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What is this lecture about? (1)
We give an overview on modal logics, which can be used in
many areas of computer science. Emphasis is on
theoretical-logical aspects, not on applications.
After a recap of propositional and predicate logic in
Chapter 1, we introduce modal languages and the main
technical notion, Kripke frames in Chapter 2. The
important idea is to relate properties of the accessibility
relation in frames to axioms in the modal language. We
also discuss the relationship between modal logic and
predicate logic (basic hybrid logic and the standard
translation). In Chapter 3, we introduce the basic modal
logics (normal modal logics) as axiomatic calculi, we state
sound- and completeness results (using canonical models),
and discuss the finite model property for modal systems.
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What is this lecture about? (2)
In Chapter 4, we apply our theories to epistemic logics (to
reason about knowledge), and introduce public
announcement logic (where common knowledge can be
described). We also investigate MSPASS, a modal logic
theorem prover.
We consider in more advanced topics. While we have seen
before that many properties can be expressed as modal
formulae, we show in Chapter 5 that even more cannot be
expressed. To this end, we consider w1 ! w2, the notion
of modally equivalent worlds, and its relation to
bisimulation, which leads to the Hennessy-Milner theorem
and van Benthem’s characterization of standard translation
of basic modal formulae.
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1 Introduction

Content of this Chapter
We present a modern view to modal logic. After a short
overview about important historical events, we define what
a logic is. Then, we introduce the semantical perspective
on logic and show that there is more than one logic. After
demonstrating the use of relational structures we specify
our first logic, propositional logic, and describe a calculus to
do inferences. We end with an introduction to predicate
logic (also called first-order logic).
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1.1 Overview
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1 Introduction
1.1 Overview

The Journey to Modal logic
The first to invent a modal logic was Aristotle.

Figure: Aristotle
(384 BC - 322 BC)

He developed the syllogisms and
the idea of necessity and
possibility:

Example 1.1
p is possible if ¬p is not necessary.
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1 Introduction
1.1 Overview

Birth of Modal Logics
In 1918 Clarence Irving Lewis published his Survey of
Symbolic Logic.

Figure: C.I. Lewis (1883 - 1964)
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1 Introduction
1.1 Overview

Improvements by Kurt Gödel
However, Kurt Gödel first proposed the standard system for
classical propositional logic with the rule of generalization.
He also proved the completeness of logic, solving a famous
problem of Hilbert.

Figure: Kurt Gödel (1906 - 1978)
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1 Introduction
1.1 Overview

What is a Logic?
We present a framework for thinking about logics as:

languages for describing a problem,
ways of talking about relational structures and
models.

These are the two key components in the way we will
approach logic:

1 Language:
fairly simple, precisely defined, formal languages.

2 Model: or relational structure
simple “world” that the logic talks about.
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1 Introduction
1.1 Overview

Semantical Perspective
Our perspective on logic is fundamentally semantical, i.e.
the meaning of an expression.

Figure: Alfred Tarski (1902-1983)

This perspective is often
called model-theoretic
perspective or Tarskian
perspective.
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1 Introduction
1.1 Overview

Modal Logic Fundamentals
Saul Aaron Kripke’s papers A Completeness Theorem in
Modal Logic and Semantical Considerations on Modal
Logic was a breakthrough in the 60ies: “Londres est jolie.”

Figure: Saul Aaron Kripke (1940 - )
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1 Introduction
1.1 Overview

Logic or Logics

The semantical perspective leads us to the following
question:
How many logics are there?

1 The Monotheistic Approach
Choose one of all possible logical languages as the only
one.

2 The Polytheistic Approach
Investigate different logical languages.
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1 Introduction
1.1 Overview

Monotheism in the 20th Century
Logical monotheism was a powerful force for much of the
twentieth century.

Figure: Willard van Orman
Quine (1908-2000)

First-order classical logic is
the one and only logic we
need.
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1 Introduction
1.1 Overview

Polytheism in the 21st Century

Polytheism gradually became the dominant thread as
time went by.
Logic found its way into:

computer science,
artificial intelligence,
economics and
cognitive science as well as
natural language semantics.
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1 Introduction
1.1 Overview

Polytheism and Semantics

The semantical perspective gives us an natural way to look
at polytheism:

Once we have fixed the model or relational structures
(our “world”) it becomes natural to play with different
ways of talking about it.
Indeed one can talk about relational structures without
bothering too much about the logic at all.
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1 Introduction
1.1 Overview

What are Relational Structures?
Example 1.2 (UML Class Diagram)

Diagram

Structure
Diagram

Behaviour
Diagram

Class Diagram
Component

Diagram
Object

Diagram
Activity
Diagram

Use Case
Diagram

State Machine
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Package
Diagram

Interaction
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Communication
Diagram

Timing
Diagram
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1 Introduction
1.1 Overview

Example 1.3 (South Park Relational Structure)

Kenny Cartman

Kyle Stan Wendy

loves

detests
friends

friends

friends
annoys

annoys annoys

annoysloves
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1 Introduction
1.1 Overview

Example 1.4 (Finite State Automaton for anbm)

Given the formal language anbm with n,m > 0. The
relational structure is then:

r s t
aa bb

Here, r is the start state and t is
the only final state.
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1 Introduction
1.1 Overview

Three Big Topics

In this course we use the model-theoretic perspective to
provide a window on the following issues:
Inference: The methods for deriving new information by

working with the logic.
Expressivity: What can be described using this logic?
Computation: Which price do we have to pay for this

expressivity?
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1 Introduction
1.1 Overview

Muddy Children

Example 1.5 (Muddy Children)
A group of playing children is called back by their father. They
gather around him.

Some of them have become dirty:

1 they may have mud on their forehead,
2 children can only see whether others are muddy,
3 and not if there is any mud on their own forehead.

All this is commonly known, and the children are perfect logicians.

Father: “At least one of you has mud on his or her forehead.”

Father: “Will those who know whether they are muddy please step
forward.”

If nobody steps forward, father keeps repeating the request.
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1 Introduction
1.2 Propositional Logic

1.2 Propositional Logic
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1 Introduction
1.2 Propositional Logic

Syntax

The propositional language is built upon

Propositional symbols: p, q, r, . . . , p1, p2, p3, . . .

Logical connectives: ¬ and ∨
Grouping symbols: (, )

Often we consider only a finite, nonempty set of
propositional symbols and refer to it as Prop.

Logical connectives are used to construct formulae from the
propositional symbols.
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1 Introduction
1.2 Propositional Logic

Definition 1.6 (Propositional Language LPL)
The propositional language LPL(Prop) (over the set of
propositions Prop) is given by the formulae defined by the
following grammar

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ

where p ∈ Prop.

Example 1.7
Blackboard.
In the following we assume that Prop is fixed and omit it.

What about the other connectives? They are defined as
macros.
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1 Introduction
1.2 Propositional Logic

Definition 1.8 (Macros)
We define the following syntactic constructs as macros
(p ∈ Prop):

⊥ := p ∧ ¬p
> := ¬⊥

ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ)

ϕ→ ψ := ¬ϕ ∨ ψ
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)

Example 1.9
Blackboard.
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1 Introduction
1.2 Propositional Logic

Semantics
How to determine whether a propositional logic formula
is true?
Intuitively, we have: (t stands for true, f for false)

> is t
⊥ is f

¬ϕ is t iff ϕ is f
ϕ ∨ ψ is t iff ϕ or ψ (or both) are t
ϕ ∧ ψ is t iff ϕ and ψ are t
ϕ→ ψ is t iff either ϕ is f or ψ is t
ϕ↔ ψ is t iff ϕ and ψ are both t, or both f
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1 Introduction
1.2 Propositional Logic

Firstly, we fix the truth value of propositional symbols.

Definition 1.10 (Valuation)
A valuation (or truth assignment) v : Prop → {t, f} for a
language LPL(Prop) is a mapping from the set of
propositional constants defined by Prop into the set {t, f}.

A valuation fixes the value of individual propositional
variables.

But we are particularly interested in the truth of formulae
like (p ∨ q) ∧ r.

So, it remains to define the semantics of the Boolean
connectives.
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1 Introduction
1.2 Propositional Logic

Again, we do only give the semantics for the basic
connectives. The semantics for the macros is derived from
these basic cases.

Definition 1.11 (Semantics v |= ϕ)
Let v be a valuation. Inductively, we define the notion of a
formula ϕ being true or satisfied by v (notation: v |= ϕ):

v |= p iff v(p) = t and p ∈ Prop,
v |= ¬ϕ iff not v |= ϕ,
v |= ϕ ∨ ψ iff v |= ϕ or v |= ψ

Given a set Σ ⊆ LPL we write v |= Σ iff v |= ϕ for all ϕ ∈ Σ.
We use v 6|= ϕ instead of not v |= ϕ.

Exercise: Write down the appropriate clauses for the other
connectives previously defined as macros.
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1 Introduction
1.2 Propositional Logic

Truth Tables

Truth tables are a conceptually simple way of working
with PL (invented by Wittgenstein in 1918).

p q ¬p p ∨ q p ∧ q p→ q p↔ q
t t f t t t t
f t t t f t f
t f f t f f f
f f t f f t t
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1 Introduction
1.2 Propositional Logic

Fundamental Semantical Concepts
If it is possible to find some valuation v that makes ϕ
true, then we say ϕ is satisfiable.
If ϕ is true for all valuations v then we say that ϕ is valid
and write |= ϕ. ϕ is also called tautology.
A theory is a set of formulae: T ⊆ LPL.
A theory T is called consistent if there is a valuation v
with v |= T ; or, analogously, if for all valuations v we
have that v 6|= T .
A theory T is called complete if for each formula ϕ in
the language, either ϕ ∈ T or ¬ϕ ∈ T .

How do these definitions relate to truth tables?
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1 Introduction
1.2 Propositional Logic

Example 1.12 (Satisfiability)
Is p ∧ ¬b satisfiable?

Example 1.13 (Validity (Tautology))
a ∨ ¬a

Definition 1.14 (Propositional Tautologies)

The set of all tautologies of propositional logic is denoted
by TautPL.

The latter will be important in Section 2.4 where we show
how new formulae can be derived from old ones in the
modal calculus.
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1 Introduction
1.2 Propositional Logic

Model

Remember: The valuation fixes the truth values of the
individual propositional variables. By doing this the
valuation describes our “world”: The state we want to
model.
Taking the truth table into account we can say, each
row is a possible state or a possible world. Speaking in
model-theoretic terms, each row is a possible model.

Therefore we can interpret a valuation v as a model M and
use them synonymously.
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1 Introduction
1.2 Propositional Logic

Models Are Complete!
An extremely important property of a model (valuation) is
that it makes each formula either true or false.

Lemma 1.15 (Models Are Complete)

For any model (valuation) v and any formula φ over any Prop,
the following holds

Either v |= φ or v |= ¬φ

Proof.
Blackboard
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1 Introduction
1.2 Propositional Logic

Semantical Consequence (1)
Given a theory T we are interested in the following
question: Which facts can be derived from T? We can
distinguish two approaches:

1 semantical consequences, and
2 syntactical inference.

In this section we are mainly concerned with the first notion.

Definition 1.16 (φ Follows Semantically From T )
Let T be a theory and ϕ be a formula. We say that ϕ is a
semantical consequence of T if for all valuations v:

v |= T implies v |= ϕ.
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1 Introduction
1.2 Propositional Logic

Semantical Consequence (2)

The analogue of Lemma 1.15 is not true for theories T . In
fact, for most theories we have

neither T |= φ

nor T |= ¬φ.
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1 Introduction
1.2 Propositional Logic

Syntactical Consequence
If new facts can be derived from old ones in an algorithmic
fashion, we say that such a fact is syntactically derivable.

What do we need to provide? How to derive new facts?

We need inference rules which allow to derive new facts
from old ones.

Consider the follwing example:

Example 1.17
We know that Bill is drunk and that if Bill is drunk he should
not drive.

Can we derive that Bill should not drive?
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1 Introduction
1.2 Propositional Logic

In the previous example we used the modus ponens rule:

(MP )
ϕ ϕ→ψ

ψ

where ϕ, ψ are arbitrarily complex formulae.

On top of the line are the preconditions; below the line is
the conclusion. If the preconditions are fulfilled the
conclusion can be derived.

ϕ and ψ are not formulae of the language, but schemata.
They can be replaced by any well-formed formula of the
underlying language. In Definition 3.10 we will be more
precise about that.

Example 1.18
Blackboard.
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1 Introduction
1.2 Propositional Logic

Expressiveness

What can we express with this language?
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1 Introduction
1.2 Propositional Logic

The Tweety and Friends Problem

Example 1.19
You want to throw a party for Tweety, his friend Gentoo and
Tux. Unfortunately, they have different circles of friends and
dislike different penguins. Therefore, Tweety tells you that
he would like to invite either his friend the King or to
exclude Gentoo’s Adelie. But Gentoo proposes to invite
Adelie or Humboldt or both. Tux, however, does not like
Humboldt and the King too much, so he suggests to
exclude at least one of them.

Can we model this using propositional logic?
What do we gain by doing that?
What kind of questions can we “ask” our model?
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1 Introduction
1.2 Propositional Logic

Propositional Symbols

K := invite The King
A := invite Adelie
H := invite Humboldt

¬K := exclude The King
¬A := exclude Adelie
¬H := exclude Humboldt

Problem Formalized
Tweety: K ∨ ¬A := invite The King or exclude Adelie, but

not both: ¬(K ∧ ¬A),
Gentoo: A ∨H := invite Adelie or Humboldt or both,
Tux: ¬H ∨ ¬K := exclude Humboldt or The King or both.

Resulting Formula

ϕ = (K ∨ ¬A) ∧ ¬(K ∧ ¬A) ∧ (A ∨H) ∧ (¬H ∨ ¬K)
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1 Introduction
1.2 Propositional Logic

K A H K ∨ ¬A ¬(K ∧ ¬A) A ∨H ¬H ∨ ¬K ϕ

t t t t t t f f
t t f t t t t t
t f t f t t f f
t f f t f f t f
f t t f t t t f
f t f f t t t f
f f t t t t t t
f f f t t f t f

Problem
Truth tables have 2n rows, where n is the number of
propositional symbols.
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1 Introduction
1.2 Propositional Logic

Graph Coloring Problem

Problem
Given a fixed number k of colors and a graph G = (N,E),
where N is the set of nodes and E the set of edges.

Question
Can we color each node so that

we only use the k colors, and
no two adjacent vertices have the same color?

Can we express this problem as a set of formulae?
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1.2 Propositional Logic

Figure: Petersen Graph
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1 Introduction
1.2 Propositional Logic

Propositional Symbols: PropG,k
Given a graph G = (N,E) and a k ∈ N, we consider |N | × k
propositional symbols that we write as pij.
Meaning: Node i has color j

Problem Formalized: TG
1 Each node has one color: pi1 ∨ . . . ∨ pik for 1 ≤ i ≤ |N |
2 Each node has no more than one color: ¬pil ∨ ¬pim for

1 ≤ i ≤ |N | and 1 ≤ l � m ≤ k

3 Adjacent nodes have different colors: ¬pil ∨ ¬pjl for i
and j adjacent and 1 ≤ l ≤ k
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1 Introduction
1.2 Propositional Logic

Relating Graphs and Sets of Formulae

Lemma 1.20 (Formalizing Graphs)
For each graph G = (N,E) and k ∈ N, we consider the
language PropG,k and the set of formulae TG,k. Then the
k-colorings of G = (N,E) are in one-to-one correspondence
with the models of TG,k over the set of propositions
PropG,k.
In particular: there is a k-coloring of G = (N,E) if and only
if the set TG,k is satisfiable.
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1.3 Inferences
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1 Introduction
1.3 Inferences

Inference Tasks: The Three Questions
Given a certain logical description ϕ. The semantical
perspective allows us to think about the following
inference tasks:

Inference Tasks
Model Checking: Given ϕ and a model M, does the

formula correctly describe this model?

Satisfiability Checking: Given ϕ, does there exist a
model in which the formula is true?

Validity Checking: Given ϕ, is it true in all models?
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1 Introduction
1.3 Inferences

Model Checking

This is the simplest of the three tasks.
Nevertheless it is useful, e.g. for hardware verification.

