. Fiff A C Ax.
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Definition 3.20 (Completeness)

Let F be a class of frames or models.
A logic A is strongly complete with respect to 7 if for any
set of formulae I' U {¢} it holds that

I' =7 ¢ implies " 5 .

Alogic A is weakly complete with respect to 7 if for any
formula ¢,
=7 ¢ implies F, ¢.
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3.1 Inferences and Properties

m All the logics that we consider in this lecture are
strongly complete wrt. a certain class of frames. And
thus they are also weakly complete.

m But there are also logics that are only weakly complete
wrt a class of frames and not strongly complete (see
Example 3.56).

Exercise: Show that weak completeness
is a special case of strong completeness.

is equivalent to the following:
A is weakly complete wrt. Fiff A C A.
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3.2 Normal Modal Logics
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Normal Modal Logics

m We have defined modal logics in Definition 3.16.

m We noticed that Axiom K: O (p - q) - (Op—0q)is
true in all Kripke frames.

m We also showed that necessitation is a valid rule for
Kripke frames.

Definition 3.21 (Normal Modal Logic)

A modal logic A is called normal if it contains the formula
(K) O(p = q) = (Op — Ua)
and is closed under necessitation.

This is how we defined a modal proof in Definition 3.13:
With ¥ containing K and all three rules of inference.
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Lemma 3.22 (K)

There is a smallest normal modal logic. We call it K, in honor
of Saul Kripke.

Proof.

The intersection of two normal modal logics still satisfies all
the properties of a normal modal logic (closure
properties). O

Is there also a greatest normal modal logic?
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3.2 Normal Modal Logics

Definition 3.23 (Consistency, A-consistent)

A modal logic A is consistent, if it does not contain a

formula ¢ and its negation —¢.

A set of formulae @ is A-consistent, if the modal logic
defined by A extended by the axioms & is consistent.

We call a logic that is not consistent also inconsistent.
The following is easy to show purely syntactically.

Lemma 3.24 (Ex Falso Quodlibet)
The following is equivalent:

m A is inconsistent.

m A is the set of all formulae.
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Lemma 3.25

For any normal modal logic A the following implication holds:

Fa @ <> ¢ implies Fy O ¢ < O .

Corollary 3.26

For any normal modal logic A the following implication holds:

Fa @ <> ¢ implies Fp O ¢ <> O .
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WiIlog it suffices to show -, O ¢ — O ¢ (by symmetry).

From the assumption it follows that -, ¢ — ¢ and thus, by
necessitation, -, [ (¢ — v). By normality, we have

Fa O e — O

The corollary follows by purely propositional logic
transformations (—y instead of ¢ and —) instead of ) and
the fact that ¢ <> ¢ is equivalent to ¢ <> —¢)) and the
definition of { . O
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In fact, the proof of the last lemma shows the following.

Lemma 3.27

For any normal modal logic A, the following holds. Let ¥ be a
formula containing the constant p, let ¢, ©' be two arbitrary
sentences and let o1, o5 be two substitutions with

o1(p) = ¢, o2(p) = ¢'. Then

If=a < &, then by Yoy < os.

Proof.

This is because each occurrence of [J ¢ can be equivalently
replaced by O ¢’ recursively in the formula. H
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Formalizing in K4

In fact, the proof of the last lemma can even be formalized
within the modal logic K4.

Theorem 3.28 (Formalization Within K4)

Let ¥ be a formula containing the constant p, let ¢, ¢' be two
arbitrary sentences and let o1, 04 be two substitutions with

o1(p) = ¢, o2(p) = ¢'. Then:

iy O (0 < @) — O (Yo1 < o)

This shows that modal logics can be used to formalize
statements about modal logics. This is in particular
interesting, when we formalize statements about provability
of certain statements in Peano arithmetic.

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 231



@[W 3 Basic Modal Logics
" ’:[\:Hj Lg:plflﬁly{s,,tﬂ};lal 3.2 Normal Modal Logics

How does K look like?
Are there other sensible logics?

Theorem 3.29 (Completeness of System K)

System K is sound and strongly complete with respect to
arbitrary Kripke frames.

The proof follows later.

How can we use this important result to show that the
formula O p — p can not be proved from K?

We have to construct a countermodel: take two worlds
wi, wy such that w;Rw, and in w, pis false, but in w, p is
true.

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 232



3.2 Normal Modal Logics

@Hﬁl TU Clausthal 3 Basic Modal Logics

We can define various normal modal logics by appropriate
axioms.

Definition 3.30 (K, KT, B, K4, S4, S5, G)

We define the following normal modal logics by stating their
axioms:

K:O(p—q)— (Op—0>Lq).
KT: Kand T: Op — p.
B=KTB: K, Tand B: p — [0 O p.
K4: Kand 4: O p — OO p.
S4=KT4: K, T, and 4.
S5=KT5: K, T,and 5: O p — O O p.
G=KL: KandL: O (Op — p) — Op.

B stands for Brouwer, the famous dutch mathematician.
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3.2 Normal Modal Logics
Characterisation of G

What are appropriate frames for G, i.e. analogous
properties to Lemma 3.27?

It is easy to see that
(W,R)ED ([@p —p) — Opiff¥S C Wvw e W
Ve(wRz — (Yy(aRy —y € S) —z€8)) - Ve(wRe — z € 5).

Lemma 3.31 (Appropriate Frames for G)

(W,R) O (Op — p) — Opiff R is transitive and there is
no infinite sequence wy, wy, . .. such that wyRw,, wiRws,, . . ..
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Proof (of Lemma 3.31) (1).

=

We show that R is transitive. Let
Sw:i={a: aRw}N{a: Vb(aRb — wRb} forw € W. It
suffices to show that for every a such that wRa and
a € S, and for every b with aRb we have wRb.

The second condition. Suppose there is such an infinite
sequence and consider the set S’ consisting of these
elements. Let w € 5'. Then thereis a z € S’ with wRz
and we consider S = W\ S’. For all z, if wRz and
Vy(zRy — y € S) then z € S (why?). But this is exactly
the formula O (O p — p). Therefore (here we use the
formulad (O p — p) — O p), we also have
Vz(wRx — x € S), but this is a contradiction because
z el
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Proof (of Lemma 3.31) (2).

<: Assume the formula is not true. l.e. thereis w,z’ € W,
wRz'and 2’ = —pand w = 0O (0 p — p). Thus

2 EOp — p, thus 2/ = O —p. So there is a 2" with 'Rz"
and z” |= —p. Because of transitivity, wRz"” and thus

2" = 0O p — p and we get an infinite sequence z; with
x;Rx;+1 which is a contradiction. O
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Theorem 3.32 (Subsystems of KDT45B)

Let X be any subset of {D, T, 4,5 B} and let X be any subset
of {serial, reflexive, transitive, euclidean, symmetric}
corresponding to X.

Then K U X is sound and strongly complete with respect to
Kripke frames the accessibility relation of which satisfies X.

Note, that this theorem also holds for any modal similarity
type 7 and the appropriate Kripke models (frames). The
properties above are then formulated for all operators in 7.
This will be important in the next sections when we talk
about logics with several agents.

~ Will be done later on Slide 260. ]
o
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Corollary 3.33 (Completeness of KT45 (S5))

System $5=KT5 is sound and strongly complete with respect
to Kripke frames (W, R) where R is an equivalence relation.

Corollary 3.34 (Completeness of KT4 (54))

System $4=KT4 is sound and strongly complete with respect
to Kripke frames (W, R) where R is a preorder.
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The Case of System G
Theorem 3.35 (Completeness of G)

System G is sound and weakly complete with respect to Kripke
frames that are transitive and well-capped: there is no infinite
sequence wy, wy, . .. such that woRw;, wiRws, .. ..

Proof.
~» Will be done later on Slide 265. ]

Note: GT is inconsistent.

The system GT consisting of axioms K, T and G is
inconsistent.

Apply necessitation to T, then apply G and again T: one can
derive p for all p!
&
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3.2 Normal Modal Logics

The following axiom plays a role in the next theorem
Grz: OO (p—0p)—p) —p

The proof of the following theorem will be given in the next
section.

Theorem 3.36 (Completeness of $4Grz)

System $S4Grz=KT4Grz is sound and weakly complete with
respect to Kripke frames (W, R) where R is a finite partial
order.
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Soundness of S4Grz

We only have to show that the axiom Grz holds in any
finite partial ordering (why?).

We assume a transitive, reflexive relation on a finite set
W of worlds, and a w € W such that Grz does not hold
in M, w. Then we show that R is not antisymmetric.

We define a sequence wy, wy, ..., w;, ... of worlds s.t.
for all i: W; 7é Wi41 and wiRwiH.

Then we are done: As W is finite, there must be j,i with
w; = wj, © # j and w;Rw;. Thus R is not antisymmetric.
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; 3.2 Normal Modal Logics
Construction of the Sequence

wp := w. Thus p does not hold in w, but
O (p— Op) — p) does.

We want to make sure that this is true in all even worlds
wy; and do this by induction.

By reflexivity, in these even worlds also holds
O (p— Op) — pandthus O (p — O p) does not hold.

So for some Wi+1 with w2iRw2i+1, W41 b’é p— ] P,
thus we; 1 = p and we; 1 = O p and we; 11 # wo;.

As wq; 1 [~ O p, there is some woy; o With wo; 11 Rws; 1o
and wa; 2 [~ p, thus w11 # waipa.

A By transitivity, the formula O (O (p — O p) — p) holds
in wy;12 and this completes the construction of the
sequence.

Prof. . Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 242



mw 3 Basic Modal Logics
" IH, ‘Qlau,s,t‘hal 3.2 Normal Modal Logics

Theorem 3.37 (Some Normal Modal Logics)

We have the following strict relationships between the
introduced logics.

K S ki S G
W W

KT G S4 C S4Grz
W W KN
B C S5 G S5Grz

~» ~~ Blackboard Most relationships are obvious. The
following require some thinking: (1) $4 & S5, (2) K4 G G,
(3) S4 & S4Grz, (4) S5 S S5Grz, (5) B S S5, (6) S4Grz &
S5Grz: Find appropriate models. O
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Lemma 3.38 (Some Properties of S5)

The axiom D follows from KT5: Fxs D.
The formula { p does not follow from KTS5.

KD5 is not equivalent to K5. Axiom D does not follow
from K5: ts D.

~+ Exercise
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Lewis’ System S4

m In Lewis system, the modality can be interpreted as is
provable.

m S4 has the finite model property: If a formula ¢ is not
derivable, then there is a finite countermodel.

m Itis therefore decidable (why?).

m The formula O(O(p — Op) — Op) — (O0p — Op) (from
Dummett) is not derivable in $4.

m Consider $4 and the McKinsey axiom O0p — OUp.
Then the binary relation in the corresponding frames
satisfies: Vo3dy(x Ry AVz(yRz — y = 2)).
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Density and Axiom 4

We consider the set of all frames (W, R) where R is a linear
ordering.

In which of these frames is [1 p — [ [ p true?

In all frames where R is a dense linear ordering:

VaVy3dz : (xRy Az #y) = (tRzAzZRyANx # 2Nz #y)

~ ~> Blackboard

Idea: Assume a linear, non-dense order, i.e. between w and
w’ (wRw') there are no other worlds. Then construct an
appropriate Kripke model where the formula is false: Make
p true only in w’ and nowhere else. Then the formula is
false in world w in the Kripke model.
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Clausthal University of Technology 3.3 Sound- and Completeness

3.3 Sound- and
Completeness
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3.3 Sound- and Completeness
Proofs of the Theorems

m In this section we introduce the machinery to prove our
completeness theorems for normal modal logics
(developed by Scott and Makinson in the 60ies).

m Itis based on Definition 3.43 and the general
Theorem 3.47.

m We only have to check whether the canonical model
satisfies the required properties.

m This method gives completeness proofs for systems K,
K4, KT, S4, B, S5.

m The systems G and S4Grz need separate treatment. We
prove slightly stronger completeness theorems. This
method leads to the filtration approach.
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Remember Definition 3.20. Here are two simple
characterizations that we use in the following.

Lemma 3.39 (Strongly, Weakly Complete)

A logic A 'is strongly complete with respect to a class of
structures F if and only if, every A-consistent set of formulae
is satisfiable on some § € F.

A is weakly complete with respect to a class of structures F if
and only if, every A-consistent formula is satisfiable on some
S eF.
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3.3 Sound- and Completeness

We only show the proof for strong completeness (weak
completeness follows).

“«<": Suppose A is not strongly complete wrt F. Thus,
thereis ' U {¢} such thatI" = ¢ and I" t/5 ¢. Then,

I' U {—p} is A-consistent but not satisfiable on F.

“=": Let ® is a A-consistent set of formulae. Suppose @ is
not satisfiable at some § € F. Then ® =7 p A —p for all p.
But then strong completeness implies ® -, p A —p, which is
a contradiction to the consistency of ©. O
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Canonical Models
Definition 3.40 (A-MCS’s)

A set I of formulae is maximal A-consistent (short: A-MCS)
if ' is A-consistent and any set of formulae properly
containing I' is A-inconsistent.

Proposition 3.41 (Properties of MCS’s)

Let A be a logic and T a A-MCS. Then:
' is closed under modus ponens.
ACT.
I is a complete theory.
For all formulae ¢,v: ¢V € Tiff¢p € ' or ¢ € T.
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Clausthal University of Technolog

If not, it were not maximal.
If not, it were not maximal.
If not, it were not maximal.
If not, it were not maximal.
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Theorem 3.42 (Lindenbaum’s Lemma)

If T is a A-consistent set of formulae then there exists a
A-MCS Tt such that I C T'F.

Proof.
We enumerate all formulae ¢1,..., ¢;,... and define Xy = %,

S Y, U{®,}, if this theory is A-consistent;
T8, U {8, ), else.

and X* :=J,5, Xn. Rest on Blackboard. O
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Definition 3.43 (Canonical Model)

The canonical model M* = (WA, R, VA) for a modal logic
A is defined as follows:
WA is the set of all A-MCS’s;
RY C WA x WA such that R ww’ if ¢ € w’ implies
O ¢ € wforall p. R is called canonical relation;
VA(p) .= {w e WA | pew}. VAis the canonical
relation.
3 = (WA, R™) is the canonical frame of A.

Mu TU Clausthal 3 Basic Modal Logics
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Lemma 3.44

For any normal logic A:

R ww' if, and only if Oy € w implies ¢ € w' forall p € A.

—: Let R*ww’ and O ¢ € w and ¢ & w'. We have to
show a contradiction. Then —¢ € w'. But also
O —¢ € w (Definition of R). Thus =0 —p & w,
which means [0 ¢ € w, which is a contradiction.
«: Let the implication be true. Assume not R wuw’,
i.e. thereis ¢, ¢ € w' and ¢ ¥ € w. Then
O — € w. But then (using the very implication):
—p € w', in contradiction to the consistency of

w'.
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Lemma 3.45 (Existence Lemma)

For any normal logic A and any state w € W*:

O @ €w implies thereis a state w' € W such that
RA2ww’ and ¢ € W
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3.3 Sound- and Completeness

Assume ¢ ¢ € w. How to construct w'?

Let w’ be any A-MCS extending the set

{0} U{¢: O € w}. Obviously R ww'. It remains to show
that the set

{o}u{y: Oy ew}

is consistent.
Assume not: then 5 ¢y A ... A¢h, — —p. But then
Fa O (1 A ... Atb,) = O ¢, and therefore (normal ML)

Fa O AL AO Y, — O —e.

Thus (w isa MCS) O ¢y A ... A%, € w, and therefore
O = € w, which contradicts { ¢ € w. O
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Lemma 3.46 (Truth Lemma)

For any normal logic A and any formula :

Mowke=op iff pecw

Proof.