Example 1.21
Think of a model M as a mathematical picture of a chip. A
logical description ϕ might define some security issues. If M
fulfills ϕ, then this means that the chip will be secure wrt.
these issues.
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1 Introduction
1.3 Inferences

Model checking for PL
Given a valuation v and a description ϕ. Is v |= ϕ true?

Example 1.22
Given a model v in which a is t and b is f.
Is ϕ := (a ∨ ¬b)→ b true?

(> ∨ ¬⊥)→ ⊥
(> ∨>)→ ⊥
> → ⊥
⊥

Complexity
Exercise.
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1 Introduction
1.3 Inferences

Satisfiability Checking
One can interpret the description as a constraint.
Is there anything that matches this description?
We have to create model after model until we find one
that satisfies ϕ.
In the worst case we have to generate all models.

Example 1.23
Given a sudoku. Is there a solution and how does it look
like?
One has to describe (maybe not actually build) all models,
i.e. all possible configurations, until one is found that fulfills
all constraints.
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1.3 Inferences

Satisfiability Checking for PL
Given a description ϕ. Is there a valuation v s.t. v |= ϕ is
true?

Complexity
How complex is that?
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1 Introduction
1.3 Inferences

Validity Checking

The intuitive idea is that we write down a set of all our
fundamental and indisputable axioms.
Then, with this theory, we derive new formulae.

Example 1.24
Mathematics: We are usually given a set of axioms.
E.g. Euclid’s axioms for geometry. We want to prove
whether a certain statement follows from this set, or can
be derived from them.
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1.3 Inferences

Validity Checking for PL
Given a description ϕ. Does v |= ϕ hold for all valuations v?

Complexity
How complex is that?
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1.3 Inferences

Satisfiability Checking With the
Tableaux Method

A tableau is a tree-like structure to visualize attempts
to create a model.
For building a tableau there exist some rules to
systematically split the input formula into subformulae.
Each branch of this tree represents a way of trying to
build a model:

closed branches don’t lead to models,
open branches do.
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1.3 Inferences

Rules
For splitting the input formula into subformulae we need
the following rules:

∧ ϕ∧ψ
ϕ
ψ

∨ ϕ∨ψ
ϕ|ψ

¬1 ϕ
¬¬ϕ

¬2 ¬¬ϕ
ϕ

Rules for→,↔
Exercise.
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1.3 Inferences

Example 1.25 (Satisfiability Checking)
Given the input formula (a ∧ c) ∧ (¬a ∨ b). Is there a
valuation v s.t. this formula holds?

∧ ϕ∧ψ
ϕ
ψ

∨ ϕ∨ψ
ϕ|ψ

¬1 ϕ
¬¬ϕ

¬2 ¬¬ϕ
ϕ

(a ∧ c) ∧ (¬a ∨ b)

a ∧ c

¬a ∨ b

¬a b

a

c

a

c
Contradiction!
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Validity Checking

Theorem 1.26 (Satisfiability, Validity are Dual)
A formula ϕ is valid iff ¬ϕ is not satisfiable.

 We can use the tableaux method for checking validity.

Proof
Blackboard.
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Example 1.27
Given formula (a ∧ b)→ a. Is this formula valid?

formula: (a ∧ b)→ a ≡ ¬(a ∧ b) ∨ a

negated: ¬(¬(a ∧ b) ∨ a) ≡ ¬¬(a ∧ b) ∧ ¬a
¬2 and ∧: a ∧ b and ¬a

∧: a and b

Contradiction! ⇒ ¬(a ∧ b) ∨ a is valid!
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SPASS

an Automated Theorem
Prover for First-Order
Logic with Equality,
from MPI, Saarbrücken

www.spass-prover.org
“If you are interested in sex, drugs, rock’n roll or fish [...],
you may be disappointed by the performance of SPASS. If
you are interested in first-order logic theorem proving, the
formal analysis of software, [...] modal logic theorem
proving, SPASS may offer you the right functionality.”
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DFG-Syntax

The syntax of an input file has to be of the following type:

problem ::= "begin_problem(" identifier ")."
description
logical_part
settings*
"end_problem."

The overall structure of a problem therefore contains a
description about a problem, the formalisation and further
settings.
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The logical part is mainly defined by:

logical_part ::= [symbol_list]
[declaration_list]
formula_list*

etc...

While the first two are optional the formula_list has to
describe at least one formula.

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 65



1 Introduction
1.3 Inferences

The symbol_list is constructed as follows:

symbol_list ::= "list_of_symbols."
functions*
predicates*

etc...
"end_of_list."

This means, symbols can either be functions or predicates.
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formula_list ::= "list_of_formulae(" type ")."
("formula(" [term] [label] ").")*
"end_of_list."

type ::= "axioms" | "conjectures"

Thus, a formula can be an axiom or a conjecture.
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Example 1.28 (TweetyGentooTux (1))
begin_problem(TweetyGentooTux).

list_of_descriptions.
name({* TweetyGentooTux *}).
author({* Michael Koester *}).
status(unsatisfiable).
description({* - Tweety and Friends - *}).

end_of_list.
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Example 1.29 (TweetyGentooTux (2))
list_of_symbols.

predicates[(Adelie,0), (Humboldt,0), (King,0)].
end_of_list.
list_of_formulae(axioms).

formula(or(King,not(Adelie))).
formula(or(Adelie,Humboldt)).
formula(or(not(Humboldt),not(King))).

end_of_list.
list_of_formulae(conjectures).

formula(and(Adelie,King)).
end_of_list.

end_problem.
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Example 1.30 (TweetyGentooTux (3))
--------------------------SPASS-START-------
SPASS beiseite: Completion found.

The saturated set of worked-off clauses is :
7[0:MRR:3.1,6.0] || King*+ -> .
5[0:MRR:4.0,2.1] || Adelie*+ -> .
6[0:MRR:1.1,5.0] || -> Humboldt*.
--------------------------SPASS-STOP--------
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1.4 Predicate Logic
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Motivation
For the formal description of a problem we often need a
higher expressiveness than what the propositional language
offers.

Example 1.31 (Continuity)
For the definition of the continuity we need:

Variables,
functions,
relations, and
quantifiers.

ϕ := ∀ε > 0 ∃δ > 0 (∀x (| x− x0 |< δ)→| f(x)− f(x0) |< ε)
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Predicate logic
In addition to the propositional language (on which the
modal language is built as well), the first-order language
(FOL) contains variables, function-, and predicate
symbols.

Definition 1.32 (Variable)
A variable is a symbol of the set Var . Typically, we denote
variables by x0, x1, . . ..

Example 1.33

ϕ := ∃x0∀x1(P 2
0 (f 1

0 (x0), x1) ∧ P 1
2 (f 0

1 ))

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 73



1 Introduction
1.4 Predicate Logic

Functions
Definition 1.34 (Function Symbols)
Let k ∈ N0. The set of k-ary function symbols is denoted by
Funck. Elements of Funck are given by fk1 , f

k
2 . . . . Such a

symbol takes k arguments. The set of all function symbols is
defined as

Func :=
⋃
k

Funck

An 0-ary function symbol is called constant.

ϕ := ∃x0∀x1(P 2
0 (f 1

0 (x0), x1) ∧ P 1
2 (f 0

1 ))

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 74



1 Introduction
1.4 Predicate Logic

Predicates
Definition 1.35 (Predicate Symbols)
Let k ∈ N0. The set of k-ary predicate symbols (or relation
symbols) is given by Predk. Elements of Predk are denoted
by P k

1 , P
k
2 . . . . Such a symbol takes k arguments. The set of

predicate symbols is defined as

Pred :=
⋃
k

Predk

An 0-ary predicate symbol is called (atomic) proposition.

ϕ := ∃x0∀x1(P 2
0 (f 1

0 (x0), x1) ∧ P 1
2 (f 0

1 ))
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Syntax
The first-order language with equality LFOL is built from
terms and formulae.

In the following we fix a set of variables, function-, and
predicate symbols.

Definition 1.36 (Term)
A term over Func and Var is inductively defined as follows:

1 Each variable from Var is a term.
2 If t1, . . . tk are terms then fk(t1, . . . , tk) is a term as well,

where fk is an k-ary function symbol from Funck.

ϕ := ∃x0∀x1(P 2
0 (f 1

0 (x0), x1) ∧ P 1
2 (f 0

1 ))
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Definition 1.37 (Language)
The first-order language with equality
LFOL(Var ,Func,Pred) is defined by the following grammar:

ϕ ::= P k(t1, . . . , tk) | ¬ϕ | ϕ ∨ ϕ | ∃x(ϕ) | t .= r

where P k ∈ Predk is a k-ary predicate symbol and t1, . . . , tk
and t, r are terms over Var and Func.
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Definition 1.38 (Macros)
We define the following syntactic constructs as macros
(P ∈ Pred0):

⊥ := P ∧ ¬P
> := ¬⊥

ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ)

ϕ→ ψ := ¬ϕ ∨ ψ
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)

∀x(ϕ) := ¬∃x(¬ϕ)
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Notations

We will often leave out the index k in fki and P k
i

indicating the arity and just write fi and Pi.
Variables are also denoted by u, v, w, . . .
Function symbols are also denoted by f, g, h, . . .
Constants are also denoted by a, b, c, . . . , c0, c1, . . .

Predicate symbols are also denoted by P,Q,R, . . .
We will use our standard notation p for 0-ary predicate
symbols and also call them (atomic) propositions.
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Example 1.39
Let d be a constant, g ∈ Func2, and f ∈ Func3, and
P ∈ Pred2.
Which of the following strings are terms?

1 g(d, d)

2 P (d)

3 f(x, g(y, z), d)

4 g(x, f(y, z), d)

5 f(x, g(y, z), d)

6 g(f(g(d, x), g(f(x, a, z), y), f(x, y, g(x, y))), a)

7 d ∧ f(x)

8 ¬f(x, y)

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 80



1 Introduction
1.4 Predicate Logic

Binding Strength
We assume an order between the binding strength of
Boolean connectives. The order is as follows:

1 ¬,∀x,∀y bind most tightly;
2 then ∧ and ∨;
3 then→.

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 81



1 Introduction
1.4 Predicate Logic

Example 1.40 (From Semigroups to Rings)
We consider LFOL({x, y, z}, {0, 1,+, ·}, {≤}}, where 0, 1 are
constants, +, · are binary function symbols and ≤ a binary
relation. What can one express in this language?
Ax 1: ∀x∀y∀z x+ (y + z)

.
= (x+ y) + z

Ax 2: ∀x (x+ 0
.
= 0 + x) ∧ (0 + x

.
= x)

Ax 3: ∀x∃y (x+ y
.
= 0) ∧ (y + x

.
= 0)

Ax 4: ∀x∀y x+ y
.
= y + x

Ax 5: ∀x∀y∀z x · (y · z)
.
= (x · y) · z

Ax 6: ∀x∀y∀z x · (y + z)
.
= x · y + x · z

Ax 7: ∀x∀y∀z (y + z) · x .
= y · x+ z · x

Axiom 1 describes a semigroup, the axioms 1-2 describe a
monoid, the axioms 1-3 a group, and the axioms 1-7 a ring.
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Example 1.41
Formalize the following sentence:

Every student x is younger than some teacher y.

S(x): x is a student
T (x): x is a teacher
Y (x, y): x is younger than y

∀x(S(x)→ (∃y(T (y) ∧ Y (x, y))))
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Example 1.42
Formalize the following sentence:

Not all birds can fly.

B(x): x is a bird
F (x): x can fly

¬(∀x(B(x)→ F (x)))

Can we do it without negation?

∃x(B(x) ∧ ¬F (x))
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Example 1.43
Formalize the following sentence:

Andy and Paul have the same maternal grandmother.

a: Andy
p: Paul
M(x, y): x is y’s mother

∀x∀y∀u∀v(M(x, y) ∧M(y, a) ∧M(u, v) ∧M(v, p)→ x
.
= u)
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Semantics
Definition 1.44 (Model, Structure)
A model or structure for FOL over Var ,Func and Pred is
given by M = (U, I) where

1 U is a non-empty set of elements, called universe or
domain and

2 I is called interpretation. It assigns to each function
symbol fk ∈ Funck a function I(fk) : Uk → U , to each
predicate symbol P k ∈ Predk a relation I(P k) ⊆ Uk; and
to each variable x ∈ Var an element I(x) ∈ U .

We write:
1 M(P k) for I(P k),
2 M(fk) for I(fk), and
3 M(x) for I(x).
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Note that a structure comes with an interpretation I, which
is based on functions and predicate symbols and
assignments of the variables. But these are also defined in
the notion of a language. Thus we assume from now on
that the structures are compatible with the underlying
language: The arities of the functions and predicates must
correspond to the associated symbols.

Example 1.45
ϕ := Q(x) ∨ ∀z(P (x, g(z))) ∨ ∃x(∀y(P (f(x), y) ∧Q(a)))

U = R
I(a) : {∅} → R, ∅ 7→ π constant functions,
I(f) : I(f) = sin : R→ R and I(g) = cos : R→ R,
I(P ) = {(r, s) ∈ R2 : r ≤ s} and I(Q) = [3,∞) ⊆ R,
I(x) = π

2
, I(y) = 1 and I(z) = 3.
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Definition 1.46 (Value of a Term)
Let t be a term and M = (U, I) be a model. We define
inductively the value of t wrt M, written as M(t), as follows:

M(x) := I(x) for a variable t = x,
M(t) := I(fk)(M(t1), . . . ,M(tk)) if t = fk(t1, . . . , tk).
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Definition 1.47 (Semantics)
Let M = (U, I) be a model and ϕ ∈ LFOL. ϕ is said to be
true in M, written as M |= ϕ, if the following holds:
M |= P k(t1, . . . tk) iff (M(t1), . . . ,M(tk)) ∈M(P k)

M |= ¬ϕ iff not M |= ϕ

M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ

M |= ∃x(ϕ) iff M[x/a]|= ϕ for some a ∈ U where M[x/a]

denotes the model equal to M but M[x/a](x) = a.
M |= t

.
= r iff M(t) = M(r)

Given a set Σ ⊆ LFOL we write M |= Σ iff M |= ϕ for all
ϕ ∈ Σ.
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Example 1.48
ϕ := Q(x) ∨ ∀z(P (x, g(z))) ∨ ∃x(∀y(P (f(x), y) ∧Q(a)))

U = R
I(a) : {∅} → R, ∅ 7→ π constant functions,
I(f) : I(f) = sin : R→ R and I(g) = cos : R→ R,
I(P ) = {(r, s) ∈ R2 : r ≤ s} and I(Q) = [3,∞) ⊆ R,
I(x) = π

2
, I(y) = 1 and I(z) = 3.

Is ϕ true in M = (U, I)?
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M 6|= Q(x) because M(Q) = [3,∞) and
M(x) = π

2
6∈ [3,∞),

M 6|= ∀z(P (x, g(z))) because (M(x),M(g)(M(z))) =
(π

2
, cos(u)) 6∈M(P ) = {(r, s) ∈ R2 : r ≤ s} and

cos(u) < π
2

for all u.
M |= Q(a) because M(a) = π ∈M(Q) = [3,∞) is
satisfied.
M |= ∃x(∀y(P (f(x), y))) because not for all u′ ∈ R exists
a u ∈ R such that
(M(f)(M(x)),M(y)) = (sin(u), u′) ∈M(P ) = {(r, s) ∈
R2 | r ≤ s} is fulfilled (e.g. u′ = −2).

⇒M 6|= ϕ
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FOL without function symbols
In the next chapter we extend ML such that it will be as
expressive as FOL.

In order to give a clear presentation of the translation it is
beneficial to first syntactically restrict FOL as much as
possible without losing expressiveness.

We will show that it is enough to consider a FOL language
without function symbols but constants.

How do we simulate function symbols?

 blackboard
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Let T ⊆ LFOL(Var ,Pred ,Func) be a first-order theory (set of
formulae).

We encode function symbols as predicate symbols. This
seems to be straightforward as functions can be seen as a
special case of relations.

Example 1.49 (Function + as Relation ⊕)
We consider the binary function
+ : N2 → N, 〈n, n′〉 7→ n+ n′. We can easily write this as a
ternary relation ⊕ ⊆ N3:

⊕(n,m, l) iff n+m = l.
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Let fk ∈ Funck be a function symbol of arity k > 0 occuring
in some predicate symbol P l ∈ Pred l:

P l(t1, . . . , ti−1, f
k(t′1, . . . , t

′
k), ti+1, . . . , tl)

where 1 ≤ i ≤ l. Now, we replace P l(. . . ) by the following
conjunction:

∀y(F (t′1, . . . , t
′
k, y)→ P l(t1, . . . , ti−1, y, ti+1, . . . , tl))

where y 6∈ Var is a new variable and F 6∈ Pred is a new
predicate symbol.
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Assume that there are n occurrences of fk in T . If we apply
the previous procedure to each of these n function symbols
in which language can T be formulated?

This procedure allows to express the theory T over

LFOL(Var ∪ {y1, . . . , yn},Pred ∪ {F},Func\{fk})

What did we achieve?
1 Removal of fk

2 Tradeoff: n new variables and one new predicate
symbol

We did not yet address the soundness of the translation!

By now, there is no formal relation between F and fk!
E.g. what happens if M(F ) is not a function?
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Firstly, we need to specify that F represents a function. So,
we have to add the following “function axiom”:

∀x1 . . . ∀xk∃!yF (x1, . . . , xk, y)

Note that such an axiom is added to a given theory for each
newly introduced predicate symbol F .

Remark 1.50 (Macro for “there is exactly one”)
∃!xQ denotes that there is exactly one x; i.e.

∃!xQ := ∃x∀y(Q(x) ∧ (Q(y)→ x
.
= y))
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Following this procedure recursively allows to translate the
theory T over LFOL(Var ,Pred ,Func) to a new theory T ′ over
LFOL(Var ′,Pred ′,Func0) where

1 Var ′:= Var∪Var 1 ∪ · · · ∪ Vark where

Var i :=
⋃

f ij∈Funci∩T

{yij,1, . . . , yij,n
fi
j

}

and nf ij denotes the number of occurences of f ij in T .

2 Pred ′:= Pred∪{F j+1
i | f ji ∈ Funcj ∩ T} for 1 ≤ j ≤ k.
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We formally define the translations given of the previous
slides.

Definition 1.51 (Translations trvars, trpreds)
Let T be a theory over LFOL(Var ,Pred ,Func). We define the
following functions:

trvars(T,Var) = Var∪Var 1 ∪ · · · ∪ Vark where

Var i :=
⋃

f ij∈Funci∩T

{yij,1, . . . , yij,n
fi
j

}

and nf ij denotes the number of occurences of f ij in T .

trpreds(T,Pred) = Pred∪{F j+1
i | f ji ∈ Funcj ∩ T} for

1 ≤ j ≤ k.
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Definition 1.52 (Translation function trtheory)
Let T be a theory over LFOL(Var ,Pred ,Func). Then,
trtheory(T ) denotes the theory over

LFOL(trvars(T,Var), trpreds(T,Pred),Func0)

which is constructed by recursively replacing function
symbols by the procedure described above.

Definition 1.53 (Ax(T ))
Let T be a theory over LFOL(Var ,Pred ,Func). By Ax(T ) we
denote the set of all “function axioms” (as described above),
one for each for each (new) predicate symbol in
Pred ∩ trpreds(T,Pred).
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Example 1.54
Consider the theory T = {P (f(r(x))} over
LFOL({x}, {P}, {f, r}).
Firstly, we remove function symbol f yielding the theory T ′

consisting of the following formulae:
1 ∀y1(F (r(x), y1)→ P (y1))

2 ∀x1∃!y1(F (x, y1))

Secondly, we remove the function symbol r yielding theory
T ′′:

1 ∀y1(∀y2(R(x, y2)→ F (y2, y1))→ P (y1))

2 ∀x1∃!y1(F (x, y1))

3 ∀x1∃!y2(R(x, y2))

Now, we have that T ′′ ⊆ LFOL({x, y1, y2}, {P, F,R}, ∅).
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Before we prove the main result of this section we state a
lemma which is essential for its proof.

Definition 1.55 (Model Update trmodel)
Let T be a theory, and M a model over Var , Pred , Func.
According to the previous construction we modify M to a
model M′ = trmodel(M) over trvars(T,Var), trpreds(T,Pred),
and Func0 such that M′ interprets each new predicate
symbol F arisen from a function symbol f ∈ Funck as
follows:

M′(F ) = {(u1, . . . , uk+1) | uk+1 = I(f)(u1, . . . , uk)}

The interpretation of the new variables can be any element:
It does not matter as each occurrence is bound.
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Lemma 1.56 (Functions Can Be Eliminated)
Let T ⊆ LFOL(Var ,Pred ,Func) be a theory and M be a
compatible model. Then, trtheory(T ) is a theory over

LFOL(trvars(T,Var), trpreds(T,Pred),Func0)

and it holds that

M |= T iff trmodel(M) |= trtheory(T ) ∪ Ax(T ).

Proof:  Exercise (structural induction).

Note, that the new theory does not contain any function
symbols but constants.

This theorem shows that function symbols are not
necessary. Everything can equivalently be encoded by
predicate symbols.
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Example 1.57
Again, consider the theory T = {P (f(r(x))} over
LFOL({x}, {P}, {f, r}) and model M = (N, I) where

M(f) : N→ N, M(f)(x) = x+ 1

M(r) : N→ N, M(r)(x) = 2x

M(P ) = {2x+ 1 | x ∈ N}
M(x) = 2

Then, the new model M′ := trmodel(M) is given as follows:
M′(F ) = {(x, x+ 1) | x ∈ N} ⊆ N2,
M′(R) = {(x, 2x) | x ∈ N} ⊆ N2,
M′(P ) = M(P )

M(x) = 2, and M(y1), M(y2) arbitrary.
It holds that M |= T iff M′ |= T ′′.
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1 Introduction
1.4 Predicate Logic

Theorem 1.58 (Function Free FOL)
Let T ∪ {ϕ} ⊆ LFOL(Var ,Pred ,Func) be a theory. Then,
trtheory(T ∪ {ϕ}) is a theory over

LFOL(trvars(T,Var), trpreds(T,Pred),Func0)

and it holds that

T |= ϕ iff trtheory(T ) ∪ Ax(T ∪ {ϕ}) |= trtheory({ϕ})
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1 Introduction
1.4 Predicate Logic

Proof sketch (1).
We have to show the following

∀M(M |= T ⇒M |= ϕ)
iff

∀M′(M′ |= trtheory(T ) ∪ Ax(T ∪ {ϕ}) ⇒M′ |= trtheory({ϕ}))

where models M range over models over Var ,Pred , and
Func and models M′ over trvars(T,Var),trpreds(T,Pred), and
Func0.
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1 Introduction
1.4 Predicate Logic

Proof sketch (2).
“⇒”: Assume M′ |= trtheory(T ) ∪ Ax(T ∪ {ϕ}) and
M′ 6|= trtheory({ϕ}).

Let M be a model with trmodel(M) = M′. (Such a model has
to exist because of the function axioms!) According to the
previous lemma, we have that M |= T and M 6|= ϕ.
Contradiction!

“⇐”: Assume that the right direction holds and that there is
a model M with M |= T and M 6|= ϕ. According to the
previous lemma we also have that
trmodel(M) |= trtheory(T ) ∪ Ax(T ∪ {ϕ}) and
trmodel(M) 6|= trtheory({ϕ})) which contradicts the
assumption.
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2 Languages and Semantics

2. Languages and Semantics
2 Languages and Semantics

Basic Modal Language LBML

Modal Language LML

Extending ML to FOL
The Standard Translation
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2 Languages and Semantics

Content of this Chapter
Firstly, we talk about relational structures in detail and
introduce the basic modal language. Secondly, we extend
this language by multiple relations: This leads us to the
modal languages. If we extend the modal logic further, we
get a new logic equivalent to first order logic: Basic Hybrid
Logic. This raises the question as to which class of
first-order formulae does the basic modal logic
correspond? The answer can be given with the standard
translation.
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2.1 Basic Modal Language LBML

2.1 Basic Modal Language
LBML
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2 Languages and Semantics
2.1 Basic Modal Language LBML

What is a Logic?
We present a framework for thinking about logics as:

languages for describing a problem,
ways of talking about relational structures and
models.

These are the two key components in the way we will
approach logic:

1 Language:
fairly simple, precisely defined, formal languages.

2 Model (or relational structure):
simple “world” that the logic talks about.
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2.1 Basic Modal Language LBML

Various modal logics

knowledge→ epistemic logic,
beliefs→ doxastic logic,
obligations→ deontic logic,
actions→ dynamic logic,
time→ temporal logic,
and combinations of the above.

Most famous multimodal logics:
BDI logics of beliefs, desires, intentions (and time).
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2 Languages and Semantics
2.1 Basic Modal Language LBML

Relational Structures
A relational structure is given by (W, {R1, . . . ,Rn}) and
consists of:

A non-empty set W , the elements of which are our
objects of interest. They are called points, states,
nodes, worlds, times, instants or situations.
A non-empty set {R1, . . . ,Rn} of relations,
Ri ⊆ W ×W .

Example 2.1 (Finite state automaton for anbm)

Given the formal language anbm with n,m > 0. The
relational structure is:

r s t
aa bb

Here, r is the start state and t is the only final state.
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2 Languages and Semantics
2.1 Basic Modal Language LBML

The Basic Modal Language
Standard propositional logic can be seen as a
one-point relational structure.
But relational structures can describe much more. We
can talk about points, lines etc.
Therefore, we introduce the basic modal language.

We build the basic modal language on top of the
propositional language by extending LPL(Prop) with two
new operators:

Possibility and necessity
♦ ϕ: ϕ is possible

(We see one or more states where ϕ holds.)

� ϕ: ϕ is necessary
(In all reachable states ϕ holds.)
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2 Languages and Semantics
2.1 Basic Modal Language LBML

A Language for Relational Structures

Definition 2.2 (Basic modal language LBML)
Let Prop be a set of propositions. The basic modal language
LBML(Prop) consists of all formulae defined by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ♦ ϕ

where p ∈ Prop.

Boolean macros are defined in the standard way.
Additionally, we have the dual � (called “box”) of ♦ :

�ϕ := ¬♦ ¬ϕ
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2 Languages and Semantics
2.1 Basic Modal Language LBML

We can talk about attributes by adding labels to nodes
(e.g. painting them in a particular color).

Example 2.3 (Colored graph I)
Imagine standing in a node of a colored graph. What can
we see?

♦ blue

♦ blue
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2 Languages and Semantics
2.1 Basic Modal Language LBML

Example 2.4 (Colored graph II)
We imagine standing in a node of a colored graph. What
can we see?

♦ (black ∧ red) ∧ ♦ ♦ green
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2 Languages and Semantics
2.1 Basic Modal Language LBML

Colored graph II

Example 2.5

blue→ �black
green→ �black

yellow→ ♦ yellow
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2 Languages and Semantics
2.1 Basic Modal Language LBML

Definition 2.6 (Kripke frame)
A Kripke frame is given by F = (W,R) where

W is a non-empty set, called set of domains or worlds,
R ⊆ W ×W is a binary relation.

Frames are mainly used to talk about validities: They stand
for a whole set of models.

Definition 2.7 (Kripke model)
A Kripke model is given by M = (W,R, V ) where

(W,R) is a Kripke frame,
V : Prop → P(W ) is called labelling function or
valuation. We also use V : W → P(Prop).

Kripke frames (resp. models) are simply relational
structures (resp. with labels)!
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2 Languages and Semantics
2.1 Basic Modal Language LBML

Example 2.8
Consider the frame F = ({w1, w2, w3, w4, w5},R) where
Rwiwj iff j = i+ 1 and V (p) = {w2, w3},
V (q) = {w1, w2, w3, w4, w5}, V (r) = ∅.

w1

q
w2

q, p
w3

q, p
w4

q
w5

q
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2 Languages and Semantics
2.1 Basic Modal Language LBML

Frames vs. Models?
Frames
Mathematical pictures of ontologies that we find
interesting. That is, frames define the fundamental
structure of the domain of interest.

For example, we model time as a collection of points
ordered by a strict partial order.

Models
Frames are extended by contingent information. That is,
models extend the mathematical structure provided by
frames by additional information.

Can Kripke models be used to interpret the propositional
language?
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2 Languages and Semantics
2.1 Basic Modal Language LBML

Formal semantics of LML.

Definition 2.9 (Semantics M, w |= ϕ)
Let M be a Kripke model, w ∈ WM , and ϕ ∈ LML. ϕ is said to
be locally true or satisfied in M and world w, written as
M, w |= ϕ , if the following holds:
M, w |= p iff w ∈ VM(p) and p ∈ Prop,
M, w |= ¬ϕ iff not M, w |= ϕ

M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ

M, w |= ♦ ϕ iff there is a world w′ ∈ W such that Rww′ and
M, w′ |= ϕ

Given a set Σ ⊆ LML we write M, w |= Σ iff M, w |= ϕ for all
ϕ ∈ Σ .

What about �ϕ?  blackboard
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2.1 Basic Modal Language LBML

Internal and Local

Satisfaction of formulae is internal and local!

Internal: Formulae are evaluated inside models at some
given world.

Local: Given a world it is only possible to refer to direct
sucessors of this world.

How does first-order logic compare to that?
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2 Languages and Semantics
2.1 Basic Modal Language LBML

Some Examples

Example 2.10
F = ({w1, w2, w3, w4, w5},R) where Rwiwj iff j = i+ 1 and
V (p) = {w2, w3}, V (q) = {w1, w2, w3, w4, w5}, V (r) = ∅.

w1

q
w2

q, p
w3

q, p
w4

q
w5

q

1 M, w1 |= ♦ � p

2 M, w1 6|= ♦ � p→ p

3 M, w2 |= ♦ (p ∧ ¬r)
4 M, w1 |= q ∧ ♦ (q ∧ ♦ (q ∧ ♦ (q ∧ ♦ q))))

5 M |= � q
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2 Languages and Semantics
2.1 Basic Modal Language LBML

Validity and (Global) Satisfaction
We take on a global point of view.

Given a specification like ϕ := � ¬crash. In which states
should it be true?

Definition 2.11 (Validity)

A formula ϕ is called valid or globally true in a model M iff
M, w |= ϕ for all w ∈ WM. We write M |= ϕ.

ϕ is satisfiable in M if M, w |= ϕ for some w ∈ WM.

Analogously, we say that a set Σ of formulae is valid (resp.
satisfiable) in M iff all formulae in Σ are valid (resp.
satisfiable) in M.

Validity and satisfiability are dual concepts!
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2 Languages and Semantics
2.1 Basic Modal Language LBML

Example 2.12

In which models is the following formula true?

� (p→ q)→ (� p→ � q)

M, w |= � (p→ q)

iff ∀w′(wRw′ ⇒M, w′ |= p→ q)

iff ∀w′(wRw′ ⇒ (M, w′ |= p⇒M, w′ |= q))

implies ∀w′(wRw′ ⇒M, w′ |= p)⇒
∀w′(wRw′ ⇒M, w′ |= q)

iff M, w |= � p⇒M, w |= � q

iff M, w |= � p→ � q

The formula is true in any frame and hence in any model.
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2 Languages and Semantics
2.1 Basic Modal Language LBML

Modal Consequence Relation
Up to now we verified formulae in a given model and state.
Often, it is interesting to know whether a property follows
from a given set of formulae.

Definition 2.13 (Local Consequence Relation)
LetM be a class of models, Σ be a set of formulae and ϕ be
a formula.

ϕ is a (local) semantic consequence of Σ over M,
written Σ |=M ϕ , if for all M ∈M and all w ∈ WM it
holds that M, w |= Σ implies M, w |= ϕ .
IfM is the class of all models we just say that ϕ is a
(local) consequence of Σ and write Σ |= ϕ .

 blackboard
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2 Languages and Semantics
2.1 Basic Modal Language LBML

Example 2.14
LetM be the class of transitive models. Then:

1 ♦ ♦ p |=M ♦ p,
2 � p |=M � � p, but
3 ��p |=M �p does not hold.

Is there a class of modelsM for which ♦ ♦ p |=M ♦ p holds,
but no model inM is transitive?
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2 Languages and Semantics
2.1 Basic Modal Language LBML

Definition 2.15 (Global Consequence Relation)
LetM be a class of models, Σ be a set of formulae and ϕ be
a formula.