By induction on the formula ¢. Base cases and boolean
combinations are trivial (see Proposition 3.41). We consider
the case ¢ . This is true in 9", w iff there is a v with R wv
and MA v = ¢ iff there is a v with R*wv and ¢ € v
(Induction Hypothesis) only if { ¢ € w.

For right to left we apply Lemma 3.45. O
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3.3 Sound- and Completeness

Theorem 3.47 (Canonical Model Theorem)

Any modal logic is strongly complete with respect to its
canonical model.

Let 3 be a consistent set of the logic A. Extend it to a MCS
Y7 (Theorem 3.42). But then (using Lemma 3.46)

mA, =t = 3.
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3.3 Sound- and Completeness

Completeness for Systems K, ..., S5

Theorem 3.47 does not seem to be too powerful: It only
speaks about one single model, whereas we want to prove
completeness with respect to a class of frames, not a
single model.

Lemma 3.48 (Strong Completeness wrt F)

Consider any subset X of {K, D, T, B,4,5} and let us denote
the corresponding normal modal logic by X. We also denote by
Fx the corresponding class of frames (see Lemma 3.2).
Assume that for any X-consistent set of formulae T, the
canonical frame (W', R") is contained in Fy.

Then X is strongly complete wrt. the class of frames Fy.
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According to Lemma 3.39, we have to find a model for I
We just take the canonical model M and any X-MCS
extending I': I'". By Theorem 3.47, this model satisfies

I. U
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3.3 Sound- and Completeness
We now prove Theorem 3.32 by applying Lemma 3.48. We
have to show for each of our axioms that the canonical

model has the appropriate property (as given in
Lemma 3.2).

K: There is nothing to prove. We have already

shown in Lemma 3.2 that this axiom holds in all

frames.

Obviously, R*ww because X contains 0 p — p.

. Assume R*wz and R*zy. We have to show that
R*wy. Suppose O pcw. AsOdp — O Opisan
axiom, 0O p € w. Then O p € x and therefore
pey.

realioy
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B: Suppose R*wz. We have to show that R*zw,
i.e. that O p € x implies p € z. Suppose p & w.
Then —p € w. Using B, then [0 { —p € w. Thus
O —p€x,and -0 p € x. Therefore O p & z.

5: Suppose R*wz and R*wy. We have to show
thatif O p € z, then p € y. Assume p & 3. Then
Op ¢ w,-0p € w, and thus { —p € w. Using
the axiom, we conclude O $ —p € w, { —p € .
Thus =0 p € z, and therefore O p & .

~» Rest on Blackboard, note that also any combinations of
these axioms go through without any problems.
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3.3 Sound- and Completeness

m The previous proofs show that: the canonical frame of
each normal logic containing axiom T is reflexive.

m And appropriate statements for all other axioms, as well
as combinations of them.

m Unfortunately, this does not work for axioms G or Grz.
The canonical model of G is not well capped. The
relation in the canonical model of Grz is not a finite
partial order.

m But we can still use the canonical models: We just
need to transform them!
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Completeness for System G

We prove the following theorem, that is stronger than
Theorem 3.35

Theorem 3.49 (Completeness of G, 2. Version)

System G is sound and complete with respect to Kripke frames
that are finite, transitive, and well-capped: There is no
infinite sequence wy, wy, . .. such that woRw;, wiRws, . . ..

Note that a relation is called irreflexive, when there is no w
with wRw. The existence of such a w would immediately
result in an infinite sequence falsifying the well-capped

property.
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3.3 Sound- and Completeness

Lemma 3.50 (Finite Transitive Relations)

Let R be a binary, transitive relation on a finite set. Then the
following are equivalent:

m R is irreflexive,
m R is well-capped.

Theorem 3.51 (Completeness of G, 3. Version)

System G is sound and complete with respect to Kripke frames
that are finite, transitive, and irreflexive.

Soundness follows trivially from Lemma 3.31 on Slide 234.

Are the two theorems also equivalent when we remove
finite?
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Completeness for System G: M

We prove Theorem 3.51 through a series of lemmas and
models M,.
We start with the canonical model ¢ = (WS, RC V).
Suppose that ¢ is not a theorem of G. Then there is a world
ts.t. MO ¢}~ .
Ultimately, we have to find a model M3 which is finite,
transitive and irreflexive.
2t We define I, = (W, Ry, Vi) with:

Wy = {t} U {z: R%z}, and R, V] are just the

restrictions of R®, VC to V.
Unfortunately, 1, is in general not finite.
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Completeness for System G: 91,

We are now making 01, finite, by identifying many worlds.
We define an equivalence relation on 9t as follows: w and
x are equivalent iff for every subformula ¢’ of p: ¢ € wiff

¢' € x. We denote the equivalence class of w by w.
We define Mty = (Ws, Ry, Vo) with: Wy = {w : w € W},

Ro = {(w,=) : forevery subformulaO ¢ of ¢, if Oy € wthenO vy € zand ¢ € =}

Finally, p € V() iff p € Vi(w) if p is a subformula of ¢, and
let p & V5(w) otherwise.
Clearly, 91, is transitive and finite. And if R wz then R,w .
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Compléteness for System G: ;5

Lemma 3.52
For all combinations v of subformulae from ¢ and each
w € Wl.'

9)?1,11) IZ’I/J Iff m%w):w

Proof is by induction on ¢.

M;: The problem with 91, is that it is not irreflexive.
We will define a subrelation R that is
irreflexive. Our model is then defined as

Dﬁfi - (W27 R37 ‘/2>
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Completeness for System G: 01,

Rs: In order to define R 5, we need the following:

T if if w ~ T; or
W { if Ro,wz and R,Tw.
~ is an equivalence relation because R, is
transitive.
Lg: Given S C W such that for some w € W,
S ={y: w ~ 7y}, we fix a strict, linear ordering
LS of S.
R3: R consists of all pairs (w, T) such that
either (1) w 4 7 and R,w, T, or (2) w ~ T and
wLsT, where S = {y: w ~ 7}.
Properties: R is a subrelation of R, because R, is
transitive. R is also transitive and irreflexive.
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Putting It All Together

Lemma 3.53

For all combinations 1) of subformulae from © and each
w € Wl.'

mg,’w IZ ¢ iff 9)13,@ ): ’17/)
Proof is by induction on ¢.

Filtrations

What we have done on the last few slides is a general
method that can be applied very often: the filtration
method. It requires the equivalence of models wrt.
subformulae of a given formula. In the last section of this
chapter, we investigate this approach more thoroughly.
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Completeness for System S4Grz

Theorem 3.54 (Completeness of $4Grz)

System $4Grz=KT4Grz is sound and complete with respect to
Kripke frames (W, R) where R is a finite partial order.

The proof follows the proof of Theorem 3.49. Itis not trivial.
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3.3 Sound- and Completeness

There is a strong relation between systems G and $S4Grz. We
define a translation ¢ from modal formulae to modal
formulae as follows:

‘p = p

—p = =t
ovy) = "o v
tO¢ = O At

Theorem 3.55 (Relation between $4Grz and G)

Fsacrz ¢ Iff g fo.
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Example 3.56

We consider again the axiom L: O (O p — p) — O p and the
system G=KL. We have seen that this defines a normal logic.
We have already shown soundness and weak completeness
with respect to the class of all frames, where R is a finite,
transitive tree. Unfortunately, we could not use

Theorem 3.48 on Slide-260.

This is not by accident: there is no class of frames
whatsoever, that this logic is strongly complete to.
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Lemma 3.57 (The logic G=KL)

G is not sound and strongly complete to any class of frames.

Proof.
We consider the set ®

{0t u{d(¢g = O qr1): 1 <14}

We first show that this set is consistent (by showing that
each finite subset is). We leave this to the reader. We also
note that G is consistent (why?).

Now suppose there is a class of frames F that G is strongly
complete to. Then F is nonempty. So there is a Kripke
model 2t and world w such that 9, w | ®. But that would
mean that there is an infinite path, a contradiction. O
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3.3 Sound- and Completeness
A Few Final Remarks

m While we have defined many logics and appropriate
classes of frames, this is not always possible.

m There are axioms (and therefore logics) that are not
complete wrt any set of frames.

m Canonical models is a powerful method, but it does not
always work.

m Most of our axioms (except Grz and G) are canonical. A
formula ¢ is canonical wrt to a property P of a class of
frames F, if (1) ¢ is valid in all frames satisfying P, and
(2) the canonical frame of any normal modal logic
containing ¢ has property P.

m The problem “Is a formula ¢ canonical?” is
undecidable.
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Canonical formulae

We consider again the example on Slide 246. Another
formulation of that result is that the formula is canonical.

Lemma 3.58

The following formulae are canonical for their respective
properties:

T, B, 4, 5 are all canonical.

O p — OO pis canonical for density (among all linear
orderings).

L is not canonical for any property.
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3.4 Finite Models via
Filtration
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3.4 Finite Models via Filtration

Let X be a set of modal formulae and A be a modal logic.
Consider the problem: Is ¥ satisfiable in A?

m We can not just enumerate all Kripke models, as there
are infinitely many of them (uncountably many: 2%).

m Suppose we know that “if it is satisfiable, then there
is a finite model”. Then the problem above is
recursively enumerable (just enumerate all finite
models).

m If we know in addition an upper bound on the size of
the finite model, we can come up with a decision
algorithm: The problem is then recursive.

m If the logic A is given by a recursive set of axioms (as all
our normal logics in this chapter), then the problem is
recursive (also called decidable) (why?).
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Definition 3.59 (Finite Model Property)

Let M be a class of 7-models. We say that 7 has the finite
model property with respect to M if every 7-formula ¢
satisfiable in M is also satisfiable in a finite model in M.

Such a property is important for the decidability of the
satisfaction problem. But note, that in the above definition
we talk about one single formula.

Is this property true for predicate logic? Or can you
construct a formula that is only satisfiable in infinite
universes?

The following results are for the basic modal language; that
is, we consider only one accessibility relation.
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Definition 3.60 (Subformula)

Let o € Lpyr. Each formula ¢ € L, which occurs in ¢ is
called a subformula of .

Note that ¢ is a subformula of ¢ itself.
What are the subformulae of 0 —p — (=0 q A p)?
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Definition 3.61 (Closure under Subformulae)

Let 3 C Lp)1, be a set of formulae. The closure of ¥ under
subformulae, Sub(Y), is defined as the set of all subformulae
of the formulaein ¥, i.e.

Sub(X) = {¢ | Jp € ¥ s.t. ¢ is a subformula of ¢}

If 3 = Sub(X) then we say that X is subformula closed.
We write Sub(y) for Sub({¢}).
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Definition 3.62 (Filtration Relation)

Let 9 be a Kripke model and X C L), a subformula
closed set. The filtration relation over Mt and X is the
relation ey op C W x W which is defined as follows:

wemsmw  iff Yo eX (M wE @iff Mw' E @)

~ Exercise: Show that «wy oy is an equivalence relation.
We use [z]x on to denote the equivalence class of = wrt. to
DM i.e.

[Z]sm == {y € W | © e~ y}

We omit X and 9t if they are clear from context.
We identify worlds in which the same formulae wrt. ¥
hold.
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Definition 3.63 (Filtration)

Let 9t be a Kripke model and ¥ C L), subformula closed.
A filtration of 9 through &, ML, = (W, R/, V), is a
model which satisfies:

W/ = {[w]gom | w € Wi},

Rgm’ww/ |mp||es Rf[w]g’gm[wl]g’gm,

R [w]s on[w']s on implies that for all ¢ ¢ € ¥ it holds that

M, w' = ¢ implies M, w = ¢ ¢, and
VI(p) = {[wlsm | M, w |= o} for every p € X.
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Example 3.64

We consider the Kripke model 9t consisting of worlds w;,
i=0,1,...overq,p, where V(p) = {w,; : i € N\ {0}} and
V(q) = {w<}. The transition relation is given by wyRw;,
woRwsy, wayRws, wiRws, and w;Rw;, fori > 3.

Let ¥ := {0 p, p}.

What is the filtration of 91 through *?
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3.4 Finite Models via Filtration

m Afiltration has only worlds which differ concerning
the truth of formulae in 3.

m Note that the accessibility relation is not unique, we
only require 2) and 3).

m Conditions 2) and 3) are needed to prove
Theorem 3.66.

m Note that condition 3) is very similar to the appropriate
condition in the canonical model (Definition 3.43).

m However, we do not know yet whether filtrations exist
at all.
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Proposition 3.65 (Filtrations Are Finite)

Let 90 be a Kripke model and > C Lgy;, be a finite
subformula closed set. For any filtration 9, . over M

through %, the number of worlds in 9, s IS bounded by
2%l J.e. Worg | < 2%,

~ Exercise. ]
[ < ]
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The filtration model was constructed in such a way, that the
same formulae hold.

Theorem 3.66 (Filtration Theorem)

Let Mt be a Kripke model, > C Lgy1, be a subformula closed
set, and ML ., a filtration of M. Then, it holds that

Mw =@ iff MLy [w] ¢

forall p € ¥ and w € Wyy.
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Induction on the formula . Base cases and boolean cases
are trivial (very definition of V/ and the fact that ¥ is
subformula closed).

“=" Let M, w = O . Then there is a world w’ with
wRw" and M, w' = ¢. By the second clause of
the definition of filtration, R/ [w]s g[w']sm. By
induction hypothesis, ML o, [w'] k= ¢ and thus

“«<": For the other direction, let Dﬁg,m, [w] = O .
Then there is w’ with R/ [w]s gn[w']s.ox and
imgm, [w'] = ¢. By induction hypothesis,

M, w' | p. By the third clause, 9%, w = O ¢.
O
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3.4 Finite Models via Filtration

Given a model there are various filtrations of this model.
This is, because the relation R/ can be defined in many
ways. We present two of them:

The second item in the definition of a filtration leads to
the following, weakest possible condition:

Rew][v] iff Fuw' € [w]F € [v] (Rw'V)

The third item in the definition of a filtration leads to the
following, strongest possible condition:

Rlw]v] iff YOpeX (MuEp=>MuwlE= O @)
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Lemma 3.67

Let M be a Kripke model and > C Lg;, be a subformula
closed set. Then, both (Wsgn, R*, V) and (Wsan, R, V)
are filtrations of 9t through X. Moreover:

R C RS C R

for any filtration MY, . of M through X.
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That (Wxgn, R®, V) and (Wsgn, R', V) are the smallest
resp. largest possible filtrations follows trivially from
Definition 3.63.

Why are both indeed filtrations? We have to show the
following:

R° satisfies condition 3 of Definition 3.63. Let
Re[w]v], O ¢ € ¥ and M, v = ¢ (we have to
show M1, w = O ). By definition of R?, there are
wo, vg € W with Rwgvg. Therefore M, vy = ¢
(filtration), thus 91, wy = O ¢ (Kripke model)
and thus 9, w = ¢ ¢ (filtration).

R! satisfies condition 2 of Definition 3.63. This is
proved along the same lines.

O
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Theorem 3.68 (Finite Model Property)

Let p € L. If @ is satisfiable on some Kripke model, then it
is also satisfiable on a finite Kripke model which has at most
2™ worlds where m = |Sub({p})].

Proof.

If © is satisfiable on some Kripke model, then we build the
subformula closed set ¥ of ¢. Then we consider any
filtration of the model through . This is a finite Kripke
model and the bound follows from Proposition 3.65. O
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One important question remains: Which properties does
the relation R/ inherit from R?
For example, if R is transitive, is R/ transitive as well?

Proposition 3.69

Let Mt be a Kripke model and ¥ C Lgy;, be a subformula
closed set. Let R! be defined as follows:

R'[w][v]
iff
Vo € Lpnr (0o €T andMv = oV O p) = Muw = O p)

Then, (Wsan, R", V') is a filtration of M through 3 and R* is
transitive if R was transitive.
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m The smallest possible filtration R° preserves symmetry.

m However, there is no general method to ensure
properties of R/.
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4. Public Announcement

Logic

Public Announcement Logic
m Epistemic Language
m Public Announcement Language
m Properties of Public Accouncements
m Epistemic Logic
m Public Announcement Logic
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Content of this Chapter

In this chapter we come back to the muddy children puzzle
from the first chapter. Epistemic logic is a multi modal logic
allowing to talk about knowledge within the language.
We define a logic of common knowledge S5C. Then, we
introduce the public announcement language and consider
some of its properties. Finally, we prove sound- and
completeness results for both logics.
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4.1 Epistemic Language
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Epistemic Logic allows us to reason about knowledge.
Itis a particular instance of our modal language. Instead of
[i] we write K;.

Then, for each agent i, K,y is interpreted as “agent i knows
(that) ¢”.
Example 4.1

p A —K,p: “pis true but agent a does not know it.”

K, K.p A —K,—K.p: “Agent b does not know whether
agent c knows p.”
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Example: Alternating Bit Protocol

Example 4.2

We have two agents:

m Agent a reads a tape X = (zg, x1,...) and sends all the
inputs to agent b, and

m agent b writes down everything it receives on an output
tape Y.

The communication is not trustworthy, i.e, there is no
guarantee that all messages arrive.
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4.1 Epistemic Language

Possible properties:

Fairness: If one repeats sending a certain message, it will
eventually arrive.

Safety: Atany moment, Y is a prefix of X, i.e. b will
only write a correct initial part of X into Y.

Liveness: Every z; will eventually be written as y; on Y.

Assume that fairness holds. Can we write a protocol (or
program) that satisfies the two constraints, safety and
liveness?

Safety can be easily achieved by allowing b to never write
anything. But then, the liveness property enforces that
every bit of X should eventually appearin Y.
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Protocol for a

1:=0
while true do
read z;
repeat
send z;
until K, K,(x;)
repeat
send K, Ky(z;)
until KaKbKaKb(l‘i)
1 =1+ 1
end while

4 Public Announcement Logic
4.1 Epistemic Language

Protocol for b

if Ky(z0) then

1:=0

while true do
write z;
repeat

send Ky(x;)
until KbKaKb(xi)
repeat

send K, K, Ky(z;)
until Kb(l‘i—i—l)
1:=1+1

end while
end if

Is knowledge of "depth 4" neccessary? ~~ Exercise
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Example 4.3 (Consecutive Numbers)

m Assume two agents a and b. They see a number on each
other’s head, and those numbers are consecutive
numbers n and n + 1 for a certain n € N. This is
common knowledge.

m a, and b,, with n, m € N means that the number on the
head of a is n, on the head of b is m.

m Suppose az and b, are true.
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Let for all w = (7, j) with i, 5 € Nbe V(a;) = {(i,7) | 7 € No}
and V(b;) = {(i,7) | i € No}.

~ Blackboard
m I, (3,2) = Kb,
B, (3,2) = K,(a1 V a3)
m I, (3,2) = K,Kp(bg V by V by)
m M, (3,2) = KK, Kp(a; VasVas)
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Common knowledge of p in a group of agents B means:

All the agents in B know p, they also know that they know
p, they also know that they all know that they know p, ...
and so on.

So far we have no way to express common knowledge in our
language, e.g. we cannot define a well-formed formula that
describes that for all » € N we have

(KaKb)n@

where (K, K;)" = K, Ky(K,Kp)" L.
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Example 4.4 (Byzantine Generals)

Imagine two allied generals, a and b, standing on two
mountains, with their enemy in the valley between them. It
is generally known that a and b together can defeat the
enemy, but if only one of them attacks, he will lose the
battle.
m General a sends a messenger to b with the message m
about the exact time when the battle starts.

m However, it is not guaranteed that the messenger will
arrive.
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m Suppose, the messenger does reach the other side:
Kbm and KbKam

m Will it be a good idea to attack? No.

m a does not know that b knows.

m b sends a messenger with an acknowledgment m’:
K, KyK,m

Will it be a good idea to attack? No.

b does not know whether m’ has arrived.

We can do this forever,

... common knowledge will never be established!
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What about knowledge of groups?

Definition 4.5 (Epistemic Language)

Let Prop be a set of propositions and .Ag be a finite set of
(names for) agents. The basic epistemic language with
common and distributed knowledge Lcp(Prop, Ag) consists
of all formulae defined by the following grammar:

pu=p|-w|eVe|Dpp|Cpp

where p € Prop and B C Ag. The sublanguage without
distributed knowledge is denoted by L (Prop, Ag).

Cg (p): “Agents in B have common knowledge that ¢”
Dy (¢): “Agents in B have distributed knowledge that ©” o
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Definition 4.6 (Macros)

We define the following syntactic constructs as macros
(p € Prop, i € Ag):

1 = pA-p
T = =l
pAY = =(mpV )
p—=Y = eV
pop = (p2Y)AY =)
Kip = Cuyp
Kip = =Ky

Note: The K; operator is defined by the Cy;; operator.

~

K; (p): “Agent i considers it possible that ¢”.
o
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Definition 4.7 (Macros for Groups of Agents)

For any group B C Ag of agents Ag we define:

Egp = /\ Kyp = /\ Crye

beB beB
Egp = —Ep—p:= \/ Kyp = \/ —Cpy e
beB beB

Eg (p): “Everybody in B knows ¢”

Ep (¢): “Atleast one individual in B considers ¢ a
possibility”
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Semantics

The semantics for our modal language L can be obtained
without adding additional features to our epistemic models.
We only have to define the semantics of the common
knowledge operator. For this we need the transitive closure:
see also Slide 201.

Definition 4.8 ((Reflexive) Transitive Closure)

Let Sbeasetand R C S x S be arelation. The fransitive
closure of R, denoted R, is the smallest relation R’ such
that:

B RCR,
R’ is transitive.

If we also require that for all z, R "z holds, we obtain the
reflexive transitive closure, denoted by R*.
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Remark 4.9

If R is reflexive, then Rt = R*.

Rt xy iff either x = y and Ry or else for some n > 1
there is a sequence xy,xs, ... ,x, such that vy = x,z, =y
and forall i < n, Rx;x;y1.

Example 4.10
B R={(ab),(bc)}
mRT ={(a,b),(bc),(a,c)}
B R*={(a,b),(b,c),(a,c),(a,a),(b,b),(c,c)}
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Definition 4.11 (Epistemic Model)

Consider a Kripke model (W, {~; | i € Ag}, V). We call such
a model epistemic model or S5-model, if all the relations ~;
are equivalence relations, i.e. ~; is transitive, reflexive and
symmetric.

w~;w' expresses that for agent i the two worlds w, v’ are
indistinguishable.
Definition 4.12
For A C Ag we define
m ~’ asJ,c4 ~as (everybody knows)
m ~') as(,c4 ~a and (distributed knowledge)
m ~§ as (~%)* (common knowledge).

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 313



MW 4 Public Announcement Logic
" ’I:Hj ‘Qlauhs,,t‘hal 4.1 Epistemic Language

Definition 4.13 (Semantics)

Let M = (W, {~; | i € Ag}, V) be a Kripke model, w € Wy,

and ¢ € L. g is said to be true or satisfied in 9t and world

w, written as M, w |= ¢, if the semantics of Ly, is extended

by the following clause:

N, w = Cpry iff for all worlds w’ € W with ~% ww’ we have
that M, v’ |= o,

I, w = Dpy iff for all worlds v’ € W with ~2 ww’ we have
that M, v’ = .

Example 4.14 (Epy)

Eg has been defined as macro. We show that: 9, w = Egp
iff for all worlds w’ € W with ~& ww’ such that M, w' = .
~ Blackboard
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Example 4.15 (Consecutive Numbers Ctd.)
We continue Example 4.3.

~+ Blackboard
m 9, (3,2) = —by A Efgpybs
m I, (3,2) = Eapy—as A B Erapyas
m M, (3,2) E By Erapy—bs A ~Eiap) Elap Efasybs
m I, (3,2) = ~Crapymaizs A Crapy—bios
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4.2 Public Announcement
Language
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Introduction

Example 4.16 (Public Announcement)

Consider two stockbrokers a and b sitting together. a gets a
message: Company A did very well!

a says to b: “Guess you don’t know it yet, but A is doing
well.”
a says:
m “Ais doing well”
m “b does not know that A is doing wel
After the announcement b now knows that A is doing well.
m “b does not know that A is doing well” is now false.

I”
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m In other words: a has announced something which
becomes false because of the announcement. This is
called an unsuccessful update.

®m Announcements refer to a specific momentin time, to a
specific information state that may change because of
the announcement that makes an observation about it.

p := “Ais doing well”
0 := is the name of the state where p is false
1 := is the name of the state where p is true
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4.2 Public Announcement Language

m We assume that a only makes truthful, public
announcements:

Truthful: The formula of the announcement must be
true in the actual state while the statement
is made.

Public: b can hear what «a is saying, that a knows
that b can hear her, etc., .. .. Itis common
knowledge that a is making the
announcement.

m From truthful and public it follows that states where
the announcement formula is false are excluded.
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—Kyp

Announcement: p A 7 Kp
Clapp

Kyp

O,
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Example 4.17 (Three Player Card Game)

a, b and ¢ have each drawn a card from a stack of three cards
{0,1,2}. This is commonly known.

V(b;) = {{ijk) | i,k # j.i # k},

Vieg) = {(1jk) | i,j # k,i # 7} where a; expresses that a
holds the card i etc. Assume the actual world w = (012).
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4.2 Public Announcement Language

M, (012) = K,—(Kpap V Kpay V Kpay) a knows that b does
not know her card.

M, (012) = by A Kby a considers it possible that b holds
card 2 although b; is true.
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1. Announcement of a “I do not have card 1”: —a;.
m I, <012> |= Ke.ag AN K, K.ag A —|(Kbao V Kpa1 V KbaQ)
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2. Announcement of b “l do not know the card of a”:
_|(Kbao V Kbal V Kbag)
m 9, (012) = —(Kpag V Kpar V Kpag)
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3. Announcement of a “the card deal is 012”: ag A by Acy
m N )= ag A by Acy
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Syntax

Definition 4.18 (Public Announcements Lcp,)

Let Prop be a set of propositions and Ay a finite set of
(names for) agents. The epistemic language with public
announcements and common knowledge Lcpa(Prop, Ag)
consists of all formulae defined by the following grammar:

pu=plopleVel|Ceellele
where p € Prop and B C Ag. The sublanguage without
common knowledge, denoted Lp4(Prop, Ag), is given by:
pu=plopleVelKipllele
As before, the dual operator is defined as follows:

(W) = ~[Y]-e.
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4.2 Public Announcement Language
The intuitive reading is:

(W] & After truthfully and publicly announcing ¢, ¢
holds.

()¢ 1 holds and after truthfully and publicly
announcing ¥, ¢ holds.

What is the relation to O and ¢ ?

If ¢ cannot be truthfully announced (i.e. ¢ is false in the
current state) formula ]y is true «~ [l is true in states
with no successors.

If ¢ cannot be truthfully announced (i.e. ¢ is false in the

current state) formula () is false «~ ¢ is false in states
with no successors.
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Example 4.19 (Three Player Card Game)
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4.2 Public Announcement Language

1. Announcement of ¢ “l do not have card 1”.
2. Announcement of b “l do not know the card of a”.
3a. Announcement of a “the card deal is 012”.

3b. Alternative announcement of ¢ “l now know b’s card”:
Kby V K by V K b,

b knows a’s card:
[—a1][~(Kpao V Kpay V Kpag)|[ap A by A o] (KpaoV Kpay V Kpas)
b does not know a’s card:
[—a1][~(Kabo V Kby V Ky by)|[Kybo V Kby V Kby = (Kpag V
Kpa V Kpas)
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Semantics

Definition 4.20 (Semantics 9, w = [¢]y)

Let M = (W, {~; | i € Ag}, V) be a Kripke model, w € Wy,
and ¢ € Lcopa. g is said to be true or satisfied in Mt and
world w, written as 9, w [ ¢, if the semantics of L is
extended by the following clause:
M, w = Y] iff M, w = ¢ implies M|y, w = ¢
where M|y = (W' {~} | i€ Ag}, V'):

[Wllm = {weW|[MwE ¢}

U [M]sm
~i o=~ D ([[W o x [[W]lan)
Vio= [[¢]]m

~~ Blackboard
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Remark 4.21

The semantics for the dual is defined as follows:
M, w = (P)p iff M, w = ¢ and My, w = ¢.
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Example 4.22 (Three Player Card Game)

1. Announcement of a “l do not have card 1”
ﬂﬁ, <012> |: [ﬁal]KCao
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We prove this property. 01, (012) = [—a;] K.y iff
(m, <012> IZ —aq Imp|leS 9ﬁ|—|a1, <012> ): Kca())

m Consider the former. 9, (012) |= —a; iff M, (012) F~ a;.
Due to (012) ¢ V(a;) = {(102), (120)} this is true.

m Consider the latter. 2t|—ay, (012) = K.aq is equivalent to
Vw € Wapj-a,: (012)~.w implies M|—-a;, w = a. Because
of the fact that only (012) is c-accessible from (012) and
(012) € V(ag) = {(012), (021)} the condition is fulfilled.
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4.3 Properties of Public
Accouncements
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4.3 Properties of Public Accouncements

Properties of Public Announcements

Most of the following properties will be used in the
axiomatization of public announcement logic.

Proposition 4.23 (Negation)

E [W]-e < (Y — —[Y]e) where p, ¢ € Lopa.

[¢]—¢ can be true for two reasons:
the formula 1) cannot be announced.
1 is true and after the announcement of v, the formula

v is false.
~+ Blackboard ]
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Proposition 4.24

The following formulae are equivalent over all $5-models
where ©, ¢ € ECPA-‘

m 1y — [hle
m Y — (P)p
m []o
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4.3 Properties of Public Accouncements

We show: o) — [¢]g iff [1]p

Mw =y — [Yle

M, w 1 implies M, w = [¢]p

M, w = 1 implies (M, w = ¢ implies M|y, w | @)
(M, w ¢ and M, w = ) implies M|y, w E ¢
M, w = 1 implies M|, w | ¢

M, w = [Y]e

The other points are left as exercise. H

to e
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The following properties are easy to verify:

Proposition 4.25

The following formulae are equivalent over all $5C-models
where ©, ¢ € Lopa:

m (Y)p
YA ()
m A [y

~ Exercise ]
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4.3 Properties of Public Accouncements

The following theorem allows to reduce the number of
announcements:

Proposition 4.26 (Composition)

[ A [W]e]x is equivalent to [1)][p]x for v, € Lopa.

For arbitrary 9t and w:

w € M(¢ A [¢]p)

M, w =P A [Plp

M, w =1 and (M, w = ¢ implies M|y, w = @)
w € M|y and M|, w | ¢

w € (M)l

S I

]
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But how does the knowledge change after an
announcement? Firstly, we analyse individual knowledge.

Proposition 4.27 ([v|K.p &5 K.[Y]p)
[¥] K. is in general not equivalent to K,[]e for ¢,1) € Lopa.

Counterexample. Consider the Three Player Card
Game-Example (~ Blackboard):

M, (012) = [a1] K ag

(because the announcement cannot take place in (012))
but
m, (()12) b’é Kc[al]ao
]
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4.3 Properties of Public Accouncements

Proposition 4.28 (Knowledge and
Accouncements)

[V] Kap is equivalent to ¢ — K, [¢]p for v, € Lopa.