Recall that for M ∈M, we denote by M |= Σ that for all
w ∈M : M, w |= Σ.
ϕ is a global semantic consequence of Σ overM
(written as Σ |=g

M ϕ) if for all M ∈M it holds that
M |= Σ implies M |= ϕ.
IfM is the set of all models we just say that ϕ is a global
consequence of Σ and write Σ |=g ϕ.
A formula is globally true, or valid inM, if it is true in
all models inM.
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2.1 Basic Modal Language LBML

Example 2.16
Consider the formulae p and �p and the classM of all
models.

1 p does not locally imply �p inM.
2 p does globally imply �p inM.

Note that global validity of a formula φ is difficult to achieve:

φ has to be true in all models M in M. And truth in M
means truth in all M, w for all w.

In the next chapter, we will describe such formulae in much
more detail.
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2 Languages and Semantics
2.1 Basic Modal Language LBML

Frames and Validity
In Example 2.32 we have seen that a formula can be
true/false for all valuations. We can speak about structural
properties ignoring contingent information.

Definition 2.17 (Frame Validity: F |= ϕ)
Let F be a frame and ϕ ∈ LBML.

1 ϕ is valid in F and w ∈ WF, written F, w |= ϕ , if
M, w |= ϕ for all models M = (F, V ) based on F.

2 ϕ is valid in F , written F |= ϕ, if F, w |= ϕ for all w ∈ WF.
3 Let K be class of frames. ϕ is said to be valid in K, if ϕ is

valid in each frame F ∈ K .
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2 Languages and Semantics
2.1 Basic Modal Language LBML

Example 2.18
Validity differs from truth in many ways:

When ϕ ∨ ψ is true at point w this means: Either ϕ or ψ
is true at w.
If ϕ ∨ ψ is valid on a frame F this does not mean: Either
ϕ or ψ is valid on F.
Counterexample: q ∨ ¬q.

Note that the last counterexample is similar to the example
on Slide 39.
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2 Languages and Semantics
2.1 Basic Modal Language LBML

Example 2.19
Is ♦ > valid in all frames? In which class is the formula
valid?

w1 w2 w1 w2

What about � >?  blackboard

Example 2.20
Is ♦ ♦ p→ ♦ p true in w1?

w1 w2

p

w3

p

w1 w2 w3

p

Is there a class of frames in which formula is valid?  
blackboard
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Example 2.21

In which frame is ♦ (p ∨ q)→ (♦ p ∨ ♦ q) valid?
In all Kripke frames!
Let F be a frame, w ∈ WF, and V be any valuation where
M = (F, V ). We have to show that

M, w |= ♦ (p ∨ q) implies M, w |= ♦ p ∨ ♦ q

Assume that the antecedent holds. Then, there is a state w′

with Rww′ and M, w′ |= p ∨ q. Hence, we have
M, w |= ♦ p ∨ ♦ q.
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2.1 Basic Modal Language LBML

Lemma 2.22 (Distribution Axioms)

The two formulae

♦ (p ∨ q)→ (♦ p ∨ ♦ q)
� (p→ q)→ (� p→ � q)

are both valid in all Kripke frames F. The last formula is also
called axiom K.

Proof.
 Examples 2.12 and 2.21.
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2.2 Modal Language LML
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2.2 Modal Language LML

Multiple Relations

We have just introduced two basic modalities:

♦ (there exists a successor) and � (for all successors).

How many different relations can we describe?

We define a very general logic for talking about relational
structures with multiple relations.
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2.2 Modal Language LML

Multiple Modal Operators
A graph contains multiple relations:

R1,R2,R3, . . . ,Rlikes,Rdislikes, . . .

and for each relation we need a diamond operator
〈1〉, 〈2〉, 〈3〉, . . . , 〈likes〉, 〈dislikes〉, . . .

Sometimes we also write 〈Ri〉 for 〈i〉.
Set of modalities: Op

〈m〉ϕ : There is a m-sucessor in which ϕ holds.
[m]ϕ : Every m-sucessor satisfies ϕ.

m ∈ Op
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Syntax
Up to now we considered binary relations: R ⊆ W ×W
We generalize this to arbitrary arities. Let Op be a set of
modalities.

Can you think about a sensible ternary relation?

Definition 2.23 (Modal Similarity Type)
A modal similarity type is given by τ = (Op, ρ) where Op is
a non-empty set and ρ is a function ρ : Op→ N.
We also write m ∈ τ instead of m ∈ Op.

Remark 2.24
If the arity is clear from context we omit the function.
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Definition 2.25 (Modal Language LML)
Let τ = (Op, ρ) be a modal similarity type and Prop be a set
of propositions. The modal language LML(τ,Prop) is given by
all formulae defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈m〉(ϕ, . . . , ϕ︸ ︷︷ ︸
ρ(m)-times

)

where p ∈ Prop and m ∈ Op.

Definition 2.26 (Macros)
[m](ϕ1, . . . , ϕn):=¬〈m〉(¬ϕ1, . . . ,¬ϕn)

[m] is called the dual of 〈m〉 and vice versa.
What can we model with this language?
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2.2 Modal Language LML

Definition 2.27 (τ -Kripke Frame)
A τ-(Kripke) frame is given by F = (W, {Rm | m ∈ τ})
where

W is a non-empty set, called set of domains or worlds,
Rm ⊆ W τ(m)+1 are (τ(m)+1)-ary relations for m ∈ τ .

τ is a modal similarity type.
τ(m) + 1 corresponds to the reachable states τ(m) with 〈m〉
and the current state (+1).

Frames are mainly used to talk about validities: They stand
for a whole set of models.

Kripke frames are simply relational structures!
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Example 2.28

Rmw0 . . . wτ(m):
w0

w1 . . .

wτ(m)

m m

m
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We extend frames by valuations for propositional variables.

Definition 2.29 (τ -Kripke Model)
A τ-(Kripke) model is given by M = (W, {Rm | m ∈ τ}, V )
where

(W, {Rm | m ∈ Op}) is τ -frame
V : Prop → P(W ) is called labeling function or
valuation

Kripke models are simply relational structure with labels.

Remark 2.30
Sometimes we use an analogous definition of valuations:
V : W → P(Prop).
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Formal semantics of LML.

Definition 2.31 (Semantics M, w |= ϕ)
Let M be a Kripke model, w ∈ WM, and ϕ ∈ LML. ϕ is said to
be locally true or satisfied in M and world w, written as
M, w |= ϕ, if the following holds:
M, w |= p iff w ∈ VM(p) and p ∈ Prop,
M, w |= ¬ϕ iff not M, w |= ϕ

M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ

M, w |= 〈m〉(ϕ1, . . . , ϕτ(m)) iff there are worlds
w1, . . . , wτ(m) ∈ W such that Rmww1 . . . wτ and M, wi |= ϕi
for all i = 1, . . . , τ(m)

Given a set Σ ⊆ LML we write M, w |= Σ iff M, w |= ϕ for all
ϕ ∈ Σ.
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Some Examples

Example 2.32

Three unary operators: 〈a〉, 〈b〉, 〈c〉
Three relations: Ra,Rb,Rc

w1 w2 w3 w4
a b c

What can be said about 〈a〉p→ 〈b〉p?

It does not depend on the valuation!
Assume V (p) = {w2, w3}?
What can be said about 〈a〉p→ 〈a〉〈b〉p?
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Example 2.33
Binary operator: 〈bin〉 Ternary operator: 〈ter〉
Relations: Rbin = {(w1, w2, w3)},Rter = {(w1, w2, w3, w4)}

w1 w2 p0

w3 p1 w4 p2

bin, ter

bin
,ter

ter

What about 〈bin〉(p0, p1)→ 〈ter〉(p0, p1, p2)?

Each triangle starting in w is part of a rectangle starting in it.
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A Temporal Logic
Reasoning about time:

Example 2.34 (The Basic Temporal Language)
Two unary operators: Op = {F, P}.
Modal similarity type: τ = ({F, P}, {(F, 1), (P, 1)}).

〈F 〉ϕ : ϕ will be true at some Future time point.
〈P 〉ϕ : There is a Past time point, where ϕ is true.
[F ]ϕ : ϕ will always be true.

It is common to use ♦ for 〈F 〉, � for [F ], and ♦ −1 for 〈P 〉.
What does the following formula express?
♦ −1ϕ→ � ♦ −1ϕ : Whatever has happened will always

have happened.

 blackboard
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Example 2.35 (Bidirectional Frames, Models)
Recall the basic temporal logic. How many relations do we
need?
RF and RP should satisfy the following property:

∀xy(RFxy ↔ RPyx)

Given one, the other is fixed! We call this kind of frame
bidirectional.
What other conditions should be fulfilled to model “time”?
 Exercise
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A Logic About Programs
Verification of programs:

Example 2.36 (Program π)
> → ψ
while true do

if ψ then
µ→ φ
ψ → µ

end if
if φ then exit
end if

end while
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Example 2.37 (Propositional Dynamic Logic)
Infinite collection of diamonds: Op = {π | π is a program}

What do the following operators express?
〈π〉ϕ : Some terminating execution of π leads to a

state with information ϕ
[π]ϕ : Each terminating execution of π leads to a

state with information ϕ
It would be nice if we could combine simple programs to
complex ones:

π ∪ π′ : Nondeterministic choice
π; π′ : Sequential composition
π∗ : Iterative execution
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2.2 Modal Language LML

What do the following statements express?
〈π∗〉ϕ↔ ϕ ∨ 〈π; π∗〉ϕ : A state with information ϕ is reached

by executing π a finite number of times iff the
current state satisfies ϕ or we can execute π
once and reach a state in which ϕ holds by
executing π a finite number of times.

[π∗](ϕ→ [π]ϕ)→ (ϕ→ [π∗]ϕ) :  Exercise.

Do these formulae always hold?
How can we actually use this logic?
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2.2 Modal Language LML

Example 2.38 (Regular Frames and Models (1))
How should models for PDL look like? A relation for each
program?
We can create new relations by existing ones:

Rπ1∪π2 = Rπ1 ∪Rπ2

Rπ1;π2 = Rπ1 ◦ Rπ2

Rπ∗ = (Rπ)∗

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 151
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2.2 Modal Language LML

Example 2.39 (Regular Frames and Models (2))
Let Π be the smallest set of programs containing the basic
programs and which is closed under ∪, ;, and ∗. Then a
regular frame for Π is a labeled transition system
(W, {Rπ | π ∈ Π}) such that:
Ra is an arbitrary binary relation for each basic
program a, and
for all complex programs π, Rπ is the binary relation
inductively constructed with the rules above.
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2.2 Modal Language LML

Syntax & Semantics: Convention
To make life simpler we assume the following:

1 We have one unary modality (|Op| = 1, say Op = {m},
with arity 1)

2 We use ♦ (resp. �) for 〈m〉 (resp. [m]).

3 We do not explicitly mention the modal similarity type
and drop τ from all Definitions, if it is clear from
context.

4 We use R for the binary relation between worlds. We
use both notations Rw1w2 and w1Rw2 to denote that
world w2 is reachable from world w1.
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2.3 Extending ML to FOL

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 154



2 Languages and Semantics
2.3 Extending ML to FOL

Modal vs. First-Order Language?
What are the main differences between the languages?

First-order logic
1 contains constants.
2 contains predicate and function symbols.
3 allows global quantification.

On the other hand, modal logic
1 has modal operators.
2 is only local.

How can we extend our current modal language to FOL?
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2 Languages and Semantics
2.3 Extending ML to FOL

Modal Language vs. First-Order Logic

Function symbols and k-ary relation symbols for k > 2 can
be encoded as relations as shown in the previous chapter.
Therefore, we restrict ourselves to FOL without function
symbols but constants.

The main idea is that we identify elements from the
first-order domain (constants) with worlds in the Kripke
model.

In the following we introduce syntactic means to refer to
these worlds.
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2.3 Extending ML to FOL

Basic Hybrid Language

Modal logic does not allow to name worlds. We cannot say
that some formula holds at a particular world.

For example, we cannot say that a specific state is blue and
black.

We introduce the basic hybrid language which has the
described feature.

What does a unique name for a point correspond to?

Constants!
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2 Languages and Semantics
2.3 Extending ML to FOL

We add a second sort of propositional symbols to our
modal language.

The new symbols Nom = {i, j, k, l, . . . } are called nominals
and are used as labels for points. We require that they are
disjunct from the propositional symbols, i.e.
Nom ∩ Prop = ∅. In the models nominals are interpreted as
singleton sets, i.e. they are true at exactly one world.

In the language we treat nominals as ordinary propositions!

What can you say about the validity of the following
formulae?

1 ♦ (r ∧ p) ∧ ♦ (r ∧ q)→ ♦ (p ∧ q)
2 ♦ (i ∧ p) ∧ ♦ (i ∧ q)→ ♦ (p ∧ q)
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2.3 Extending ML to FOL

What do we have to ensure with respect to the labeling
of nodes by nominals?

Each nominal has to be true at exactly one world!

Given a Kripke model M we call V (i) the denotation of i
where i ∈ Nom.

In order to capture FOL, we must be able to “jump to a
specific world”. Therefore we use the satisfaction
operators @i:

@iϕ iff ϕ holds at the world labeled with i.
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2.3 Extending ML to FOL

Syntax of the hybrid language

Definition 2.40 (Basic Hybrid Language LBHL)
Let Prop be a set of propositions, Nom be a set of nominals,
and τ = (Op, ρ) be a modal similarity type. The basic hybrid
language LBHL(τ,Prop,Nom) is given by all formulae defined
by the following grammar:

ϕ ::= p | i | ¬ϕ | ϕ ∨ ϕ | 〈m〉(ϕ, . . . , ϕ︸ ︷︷ ︸
ρ(m)-times

) | @iϕ

where m ∈ τ , p ∈ Prop and i ∈ Nom.
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Semantics
We say that a Kripke model is hybrid if, and only if,
V : Prop ∪Nom → P(W ) and each nominal is true at exactly
one world, i.e. |V (i)| = 1 for all i ∈ Nom.

In the following, when considering the hybrid language we
implicitly assume that the models are hybrid.

Definition 2.41 (Semantics of LBHL)
Let M be a (hybrid) Kripke model, w ∈ WM, Nom a set of
nominals and ϕ ∈ LBHL.
The semantics of the basic hybrid language extends the
semantics of modal logic by the following two clauses:

M, w |= i iff V (i) = {w} and i ∈ Nom
M, w |= @iϕ iff M, w′ |= ϕ where V (i) = {w′}
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Comparing Nodes

Example 2.42 (Colored Graph II)
How to say: “We can come back to the same node”?

i@i♦ ♦ ♦ ♦ ♦ i
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2.3 Extending ML to FOL

Example 2.43
In ML we have seen how to describe frame properties by
modal formulae. It turns out that the hybrid language is
much more expressive in that respect. Consider a frame
(W,R) and give the corresponding property of R to each of
the following formulae:

1 i→ ♦ i (reflexivity)
2 ♦ ♦ i→ ♦ i (transitivity)
3 ♦ i→ ♦ ♦ i (density)
4 i→ ¬♦ i (irreflexivity)
5 ♦ ♦ i→ ¬♦ i (intransitivity)
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2 Languages and Semantics
2.3 Extending ML to FOL

Simulating FOL: 1. Attempt

We construct the following two translations
TR: Transformation of FOL models to Kripke models
tr : Transformation of FOL formulas to Modal

formulas
such that for a given FOL model MFOL and all FOL formulas
ϕ it holds that

MFOL |= ϕ iff TR(MFOL), w |= tr(ϕ)
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2.3 Extending ML to FOL

Translations of Models
Let M = (U, I) be a FOL model over Pred without function
symbols (constants are allowed).

We construct M′ := TR(M) = (W,R, V ) as follows:
1 W := U ∪ {w0} where w0 is a new world not occurring

in U .
2 For each c ∈ Func0 ∪ Var label the world I(c) with c, i.e.
V (c) := {I(c)}. We set Nom = Func0 ∪ Var .

3 For each P ∈ Pred1 we label each world w ∈M(P ) with
P and for p ∈ Pred0 label w0 with p.

4 For each P ∈ Predk with k > 1 we add a k-ary relation
RP to R (resp. to Op) such that RPw1w2 . . . wk iff
(w1, w2, . . . , wk) ∈M(P ).

We shall also identify RP with P if no confusion occurs.
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2.3 Extending ML to FOL

Example 2.44

Consider the follwing FOL model: M = ({1, 2, 3}, I) over
Func0 = {a, b}, Var = {x}, Pred1 = {P 1}, and Pred2 = {P 2}
with

1 I(P 1) = {1, 3}
2 I(P 2) = {(1, 2), (1, 3)}
3 I(a) = 2

4 I(b) = 1

5 I(x) = 2.
Is the following formulae true in M?

∃xP (b, x) ∧ ∀y¬P (x, b)

How does the Kripke model look like?  blackboard
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Translation tr : LFOL → LBHL

Equality: tr(s
.
= t) := @st

Unary predicates: tr(P (x)) := @xP

Predicates: tr(R(x1, . . . , xk)) := @x1〈R〉(x2, . . . , xk)

Negation: tr(¬ϕ) := ¬tr(ϕ)

Or: tr(ϕ ∨ ψ) := tr(ϕ) ∨ tr(ψ)

Quantification: tr(∃xϕ) := ?

We cannot yet say: There exists a world such that...!
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Renaming worlds

Recall the semantics of FOL:

M |= ∃xϕ iff M[x/a] |= ϕ

for some a ∈ U where M[x/a] denotes the model equal to M
but M[x/a](x) = a

We need a model update similar to the first-order case.
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Definition 2.45 (Model Update M[i/w])
Let M be a hybrid Kripke model, w ∈ WM, and i ∈ Nom
The define M[i/w] to be the model equal to M but the
denotation of i is set to w, i.e. VM[i/w](i) = {w}.

Note that we use the same notation as for FOL.

Example 2.46

w1i iw2

M
M[i/w2]

We still lack a syntactic counterpart!
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Extended syntax

Definition 2.47 (HL With Renaming LHLR)
Let τ = (Op, ρ) be a modal similarity type and Prop be a set
of propositions, and Nom be a set of nominals. The hybrid
language with renaming LHLR(τ,Prop,Nom) is given by all
formulae defined by the following grammar:

ϕ ::= i | p | ¬ϕ | ϕ ∨ ϕ | 〈m〉(ϕ, . . . , ϕ︸ ︷︷ ︸
ρ(m)-times

) | @iϕ | riϕ

where m ∈ τ , p ∈ Prop and i ∈ Nom.
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Semantics

Definition 2.48 (Semantics of LHLR)
Let M be a (hybrid) Kripke model, w ∈ WM and ϕ ∈ LBHL.
The semantics of the basic hybrid language with renaming
extends the semantics of the hybrid language by the
following clause:

M, w |= riϕ iff M[i/w′], w |= ϕ for some w′ ∈ W .

Consider the analogy: ∃xϕ(x) vs. riϕ(i)
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Simulating first-order logic

Definition 2.49 (tr : LFOL → LHLR)
Prop. symbols: tr(p) := @w0p

Equality: tr(s
.
= t) := @st

Unary predicates: tr(P (x)) := @xP

Predicates: tr(R(x1, . . . , xk)) := @x1〈R〉(x2, . . . , xk)

Negation: tr(¬ϕ) := ¬tr(ϕ)

Or: tr(ϕ ∨ ψ) := tr(ϕ) ∨ tr(ψ)

Quantification: tr(∃xϕ) := rxtr(ϕ)
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Example 2.50
Let ϕ := ∃x(banker(x)→ ∃y(customer(y) ∧ spoofs(x, y))). We
translate ϕ to a ML formula.

tr(∃x(banker(x)→ ∃y(customer(y) ∧ spoofs(x, y))))

rx(tr(banker(x)→ ∃y(customer(y) ∧ spoofs(x, y))))

rx((tr(banker(x))→ tr(∃y(customer(y) ∧ spoofs(x, y)))))

rx(@xbanker → tr(∃y(customer(y) ∧ spoofs(x, y))))

rx(@xbanker → ry(tr(customer(y) ∧ spoofs(x, y))))

rx(@xbanker → ry(tr(customer(y)) ∧ tr(spoofs(x, y))))

rx(@xbanker → ry(@ycustomer ∧@x〈spoofs〉y))
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Example 2.51
Consider the model and formula from
Example 2.44:M = ({1, 2, 3}, I) over Func0 = {a, b},
Var = {x}, Pred1 = {P 1}, and Pred2 = {P 2} with

1 I(P 1) = {1, 3}
2 I(P 2) = {(1, 2), (1, 3)}
3 I(a) = 2

4 I(b) = 1

5 I(x) = 2.
Construct tr(ϕ) where

ϕ = ∃xP (b, x) ∧ ∀y¬P (x, b)

and show that TR(M), w0 |= tr(ϕ).  blackboard
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Theorem 2.52
Let Func contain only constants and let
ϕ ∈ LFOL(Var ,Pred ,Func). Then, we have

MFOL |= ϕ iff TR(MFOL), w0 |= tr(ϕ).

Proof.
By structural induction.  Exercise
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Translation: The Other Direction
Have a closer look at the semantic clause of the hybrid
modal language:

M, w |= 〈R〉ϕ iff there is an w′ ∈ WM s.t. Rww′ and
M, w′ |= ϕ

In which formal language can this be expressed?

In FOL! The translation is immediate:

trw(〈R〉ϕ) = ∃w′ (R(w,w′) ∧ trw’(ϕ))

We need w′ in trw′ to keep track of the current world.
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Translating models
Let M = (W, {Ri | i ∈ τ}, V ) be a τ-Kripke model. We
construct the following FOL model M′ = (U, I):

1 U = W
2 Pred1 := Prop
3 Var := Nom ∪ {x1, x2, . . . }
4 Func0 := W
5 I(p) := V (p) for p ∈ Prop
6 I(i) := w with V (i) = {w} for i ∈ Nom
7 I(w) := w
8 Predk := {PR | R is a k-ary accessibility relation} (k ≥ 2)
9 I(PR) := R for PR ∈ Predk
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Translating models

Example 2.53

Let Prop = {p} and M = ({w1, w2, w3},R, V ) be a Kripke
model with R = {(w2, w3)} and V (p) = {w3}.

Which of the the following hold?
1 M, w1 |= ri〈R〉p
2 M, w1 |= ri@i〈R〉p

Construct the FOL-model TR(M).  blackboard
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Translating formulae

Definition 2.54 (trx : LHLR → LFOL)
We define the translation recursively as follows:
Atomic Propositions: trx(P ) := P (x)

Nominals: trx(i) := (x
.
= i)

Negation: trx(¬ϕ) := ¬trx(ϕ)

Disjunction: trx(ϕ ∨ ψ) := trx(ϕ) ∨ trx(ψ)

Modality: trx(〈R〉(ϕ1, . . . , ϕk)) :=
∃y1 . . . ∃yk(PR(x, y1 . . . yk) ∧

∧
yi
tr yi(ϕi)

Satisfaction operator: trx(@iϕ) := tr i(ϕ)

Renaming: trx(riϕ) := ∃i(trx(ϕ))
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Translating models

Example 2.55
Consider the model and formulae from Example 2.53:

1 M, w1 |= ri〈R〉p
2 M, w1 |= ri@i〈R〉p

Translate the formulae to FOL and check whether they are
true in the FOL-model TR(M).  blackboard
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Theorem 2.56
Let ϕ ∈ LHLR(τ,Prop,Nom) and M be a compatible τ -Kripke
model. Then, we have

M, w |= ϕ iff TR(M) |= trw(ϕ).

Proof.
By structural induction Exercise
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2.4 The Standard Translation
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2 Languages and Semantics
2.4 The Standard Translation

The function trx : LHLR → LFOL is a mapping from LHLR to
LFOL given a world w of the Kripke model. Here, we would
like to define the correspondent language of the (basic)
modal logic.

We would like to identify to which sublanguage of
first-order logic the (basic) modal logic corresponds to. Of
course, this should be a strict subclass of LFOL.
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2.4 The Standard Translation

Definition 2.57 (Correspondence Language L1
τ)

Let LML(τ,Prop) be given. The first-order language
corresponding to LML(τ,Prop), L1

τ (Prop), is built over the
unary prediactes

Pred1 = {Pi | pi ∈ Prop}

and the following n+ 1 ary predicates

Predn+1 = {Pm | m ∈ τ and τ(m) = n}.

That is, for each n-ary modal operator m a n+ 1 ary
predicate symbol is defined.
ϕ(x) denotes a first-order formula with one free variable,
that is, a variable which is not bound by any quantifier.
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We define the standard translation ST x as the restriction of
trx to LML(τ,Prop).

Definition 2.58 (Standard Translation ST x)
Let x be a FOL variable. The standard translation

ST x : LML(τ,Prop)→ L1
τ (Prop)

is defined as follows:

ST x(p) = P (x)

ST x(¬ϕ) = ¬ST x(ϕ)

ST x(ϕ ∨ ψ) = ST x(ϕ) ∨ ST x(ψ)

ST x(〈m〉(ϕ1, . . . , ϕn)) = ∃y1 . . . ∃yn(Pm(x, y1, . . . , yn) ∧
ST y1(ϕ1) ∧ · · · ∧ ST yn(ϕn))
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2.4 The Standard Translation

Theorem 2.59 (Standard Translation = ML)
Let M be a τ -model and M̄ the FOL interpretation of M. Then,
the following holds

1 M, w |= ϕ iff M̄[x/w] |= ST x(ϕ)

2 M |= ϕ iff M̄ |= ∀xST x(ϕ)

Proof:  Exercise
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3. Basic Modal Logics
3 Basic Modal Logics

Inferences and Properties
Normal Modal Logics
Sound- and Completeness
Finite Models via Filtration
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3 Basic Modal Logics

Content of this Chapter (1)
In this chapter we introduce the most important modal
logics: normal modal logics. We define them, by giving
appropriate axiom systems. To this end, we have to
introduce proofs in modal logics (Definition 3.13). Then we
link these axioms to properties of the transition relation
between worlds. It is much easier to work with these
semantical notions, than with proof-theoretical means.
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3 Basic Modal Logics

Content of this Chapter (2)
After stating and discussing the implications of the sound-
and completeness results, we formally prove them using the
idea of canonical models: Any modal logic is strongly
complete wrt its canonical model. Most completeness
results for modal logics (wrt. a particular class of frames)
are instances of this theorem. We end this chapter with a
discussion of the finite model property and a method, the
filtration theorem, to obtain finite models. Using this
method, many modal logics can be shown to be decidable.
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3.1 Inferences and Properties
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3 Basic Modal Logics
3.1 Inferences and Properties

The Story So Far . . .
We have introduced several languages: e.g, the

propositional language,
basic modal language,
modal language,
first-order language.

Truth of formulae in these languages was defined by
models: in a semantic way. Using this notion, we purely
semantically defined when a formula follows from a set
of formulae:

Σ |= ϕ iff for all models M: M |= Σ⇒M |= ϕ

In modal logic, we also distinguished between local and
global consequences: Truth in M, w and truth in M.
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3.1 Inferences and Properties

Syntactic Inferences

First Question
Given a class F of frames (or models). Which formulae are
valid in all these frames?

Note that there might be classes of frames, where this
problem is undecidable: We can not find an algorithm to
determine whether a given formula is valid or not.
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3.1 Inferences and Properties

Second Question
Can we define a calculus (like the Tableaux-method) to
systematically produce all valid formulae?

We will indeed define several systems of axioms, which
produce exactly the valid formulae in particular classes of
frames (see Theorem 3.29).
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3.1 Inferences and Properties

Valid Formulae in an Arbitrary Frame
Which formulae are true in the class of all frames F?

Axioms: Which formulae from propositional logic are
valid in it?
Certainly the tautologies of propositional logic.
And the axiom K:

� (p→ q)→ (� p→ � q)

Closure: What about Modus Ponens?
What about substitution? We know that p ∨ ¬p
is a tautology. Then so should φ ∨ ¬φ be, where
φ is any modal logic formula.

Necessitation: Suppose the formula φ is true in the frame
F . Then so is �φ.

We take a closer look at these (inference) rules soon.
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3.1 Inferences and Properties

Validity in a Particular Frame (1)
Suppose we do know something about a particular frame.

Serial: Frames where the relation R is serial:
For all w there is a w′ with wRw′.

Reflexive: Frames where the relation R is reflexive:
For all w: wRw.

Transitive: Frames where the relation R is transitive:
For all w,w′, w′′: wRw′ and w′Rw′′ implies
wRw′′.

Euclidean: Frames where the relation R is euclidean:
For all w,w′, w′′: wRw′ and wRw′′ implies
w′Rw′′.

Symmetric: Frames where the relation R is symmetric:
For all w,w′: wRw′ implies w′Rw.

Remember Slide 127 where we discussed transitivity.
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3 Basic Modal Logics
3.1 Inferences and Properties

Validity in a Particular Frame (2)

Definition 3.1 (Important Formulae)
We assume that we have available one modality operator O
(corresponding to � ). Later, we consider logics with several
operators each of which can satisfy certain properties. When
considering only one modality, we write � instead of O.

K O(p→ q)→ (Op→ Oq)
D ¬O(p ∧ ¬p)
T Op→ p
4 Op→ OOp
5 ¬Op→ O¬Op
B p→ O¬O¬p
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3 Basic Modal Logics
3.1 Inferences and Properties

Validity in Several Frames (3)

Lemma 3.2 (Appropriate Frames)

Let (W,R) be a Kripke frame. Then the following holds:
K: (W,R) |= � (p→ q)→ (� p→ � q).
D: (W,R) |= ¬� (p ∧ ¬p) iff R is serial.
T: (W,R) |= � p→ p iff R is reflexive.
4: (W,R) |= � p→ � � p iff R is transitive.
5: (W,R) |= ¬� p→ � ¬� p iff R is euclidean.
B: (W,R) |= p→ � ♦ p iff R is symmetric.
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3 Basic Modal Logics
3.1 Inferences and Properties

Validity in Several Frames (4)

Proof: (1).
The first fact has been proved in Lemma 2.22.
We identify in Kripke models (W,R, V ) the mapping V
with subsets S of W : V (p) = S (note that we only need to
consider V that make p true or not).
Then (W,R) |= ¬� (p ∧ ¬p) iff

∀S ⊆ W∀w ∈ W (∃x(wRx ∧ (x ∈ S ∨ x 6∈ S)))
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3 Basic Modal Logics
3.1 Inferences and Properties

Validity in Several Frames (5)

Proof: (2).
(W,R) |= � p→ p iff ∀S ⊆W∀w ∈W :

∀x(wRx→ x ∈ S)→ w ∈ S.

(W,R) |= � p→ � � p iff ∀S ⊆W∀w ∈W :

∀x(wRx→ x ∈ S)→∀x(wRx→∀y(xRy→y ∈ S)).

(W,R) |= ¬� p→ � ¬� p iff ∀S ⊆W∀w ∈W :

∃x(wRx ∧ x 6∈ S)→∀x(wRx→∃y(xRy ∧ y 6∈ S)).

(W,R) |= p→ � ♦ p iff ∀S ⊆W∀w ∈W :

(w ∈ S)→ ∀x(wRx→ ∃y(xRy ∧ y ∈ S)).
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3 Basic Modal Logics
3.1 Inferences and Properties

Validity in Several Frames (6)

Proof: (3).
The proof is now simple. The “⇐” is trivial. The other
direction is by choosing the right Kripke model (resp. the
right set S ⊆ W ). For reflexivity and transitivity, we choose
S := {x : wRx}. For euclidean, we set S := {w′′}. For
symmetry we set S := {w}.
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3 Basic Modal Logics
3.1 Inferences and Properties

Recall that
a binary relation R is irreflexive, if there is no x with
xRx,
a preorder R is a binary relation that is reflexive, and
transitive,
a partial order R is a preorder that is antisymmetric
(i.e. ∀x∀y((xRy ∧ yRx)→ x = y)),
a finite partial order R is a partial order defined on a
finite set,
an equivalence relation R is a preorder that is
symmetric (i.e. ∀x∀y(xRy → yRx)).

Lemma 3.3 (Characterising Equivalences)
A binary relation is an equivalence relation if and only if it is
reflexive and euclidean.

 Exercise
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3 Basic Modal Logics
3.1 Inferences and Properties

Preserving Truth/Validity

Definition 3.4 (Preserving Frame Validity)
An inference rule ϕ1,...ϕn

ψ
is called frame validity preserving,

if given a frame F with F |= ϕ1 ∧ . . . ∧ ϕn, then F |= ψ as
well.