For arbitrary 9t and w:

M, w b= — Koy

M, w = implies M, w = K, [Y]p

M, w = 1 implies

(Vw' € M : w~,w' implies M, w' = [¢]p)

& M w ¢ implies (Va' € M : w~ uw’
implies (9, w’ |= ¢ implies M|y, w' = p))

=
=

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 341



.1 4 Public A Logi
_ -TU Clausthal ublic Announcement Logic
Clausthal University of Technolog;

4.3 Properties of Public Accouncements

Proof. (Cont.)

& Mw ¢ implies (Vw' € M : M, w' | ¢ and
w~,w' implies M|y, w' = @)

& Mw ¢ implies (Vw' € M1y,

w~w’ implies M|, w' = @)

M, w = ¢ implies M|y, w | K,p)

M w = [Y]Kap

T ¢
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4.3 Properties of Public Accouncements

Is public announcement logic without group knowledge
more expressive than epistemic logic? No! We can remove
all announcements! Why do we consider the logic at all?

Proposition 4.29 (From PAL to Epistemic Logic)

For v, v, x € Lopa we have the following equivalences:

[Ylp < (¥ —p),
[Llx Vo) < ([YlxV ¥le),
[Ll(x = ) < ([Wlx — Wle),
[l < (¥ = —[@le),
[Pl Kap < (0 = Kut]p),
Wllelx < [ A Jlelx.

These validities allow us to eliminate announcements if only
individual knowledge is used.
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PA and Common Knowledge
In Proposition 4.28 we have shown that

(V] Kap < Y — Ka[th]p
Is the same valid for common kowledge?

Example 4.30

Consider the following model 9t with V' (p) = {(10), (11)}
and V(q) = {(01), (11)} and the instance:

[PICap1a <> (p = Clapr[pla)-

/AN
(01) (10)
‘ v

We show that the equivalence is false in (11).

Prof. . Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 344




mﬂ! ,lU (; l a L]Sth al 4 Public Announcement Logic

4.3 Properties of Public Accouncements

)

M, (11) = [p]Clapya because Mp, (11) = Crapyq
M, (11) = p — Crapny[pla although M, (11) = p but
M, (11) = Crapyq because (11)~7, b}<10> and

M, (10)  [pla:

When evaluating q in 9t|p we are in its other
disconnected part, where q is false: 9t|p, (10) }~ q
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Proposition 4.31 ([¢)]Cap & ¥ — Calh]p)
[]C ¢ is in general not equivalent to 1 — Ca[¢]¢ for
0, Y € Lopa.

The proof is given by the previous example.
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4.3 Properties of Public Accouncements

We can derive common knowledge by the following rule

Proposition 4.32 (PA and CK)

Let p,1,x € Lopa. If x — [p and (x A p) — Epx are valid,
then so is x — [¢]Cp.

Proof.

~ Blackboard

Let the premises x — [¢]¥ and (x A ¢) — Epx be valid.

Suppose M, w = x. We show that M, w = [¢|Cpip.

If 9, w = ¢ we are done. So, suppose M, w = ¢ and let
w' € Wapy, With w~Gu'.

By induction on the length of the path from w to v’ we

show M|y, w' = 1.
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4.3 Properties of Public Accouncements

Proof. (Cont.)

|Path| = 0: Then w = w', and M|, w |= ¢ follows from
M, w = x and = x — [y

|Path| = n + 1 for n € N: Suppose the path has length n + 1
where w~,w"~Sw' for a € B and w” € 9.
From 9, w = x, M, w |= ¢, and
E (x ANyp) = Epxitfollows = (x A p) = Kux
and hence M, w” = x follows as ~,ww”.
Because of w” € Mi|p we have M, w” |= .
We now apply the induction hypothesis and
obtain M|y, w' = 1.
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Corollary 4.33

[y is valid iff [p]Cgi is valid.

From right to left is obvious. From left to right follows when
taking y = T in Proposition 4.32. H
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4.4 Epistemic Logic
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4.4 Epistemic Logic
Axiomatization

in this section we present a sound and complete
axiomatization for Lop. The part without common and
distributed knowledge has already been shown to be sound
and complete for $5. For common knowledge we proceed
similarly by construction of the canonical model.

But as worlds of the model we cannot simply take the
maximal consistent sets (cf. Def 3.40). Consider

{Egp | n € N} U{~Cpp}
and recall the construction in Lindenbaums’s theorem 3.42:
S Y, U{®,}, ifthis theory is consistent;
T 8, U {=d,), else.
and Xt = ., %

n>0 —n*
We notice that L. is not compact!

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 351



@Kl% TU Clausthal 4 Public Announcement Logic

4.4 Epistemic Logic

For the common knowledge operator and the basic modal
system S5C we have to write down all these axioms for each
agenti € Ag:

Definition 4.34 (Modal System S5C)

K: Criy(p = ¥) = (Crapp = Crp¢h)
(distribution of C'y;; over —)

T: C{i}(p — @ (truth)

4: Cyp — CriyCryp (positive introspection)

5: ~Cryp — Ciyn—~Ciayp (negative introspection)
MP: ££2% (modus ponens)

NEC: C{fw (necessitation of C'y;3)

This part is just our definition of K. o
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Axioms for everybody knowledge and common knowledge:
E: Epp <+ Nicp Csy (everybody knows)

Cl: Cp(p — ) — (Cpp — Cpy) (distribution of C
over —)

C2: CBQO — (30 VAN EBCBQO) (mIX)

C3: Cg(p — Epp) — (¢ — Cpyp) (induction of
common knowledge)

NECC: %w (necessitation of C'z)
where B C Ag.

Note, that E'5 is defined as macro!

Exercise: Show that axioms K, D,T, 4, and 5 for operator C'z
can be derived from S5C.
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4.4 Epistemic Logic

To show completeness we proceed as follows:

We define the closure of a formula ~~ finite MCS’s.

We construct canonical models wrt. the closure. These
models are finite!

We prove Lindenbaum's theorem (over finite sets) and
basic properties about the canonical model.

We prove the truth lemma which gives us the desired
completeness result. We show:

Every SB5C-consistent set is satisfiable.

Note: The sublanguage without common and distributed
knowledge is shown to be complete as before. The
following is only necessary due to group knowledge.
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Closure
Recall the notion Sub(p) from Defintion 3.61.

Definition 4.35 (Closure)

We define the closure of ¢, cl(y), as follows:
p € cl(p),
if 1 € cl(p) then Sub(¢) C cl(yp),
if Y € cl(p) and ¢ is not negated then = € cl(v)),
if Cpy € cl(p) then {K;Cpt | i € B} C cl(y),
We would like to build maximal S5C-consistent sets over
cl(y). Note that the closure is finite!
Why do we need rule 4?
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We define maximal consistency wrt. to a set of formulae.
When is a set maximal consistent?

Definition 4.36 (7-maximal S5C-consistent)

Let T C L. We say that a set I is 7-maximal
SHC-consistent iff

rcr,

I'is S5C-consistent (i.e. T" Hssc L),

' is a maximal set with these properties wrt. 7.
The set of all T-maximal S5C-consistent sets is defined as
MCS3C.

For a finite set X of formulae we define X as /\veX ©.

Lindenbaum’s theorem over finite sets is trivially true.
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We define the canonical S5C-model completely analogously
to Definition 3.43.

Definition 4.37 (Canonical Model)

The canonical model M>>¢ = (W33¢, {~33¢| a € Ag}, V35€)
for S5Cand ¢ is defined as follows:

B WS¢ = MCS3);

~SSCC WSSE x WSS€ such that T ~33€ T iff

{Kop | Kap €T} = {Kop | Kap €'}

B VSSC( ) ._ {’LU c WSSC |p c w}
I = (W33€,{~2°¢| a € Ag}) is the canonical frame of S5C
and ®.

What is the justification for the definition of the accessibility
relations?
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We need some notation to show completeness.

Definition 4.38 (Paths)

Let B C Ag, T be a set of formulae and T' € MCS3C.
A (B,T')-pathis given by I'y, ..., T", where
m eachT; € MCS3,
m[,=1T,and
m forall £ with 0 < k < n thereis an a € B such that
Dy ~23C Tppq.

A o-pathis given by Ty, ..., T, where each T'; € MCS5°C and
pelyforallk=0,...,n.

Such paths are closely related to the semantics of ~§. How?
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The following is fundamental for the truth lemma.

Lemma 4.39 (Common knowledge)

Let T be a set of formulae and T € MCSC.
If Cpp € T then Cpy € T iff every (B,T')-path is a ¢-path.

Proof.

=": We proceed by induction on the length of a path.
Suppose Cpyp € I'. We show the stronger statement every
(B,TI')-path is a ¢-path and Cp-path.
mn=0:ByF Cgp— ¢wehave {p,Cpp} CT.
m Let the claim be true for paths of length n. Consider a

path of length n + 1. We have Cy € T',, and there is an
agenta € BsuchthatT',, ~, I',.;.

|

]
[
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m FromF Cpp — EgCgp and F EzCpp — K,Cgp we
have K,Cgp € I';, N T',41 due to ~,. Again, due to the
truth axiom, we have {¢, Cpp} C T, 4.

"<": Let every (B, T')-path be a p-path.

m Let G C MCS3C consist of all A such that every
(B, A)-path is a p-path. We define

x=V A

Suppose we have proven: (1)L — x, (2)F x — ¢,
and (3) - x — Egx. From (3) and NECC

F Cg(x — Egpx). By the induction ax. - x — Cgy, then
by (1) - I — Cgx. Finally by (2), NECC, and the
distribution ax. - I’ — Cz¢ which shows that Czp € T'.
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It remains to show the validity of (1-3). (1-2) ~» Exercise. We
show (3).
m Suppose for the sake of contradiction y A =Epx is
consistent.

m Then, there must be a disjunct A of x such that
A A - FEpgy is consistent apd also an a € B such that
AN -K,x whichis AN K,—x
m From F \/cpogssc A (Why?) we have that
(%]
ANK, vAleMCS(spsc\GA/ is conAsistent and by modal
reasoning A AV yepegssey g KaAlis.

m Hence, there is © € MCSS*\G with A A KO is
consistent, but then A ~33¢ © (Why?) and there is a
(B, ©)-path which is not a ¢-path, but then the same
holds for A. Contradiction to A € G. ]
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Lemma 4.40 (Truth lemma)

Let 93°C be the canonical model for ¢. Then, we have

pew iff Qﬁisc,w E .

The proof is done by structural induction. We do only
consider the case for C 4.

m Ca¢ € wiff (Lemma 4.39) every (A, w)-path is a ¢ path
iff ¢ € w' for every state w’ reachable from w by
~i 00~ Where ~; € | J,cq ~aforj=1,... Tiff

¥ € w' for every state w’ with w ~§ w' iff M, w’ =+ for
every state w’ with w ~§ w’ iff M>>C, w |= Caeh.

]
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4.4 Epistemic Logic

The following is immediate from the definition of the
accessibility relation.

Proposition 4.41

The canonical model for ¢ € L is an S5C-model.

Theorem 4.42 (Soundness and Completeness)

System $5C is sound and complete for Lo with respect to
Kripke frames (W, {~; | i € Ag}) where ~i is an equivalence
relation.

Proof.

Soundness is left as exercise. Suppose = ¢ and t/ ¢. Hence,
{-~¢} is consistent. Then, there is an w € MCS*>¢ with

—¢ € w. By the truth lemma 9M3>¢ w = —p.

Contradiction. O o
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Distributed Knowledge

We will present an axiomatization for distributed
knowledge. The main axiom is illustrated by

Ko — Dayp 1€ A

indicating that if ¢ is known by i then any group A
containing i knows .

Otherwise, the operator behaves as a standard knowledge
operator.
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Definition 4.43 (S5CD)

The axiomatization S5CD extends S5C by the following
axioms for distributed knowledge:

DK: Dg(p = ¢) — (Dpp — Dp1))
(distribution of Dy over —)

DT: Dpp — ¢ (truth)

D4: Dpyp — DpDpp (positive introspection)

D5: =Dgyp — Dp—-Dpp (negative introspection)
NECD: ﬁp (necessitation of Dp)

D1: D;p < K;p

D2: Dy — DgpforBC B’
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4.4 Epistemic Logic
In order to show completeness we extend the notion of
closure given in Defintion 4.35 by the following conditions:
Dy € cl(p) iff Ky € cl(yp),
if D1 € cl(p) then D) € cl(p) forall B C B’ C Ag.

Theorem 4.44 (Soundness and Completeness)

System $5CD is sound and complete for Lo p with respect to

Kripke frames (W, {~; | i € Ag}) where ~; is an equivalence
relation.

In order to show completeness we proceed as follows:
We show that every S5CD-consistent set is
pseudo-satisfiable.
For each Kripke model there is an equivalent tree-like
Kripke model.
If p is pseudo-satisfiable then also satisfiable.
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Definition 4.45 (Pseudo-S5-model)

A pseudo-(S5-)model is an S5-model
(W {~i i€ AgU{A| AC Ag, A # 0}}, V) with ~i=~y;y.

That is, such a model simply adds “groups of agents” A.
Satisfaction in pseudo models, denoted =", is defined as
before but we replace the clause for distributed knowledge

by
M, w =" Dy iff V' (w ~4 w' then I, w' =Y )
That is, we interpret D4 as “standard” knowledge operator.

We say that ¢ is pseudo-satisfiable if there is a
pseudo-model 91 and a state w such that 9, w =7 .
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Lemma 4.46

Let p € Lop(Prop, Ag). If p is SBCD-consistent then it is
pseudo-satisfiable.

Proof.

We construct a canonical pseudo-model similar to the
construction of the canonical 913°-model from
Definition 4.37 by handling each D4 operator as a
“standard” knowledge operator.

We consider S5CD-consistent sets and use the modified
definition of closure. This model pseudo satisfies ¢
(Why?~ Exercise). It remains to show that ~,=~, to
ensure that it really is a pseudo model. This is immediate
due to the axiom D;p ++ K;p and due to construction (cf.
Theorem 4.42). H
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In the following we show that every S5-model is equivalent

to a tree-like model. First, we need to make this notion
precise.

Definition 4.47 (Path, reduced)

Let 0t = (W, {~;| i € Ag},V) be a S5-model and w,w’ € W.
A (w,w')-path is given by wy ~;, - -+ ~;,_, wi, With wy = w,
wk:w’andwj ~i; wj+1forj:0,...,k:—1.

A (w,w')-path wy ~;, -+ ~;,_, wg is said to be reduced if

i #ijforj=0,...,k—1.

Definition 4.48 (Tree like)

An S5-model is called tree-like if there is at most one
reduced (w, w’)-path between any two worlds w and w’ of
M.
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Lemma 4.49

For every $5-model 90 there is a tree-like S5-model M’ such
that for all w € Wayy there is a state w' € Wy such that for all
0 € Lop, M, w | ¢ iff M w' = o, and vice versa.

Proof.
~ Exercise ]

How “big” are these tree-like models? ~~ Exercise
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4.4 Epistemic Logic

Lemma 4.50

If v is pseudo satisfiable then it is also S5-satisfiable.

First, we consider the case for one agent, n = 1.

m Let M = (W, ~1, ~(3, V) be a satisfying pseudo model
and let be Mt = (W, ~, V).

m By structural induction, we show I, w =F" 1 iff
M w =

m All cases apart from ¢ = D;¢/ are clear.

m For ¢ = D;¢’ we have that ~» Blackboard
M’ w =L Dy’ iff M, w = K¢’ (by definition of a
pseudo model and induction hypothesis) iff
M, w = D).