Similarly, a rule is called locally truth preserving for a class
of modelsM, if for M ∈M and all w ∈ WM it holds that
M, w |= ϕ1 ∧ . . . ∧ ϕn implies M, w |= ψ.

Analogously, a rule is called globally truth preserving for a
class of modelsM, if for M ∈M it holds that
M |= ϕ1 ∧ . . . ∧ ϕn implies M |= ψ.
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3 Basic Modal Logics
3.1 Inferences and Properties

Modus Ponens

This rule was already introduced on Slide 41.

Definition 3.5 (Modus Ponens)
Let ϕ, ψ ∈ LML. Modus ponens denotes the inference rule
which allows to derive ψ from ϕ and ϕ→ ψ:

ϕ ϕ→ ψ

ψ
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3 Basic Modal Logics
3.1 Inferences and Properties

Example 3.6
We consider the set T = {�p,♦ ¬p ∨ ♦ q}. At first sight,
Modus Ponens does not seem to be applicable. However

♦ ¬p ∨ ♦ q is equivalent to �p→ ♦ q

Therefore we can derive from T the formula ♦ q.

Note that if we look at it from a semantical perspective, the
derivation is trivial: If p is true in all reachable worlds, then
it is also true in at least one reachable world.

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 204



3 Basic Modal Logics
3.1 Inferences and Properties

Lemma 3.7 (MP is Locally Truth Preserving)
The Modus Ponens rule is locally truth preserving and
therefore also preserving frame validity.
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3 Basic Modal Logics
3.1 Inferences and Properties

Generalization (Necessitation)
There is another important rule: The generalization or
necessitation rule.

Definition 3.8 (Necessitation (N))
The necessitation rule says that whenever ϕ is valid then so
is � ϕ:

ϕ

� ϕ

It is easy to see that necessitation preserves frame validity.
But differently from the modus ponens rule, it is not locally
truth preserving!
 Exercise: Prove that the rule is frame validity preserving,
but not locally truth preserving!
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3 Basic Modal Logics
3.1 Inferences and Properties

A first Application of Necessitation

We are using the necessitation rule to prove the following

Lemma 3.9 (An (In-)Formal Proof)

The formula � (φ ∧ φ′)→ (� φ ∧� φ′) is valid in all frames.
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3 Basic Modal Logics
3.1 Inferences and Properties

Proof.
We could show this directly, as in Lemma 2.22. However, in
view of the formal calculi to come, we choose a more
syntactical method.

1 (φ ∧ φ′)→ φ and (φ ∧ φ′)→ φ′ are propositional
tautologies.

2 Using necessitation, we have � ((φ ∧ φ′)→ φ) and
� ((φ ∧ φ′)→ φ′).

3 Using the Distribution axiom from Lemma 2.22, we get
� (φ ∧ φ′)→ � φ and � (φ ∧ φ′)→ � φ′.

4 The last step follows by using the propositional
calculus: If we have ψ and ψ′ then we also have ψ ∧ ψ′.

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 208



3 Basic Modal Logics
3.1 Inferences and Properties

Inference Rules versus Implications

What about the following deduction?

What Went Wrong?
Let us assume that p is true (although it is obviously not
valid on all frames). Then we use necessitation and obtain
� p. So, we have proven that p→ � p!
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3 Basic Modal Logics
3.1 Inferences and Properties

Uniform Substitution

The last method to obtain new formulae from old ones is
called uniform substitution. This is the formalization of
formula schemata.

Let us consider the tautology p→ ¬p. It is easy to see that it
does not depend on the particular proposition p. We should
be able to substitute any formula for p. The notion of
uniform substitution formalizes this observation.
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3 Basic Modal Logics
3.1 Inferences and Properties

Definition 3.10 (Uniform Substitution)

A basic substitution is a mapping σ : Prop → LML(Prop). A
basic substitution induces a (uniform) substitution

(·)σ∗ : LML(Prop)→ LML(Prop)

over formulae as follows:

(⊥)σ∗ := ⊥
(p)σ∗ := σ(p)

(¬ϕ)σ∗ := ¬(ϕ)σ∗

(ϕ ∨ ψ)σ∗ := (ϕ)σ∗ ∨ (ψ)σ∗

(♦ ϕ)σ∗ := ♦ (ϕ)σ∗

We identify σ∗ with σ and omit the parentheses.
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3 Basic Modal Logics
3.1 Inferences and Properties

Definition 3.11 (Substitution Rule (Subst))
We say that ψ is a substitution instance of ϕ if there is some
uniform substitution σ∗ such that ψ = ϕσ∗.
The uniform substitution inference rule is as follows:

ϕ

ϕσ∗

where σ∗ is some uniform substitution.

Example 3.12
The formula �ϕ ∨ ¬�ϕ is a substitution instance of p ∨ ¬p.

And so is the formula �♦ ¬ϕ ∨ ¬�♦ ¬ϕ.

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 212



3 Basic Modal Logics
3.1 Inferences and Properties

Provability

Definition 3.13 (Σ-Proof, Σ)

Let Σ be a set of modal formulae and Rul a set of inference rules. A
ΣRul-proof for ϕ is a finite sequence of formulae ϕ1, . . . , ϕn s.t.

1 ϕ = ϕn, and

2 ϕi is either from Σ, or a propositional tautology or obtained
by applying the rules in Rul to some formulae ϕj (j < i).

We consider Rul = {MP, Subst} and, for normal modal logics,
Rul = {MP, Subst,N}. When clear from context, we write Σ for
the calculus based on Rul. Formulae ϕ ∈ Σ are called axioms of Σ.
We write `Σ ϕ. For a set Γ of formulae, we also write Γ `Σ ϕ for
`Σ∪Γ ϕ: ϕ can be proved from Γ in the system Σ.
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3 Basic Modal Logics
3.1 Inferences and Properties

We have already seen an informal proof of the statement in
Lemma 3.9. The reverse implication is also true and we give
a formal proof of it. The only axiom we need is the formula
K introduced on Slide 194.

Lemma 3.14 (Consequence of Axiom K)

`{K} (� φ ∧� φ′)→ � (φ ∧ φ′)

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 214



3 Basic Modal Logics
3.1 Inferences and Properties

Proof.
1. � (p→ q)→ (� p→ � q) Axiom K
2. � (B→ A ∧ B)→

(� B→ � (A ∧ B)) Subst. on 1.: B/p, A ∧ B/q
3. A→ (B→ (A ∧ B)) Tautology
4. � (A→ (B→ (A ∧ B))) Necessitation on 3.
5. � (A→ (B→ (A ∧ B))) →

(� A→ � (B→ (A ∧ B))) Subst. on 1.
6. � A → (� B→ (A ∧ B))) MP on 4. and 5.
7. � A → (� B→ � (A ∧ B)) Prop. Logic on 6. and 2.
8. (� A ∧� B) → � (A ∧ B) Prop. Logic on 7.

Here we have used two meta steps, namely 7. and 8. Both
can be replaced by proofs (several steps) to obtain a proof
wrt. Definition 3.13.
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3 Basic Modal Logics
3.1 Inferences and Properties

Theorem 3.15 (A Proof from {K})
`{K} � (ϕ1 ∧ . . . ∧ ϕn)↔ (� ϕ1 ∧ . . . ∧� ϕn).

Proof.
Using Lemmas on Slide 194 and Lemma 3.14, we have the
equivalence of the formulae for n = 2. Then we use this
equivalence n− 1 times and get the result.
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3 Basic Modal Logics
3.1 Inferences and Properties

Finally, a modal logic is a set of formulae with the following
properties

Definition 3.16 (Modal Logics)

A modal logic Λ is a set of modal formulas that
1 contains all propositional tautologies,
2 is closed under modus ponens, and
3 is closed under uniform substitution.

Elements of ϕ ∈ Λ are called theorems of Λ, we write `Λ ϕ.

How many formulae does a modal logic contain?

Can a modal logic be represented by a finite set?
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3 Basic Modal Logics
3.1 Inferences and Properties

The following result is obvious: A set of formulae Λ is a
modal logic iff Λ is closed under all Λ-provable formulae.

Definition 3.17 (Axiomatization)
Let Λ be a modal logic and Σ be a proof system over Σ such
that Λ and the set of all Σ-provable formulae coincide.
Then, we say that Σ is an axiomatization of Λ. If Σ is finite
we call it a finite axiomatization.

Note that we do not require an axiomatization for the
underlying propositional tautologies: We simply took all of
them (in part 2 of Definition 3.13).

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 218



3 Basic Modal Logics
3.1 Inferences and Properties

Provable formula
Note that if a formula can be proved in a calculus Σ, then its
proof requires only finitely many formulae. Even if we
consider infinitely man axioms, a proof can only require
finitely many of them.
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3 Basic Modal Logics
3.1 Inferences and Properties

Sound & Completeness

Definition 3.18 (Semantic Set ΛF)
Let F be a class of frames (or models). We define ΛF to be
the set of all valid formulae over F , i.e.

ΛF = {ϕ | F |= ϕ for all F ∈ F}

Is ΛF a modal logic?

In the following we are interested in the following question:

Are there syntactic mechanisms for generating ΛF?
( F is a class of frames)
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3 Basic Modal Logics
3.1 Inferences and Properties

Definition 3.19 (Soundness)
Let F be a class of frames or models. A modal logic Λ is
sound with respect to F if for all formulae ϕ

`Λ ϕ implies |=F ϕ.

Recall that |=F ϕ means for all F ∈ F : F |= ϕ.
Recall also that in case F is a frame, F |= ϕ means that ϕ is
true in all models that can be built on F.

Exercise: Show that this definition is equivalent to the
following: Λ is sound wrt. F iff Λ ⊆ ΛF .
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3 Basic Modal Logics
3.1 Inferences and Properties

Definition 3.20 (Completeness)

Let F be a class of frames or models.
A logic Λ is strongly complete with respect to F if for any
set of formulae Γ ∪ {ϕ} it holds that

Γ |=F ϕ implies Γ `Λ ϕ.

A logic Λ is weakly complete with respect to F if for any
formula ϕ,

|=F ϕ implies `Λ ϕ.
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3 Basic Modal Logics
3.1 Inferences and Properties

All the logics that we consider in this lecture are
strongly complete wrt. a certain class of frames. And
thus they are also weakly complete.
But there are also logics that are only weakly complete
wrt a class of frames and not strongly complete (see
Example 3.56).

Exercise: Show that weak completeness
1 is a special case of strong completeness.
2 is equivalent to the following:

Λ is weakly complete wrt. F iff ΛF ⊆ Λ.
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3 Basic Modal Logics
3.2 Normal Modal Logics

3.2 Normal Modal Logics
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3 Basic Modal Logics
3.2 Normal Modal Logics

Normal Modal Logics
We have defined modal logics in Definition 3.16.
We noticed that Axiom K: � (p→ q)→ (� p→ � q) is
true in all Kripke frames.
We also showed that necessitation is a valid rule for
Kripke frames.

Definition 3.21 (Normal Modal Logic)

A modal logic Λ is called normal if it contains the formula
(K) �(p→ q)→ (�p→ �q)

and is closed under necessitation.

This is how we defined a modal proof in Definition 3.13:
With Σ containing K and all three rules of inference.
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3 Basic Modal Logics
3.2 Normal Modal Logics

Lemma 3.22 (K)
There is a smallest normal modal logic. We call it K, in honor
of Saul Kripke.

Proof.
The intersection of two normal modal logics still satisfies all
the properties of a normal modal logic (closure
properties).

Is there also a greatest normal modal logic?
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3 Basic Modal Logics
3.2 Normal Modal Logics

Definition 3.23 (Consistency, Λ-consistent)
A modal logic Λ is consistent, if it does not contain a
formula φ and its negation ¬φ.
A set of formulae Φ is Λ-consistent, if the modal logic
defined by Λ extended by the axioms Φ is consistent.

We call a logic that is not consistent also inconsistent.

The following is easy to show purely syntactically.

Lemma 3.24 (Ex Falso Quodlibet)
The following is equivalent:

Λ is inconsistent.
Λ is the set of all formulae.
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3 Basic Modal Logics
3.2 Normal Modal Logics

Lemma 3.25
For any normal modal logic Λ the following implication holds:

`Λ ϕ↔ ψ implies `Λ � ϕ↔ � ψ.

Corollary 3.26
For any normal modal logic Λ the following implication holds:

`Λ ϕ↔ ψ implies `Λ ♦ ϕ↔ ♦ ψ.
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3 Basic Modal Logics
3.2 Normal Modal Logics

Proof.
Wlog it suffices to show `Λ � ϕ→ � ψ (by symmetry).
From the assumption it follows that `Λ ϕ→ ψ and thus, by
necessitation, `Λ � (ϕ→ ψ). By normality, we have
`Λ � ϕ→ � ψ.
The corollary follows by purely propositional logic
transformations (¬ϕ instead of ϕ and ¬ψ instead of ψ) and
the fact that ϕ↔ ψ is equivalent to ¬ϕ↔ ¬ψ) and the
definition of ♦ .
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3 Basic Modal Logics
3.2 Normal Modal Logics

In fact, the proof of the last lemma shows the following.

Lemma 3.27
For any normal modal logic Λ, the following holds. Let Ψ be a
formula containing the constant p, let ϕ, ϕ′ be two arbitrary
sentences and let σ1, σ2 be two substitutions with
σ1(p) = ϕ, σ2(p) = ϕ′. Then

If `Λ ϕ↔ ϕ′, then `Λ ψσ1 ↔ ψσ2.

Proof.
This is because each occurrence of � ϕ can be equivalently
replaced by � ϕ′ recursively in the formula.
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3 Basic Modal Logics
3.2 Normal Modal Logics

Formalizing in K4
In fact, the proof of the last lemma can even be formalized
within the modal logic K4.

Theorem 3.28 (Formalization Within K4)
Let Ψ be a formula containing the constant p, let φ, φ′ be two
arbitrary sentences and let σ1, σ2 be two substitutions with
σ1(p) = ϕ, σ2(p) = ϕ′. Then:

`{K4} � (ϕ↔ ϕ′) → � (ψσ1 ↔ ψσ2)

This shows that modal logics can be used to formalize
statements about modal logics. This is in particular
interesting, when we formalize statements about provability
of certain statements in Peano arithmetic.
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3 Basic Modal Logics
3.2 Normal Modal Logics

How does K look like?
Are there other sensible logics?

Theorem 3.29 (Completeness of System K)

System K is sound and strongly complete with respect to
arbitrary Kripke frames.

The proof follows later.

How can we use this important result to show that the
formula � p→ p can not be proved from K?

We have to construct a countermodel: take two worlds
w1, w2 such that w1Rw2 and in w1 p is false, but in w2 p is
true.

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 232



3 Basic Modal Logics
3.2 Normal Modal Logics

We can define various normal modal logics by appropriate
axioms.

Definition 3.30 (K, KT, B, K4, S4, S5, G)
We define the following normal modal logics by stating their
axioms:

K: � (p→ q)→ (� p→ � q).
KT: K and T: � p→ p.

B=KTB: K, T and B: p→ � ♦ p.
K4: K and 4: � p→ � � p.

S4=KT4: K, T, and 4.
S5=KT5: K, T, and 5: ♦ p→ � ♦ p.

G=KL: K and L: � (� p→ p)→ � p.

B stands for Brouwer, the famous dutch mathematician.
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3 Basic Modal Logics
3.2 Normal Modal Logics

Characterisation of G
What are appropriate frames for G , i.e. analogous
properties to Lemma 3.2?

It is easy to see that
(W,R) |= � (� p→ p)→ � p iff ∀S ⊆W∀w ∈W

∀x(wRx→ (∀y(xRy → y ∈ S)→ x ∈ S))→ ∀x(wRx→ x ∈ S).

Lemma 3.31 (Appropriate Frames for G)

(W,R) |= � (� p→ p)→ � p iff R is transitive and there is
no infinite sequence w0, w1, . . . such that w0Rw1, w1Rw2, . . ..
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3 Basic Modal Logics
3.2 Normal Modal Logics

Proof (of Lemma 3.31) (1).
⇒:

1 We show that R is transitive. Let
Sw := {a : aRw} ∩ {a : ∀b(aRb→ wRb} for w ∈ W . It
suffices to show that for every a such that wRa and
a ∈ Sw and for every b with aRb we have wRb.

2 The second condition. Suppose there is such an infinite
sequence and consider the set S ′ consisting of these
elements. Let w ∈ S ′. Then there is a z ∈ S ′ with wRz
and we consider S = W \ S ′. For all x, if wRx and
∀y(xRy → y ∈ S) then x ∈ S (why?). But this is exactly
the formula � (� p→ p). Therefore (here we use the
formula � (� p→ p)→ � p), we also have
∀x(wRx → x ∈ S), but this is a contradiction because
z ∈ S ′.
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3 Basic Modal Logics
3.2 Normal Modal Logics

Proof (of Lemma 3.31) (2).
⇐: Assume the formula is not true. I.e. there is w, x′ ∈ W ,
wRx′ and x′ |= ¬p and w |= � (� p→ p). Thus
x′ |= � p→ p, thus x′ |= ♦ ¬p. So there is a x′′ with x′Rx′′
and x′′ |= ¬p. Because of transitivity, wRx′′ and thus
x′′ |= � p→ p and we get an infinite sequence xi with
xiRxi+1 which is a contradiction.

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 236
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3.2 Normal Modal Logics

Theorem 3.32 (Subsystems of KDT45B)

Let X be any subset of {D,T,4,5,B} and let X be any subset
of {serial, reflexive, transitive, euclidean, symmetric}
corresponding to X.
Then K ∪X is sound and strongly complete with respect to
Kripke frames the accessibility relation of which satisfies X .

Note, that this theorem also holds for any modal similarity
type τ and the appropriate Kripke models (frames). The
properties above are then formulated for all operators in τ .
This will be important in the next sections when we talk
about logics with several agents.

Proof.
 Will be done later on Slide 260.
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Corollary 3.33 (Completeness of KT45 (S5))

System S5=KT5 is sound and strongly complete with respect
to Kripke frames (W,R) where R is an equivalence relation.

Corollary 3.34 (Completeness of KT4 (S4))

System S4=KT4 is sound and strongly complete with respect
to Kripke frames (W,R) where R is a preorder.
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The Case of System G

Theorem 3.35 (Completeness of G)

System G is sound and weakly complete with respect to Kripke
frames that are transitive and well-capped: there is no infinite
sequence w0, w1, . . . such that w0Rw1, w1Rw2, . . ..

Proof.
 Will be done later on Slide 265.

Note: GT is inconsistent.
The system GT consisting of axioms K, T and G is
inconsistent.

Apply necessitation to T, then apply G and again T: one can
derive p for all p!
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S4Grz
The following axiom plays a role in the next theorem

Grz : � (� (p→ � p)→ p)→ p

The proof of the following theorem will be given in the next
section.

Theorem 3.36 (Completeness of S4Grz)

System S4Grz=KT4Grz is sound and weakly complete with
respect to Kripke frames (W,R) where R is a finite partial
order.
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Soundness of S4Grz

1 We only have to show that the axiom Grz holds in any
finite partial ordering (why?).

2 We assume a transitive, reflexive relation on a finite set
W of worlds, and a w ∈ W such that Grz does not hold
in M, w. Then we show that R is not antisymmetric.

3 We define a sequence w0, w1, . . . , wi, . . . of worlds s.t.
for all i: wi 6= wi+1 and wiRwi+1.

Then we are done: As W is finite, there must be j, i with
wi = wj, i 6= j and wiRwj. Thus R is not antisymmetric.
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Construction of the Sequence
1 w0 := w. Thus p does not hold in w0, but
� (� (p→ � p)→ p) does.

2 We want to make sure that this is true in all even worlds
w2i and do this by induction.

3 By reflexivity, in these even worlds also holds
� (p→ � p)→ p and thus � (p→ � p) does not hold.

4 So for some w2i+1 with w2iRw2i+1, w2i+1 6|= p→ � p,
thus w2i+1 |= p and w2i+1 6|= � p and w2i+1 6= w2i.

5 As w2i+1 6|= � p, there is some w2i+2 with w2i+1Rw2i+2

and w2i+2 6|= p, thus w2i+1 6= w2i+2.
6 By transitivity, the formula � (� (p→ � p)→ p) holds

in w2i+2 and this completes the construction of the
sequence.
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Theorem 3.37 (Some Normal Modal Logics)
We have the following strict relationships between the
introduced logics.

K $ K4 $ G$ $

KT $ S4 $ S4Grz$ $ $
B $ S5 $ S5Grz

Proof.
  Blackboard Most relationships are obvious. The
following require some thinking: (1) S4 $ S5, (2) K4 $ G,
(3) S4 $ S4Grz, (4) S5 $ S5Grz, (5) B $ S5, (6) S4Grz $
S5Grz: Find appropriate models.
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Lemma 3.38 (Some Properties of S5)
1 The axiom D follows from KT5: `KT5 D.
2 The formula ♦ p does not follow from KT5.
3 KD5 is not equivalent to K5. Axiom D does not follow

from K5: 6`K5 D.

 Exercise
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Lewis’ System S4

In Lewis system, the modality can be interpreted as is
provable.
S4 has the finite model property: If a formula φ is not
derivable, then there is a finite countermodel.
It is therefore decidable (why?).
The formula �(�(p→ �p)→ �p)→ (♦�p→ �p) (from
Dummett) is not derivable in S4.
Consider S4 and the McKinsey axiom �♦p→ ♦�p.
Then the binary relation in the corresponding frames
satisfies: ∀x∃y(xRy ∧ ∀z(yRz → y = z)).
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Density and Axiom 4
We consider the set of all frames (W,R) where R is a linear
ordering.

In which of these frames is � p→ � � p true?
In all frames where R is a dense linear ordering:

∀x∀y∃z : (xRy ∧ x 6= y) → (xRz ∧ zRy ∧ x 6= z ∧ z 6= y)

  Blackboard

Idea: Assume a linear, non-dense order, i.e. between w and
w′ (wRw′) there are no other worlds. Then construct an
appropriate Kripke model where the formula is false: Make
p true only in w′ and nowhere else. Then the formula is
false in world w in the Kripke model.
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3.3 Sound- and
Completeness
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Proofs of the Theorems
In this section we introduce the machinery to prove our
completeness theorems for normal modal logics
(developed by Scott and Makinson in the 60ies).
It is based on Definition 3.43 and the general
Theorem 3.47.
We only have to check whether the canonical model
satisfies the required properties.
This method gives completeness proofs for systems K,
K4, KT, S4, B, S5.
The systems G and S4Grz need separate treatment. We
prove slightly stronger completeness theorems. This
method leads to the filtration approach.
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Remember Definition 3.20. Here are two simple
characterizations that we use in the following.

Lemma 3.39 (Strongly, Weakly Complete)

A logic Λ is strongly complete with respect to a class of
structures F if and only if, every Λ-consistent set of formulae
is satisfiable on some F ∈ F .
Λ is weakly complete with respect to a class of structures F if
and only if, every Λ-consistent formula is satisfiable on some
F ∈ F .
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We only show the proof for strong completeness (weak
completeness follows).

Proof.
“⇐”: Suppose Λ is not strongly complete wrt F . Thus,
there is Γ ∪ {ϕ} such that Γ |=F ϕ and Γ 6`Λ ϕ. Then,
Γ ∪ {¬ϕ} is Λ-consistent but not satisfiable on F .
“⇒”: Let Φ is a Λ-consistent set of formulae. Suppose Φ is
not satisfiable at some F ∈ F . Then Φ |=F p ∧ ¬p for all p.
But then strong completeness implies Φ `Λ p ∧ ¬p, which is
a contradiction to the consistency of Φ.

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 250



3 Basic Modal Logics
3.3 Sound- and Completeness

Canonical Models
Definition 3.40 (Λ-MCS’s)

A set Γ of formulae is maximal Λ-consistent (short: Λ-MCS)
if Γ is Λ-consistent and any set of formulae properly
containing Γ is Λ-inconsistent.

Proposition 3.41 (Properties of MCS’s)

Let Λ be a logic and Γ a Λ-MCS. Then:
1 Γ is closed under modus ponens.
2 Λ ⊆ Γ.
3 Γ is a complete theory.
4 For all formulae φ, ψ: φ ∨ ψ ∈ Γ iff φ ∈ Γ or ψ ∈ Γ.
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Proof.
1 If not, it were not maximal.
2 If not, it were not maximal.
3 If not, it were not maximal.
4 If not, it were not maximal.
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Theorem 3.42 (Lindenbaum’s Lemma)

If Γ is a Λ-consistent set of formulae then there exists a
Λ-MCS Γ+ such that Γ ⊆ Γ+.

Proof.
We enumerate all formulae φ1, . . . , φi, . . . and define Σ0 = Σ,

Σn+1 :=

{
Σn ∪ {Φn}, if this theory is Λ-consistent;
Σn ∪ {¬Φn}, else.

and Σ+ :=
⋃
n≥0 Σn. Rest on Blackboard.
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Definition 3.43 (Canonical Model)

The canonical model MΛ = (WΛ,RΛ, V Λ) for a modal logic
Λ is defined as follows:

1 WΛ is the set of all Λ-MCS’s;
2 RΛ ⊆ WΛ ×WΛ such that RΛww′ if ϕ ∈ w′ implies
♦ ϕ ∈ w for all ϕ. RΛ is called canonical relation;

3 V Λ(p) := {w ∈ WΛ | p ∈ w}. V Λ is the canonical
relation.

FΛ = (WΛ,RΛ) is the canonical frame of Λ.
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Lemma 3.44
For any normal logic Λ:

RΛww′ if, and only if �ϕ ∈ w implies ϕ ∈ w′ for all ϕ ∈ Λ.

Proof.
⇒: Let RΛww′ and � ϕ ∈ w and ϕ 6∈ w′. We have to

show a contradiction. Then ¬ϕ ∈ w′. But also
♦ ¬ϕ ∈ w (Definition of R). Thus ¬♦ ¬ϕ 6∈ w,
which means � ϕ 6∈ w, which is a contradiction.

⇐: Let the implication be true. Assume not RΛww′,
i.e. there is ψ, ψ ∈ w′ and ♦ ψ 6∈ w. Then
� ¬ψ ∈ w. But then (using the very implication):
¬ψ ∈ w′, in contradiction to the consistency of
w′.
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Lemma 3.45 (Existence Lemma)

For any normal logic Λ and any state w ∈ WΛ:

♦ ϕ ∈ w implies there is a state w′ ∈ WΛ such that
RΛww′ and ϕ ∈ w′
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Proof.
Assume ♦ ϕ ∈ w. How to construct w′?
Let w′ be any Λ-MCS extending the set
{ϕ} ∪ {ψ : � ψ ∈ w}. Obviously RΛww′. It remains to show
that the set

{ϕ} ∪ {ψ : � ψ ∈ w}

is consistent.
Assume not: then `Λ ψ1 ∧ . . . ∧ ψn → ¬ϕ. But then
`Λ � (ψ1 ∧ . . . ∧ ψn)→ � ¬ϕ, and therefore (normal ML)

`Λ � ψ1 ∧ . . . ∧� ψn → � ¬ϕ.

Thus (w is a MCS) � ψ1 ∧ . . . ∧� ψn ∈ w, and therefore
� ¬ϕ ∈ w, which contradicts ♦ ϕ ∈ w.
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Lemma 3.46 (Truth Lemma)

For any normal logic Λ and any formula ϕ:

MΛ, w |= ϕ iff ϕ ∈ w

Proof.
By induction on the formula ϕ. Base cases and boolean
combinations are trivial (see Proposition 3.41). We consider
the case ♦ ϕ. This is true in MΛ, w iff there is a v with RΛwv
and MΛ, v |= ϕ iff there is a v with RΛwv and ϕ ∈ v
(Induction Hypothesis) only if ♦ ϕ ∈ w.
For right to left we apply Lemma 3.45.
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Theorem 3.47 (Canonical Model Theorem)

Any modal logic is strongly complete with respect to its
canonical model.

Proof.
Let Σ be a consistent set of the logic Λ. Extend it to a MCS
Σ+ (Theorem 3.42). But then (using Lemma 3.46)

MΛ,Σ+ |= Σ.
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Completeness for Systems K, . . . , S5
Theorem 3.47 does not seem to be too powerful: It only
speaks about one single model, whereas we want to prove
completeness with respect to a class of frames, not a
single model.

Lemma 3.48 (Strong Completeness wrt F)

Consider any subset X of {K,D, T,B, 4, 5} and let us denote
the corresponding normal modal logic by X. We also denote by
FX the corresponding class of frames (see Lemma 3.2).
Assume that for any X-consistent set of formulae Γ, the
canonical frame (W Γ,RΓ) is contained in FX.
Then X is strongly complete wrt. the class of frames FX.
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Proof.
According to Lemma 3.39, we have to find a model for Γ.
We just take the canonical modelM and any X-MCS
extending Γ: Γ+. By Theorem 3.47, this model satisfies
Γ.
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We now prove Theorem 3.32 by applying Lemma 3.48. We
have to show for each of our axioms that the canonical
model has the appropriate property (as given in
Lemma 3.2).

K: There is nothing to prove. We have already
shown in Lemma 3.2 that this axiom holds in all
frames.

T: Obviously, RXww because X contains � p→ p.
4: Assume RXwx and RXxy. We have to show that
RXwy. Suppose � p ∈ w. As � p → � � p is an
axiom, � � p ∈ w. Then � p ∈ x and therefore
p ∈ y.
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B: Suppose RXwx. We have to show that RXxw,
i.e. that � p ∈ x implies p ∈ x. Suppose p 6∈ w.
Then ¬p ∈ w. Using B, then � ♦ ¬p ∈ w. Thus
♦ ¬p ∈ x, and ¬� p ∈ x. Therefore � p 6∈ x.

5: Suppose RXwx and RXwy. We have to show
that if � p ∈ x, then p ∈ y. Assume p 6∈ y. Then
� p 6∈ w, ¬� p ∈ w, and thus ♦ ¬p ∈ w. Using
the axiom, we conclude � ♦ ¬p ∈ w, ♦ ¬p ∈ x.
Thus ¬� p ∈ x, and therefore � p 6∈ x.

 Rest on Blackboard, note that also any combinations of
these axioms go through without any problems.
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The previous proofs show that: the canonical frame of
each normal logic containing axiom T is reflexive.
And appropriate statements for all other axioms, as well
as combinations of them.
Unfortunately, this does not work for axioms G or Grz.
The canonical model of G is not well capped. The
relation in the canonical model of Grz is not a finite
partial order.
But we can still use the canonical models: We just
need to transform them!
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Completeness for System G
We prove the following theorem, that is stronger than
Theorem 3.35

Theorem 3.49 (Completeness of G, 2. Version)

System G is sound and complete with respect to Kripke frames
that are finite, transitive, and well-capped: There is no
infinite sequence w0, w1, . . . such that w0Rw1, w1Rw2, . . ..

Note that a relation is called irreflexive, when there is no w
with wRw. The existence of such a w would immediately
result in an infinite sequence falsifying the well-capped
property.

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 265



3 Basic Modal Logics
3.3 Sound- and Completeness

Lemma 3.50 (Finite Transitive Relations)
Let R be a binary, transitive relation on a finite set. Then the
following are equivalent:
R is irreflexive,
R is well-capped.

Theorem 3.51 (Completeness of G, 3. Version)

System G is sound and complete with respect to Kripke frames
that are finite, transitive, and irreflexive.

Soundness follows trivially from Lemma 3.31 on Slide 234.

Are the two theorems also equivalent when we remove
finite?
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Completeness for System G:M1

We prove Theorem 3.51 through a series of lemmas and
modelsMi.
We start with the canonical model MG = (WG,RG, V G).
Suppose that ϕ is not a theorem of G. Then there is a world
t s.t. MG, t 6|= ϕ.
Ultimately, we have to find a modelM3 which is finite,
transitive and irreflexive.

M1: We define M1 = (W1,R1, V1) with:
W1 := {t} ∪ {x : RGtx}, and R1, V1 are just the
restrictions of RG, V G to W1.