[ <
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Now the case for n > 2. By Lemma 4.49 we can assume that
the pseudo model M’ is tree-like and M, w = ¢. (The
relations are denoted ~'.) For each i € Ag we define

~i= (M UUVAl A C Ag,i € A

Each ~; is an equivalence relation (Why?). We define
M = (Wow, {~i| i € Ag}, Vaw).

Now we show by structural induction on ¢ that

M w =L iff M, w = .

We only show the two cases ) = K;v and ¢ = D ~.
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Case: 1) = K.~ Blackboard

“<”: Suppose M’ w £ K;y. Hence, there is a state w’ with
w ~} w' such that M', w' £F ~. Since ~,C~; and by
induction hypothesis, M, w = K;7.

“=": Suppose M, w =" K;v. We have to show that

M, w' |= v for all w’ with w ~; w'. If w ~; w’ then there are
nodes w = wy, ..., w; = w’ which are interconnected by
~ UUacagica ~a- I (x) D w; =2 Kiyforall j =1,k
then 91, w' = . Because, as ', w' = K, then by axiom T
also M’ w’ =" v and by induction hypothesis 91, v’ |= 7.
It remains to show (%). Suppose the claim holds up to w;.
Then, also 9, w; =" K; Ky (axiom 4). If w; ~, w;,; then
also ml, W41 ):P K/}/ Else, if W; Ni4 Wi+1 WE have

M’ wjy EF Ky due to axioms D¢ — Dpp, A C B and
K, & D,.
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Case: ) = Dyy and i € A.~ Blackboard
“<”: Suppose M, w = Dvy. Then, thereis a w', w ~/y w/,
', w' L . By construction ~/,C~;, hence M, w' [~ + for
each i € A. This shows M, w = D 47y.
“=": Suppose M, w ¥~ Dyy.
® Then, Jw'(w ~4 w" and M, w' |~ 7).
m Then, Jw'Va € A(w ~, w' and M, w' |~ 7).
m Then, Jw'Va € A(w ~, w' and M’ w' £ ) by
induction hypothesis. Then,
m Juw'Va € A3 reduced (w,w’)-path A\, = w§ ~ja - - ~ie
wi with 4 € {a} U{A | a € A} and O, w' [£F 4,
m but then A\, = )\, forall a,b € A, and furthermore each
i¢ = A (Why?).
m Hence, k =1, w ~y w', M, w' =L v and thus
M w EE Dary.
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Finally we can state the sound-and completeness proof.

of Theorem 4.44.

Let ¢ be an S5CD-consistent formula. Then it is pseudo
satisfiable (Lemma 4.46) and S5-satisfiable

(Lemma 4.50).

As before, suppose = ¢ and I/ ¢. Then, =y is
S5CD-consistent and thus S5-satisfiable. Contradiction! [
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4.5 Public Announcement
Logic
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4.5 Public Announcement Logic
Announcements without Common
Knowledge

The axiomatization for public announcement logic without
common knowledge is an extension of system S5.

Definition 4.51 (System PA)

System PA extends S5 by the following axioms:

[olp < (p — p) (atomic permanence)
[o]= > (p — —lp]y)  (PA and negation)
[p]( A x) > ([¢l¥ Alp]x) (PA and conjunction)

[o][¥]x < ([ Aleldlx)  (PA composition)
(0] K < (¢ = Ki[p]t)  (PA and knowledge)

Soundness is shown above. o
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Here, we follow a different approach to show completeness,
not directly via canonical models! Thanks to

Proposition 4.29 we can translate all axioms of PA to
formulae of L (without public announcements!).

Suppose we have defined the translation tr: Lp4 — Lg
such that the following lemma holds.

Lemma 4.52
Forall ¢ € Lpa it holds that Fpa ¢ <> tr(p).

Then, we can use the sound and complete axiomatization
for S5 to prove sound and completeness for PA.
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4.5 Public Announcement Logic

Theorem 4.53

PA is sound and complete for Lp4 over the class of epistemic
Kripke models.

Proof.

Suppose = ¢, then = ir(¢) by Lemma 4.52. As tr(p) € L
we have s tr(¢) by completeness for S5. Now, from

S5 C PA we conclude Fpa tr(¢) and by Lemma 4.52 we get
pa . [

It remains to define ¢r and to prove Lemma 4.52.
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Definition 4.54 (Translation #r)

We define tr : Lp4 — L as follows:

p

= ~tr(p)

tr(p) Atr()

= K,tr(y)

tr(y — p)

— =)
Ix A [Wle)
— Ka[¢]e)
A [$lelx)

[¥
tr(y

(
tr(e
tr(
(
tr([y

Note that ¢r(¢) € Lk ~ Exercise
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How can we prove Lemma 4.52: pa ¢ <> tr(p)?
Can we simply apply structural induction as usual?

To prove a property for ¢ one assumes that the property
has been proven for all real subformulae of ¢.

But now consider tr([¢o] 1)) = tr(p — —[¢]v). The formula
(o] is not a subformula of [p]—.

The subformulae of a formula ¢ define some order on ¢;
e.g. ¢ is “smaller” than —. We define a new order on Lp4
which preserves this very order.

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 381



!@[M TU Clausthal 4 Public Announcement Logic

4.5 Public Announcement Logic

Definition 4.55 (Complexity measure cp,)

The complexity measure cp4 : Lp4 — Nis defined as
follows:

cra(p) = 1,

cra(mp) = 1+cpalp),
cra(p AY) = 1+ max{cpa(p),cra(¥)},
cra(Kap) = 1+cpalp),

cra(lpl) = (4+cpa(p)) - cpa(y).

It is easily seen that this complexity measure preserves the
order imposed by the “subformula order”.
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4.5 Public Announcement Logic

Lemma 4.56

For all p,,x € Lpa we have the following:
cpa() = cpalp) if cpa(p) if p € subform (i),
(lelp) > cpale — p),
B cra(le]l¥) > cpale = —lely),
B cra([e](¥ A x) > cpalle]d Alelx),
(l¢e]
(l¢]

2 CpA
A

B cra([p]Kah) > cpale = Kafel),
B cra([][¥]x) > cpalle A [0]¥]x)-

The proof is easily done by calculating the measure. We just
give a proof for the last point: cpa([p A [@]¥]x) =
(5+max{yp, [pli})-cpa(x) = (5+(4+cpa(p))-cpa(¥))-cpa(x) <

(4 +cpa(p))(4+cpa(¥)) - cralx) = cpa(le][¥]X)- .
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4.5 Public Announcement Logic

Exercise: Show that the lemma does not hold if the 4 in
Definition 4.55 were replaced by 3.

Now, we prove kpa ¢ <> tr(p).

Proof of Lemma 4.52

The proof is done by induction on ¢ := cp4.

Base case. c(p) =1, i.e. = p <> tr(p). Trivial.

Induction hypothesis. For all ¢ with ¢(p) < n: F ¢ « tr(p).
Induction step. The inductive step is very easy now. We
illustrate it for [p][¢]x:

m - [p][Y]x iff F [p A [p]]x by the composition axiom iff
F tr([e A [¢]Y]x) by induction hypothesis iff
= tr(le] [v]x)-

The other cases follow completely analogously.
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The axiomatization for public announcement logic with
common knowledge is a combination of system S5C with PA.

Definition 4.57 (System PAC)

System PAC combines PA (Definition 4.51) and S5C
(Definition 4.34) and the following two rules:

- (necessitation of [¢])
[¢]¢ and x\p— B
x=le X—a:E%O])éBf/’_) EX (PA and common knowledge)

Soundness of the latter rule is proven in Proposition 4.32.
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Finally, we state that this axiomatization is sound and
complete for public announcement logic.

The proof combines ideas previously introduced.
Completeness is shown similarly to S5C. The main
observation is the following (cf. Lemma 4.39):

[0]Cpy € T iff every (B, I')-path which also is a p-path is
also a [p]y-path.

Structural induction is done via an extension of the
complexity measure as introduced in Definition 4.55 by

adding cpa(Cpp) = 1+ cpa(y).

Theorem 4.58 ( Soundness and Completeness)

System PAC is sound and complete for L pa with respect to
S5C-models.
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5. More About Models

More About Models
m Invariance Results
m Ultrafilter Extensions
m Saturated Models and Ultraproducts
m Characterization Theorem
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Content of this Chapter

In this chapter we discuss advanced topics about models.
We start with basic satisfaction invariance results and
introduce the fundamental concept of bisimulations. The
main result about bisimulations is that bisimular models are
modally equivalent. In order to show the other direction,
we introduce ultrafilters and ultrafilter extensions. The
latter allows to completely characterize modally equivalent
models.

In the last two subsections we discuss basic concepts of
first-order model theory, in particular saturated models
and ultraproducts. These notions are needed to prove van
Benthem's Characterization Theorem which shows that
the modal language is the bisimulation invariant fragment of
the first-order language.
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5.1 Invariance Results

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 389



@KB} TU C‘laUS‘thal 5 More About Models

5.1 Invariance Results

We have introduced what it means for a formula to be
satisfied or valid in a model. We also showed how to
describe structural properties of frames. For example, we
introduced formulae which were valid on transitive, serial,
or Euclidean frames.

In the following we consider properties which cannot be
expressed within the modal language and analyse when
two models are not distinguishable by modal formulae. In

the following we mostly assume that all models are of the
same similarity type! And restrict ourself to the basic
modal language if the general case is obtained in the same
way.
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In this section we consider invariance properties of models.
That is, we would like to modify models without changing
the set of satisfiable and unsatisfiable formulae.

Firstly, we need to specify a criterion to compare different
models.

How can such criteria look like?
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Definition 5.1 (Theory)

Let 9t be a Kripke model and w € Wy. The theory of w
(with respect to 9t), denoted by Thyn(w) is given by all
modal formulae satisfied in 9, w, i.e.

Thap(w) = {o | M, w k= ¢}

We will also write 7 (w) whenever the model is clear from
context.

The theory of 91, denoted by 77 (91), is given by all
globally valid formulae (see Definition 2.11) in 92, i.e.

Th(9M) = {v | M |= ¢}
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Example 5.2

Consider Prop = {p, q}. What is the theory of the following
model?

P P

t,p,pAp,...,PAq,..., K 4, .., —q, 75q,...

Intuitively, models are considered “equal” if they have the
same theory.
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Definition 5.3 ((Modal) Equivalence)

Let 91, and 91, be two Kripke models of the same similarity
type, w; € Wyn, and wy € Wiy, .

We say that w; and w, are (modally) equivalent (with
respect to 9, and M,), denoted by My, wy «~ My, wy, iff

Than, (w1) = Than, (w2)

We will also write w; «~ w,; whenever the models are clear
from context.

We say that 01, and 91, are (modally) equivalent, denoted

Th(N,) = Th(9M,)
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In the following we describe operations on models such
that the satisfaction of formulae is invariant under these
operations. That is, if such a satisfiability preserving
operation is applied to a model the resulting model should
be modally equivalent to the original one.

We discuss the following invariance operations:
Disjoint unions,
Generated submodels,
Bounded morphisms,
Bisimulations, and
Ultrafilter extensions (next section).
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Disjoint Unions

Disjoint unions are used to construct bigger models from
smaller ones.

My : @ Mo @ @ @

M, W M @ @ @ @
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Definition 5.4 (Disjoint Models, - Union)

Two models 9t; and M, are said to be disjoint iff
Wan, N Wan, = 0; i.e. if they have no worlds in common.

Let all 90; be disjoint models for i € I C N. The disjoint
union of the models M1; is defined as 4,_, M, := (W, R, V)
where

W=, W,

m R =, Ri and

= V(p) :=Uier Vi(p)-

What can we say about the satisfaction in 9t; and ¢ 90,7

Note, that every set of models can be made disjoint by
simply renaming worlds.
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Proposition 5.5 (Invariance under Disjoint U.)

Let all 9; be disjoint Kripke models of the same similarity
type fori € 1. Then, for each formula ¢, for each i € I, and
each world w € Wy, it holds that

W, w = ff H—mei,w E e

i€l

This result is about satisfaction! Does it also hold for global
truth? No! Why not?

Structural induction on ¢. ~~ Exercise O
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By means of this result we can show that some operators are
not definable in the modal language!

Example 5.6

The global universal modality A is defined as follows:
Mw = Ap  iff Yw € Wor (M, w | @)

Is this modality definable in the modal language?

Assume that a(p) is a basic modal formula such that

M, w = a(p) iff M, w = Ap. Thatis, a(p) defines A.

Let M1, be a model with Vi, (p) = War, and 9, be a model
with Vip, (p) = 0. Since My, w = a(p) also My WMy, w = a(p)
and thus also M, w = a(p) by Proposition 5.5.
Contradiction! So, a(p) is not definable in ML.
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Generated Submodels

Now, we present a way to obtain smaller models from
bigger ones.

The idea is to remove points from a model without affecting
the satisfiability of formulae.

Example 5.7

Consider the following frames: §, = (Z, <), §2 = (Z7,<)
and §3 = (N, <) whereZ= :={zx € Z | x <0}

Is there a modal formula which can distinguish §; from §,?
Yes, consider { T!

What about a formula which can distinguish §; from §3?
Why does such a formula not exist?
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Definition 5.8 (Submodel)

Let M, = (W1, Ry, V1) and My = (Ws, Ry, Va) be two Kripke
models. M, = (Wy, Ro, V3) is called a submodel of
M, = (W, Ry, Vi) iff
Wsmz g Wmu
Ron, = Ramy, N (Wan, X Wan, )
(i.e. Ron, is the restriction of Ry, to Wy,),

Vimz (p) = mel (p) N sz
(i.e. Van, is the restriction of Viy, to Way,).

That is, some points are removed and the accessibility
relations and the valuation function are restricted
accordingly (cf. with the modal update of public
announcements).
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In the following we formalize the observation made in the
previous example.

Definition 5.9 (Generated Submodel)

Let M, = (Wh, Ry, Vi) and My = (Wa, Rs, Vi) be two Kripke
models. My = (Wa, Ro, V5) is called a generated submodel
of My = (W1, Ry, V1), denoted by 91, — My, iff
M, is a submodel of My and
if wy € Wop, and wyRey, wy for some wy € Wyy, then also
wp € ng2.

Let X C Wyy,. The submodel generated by X is defined as
the smallest generated submodel of Mt; whose set of
worlds contains X.

~- Exercise: Prove that the “submodel generated by X”
does always exist!
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If a point w is identified in some model then the submodel
generated by w must contain all points reachable from w!

Example 5.10

Recall the frames from the previous example extended by
some valuation: M, = (Z, <, V), My = (Z~, <, V;) and
mg = (N, <, ‘/1)

It is easy to see that 9 is the {1}-generated submodel of
Qﬁl but 9ﬁ2 >7L> Dﬁl.
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Proposition 5.11 (Invariance under G.S.)

Let My and 9M, be two models such that M, is a generated
submodel of 9. Then, for each modal formula ¢ and each
world wy € Wiy, it holds that

ml,’lUQ IZ (Y2 lff 93?2,102 ): (2

Proof.
By structural induction on ¢ ~~ Exercise H

This result is quite obvious: All points reachable from w, are
contained in both models.

How does the generated submodel look like for a model
in which all points are reachable from each other?
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Remark 5.12

Note that Proposition 5.5 (disjoint union) is a special case of
Proposition 5.11. Why? ~~ Exercise
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Bounded Morphisms

In the previous section we showed that models can be
combined and that worlds can “carefully” be removed
without affecting the satisfaction of formulae.

Now, we present a more general tool: Functions that
preserve the structure of models.
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Homomorphisms
We define the basic mathematical notion of a
homomorphism for models. It is simply a mapping

between states respecting relational properties and
valuations.

Definition 5.13 (Homomorphism)

Let M1, and M, be two models of the same similarity type. A
homomorphism f from 9; to My, [ : My — My, is a
function f : Wan, — Wy, with the following properties:
Vp € Prop Yw € Wa, (w € Vo, (p) = £(w) € Vo, (p))
Vw, w' € Wag, (Ran,ww’ = R, f(w)f(w'))
(homomorphic condition)
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Does a homomorphism ensure invariance under
satisfiability?

No! The structure of 91, is not reflected back to 9;.

~ Exercise: Give a counterexample.
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Isomorphisms

We have to strengthen the definition of homomorphisms in
order to obtain modal equivalence.

Definition 5.14 (Strong Homomorphism)

Let M1, and M, be two models of the same similarity type. A
strong homomorphism f from 9, to M, is a
homomorphism f : 9, — 9, with the following
properties:
Vp € Prop Yw € Way, (w € Vi, (p) < f(w) € Vi, (p))
vw; w' € Wml (Rfmlwwl <:>R9ﬁ2f<w)f<wl))
(strong homomorphic condition)

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 409



! TU Clausthal LNttt o

Clausthal University of Technology

Definition 5.15 (Isomorphism)

An isomorphism is a bijective strong homomorphism. We
say that two models 9t; and 90, are isomorphic, 91, = My,
if there is an isomorphism from 921, to 9i,.
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Proposition 5.16 (Invariance)

Let M, and 9M, be two models of the same similarity type.

Let w (resp. ws) of My (resp. My). If there is a surjective
strong homomorphism f : 0, — My with f(w;) = we
then 9)?1,11)1 v 93”(2, Wsy.

Iff):nl Sal)) [0} then My o~ Moy

The first item is shown by induction on formulae (~
Blackboard). The second follows from it. O

These results are not very surprising since isomorphisms
usually describe identical entities (apart from renaming).
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It is also not surprising that we cannot strengthen the result
to an equivalence: There are morphisms which imply
modal equivalence but which are not strong! In
particular, isomorphic models have the same number of
worlds.

Example 5.17

Both models are modally equivalent but not isomorphic:

p p p

~~ Exercise: Construct a model and a morphism which is not
strong but which ensures invariance under satisfiability.

The following definition refines the approach.
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Bounded Morphism

Definition 5.18 (Bounded Morphism)

Let M, and M, be two models of the same similarity type. A

bounded morphism f between 9t; and 9y, [ : mlismg, isa
homomorphism f : 9, — 9, such that the following
conditions are satisfied:

For all w € Wyy, it holds that w and f(w) satisfy the
same propositions,

if Ron, ww’ then also Rox, f(w) f(w'),

If Ron, f(w)v" then there is a v € Wy, such that Ry, wov
and f(v) = v’ (back condition).

If the underlying homomorphism is surjective we say that
9, is a bounded homomorphic image of Mt;, My B M.
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Example 5.19 (B.M. in the Basic Modal Logic)

Consider the models M, = (N, Ry, V3) and
My = ({e, 0}, Ra, Vo) where
Rimniffn=m-+1
Vi(p) = {2n | n € N}
B R:={(e,0),(0,€)}
B V2(p) = {e}

We define f : Wy, — Wiy, as follows:

f(n) = {e if n is even

o ifnisodd

fis a surjective bounded morphism but not strong!
~ Exercise
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Proposition 5.20 (Invariance under bm)

Let M, and 9, be two models of the same similarity type such

that f - Qﬁlﬁmﬁg. Then, for each modal formula ¢ and each
w € Wap, it holds that

My, wkEe iff My, f(w) = .
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The proof is done by induction on . We just consider the
case where ¢ = § .

“=*“: Assume M, w = O . So, thereis a w’ with 9y, w' | ¥
and Rgp, ww'. Hence, also Ry, f(w) f(w’) and by induction
hypothesis M, f(w') = ; hence, My, f(w) = O .

"< Assume My, f(w) = O . So, there is a v' with

My, v’ = ¢ and Ron, f(w)v'. Hence, also Ry, wv for some v
with f(v) = v" and by induction hypothesis 0t,, v = 1;
hence, 9t;, w = O . O
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Application
Often, one is interested in models with a special structure;

e.g. tree-like models. These are models which have the
shape of a tree: They have a root node and are acyclic.

Proposition 5.21 (Tree Model Property)

Let 9, = (W1, Ry, V1) be a {w}-generated Kripke submodel
where w € W.
Then, there is a tree-like model My = (Ws, Ro, Vs) such that

m, 2 9. This means that any satisfiable formula is
satisfiable on a tree-like model.
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5.1 Invariance Results

W, consists of all finite sequences (w, wy, ..., w,) such that
Riwwy, Riwiws, Riwows, . . ., Riw,_1w,

Let v, 0" € W, we define R, as follows: Rovv” iff

v=(w,wy,...,w,), v = (w,w,... Wy Wyi1), and Riw,wy 1

We set (w, wy, ..., w,) € Va(p) iff w, € Vi(p).
Finally, the function f(w,ws,...,w,) := w, is a surjective
bounded morphism from 9, to 9, (~~ Why? Exercisel).

O
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Bisimulations

Up to now, we introduced special kinds of relations
between models:

m Submodels: Identity relation.
m Homomorphisms: Functions.

They have two things in common:
m Related states satisfied the same propositions, and
m transitions were preserved.

Here, we introduce a more general relation between
models such that related models are modally equivalent.
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Definition 5.22 (Bisimulation)

Let M, = (W1, Ry, V1) and My = (Ws, Ry, Va) be two Kripke
models. A bisimulation between 9, and M, B : M, = I,
is a non-empty binary relation B C 1V, x I/, such that
whenever w; Bw, the following hold:

Vi(wy) = Va(wy)  (atomic harmony)
if U}1R1"U1 then there is Vg € W2 st ’UlBUQ and U)QRQ'UQ
(force condition)
if 'LUQRQUQ then there is (S W1 st ’UlB’Ug and w1R2v1
(back condition)
If there is a bisimulation between two states w; € W, and
wy € Wy we write My, w; S My, wy or just wy S wy if the
models are clear from context. If there is a bisimulation
between 91, and 991, we write 91, = 91,.
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5.1 Invariance Results

Example 5.23

The following models 9t and 9t are bisimular:

@@ @

We define the following bisimulation between the models:
B:= {<w1> w/1)7 <w27 wé)v (w27 wé)? (w37 wﬁl)a (11)4, wi’))v (w5> wi’))}
It is easy to verify the bisimulation conditions. Note that
both models are neither a generated submodel nor a
bounded homomorphic image of the other.
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How do we have to adopt the definition of bisimulation in
order to fit with the general case for arbitrary similarity
types?

Definition 5.24 (Bisimulation - General Case)

Let 991, and 91, be -models. A bisimulation is defined as in
Definition 5.22 but the back and force conditions are
modified as follows: w, Bw, iff

m Vi(w) = Vao(wy) (atomic harmony)

m if Ry"wy v, ... v, then there are v}, ... v, € W, such that
v;Bulforalli=1,..., and Ry"wyv] ... v
(force condition)

m if Ry"wqv] ... v], then there are vy, ..., v, € W, such that
v B, foralli=1,..., and Ry"wv; ... v,

(back condition)

/
n
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All constructions of the previous section are bisimulations.

Proposition 5.25

Let Ot, M, and IM; for i € I C N be models of the same
similarity type.
If M = M’ then M = M
Forall i € I and w € Way, it holds that M;, w = 4, M, w
If M — M then M, w = M, w for all w € Wy

If £ : MDY then M, w S M, f(w) for all w € M.
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Define B as {(w, f(w)) | w € Wy} where f is an
isomorphism between 9t and 9t'. Then, it is easy to
check that B is a bisimulation between 9t and 2t'.

Define B as {(w,w) | w € Way, }. Then, itis easy to check
that B is a bisimulation between 9t; and |4, 90t,.

Define B as {(w,w) | w € Wyn }. Then, it is easy to check
that B is a bisimulation between 9t and 1.

Define B as {(w, f(w)) | w € Wy} where f is a bounded
morphism between 2t and 9. Then, it is easy to check
that B is a bisimulation between 2t and 9.

]
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Theorem 5.26 (Bisimulation Invariance T.)

Let 9t and 9 be models of the same similarity type. Then, for
every (w,w') € Won x Woy it holds that

w S w' implies that w «~ w'.

The proof is done by structural induction of formulae.
What about the reverse? It does not hold in general!
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If ¢ is a proposition it is obvious, as well as for boolean
connectives. Now let o = { ).

Let w = w'. Since M, w = ¢ 1 we have that

Ju(Rwv and M, v = ¢). Then, there is an

v (Rw'v" and v < v') by the bisimulation force property. By
induction hypothesis we get ', v' = 1. So, we have that
M, w' = O .

The reverse direction is done analogously by using the back
condition. O
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Example 5.27

Consider the following two models:

- NN
] I
{7 LT

Left model Mt: All branches of finite length. Right model
9V': an additional infinite path (p is always true). Both
models are modally equivalent in w and w’. But: there is
no bisimulation!

O~

O

O
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We prove that a bisimulation cannot exist. Suppose the
contrary.

Let v; be the state of the infinite path with Ryw'v,, and w; a
point in 2t bisimular with v;. Let the path corresponding to
wy have length n + 1, say ww; ... w,. Since both models are
bisimular w,, has to be bisimular with the (n + 1)th state v,
on the infinite path as well. However, now v, has a
successor but w,, does not. Contradiction!
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Definition 5.28 (Image-Finite Model)

Let M = (W, Ry,..., Ry, V) be a Kripke model of modal
similarity type 7. The model 9t is called image-finite iff for
each relation R,,, in the model the set

{(xb 000 7xn) | Rixxl .- xn}
is finite where 7(m) = n — 1 (i.e. R,, is an + 1-ary relation).

This definition says that the branching factor of each
relation must be finite.
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Theorem 5.29 (Hennessy-Milner Theorem)

Let M and 9 be image-finite models. Then, for every
(w,w") € Won x Waps it holds that

w S W' if, and only if, w e~ W'

Proof.

“=". Theorem 5.26
“<": \We show that w «~ w' itself is a bisimulation.
Therefore, we have to verify the three properties. O
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Clearly, w and w’ satisfy the same proposition letters.
y y prop

Forth condition: Assume Rwv and that there is no v/
with R'w'v" and v «~ o', Let S" := {u/ | R'w'v'}. The set
it non-empty! Why? Image-finiteness implies that
S" ={wl,...w.,} is finitel By assumption there is a
formula ¢; for each w; € S" such that M, v | ¢; and
M, w; ¥~ ¢;. Hence

MwEOQ(Pp1A--Ag,) and M w' FE O (o1 A Aoy,)

which contradicts w e~ w'.
Back condition: Analogously to the previous point.
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5.2 Ultrafilter Extensions
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5.2 Ultrafilter Extensions
The Picture so Far

Bisimulations are an important tool to characterize modally
equivalent models. However, Example 5.27 and the
Hennessy-Milner Theorem 5.29 show that bisimulations do
not completely characterize modally equivalent models.

In this section, we introduce the final step: Ultrafilter
extensions. The main result of this section is the following:

Two models are modally equivalent if, and only if,
there is a bisimulation somewhere else!

Here, “somewhere else” means in the ultrafilter extension!

M, w e M w' iff ue(M), 7, S ue(M'), myr.
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We would like to generalize the Hennessy-Milner Theorem:
Image-finite models form just a special class of models.

Definition 5.30 (Hennessy-Milner Property)

Let M be a class of -models. We say that 9t has the
Hennessy-Milner property iff for all 0t, 0 € M, w € Way,
w' € Wy it holds that

w e~ w' implies M, w S M, w'.
This is the converse direction of Theorem 5.26.

Example 5.31

The class of image-finite models has the Hennessy-Milner
property.
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Definition 5.32 ((Finitely) Satisfiable)

Let M be a model, X C Wy, and X be a set of formulae.

We say that ¥ is satisfiable in X iff there is an w € X such
that M, w = X.

3 is said to be finitely satisfiable in X iff every finite subset
of X is satisfiable in X.

Example 5.33

Assume ¥ = {¢1, ¢2, ... } is an infinite set of formulae and
that S := {vy,v,,...} is the set of successors of a state w.
Moreover, assume that v; satisfies exactly the formula

w1 Ao A -+ N, forall i. Then, X is finitely satisfiable in .S
but not satisfiable.
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We mention a very important result of first-order logic and
define an analogon for the modal language.

Remark 5.34 (Compactness in FOL)

Let 3 be a set of first-order formulae (or propositional
formulae), possibly infinite. The compactness theorem says
that if every finite subset ' of ¥ has a model (i.e. there is a
model 9t such that 9 |= X') then there also is a model for ¥
itself.

In the following we present the “modal counterpart” of the
compactness theorem.
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The following definition generalizes the image-finite model
property.

Definition 5.35 (Modal Saturation)

Let 9t be a model. M1 is said to be modally saturated if the
following condition is satisfied for every state w € Wy, and
every set X of formulae:

If X is finitely satisfiable in {w’' € Wiy | Rww’} then X itself
is satisfiable in this set.
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Proposition 5.36 (Modally Saturated Models)

The class of modally saturated models has the
Hennessy-Milner property.

Proof.

Let 9t and M be two modally-saturated models. We show
that «~ is a bisimulation. We only show the forth
condition.

Let w,v € W, w' € W/, Rwv, and w «~ w'. Let X be the set of
formulae true at v. For every finite ¥’ C ¥ holds:

M, v =AY, hencealso M, w = O AX. Fromw «w w' it
follows that M, w' = O A Y, hence M, v' = A X' for some
v' € W with R'w'v'. So, ¥ is finitely satisfiable in

{v € W' | R'w'v'} and hence, also satisfiable in some

v' e W with R'w'v’. This shows that v «w v/, H
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5.2 Ultrafilter Extensions
Ultrafilter Extensions

We have just seen that that modally saturated models have

a very nice property. Now, we show how to construct such
models.

An ultrafilter can be seen as a completion of a model:
States are added to the model until it is modally saturated.

Filters and ultrafilters are just sets of sets which are closed
under various operations.

Before we consider ultrafilter extensions we need to
introduce some basic things about filters and ultrafilters.
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Zorn’s Lemma
For the ultrafilter theorem we need Zorn’s Lemma.
Let X be a set of sets. Then, C defines a partial order on X.

X is said to be a chain iff for all A, B € X it holds that A C B
or B C A.

An element A of X is said to be maximal iff for all elements
B € X with A C B it follows that A = B.

Lemma 5.37 (Zorn’s Lemma)

Let X # () be a set of sets which is closed under unions of
non-empty chains over X.
Then, X has a maximal element.
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Filters and Ultrafilters

Definition 5.38 ((Proper) Filter)

Let W £ (). A filter ' over W is a set F' C P(WW) with the
following properties:

BWekF,

X,Y € Fimplies XNY € F (closed under
intersection),

X € Fand X C Z C W implies Z € F (upward
closed).

Afilter F'is called proper if F' # P(W).

It is easy to verify that P(W) is a filter but no proper one.

Note that a filter is proper iff it does not contain (!
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Definition 5.39 (Ultrafilter)

Let W ## (). An ultrafilter U over W is a proper filter U
over IV such that the following condition holds:

VX ePW): X eU iff W\X&U
We use Uf(1V) to denote the set of ultrafilters over V.
Note the relation to a complete theory: Either a formula or
its negation holds in it.

Example 5.40

Let W = {1,2}. Then, {{1}, W} and {{2}, W} are ultrafilter
over W.
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5.2 Ultrafilter Extensions

Definition 5.41 (Generated Filter)

Let W # ) and E C P(W). The filter I generated by E is
defined as follows:

F:=({G| E C Gand G is afilter over W'}

That is, F'is the smallest filter containing E.

~ Exercise: Prove that F'is a filter.
Definition 5.42 (Prinicpal Ultrafilter)

Let W # 0 and w € W. The principal ultrafilter =,
generated by w over W is the filter generated by {w}.

~ Exercise: Prove that m,, is an ultrafilter and that
Tw ={X CW |we X}.
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Definition 5.43 (Finite Intersection Property)

Let £ C P(W). We say that E has the finite intersection
property iff the intersection of any two elements of £ is
non-empty.

Proposition 5.44

Let F be the filter generated by E C P(W).
Fis a proper filter over W iff E has the finite intersection
property.

~ Blackboard ]
o
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Firstly, we show that theset D = {X CP(W) | X =
Wor3dYy,...,.Y, e E(Y1n---NY, C X)}isequal to F.
“FCD” LetW X, X' e Fand Y, Y/ € F such that
yin---nY,CXand¥/Nn---NnY, C X'
mXCZCW=Y1Nn---NY,CZ=7€D
mYin---nY,nY/n---nY, CXNX =
XNXeD
= Dis afilterover W. Since E C D = F C D.

“DCF”: LetG C P(W) be any filter with £ C G, then
WedG.ForYy,....Y, e E=Y N---NY, € G.
So, VX e P(W) (Y1n---NY,C X=X e€q).
Hence, D C G and therewith also D C F as F'is
a filter and contains £ as well.
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So, we have shown that F'is equal to
(XCPW)|X=Wordy;,...,Y,e E(Y,n---NnY, C X)}

Now, it is easy to prove the proposition:

“=". Assume there are X, X' € F such that

XNX =40.Since EC Falso X, X' e Fand
hence) = XN X' € Fand F' = P(W).

Let £ has the finite intersection property.
Suppose () € F. Hence, thereare Y3,...,Y, € E
withY; N---NY, C (. But this contradicts the
finite intersection property of E.

“w, n,
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Proposition 5.45

If U is a maximal proper filter over W, then U is an
ultrafilter.

Note: The reverse direction does also hold.
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Let U be a maximal proper filter. Then not both X € U and
W\X € U (otherwise () € F', Contradiction).
We prove: If W\X ¢ U then X € U.

Assume W\X £ U. Let £ := U U{X} and F be the filter
generated by E. We show that £ has thefinite intersection
property. LetY;,...,Y, € Fand Z =Y,.
Since U is closed under finite intersections it holds either
Z € U, where Z # () since U is proper, or
Z =XnNY forY € U where Z # (). Assume the
contrary, then Y C W\ X, hence also W\ X € U.
Contradiction.
Thus, Z # () and, by Proposition 5.44, we have () & F' (F
proper). SinceU C FwehaveU =F, ECUand X € U.
[l
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Theorem 5.46 (Ultrafilter Theorem)

If E C P(W) has the finite intersection property then E
can be extended to an ultrafilter U over W; i.e. E C U.
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m Let ‘P be the class of all proper filters over W that
contain E. By Proposition 5.44 the filter generated by £
is proper and thus 3 is non-empty.

m Then, by Zorn’s Lemma, ‘3 has a maximal element U
as it is closed under unions of non-empty chains: Let C
be a non-empty chain of proper filters, then | JC'is a
proper filter. (~ Exercise)

m Then, E C U and U is a maximal proper filter of W. For,
assume M is is a proper filter in W with U C M, so
E C M,hence M e Band U = M.

m Proposition 5.45: U is ultrafilter over V.
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Logical Interpretation of Filters
A proposition can be considered as a set of states; namely,
the states in which the proposition is true:
Vip) =W,
Then, a filter is a (propositional) theory (a set of
propositions) which is closed under logical operations:
W, N W,: Represents the conjunction. All states in which p
and q are true.
W, e Fand W, C W, C W implies IV, € F: entailment
llp _) q.
What is a proper filter? A consistent theory!
What is an ultrafilter? A complete theory!
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Ultrafilter Extensions

Definition 5.47 (Pre-lmage Operator)

Let R be a (n+ 1)-ary relation on W. Let X;,..., X,, € P(W).
We define the following pre-image operator:

prep(Xi, ..., Xp) ={z e W |3I(zy,...,2,) € X1 X --- x X,
such that Rzx; ... x,}

What is the interpretation of the operator for binary
relations?

prep(X) = {x € W | Jy € X such that Rxy}
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Definition 5.48 (Dual of the Pre-lmage)

We define the dual of the pre-image operator for any set
X; € W and (n + 1)-ary relation R as follows:

preh(Xi,..., Xp) = Wpre(W\Xy, ..., W\X,,)

Note, that the dual of the pre-image pred (X, ..., X,) is
equivalent to the following set

{r e W |Vzy,...,2p, e W (Raay ...z, = Ji (1 <i<nAz; € X;))}

And for the simple case:

preh(X) ={z e W |Vy € W(Rry —y € X)}

There is no x-related element which is not in X.
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Definition 5.49 (Ultrafilter Extension)

Let § = (W, R) be a frame. The ultrafilter extension of g,
ue(§), is defined by (Uf (W), R*) where R"“uu’ for
u,u’ € Uf(W) if the following condition holds:

If X' € u’ then pregy(X') € w.

The ultrafilter extension of a model 9t = (§, V) is defined
as the model ue(MT) = (ue(F), V*¢) where
Ve(pi) = {u e UW) | V(pi) € u}.
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Ultrafilter Extension: Interpretation

As mentioned above, an ultrafilter can be considered as
complete theory, we also call it a state of affairs.

Now, not every state of affairs needs to be realized in a
frame: There might not be a single state in a frame that
satisfies exactly all the proposition described by the state of
affairs (i.e. a state of the model is not a member of all
elements of the ultrafilter).

Which states of affairs are realized in a frame? A principal
ultrafilter 7, is realized (exactly) at world w of the frame!

Thus, the ultrafilter extension adds to a frame all states of
affairs; thus, every proposition of the model is realized at
some point of the ultrafilter extension.

Finally, two states are related (R"®uu’) whenever u “sees” v'.
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Proposition 5.50 (Relation to Prinicpal Uf)

Let § be a Kripke frame and ue () its ultrafilter extension.
Then, we have for all v, w € W5 that

Row iff RYm,my.

So, § is isomorphic to a submodel of ue(5). In general, this
submodel is not a generated submodel.

~ Exercise ]
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Example 5.51

Consider the following frame § = (N, <).
There are two kinds of ultrafilters (~ Exercise):

Principal ones: They form an isomorphic copy of §
inside ue(F); and
Non-principal ones: They contain all co-finite sets and
only infinite sets.
How are the non-principal ultrafilters related to the others?
Let uw € Uf(N) and «’ be non-principal. Then, forany X € «/
we have
pre(X)={xeNy|Fi e X (x <)} =N,

because X is an infinite subset of N.
Now, for any u € Uf(Ny) we have that Ny € u and thus it
holds that R"¢u/.
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Lemma 5.52 (R"® and pre?)

Let M = (W, R, V) be given, and u,v € Uf(W). Then, we
have that

RY“uv iff {Y | pre%t(Y) € u} Co

and {Y | pre%(Y) € u} is closed under finite intersection.
R
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R uw iff VX € v (pre(X) € u) iff X € v (pre(W\X) ¢ u)

iff VX(W\X & v — pred(W\X) & u)

iff VX (pred(W\X) € u — W\X € v)

iff {Y | pre?(Y) € u} Cw
Now, we show that the set is closed under intersection.
Assume X,Y € {Y | pred(Y) € u}. So, we have that
pred(X) € u and pred(Y) € u. Ultrafilter are closed under
intersection, thus pred(X) N pred(Y) € u. Now the set
pre?(X) N pred(Y) is equivalent to

{z|Vy (Rey -y € XNY)}=pre (X NY)

O
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Given a model Mt and a formula ¢, we write 1/ (), the
denotation of ¢ in 91, for the set of worlds which satisfy ¢,

ie. Vip) ={w | Mw = ¢}.

Proposition 5.53 (Uf Equivalence Theorem)

Let 9t be a model, ¢ a formula, and u € Uf (W) an ultrafilter
over W. Then it holds that

V(p) €u iff ue(MM),ul¢

So, we have that for every state w € W it holds that
M, w e~ ue(IN), 7y,

This theorem is very important as it relates truth in the
ultrafiler extension with truth in the original model and
vice versa.

o
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Firstly, we prove the second part: 2, w e~ ue(9M), 7.
Assume that the first part holds. Then

Mw k=

iff w € V()

iff V(¢) € m, (property of the principal uf)
iff ue(9), m, = o (first result)

@Ku TU Claustha] 5 More About Models

Now we come to the more difficult part. We proceed by
induction on ¢. The cases for o =p, p =~V orp = A/

are as usual! ~» Exercise. ]

Prof. ]. Dix, Dr. N. Bulling Department of Informatics = TU Clausthal Clausthal, WS 10/11 461



{1 ~ s AL del
el TU Clausthal e

We now consider the case p = § 7).

«“° ”

<~

ue(MM), u =0 o
iff 3u' € Uf(W)(R"uu’ A ue(IN), v’ = )

iff 3u" € Uf(W)(R"uu’ AV () € v') (by induction)
iff 3u' € Uf (W) (VX € u/(pre(X) € u) AV(0) € u')

= Ju’ € Uf(W)(pre(V(¢)) € uAV(¢) € )

= V(0 ¢)) € usince pre(V(¢)) = V(O @)
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“=" Let V(O ¢) € u. We show ue(IM), u = O ¢.
The latter is the case iff Ju/'(R"®uu’ A V() € u’) and by
Lemma 5.52 iff

' (ufy == {Y | pre®(Y) € u} Cu' AV (p) € ).

In the following we construct «'. We would like to apply the
ultrafilter theorem.
m Show VY € u) (Y NV (p) # 0).

ForY € uj we have pre?(Y) € u and
pred(Y)NV (O ¢) € u. There must also be some element
x in the intersection. x € V({ ) implies that there is an
y with Rzy and y € V(). = € pred(Y) implies that
y €Y andhencey € Y NV (p).
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m v, closed under intersection and Y NV (y) # 0 implies
that uj, U {V ()} has the finite intersection property (cf.
Def. 5.43). Hence, by the Ultrafilter Theorem 5.46 there
is an ultrafilter «’ with uj U {V ()} C /.

So we have that R"*uu’ and V() € v’ which concludes
the proof.
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Example 5.54 (Undefinability in Lu)

We can use ultrafilter extensions to compare the expressive
power of modal languages. Is the following operator ref
definable in the modal language?

M, w = ref iff I € W (Rw'w')

That is, this operator is true in a model which has at least
one reflexive point.

Consider the frame § = (N, <) and its ultrafilter extension
from Example 5.51.

Now, if such an operator would be definable we would not
have 0 «~ 7y because § has no loops but its ultrafilter
extensions does have (infinitely many) loops. That
contradicts the previous proposition!
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Finally, we have the theorem which says that the ultrafilter
extensions is modally saturated and therewith does have
the Hennessy-Milner property.

Proposition 5.55 (Uf are Modally Saturated)

The ultrafilter extension ue(90) of any model Mt is modally
saturated.
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Let M = (W, R,V) be a model, v € Uf(IW), and X a set of
formulae that is finitely satisfiable in {v | R"uv}. We have to
show that there is an «’ in this set such that ue(9), v’ | X.
We defined A := {V(¢) | ¢ € con(D)} U {Y | pred(Y) € u}
where con(Y) is the set of finite conjunctions of X.

We prove that A has the finite intersection property.

Both parts of A are closed under intersection. We show that
V(p)NY # 0. Since ¢ € con(X), there is v with R"*uv and
ue(M), v = ¢ by assumption. pred(Y) € uimplies Y € v
(Lemma 5.52). So we have that V(¢) NY # ().

Again, by the Ultrafilter Theorem 5.46 there is an ultrafilter
u’ with A C «/ where ' satisfies all required properties. [
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The main theorem tells us that modal equivalence of models
can completely be characterized by bisimulations in their
ultrafilter extensions.

Theorem 5.56 (Bisimulation-somewhere-else)

Let 90t and 9V be two models of the same similarity type,
w € Won and w' € Weyy. Then, we have the following:

M, w e M w' iff ue(IM), m, S ue(IMN'), my.

Result of Proposition 5.55, Proposition 5.53, and
Theorem 5.36:

M, w e~ M w' iff M, w e~ ue(M), 7, and
M w' e~s ue(IM), my iff ue(M), 7w, s ue(IM'), Ty

iff ue(IMN), 7, S ue(MN), O
(90), 7y 5 (D), 7 d
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5.3 Saturated Models and
Ultraproducts
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Basics of FOL Model Theory

Our main result relates the modal language to first-order
language therefore we need some basic model theoretic
concepts about FOL. Also the standard translation (see
Slide 183 ff) is needed.

Recall that a FOL model was given by (U, I) where U is the
universe or domain and [ the interpretation function.
From now on, we usually use A and A’ to denote FOL
models.
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Let A= (U,I)and A" = (U’,I’) be two FOL models for the
same first-order language. Both models are said to be
isomorphic if there is a bijective function f : U — U’ which
satisfies the following properties:
For each predicate symbol P (k-ary) it holds that
I(P)(ur,...,w) i I(P)(f(w),... f(ur)

For each function symbol F' (k-ary) it holds that

FUE) (s - -y ur)) = T(F)(f(ur), - f(ur)
For each variable it holds that
fI(x)) = I'(z)
fis called an isomorphism between A and A, short:
f:A—-A.
Inuitively: Isomorphic models can be considered to be “the
same”.
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We use the notation ¢(z1, ..., z,) to indicate that ¢ includes
the free variables z, ..., z,. Moreover, given n constants
Ui, ..., U, WEe Use

AEo(xy, .. mn)[ur, ... uy)
as shortcut for Aler/wl-len/unl 1= ;- Often we also just write
A= olur, ... up)

for A = ¢(x1,...,2,)[u, ..., u,] if the variables of ¢ are clear
from context.

Proposition 5.57

Let f be an isomorphism between A and A’. Then for all
o(zy,...,x,) and uy, ..., u, € Uy we have that

AE oluy, ... u,] iff A Eo[f(w),. .., f(u)]
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Definition 5.58 (Elementarily Equivalent)

Let £ be a FOL language. Two models are said to be
L-elementarily equivalent if they satisfy the same formulae
of L.

Does elementary equivalence imply isomorphism? What if
the models are finite?

Proposition 5.59 (Elementary Eq. and Isom.)

If Ay = A, then A, A, are L-elementary equivalent. If the
case of finite structures the converse does also hold.

Analogously to Definition 5.8 we define a first-order

submodel. The functions and predicates have just to be
restricted to the respective subset of the universe.

Whenever A is a submodel of A" we call A’ an extension of

A. o
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Definition 5.60 (Elementary Ext., -Embedding)

We call a model A’ an elementary extension of A (4 < A")
if the following holds:

A’ is an extension of A4, and

for any formula ¢(x4, ..., z,) and elements
uy, ..., u, € Athe following holds:

AE olur, ... u,] iff A Eplu, ..., u

We call a function f : U — U’ an elementary embedding of
A to A’ if for any formula ¢(x1, ..., x,) and elements
uy,...,u, € Aitholds that

AEplug,...,u,]  iff A Eolf(ur),...,f(u)]
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Next, we extend a given language by new constants which
allow to refer to specific elements of the model.

Definition 5.61 (L[A], Expansion)

Let A = (U, I) be a first-order model for £ C Lo, and
A C U (so, Ais a subset of the universe).

Then L[A] denotes the language which is defined by £
extended by the new constants ¢,, one for each a € A.

The expansion of A with respect to A (denoted by A,4)
extends A by the new constants ¢, which are interpeted as a
foralla € A (i.e. Ay(c,) = a).

That is, the expansion includes new constants which allow
to refer to specific individuals. All elements have names and
can be used in formulae.
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The next proposition characterizes elementary extensions:
Models which are elementarily equivalent must be “very
similar”

Proposition 5.62

A’ is an elementary extension of A = (U, I) iff Aisa
submodel of A’ and Ay is isomorphic to Aj,.

Theorem 5.63

Let A be a model and let #(L) < ¢ < |U| where #(L) denotes
the number of non-logical symbols in L. Then, there is an
elementary submodel of cardinality c. Furthermore, for

X C U, |X| < cthereis an elementary submodel of A with
cardinality < ¢ which contains X.
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Saturated Models

Definition 5.64 (L}.;, free, z-type)

We define L}.,;, C Lroy, as the first-order sublanguage in
which each formula has exactly one free variable. (A
variable is called free if it is not in the scope of any
quantifier).

Let X(x) C L}, is called z-type if  is the only free variable
in X(z). We will often just use type to refer to an z-type.
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Definition 5.65 ((Finite) Realization)

Let X(z) be an z-type and let A = (U, I) be a first-order
model.

We say that A realizes X(x) if there is a u € U so that for all
¢ € X(x) it holds that A |= ¢[z]. X(x) is said to be finitely
realizable in A if A realizes every finite subset of 3.

The next defintion characterizes how “expressive” a FOL
model is. Suppose we can refer to any element of the
universe of the model. Can the model realize any
reasonable set of formulae which we can build?
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Definition 5.66 (Countably Saturated)

A model A is called countably saturated if for every subset
A C W4 the expansion A4 realizes every z-type

I' C L. [A] that is consistent with the first-order theory of
Ay

Note: There also is the notion of a-saturation where one
requires that |A| < a. However, for our needs countable
saturation suffices.
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of Technolox

Example 5.67
Every finite model A is countably saturated.

Let I'(x) be an z-type consistent with the theory of A. That
is, there is a model A" with A" = Th(A) U X(z).

Then, there is an elementary extension of A’ for
Th(A)UT'(z). Hence, A’ realizes I'(x) but then also A as
both models must be isomorphic (cf. Prop. 5.59).
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Example 5.68 ((Q, <) is countably saturated)
The model A = (Q, <) is countably saturated.

Consider the FOL language £ over < and =. Let A C Q and
¥.(z) be an z-type of L]|A] consistent with Th(A,). Then,
there is a model A’ of Th(A4) which realizes X(z). Now, let
A" be a countably elementary submodel of A’ that realizes
X(x).

How does A" look like? The model has to be a countable
dense linear ordering without endpoints! (Why?). Hence,
A” and A are isomorphic! Hence, A, realizes ¥(z).

So, can we give a similar proof that (N, <) is countably
saturated?
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of Technolox

Example 5.69 ((N, <) is not countably
saturated)

Consider the model A = (N, <) and define the following set
of formulae

[(z) := {3l <), 3y yoltn < <y <2),...}

It is easy to see that I'(x) and A are consistent as X(z) is
finitely realizable in A (see Proposition 5.70). (Can you
come up with a model?) However, I'(z) is obviously not
realizable in A.
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Proposition 5.70 (Consistency & Realization)

Let A be a FOL-model and X be an x-type of L'[A] where
A C U. Then, the following holds:
Y is consistent with Th(A,) iff T is finitely realizable in A,.

¥ is consistent with Th(A4)

iff Th(As) US J~ L

iff 34" (A" | Th(Ax) UX(2))

iff IA' V' C %, %] < oo(A’ f= Th(A4) U {3z \ ¥'(2)})
iff VS C %, |%| < oo(Aa | Th(A4) U{3z A\ T'(2)})

iff 3 is finitely realizable in A, 0
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Ultraproducts and Ultrapowers

Let / be a non-empty set. Moreover, let for each i € I, W; be
a non-empty set as well. We define the following Cartesian

product:
C .= H W,
il
We can also interpret C' as the set of functions
1 — J,c; Wisuchthat (i) € W;. We also write f € (' to
refer to such a function. In the following we assume that C
is always defined as above.

Definition 5.71 (U-Equivalence)

Let U be an ultrafilter over I and f, g € C. Functions f and
g are called U-equivalent, f ~y g, if {i € I'| f(i) =g(i)} € U.

Note: ~ is an equivalence relation.
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Definition 5.72 (Ultraproduct of Sets)

Let U be an ultrafilter over I. The ultraproduct [], W; of W;
modulo U is defined as follows:

HW—{ vl fe]]wi}

el

If there is a W such that 1/, = 1/ for all i € I the
ultraproduct is called ultrapower and is denoted by [[,, W/

Note: [f]y denotes the equivalence class of f regarding ~.
We now transfer the construction to models.
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Definition 5.73 (Ultraproduct of Models)

Let M; = (W;, R;, V;) be models for i € I and U be an
ultrafilter over I. The ultraproduct [, 9, of 91 modulo U
is the following model (W, Ry, Viy):

Wy =11, Wi (Wy is the ultraproduct of the worlds)
V7 is defined as follows:

[floeVulp) iff {iel]f@i)eVip)}el

Ry is defined as follows:

Rylflolflv  #f {iel|Rif(i)f ()} €U

So, where do we need ultraproducts for?
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The next proposition states that a model is modally
equivalent to its ultrapower for any ultrafilter over any
non-empty index set /.

Proposition 5.74 (Models and Ultrapowers)

Let U be an ultrafiler over a non-empty I, 9 be a model and
[T, 9 its ultrapower modulo U. Then,

M, w and [[, M, [f.]v are modally equivalent
where f,, denotes the constant function i — w forall i € I.

In the next step, we show that the ultrapower is also
countably saturated (interpreted as FOL model) if we use a
particular ultrafilter over 1.
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The proof is done by structural induction. We consider the
two cases, the remaining are left as exercise.

M, w = piffw e V(p)
iff{iel]|fu(i)eV(p)}=1I
iff{iel]|f,(i)eV(p}=1eU
iff [flv € Vu(p)

Iff Hi)ﬁ, [fw]U ): p
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Let us consider the case ¢ = Q

=": Let M, w = O . Then, there is w’ with Rww’ and
M, w' = 1. So, we have {i € I | R;f,(i)fuw (i)} = I which
gives us that Ry [f.,][w./]. By induction we have

[, 9, [fw] E ¥ which proves that [, 90, [f.] E O .

“=" Let [, M, [fu] E O ¢. Then, there is a w’ such that

Rulfw]lfw] and [T, M, [fw] = ¢ which implies that
0+ {iel| Rwuw'} €U hence Rww' and by induction
M, w' = ¢ and therewith M, w = O 9.
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Definition 5.75 (Countable Incompleteness)

An ultrafilter is called countably incomplete if it is not
closed under countable intersections.

Note: It still must be closed under finite intersections
otherwise it would not be an ultrafilter!

Example 5.76 (Countably Incomplete Uf)
Let U be an ultrafilter over N which does not contain any

singleton {n} for n € N. (Such an ultrafilter exists! ~~
Exercise). As U is an ultrafiler we have that N\{n} € U for all

n € N but
= ((N\{n}) ¢ U

neN

otherwise U would be proper and therefore {n} € U.
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5.3 Saturated Models and Ultraproducts

We state the following theorem without proof. The
construction of an ultraproduct for first-order logic is done
in a similar way as for modal logic.

Lemma 5.77

Let £ be a countable first-order language, U be a countably
incomplete ultrafilter over I # (), and A be a FOL model for
L. Then, the ultrapower [[,; A is countably saturated.

See Chang/Keisler: Model Theory. O
[
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5.4 Characterization
Theorem
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In this section, we prove the following result:

Modal logic is the bisimulation-invariant fragment of
first-order logic.

For our main result, we need some abstract concepts which
were introduced in the previous section:

m Basics of first-order model theory,
m Saturated models, and
m Ultraproducts.
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5.4 Characterization Theorem

The following result states that modal saturation can be
seen as modal counterpart of countable saturation in FOL.

Theorem 5.78

Let 90t be T-model. If the first-order interpretation of 9t is
countably saturated then 97t is modally saturated. Hence,
the class of such models has the Hennessy-Milner property.
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We tackle the basic modal logic case. Let A be countably
saturated and be the first-order representation of

M= (W,R,V). Letw e W and X C Lpy, be a set of
formulae finitely satisfiable in {«' | Rww’} of M. Let

2= {Reax} U {ST:(p) | p € T}
m Y is consistent with Th(A,) as X' is finitely realizable.
m Hence, Y’ realizable in some b € A.
m Since, in particular, A = Re,b, b must be a successor of

a.
m By Theorem ?? and A = ST.(¢)[b] for all ¢ € ¥ we have
M, b E X.
This shows that 9t is modally saturated! O
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In Theorem 5.56 we have shown that models are modally
equivalent iff there is a bisimulation somewhere-else,
namely in the ultrafilter extension. Here we show that
somewhere-else can also mean in the ultrapower.

Theorem 5.79 (Bisimulation in Ultrapowers)

Let 9t and 9 be modal models of the same similarity type,
w € Mand w' € M'. Then, the following are equivalent:
M, w e~ M, w'
There are ultrapowers (i.e. an appropriate ultrafilter U
over a non-empty set I) [ [, Mt and [ [, 9V such that
[Ty [fulo S Ty O, [fuwlu where f,, denotes the
constant function i — w for all i € I and f,, is defined
analogously.
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“(2)=(1)": By Proposition 5.74 we have:

M, w ews [[M, [fulu and D, w' ew TV, [£L o
U U

and since bisimulation implies modal equivalence we also
have that 91, w «~ 9, w’ as «w is transitive.
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“(1)=(2)”: Assume I, w «~ N, w'. We construct
bisimular ultrapowers. Firstly, take / := N as index set and
let U be a countably incomplete ultrafilter over I (cf.
Example 5.76). By Lemma 5.77 the ultrapowers [ [, 99t and
[1, 99 are countably saturated.

By Proposition 5.74 and the assumption that w « w’ we
have that [, 9, [fulu e~ 1, 9V, [fuwlo.

Finally, as [[,, 9t and [],, 9" are countably saturated by
Theorem 5.78 it follows that [[,, 9t and [, 9" are modally
saturated. Hence, they have the Hennesey-Millner property
and thus are bisimular.
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5.4 Characterization Theorem
Characterization Theorem

We know the following results:
FOL is equivalent to the hybrid language with
renaming
The modal language is weaker than FOL.

The characterization theorem exactly identifies which
fragment of FOL is equally expressive as the modal
language!

In order to prove this theorem we need all the theoretical

tools presented in this and the previous section: This
indicates the depth of this result.

Let Mt be a modal model then we use 91 to denote its
first-order representation. Analogously, we use A,, to
denote the modal representation of a first-order model A.
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The following Lemma gives another characterization of
modal equivalence. The characterization in terms of
elementary embeddings is important because satisfaction
of FOL formulae is not closed under ultrafilter extensions
but it is under elementary embeddings!

Lemma 5.80 (Detour Lemma)
Let 9, and M, be modal models, w, € W; and wy, € W,.
Then, the following statements are all equivalent:
S)j’tlaujl AR WQ,UJQ
ue(MYy), Ty, S ue(My), Ty,
There are countably saturated models A and A, states
w) € Uy, wh € U and elementary embeddings
fi: () r <Al and fo 0 (M) < A, such that
1] fl(wl) = w’1 and fQ(’LUQ) = ’LU/2, and
(ADar, wy S (Ag)ar, wh
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“(1)=(2)"”: Bisimulation somewhere-else Theorem 5.56

“(1)<(3)”: By Theorem 5.79, (1) iff there are ultrapowers
[, 9tand [, 9 such that
[T, M, [gw]v = 11, OV, [gu]u where g, denotes
the constant function i — w for all 7 € 1.

We just chose 9t} and 9t as the ultraproducts
of M and M’ and define f(w1) := [gw, | and
fa(ws) := [guw,|u. The functions are elementary
embeddings and the ultrapowers can also be
constructed as countably saturated models
(proof of Theorem 5.79).
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Now, we are ready to prove our main theorem:

Modal logic is the bisimulation-invariant fragment of
the first-order language.

Formally, the next definition states how
bisimulation-invariance is understood for first-order logic.

Definition 5.81 (Invariant for Bisimulation)

Let {¢(z)} be an z-type. (x) is invariant for bisimulation if
for all modal models 9t and 97, all worlds w € 9t and

w' € M, and all bisimulations B C 9t x M’ with wBw' it
holds that

Mp = (@) fw] iff M = p(z)[w].
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The final theorem of this section is named after the logician
Johan van Benthem.

Theorem 5.82 (Characterization Theorem)

Let {¢(x)} be an x-type. Then, the following are equivalent:
©(x) is invariant for bisimulation.

©(z) is equivalent to the standard translation of a modal
formula.

The easy part first. “<": Let ¢ be the standard translation of
a modal formula. Clearly, by Theorem 5.26 we have that ¢
is invariant under bisimulation. O
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“=": Let a(x) be a FOL formula invariant for
bisimulation. Consider the modal consequences of a:

Cn(a) :=={ST.(p) | ¢ € Lm and a(z) = ST.(¢)}

m Claim 1: If Cn(«a) E a(z) then Jp € Ly such that a(x)
is equivalent to ST, (¢). Proof: Assume that
Cn(a) = a(z) then by the compactness theorem there
is a finite X C Cn(«) such that X = a(z) and hence
E A X — a(z) and trivially also the reverse implication
thus A X < a(x). Finally, it is easy to see that 3p € L,
with A X = ST,.(y).
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So, it remains to show that Cn(«) = «a(z). Proof: Assume
A = Cn(a)[u] with u € A. We have to show that
A = a(z)[w]. We set

T(z) = {8T(p) | A= ST(p)[w]}

m Claim 2.1: T'(z) U{«a(x)} is consistent. Proof: Assume
the opposite. By the compactness theorem there is a
finite 7" C T'(z) such that = a(x) — = A T'(x), hence,
- A\T'(z) € Cn(a). This implies A = - A\ T'(z)[w].
Contradiction!

So, let B |= T'(z) U{a(z)}[v]. Now, it is easy to see that
A, w and By, v are modally equivalent. If modal
equivalence implied bisimularity we would be done! (But
this is not the case!)
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However, by the Detour Lemma, we have that there are two
countably saturated models A" and B’ such that A and B
are elementarily embedded, respectively, and states

w' € A and v' € B such that A),,w' = B, v'. Now,
satisfaction of FOL formulae is preserved under elementary
embeddings. (Which is not the case for ultrafilter
extension! And that is the reason we need ultraproducts!)

Hence, B |= a(x)[v] implies that B’ = a(z)[v'] and hence
A" E a(x)[w'] because a(x) is invariant for bisimulation by
assumption. Now we finally have that A |= o(x)[w].

We end this section with a small summary of the basic
relationships.
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Summary

m Bisimulation implies modal equivalence.

m In general, modal equivalence does not imply
bisimulation.

m Ultrafilter extensions completely characterize modal
equivalence.

m However, they are too weak for the Characterization
Theorem as satisfaction of FOL formulae is not closed
under ultrafilter extensions.

m The Detour Lemma also completely characterizes
modal equivalence but in terms of elementary
embeddings (which preserve satisfaction of FOL
formulae).

m Ultraproducts were needed to prove the existence of
these elementary embeddings.
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