Unfortunately, M1 is in general not finite.
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Completeness for System G: M2

We are now making M1 finite, by identifying many worlds.
We define an equivalence relation on M1 as follows: w and
x are equivalent iff for every subformula ϕ′ of ϕ: ϕ′ ∈ w iff
ϕ′ ∈ x. We denote the equivalence class of w by w.
We define M2 = (W2,R2, V2) with: W2 = {w : w ∈ W1},

R2 = {〈w, x〉 : for every subformula � ψ of ϕ, if � ψ ∈ w then � ψ ∈ x and ψ ∈ x}

Finally, p ∈ V2(w) iff p ∈ V1(w) if p is a subformula of ϕ, and
let p 6∈ V2(w) otherwise.
Clearly, M2 is transitive and finite. And if R1wx then R2w x.
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Completeness for System G: M3

Lemma 3.52
For all combinations ψ of subformulae from ϕ and each
w ∈ W1:

M1, w |= ψ iff M2, w |= ψ

Proof is by induction on φ.
M3: The problem with M2 is that it is not irreflexive.

We will define a subrelation R3 that is
irreflexive. Our model is then defined as
M3 = (W2,R3, V2).
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Completeness for System G: M3

R3: In order to define R3, we need the following:

w ∼ x if
{

if w ∼ x; or
if R2wx and R2xw.

∼ is an equivalence relation because R2 is
transitive.

LS: Given S ⊆ W such that for some w ∈ W1

S = {y : w ∼ y}, we fix a strict, linear ordering
LS of S.

R3: R3 consists of all pairs 〈w, x〉 such that
either (1) w 6∼ x and R2w, x, or (2) w ∼ x and
wLSx, where S = {y : w ∼ y}.

Properties: R3 is a subrelation of R2 because R2 is
transitive. R3 is also transitive and irreflexive.
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Putting It All Together
Lemma 3.53
For all combinations ψ of subformulae from ϕ and each
w ∈ W1:

M2, w |= ψ iff M3, w |= ψ

Proof is by induction on φ.

Filtrations
What we have done on the last few slides is a general
method that can be applied very often: the filtration
method. It requires the equivalence of models wrt.
subformulae of a given formula. In the last section of this
chapter, we investigate this approach more thoroughly.
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Completeness for System S4Grz

Theorem 3.54 (Completeness of S4Grz)
System S4Grz=KT4Grz is sound and complete with respect to
Kripke frames (W,R) where R is a finite partial order.

The proof follows the proof of Theorem 3.49. It is not trivial.
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There is a strong relation between systems G and S4Grz. We
define a translation t from modal formulae to modal
formulae as follows:

tp := p
t¬φ := ¬ tφ
t(φ ∨ ψ) := tφ ∨ tψ
t� φ := � tφ ∧ tφ

Theorem 3.55 (Relation between S4Grz and G)
`S4Grz φ iff `G tφ.
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Example 3.56

We consider again the axiom L: � (� p→ p) → � p and the
system G=KL. We have seen that this defines a normal logic.
We have already shown soundness and weak completeness
with respect to the class of all frames, where R is a finite,
transitive tree. Unfortunately, we could not use
Theorem 3.48 on Slide-260.
This is not by accident: there is no class of frames
whatsoever, that this logic is strongly complete to.
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Lemma 3.57 (The logic G=KL)
G is not sound and strongly complete to any class of frames.

Proof.
We consider the set Φ

{♦ q1} ∪ {� (qi → ♦ qi+1) : 1 ≤ i}

We first show that this set is consistent (by showing that
each finite subset is). We leave this to the reader. We also
note that G is consistent (why?).
Now suppose there is a class of frames F that G is strongly
complete to. Then F is nonempty. So there is a Kripke
model M and world w such that M, w |= Φ. But that would
mean that there is an infinite path, a contradiction.
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A Few Final Remarks
While we have defined many logics and appropriate
classes of frames, this is not always possible.
There are axioms (and therefore logics) that are not
complete wrt any set of frames.
Canonical models is a powerful method, but it does not
always work.
Most of our axioms (except Grz and G) are canonical. A
formula ϕ is canonical wrt to a property P of a class of
frames F , if (1) ϕ is valid in all frames satisfying P , and
(2) the canonical frame of any normal modal logic
containing ϕ has property P .
The problem “Is a formula ϕ canonical?” is
undecidable.
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Canonical formulae
We consider again the example on Slide 246. Another
formulation of that result is that the formula is canonical.

Lemma 3.58
The following formulae are canonical for their respective
properties:

1 T, B, 4, 5 are all canonical.
2 � p→ � � p is canonical for density (among all linear

orderings).
3 L is not canonical for any property.
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3.4 Finite Models via
Filtration
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Let Σ be a set of modal formulae and Λ be a modal logic.
Consider the problem: Is Σ satisfiable in Λ?

We can not just enumerate all Kripke models, as there
are infinitely many of them (uncountably many: 2ℵ0).
Suppose we know that “if it is satisfiable, then there
is a finite model”. Then the problem above is
recursively enumerable (just enumerate all finite
models).
If we know in addition an upper bound on the size of
the finite model, we can come up with a decision
algorithm: The problem is then recursive.
If the logic Λ is given by a recursive set of axioms (as all
our normal logics in this chapter), then the problem is
recursive (also called decidable) (why?).
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Definition 3.59 (Finite Model Property)
LetM be a class of τ -models. We say that τ has the finite
model property with respect toM if every τ -formula ϕ
satisfiable inM is also satisfiable in a finite model inM.

Such a property is important for the decidability of the
satisfaction problem. But note, that in the above definition
we talk about one single formula.

Is this property true for predicate logic? Or can you
construct a formula that is only satisfiable in infinite
universes?

The following results are for the basic modal language; that
is, we consider only one accessibility relation.
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3.4 Finite Models via Filtration

Definition 3.60 (Subformula)
Let ϕ ∈ LBML. Each formula ψ ∈ LBML which occurs in ϕ is
called a subformula of ϕ.

Note that ϕ is a subformula of ϕ itself.
What are the subformulae of � ¬p→ (¬♦ q ∧ p)?
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3.4 Finite Models via Filtration

Definition 3.61 (Closure under Subformulae)

Let Σ ⊆ LBML be a set of formulae. The closure of Σ under
subformulae, Sub(Σ), is defined as the set of all subformulae
of the formulae in Σ, i.e.

Sub(Σ) = {ψ | ∃ϕ ∈ Σ s.t. ψ is a subformula of ϕ}

If Σ = Sub(Σ) then we say that Σ is subformula closed.

We write Sub(ϕ) for Sub({ϕ}).
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3.4 Finite Models via Filtration

Definition 3.62 (Filtration Relation)
Let M be a Kripke model and Σ ⊆ LBML a subformula
closed set. The filtration relation over M and Σ is the
relation !Σ,M ⊆ W ×W which is defined as follows:

w!Σ,M w′ iff ∀ϕ ∈ Σ (M, w |= ϕ iff M, w′ |= ϕ)

 Exercise: Show that !Σ,M is an equivalence relation.

We use [x]Σ,M to denote the equivalence class of x wrt. to
!Σ,M , i.e.

[x]Σ,M := {y ∈ WM | x!Σ,M y}
We omit Σ and M if they are clear from context.
We identify worlds in which the same formulae wrt. Σ
hold.
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3.4 Finite Models via Filtration

Definition 3.63 (Filtration)

Let M be a Kripke model and Σ ⊆ LBML subformula closed.
A filtration of M through Σ, Mf

Σ,M = (W f ,Rf , V f ), is a
model which satisfies:

1 W f := {[w]Σ,M | w ∈ WM},
2 RMww

′ implies Rf [w]Σ,M[w′]Σ,M,
3 Rf [w]Σ,M[w′]Σ,M implies that for all ♦ ϕ ∈ Σ it holds that

M, w′ |= ϕ implies M, w |= ♦ ϕ, and
4 V f (p) := {[w]Σ,M |M, w |= ϕ} for every p ∈ Σ.
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3.4 Finite Models via Filtration

Example 3.64
We consider the Kripke model M consisting of worlds wi,
i = 0, 1, . . . over q, p, where V (p) = {wi : i ∈ N \ {0}} and
V (q) = {w2}. The transition relation is given by w0Rw1,
w0Rw2, w2Rw3, w1Rw3, and wiRwi+1 for i ≥ 3.
Let Σ := {♦ p, p}.
What is the filtration of M through Σ?
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3.4 Finite Models via Filtration

A filtration has only worlds which differ concerning
the truth of formulae in Σ.
Note that the accessibility relation is not unique, we
only require 2) and 3).
Conditions 2) and 3) are needed to prove
Theorem 3.66.
Note that condition 3) is very similar to the appropriate
condition in the canonical model (Definition 3.43).
However, we do not know yet whether filtrations exist
at all.
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3.4 Finite Models via Filtration

Proposition 3.65 (Filtrations Are Finite)

Let M be a Kripke model and Σ ⊆ LBML be a finite
subformula closed set. For any filtration Mf

Σ,M over M
through Σ, the number of worlds in Mf

Σ,M is bounded by
2|Σ|, i.e. |WMf

Σ,M
| ≤ 2|Σ|.

Proof.
 Exercise.
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3.4 Finite Models via Filtration

The filtration model was constructed in such a way, that the
same formulae hold.

Theorem 3.66 (Filtration Theorem)

Let M be a Kripke model, Σ ⊆ LBML be a subformula closed
set, and Mf

Σ,M a filtration of M. Then, it holds that

M, w |= ϕ iff Mf
Σ,M, [w] |= ϕ

for all ϕ ∈ Σ and w ∈ WM.
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Proof.
Induction on the formula ϕ. Base cases and boolean cases
are trivial (very definition of V f and the fact that Σ is
subformula closed).

“⇒”: Let M, w |= ♦ ϕ. Then there is a world w′ with
wRw′ and M, w′ |= ϕ. By the second clause of
the definition of filtration, Rf [w]Σ,M[w′]Σ,M. By
induction hypothesis, Mf

Σ,M, [w
′] |= ϕ and thus

Mf
Σ,M, [w] |= ♦ ϕ.

“⇐”: For the other direction, let Mf
Σ,M, [w] |= ♦ ϕ.

Then there is w′ with Rf [w]Σ,M[w′]Σ,M and
Mf

Σ,M, [w
′] |= ϕ. By induction hypothesis,

M, w′ |= ϕ. By the third clause, M, w |= ♦ ϕ.
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3.4 Finite Models via Filtration

Given a model there are various filtrations of this model.
This is, because the relation Rf can be defined in many
ways. We present two of them:

1 The second item in the definition of a filtration leads to
the following, weakest possible condition:

Rs[w][v] iff ∃w′ ∈ [w]∃v′ ∈ [v] (Rw′v′)

2 The third item in the definition of a filtration leads to the
following, strongest possible condition:

Rl[w][v] iff ∀♦ ϕ ∈ Σ (M, v |= ϕ⇒M, w |= ♦ ϕ)
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3 Basic Modal Logics
3.4 Finite Models via Filtration

Lemma 3.67
Let M be a Kripke model and Σ ⊆ LBML be a subformula
closed set. Then, both (WΣ,M,Rs, V f ) and (WΣ,M,Rl, V f )
are filtrations of M through Σ. Moreover:

Rs ⊆ Rf ⊆ Rl

for any filtration Mf
M,Σ of M through Σ.
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3.4 Finite Models via Filtration

Proof.
That (WΣ,M,Rs, V f ) and (WΣ,M,Rl, V f ) are the smallest
resp. largest possible filtrations follows trivially from
Definition 3.63.
Why are both indeed filtrations? We have to show the
following:

Rs satisfies condition 3 of Definition 3.63. Let
Rs[w][v], ♦ ϕ ∈ Σ and M, v |= ϕ (we have to
show M, w |= ♦ ϕ). By definition of Rs, there are
w0, v0 ∈ W with Rw0v0. Therefore M, v0 |= ϕ
(filtration), thus M, w0 |= ♦ ϕ (Kripke model)
and thus M, w |= ♦ ϕ (filtration).

Rl satisfies condition 2 of Definition 3.63. This is
proved along the same lines.
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Theorem 3.68 (Finite Model Property)
Let ϕ ∈ LBML. If ϕ is satisfiable on some Kripke model, then it
is also satisfiable on a finite Kripke model which has at most
2m worlds where m = |Sub({ϕ})|.

Proof.
If ϕ is satisfiable on some Kripke model, then we build the
subformula closed set Σ of ϕ. Then we consider any
filtration of the model through Σ. This is a finite Kripke
model and the bound follows from Proposition 3.65.
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3.4 Finite Models via Filtration

One important question remains: Which properties does
the relation Rf inherit from R?
For example, if R is transitive, is Rf transitive as well?

Proposition 3.69
Let M be a Kripke model and Σ ⊆ LBML be a subformula
closed set. Let Rt be defined as follows:

Rt[w][v]
iff

∀ϕ ∈ LBML ((♦ ϕ ∈ Σ and M, v |= ϕ ∨ ♦ ϕ)⇒M, w |= ♦ ϕ)

Then, (WΣ,M,Rt, V f ) is a filtration of M through Σ and Rt is
transitive if R was transitive.
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The smallest possible filtration Rs preserves symmetry.
However, there is no general method to ensure
properties of Rf .
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4 Public Announcement Logic

4. Public Announcement
Logic

4 Public Announcement Logic
Epistemic Language
Public Announcement Language
Properties of Public Accouncements
Epistemic Logic
Public Announcement Logic
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4 Public Announcement Logic

Content of this Chapter
In this chapter we come back to the muddy children puzzle
from the first chapter. Epistemic logic is a multi modal logic
allowing to talk about knowledge within the language.
We define a logic of common knowledge S5C. Then, we
introduce the public announcement language and consider
some of its properties. Finally, we prove sound- and
completeness results for both logics.
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4 Public Announcement Logic
4.1 Epistemic Language

4.1 Epistemic Language
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4 Public Announcement Logic
4.1 Epistemic Language

Epistemic Logic allows us to reason about knowledge.
It is a particular instance of our modal language. Instead of
[i] we write Ki.

Then, for each agent i, Kiϕ is interpreted as “agent i knows
(that) ϕ”.

Example 4.1
p ∧ ¬Kap: “p is true but agent a does not know it.”
¬KbKcp ∧ ¬Kb¬Kcp: “Agent b does not know whether

agent c knows p.”
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4 Public Announcement Logic
4.1 Epistemic Language

Example: Alternating Bit Protocol

Example 4.2
We have two agents:

Agent a reads a tape X = 〈x0, x1, . . .〉 and sends all the
inputs to agent b, and
agent b writes down everything it receives on an output
tape Y .

The communication is not trustworthy, i.e, there is no
guarantee that all messages arrive.
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4.1 Epistemic Language

Possible properties:
Fairness: If one repeats sending a certain message, it will

eventually arrive.
Safety: At any moment, Y is a prefix of X, i.e. b will

only write a correct initial part of X into Y .
Liveness: Every xi will eventually be written as yi on Y .

Assume that fairness holds. Can we write a protocol (or
program) that satisfies the two constraints, safety and
liveness?

Safety can be easily achieved by allowing b to never write
anything. But then, the liveness property enforces that
every bit of X should eventually appear in Y .
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4.1 Epistemic Language

Protocol for a Protocol for b

i := 0
while true do

read xi
repeat

send xi
until KaKb(xi)
repeat

send KaKb(xi)
until KaKbKaKb(xi)
i := i+ 1

end while

if Kb(x0) then
i := 0
while true do

write xi
repeat

send Kb(xi)
until KbKaKb(xi)
repeat

send KbKaKb(xi)
until Kb(xi+1)
i := i+ 1

end while
end if

Is knowledge of “depth 4” neccessary?  Exercise
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4 Public Announcement Logic
4.1 Epistemic Language

Example 4.3 (Consecutive Numbers)

Assume two agents a and b. They see a number on each
other’s head, and those numbers are consecutive
numbers n and n+ 1 for a certain n ∈ N. This is
common knowledge.
an and bm with n,m ∈ N means that the number on the
head of a is n, on the head of b is m.
Suppose a3 and b2 are true.
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4.1 Epistemic Language

Let for all w = 〈i, j〉 with i, j ∈ N be V (ai) = {〈i, j〉 | j ∈ N0}
and V (bj) = {〈i, j〉 | i ∈ N0}.

〈1, 2〉 〈3, 2〉 〈3, 4〉 〈5, 4〉 〈5, 6〉

〈2, 1〉 〈2, 3〉 〈4, 3〉 〈4, 5〉 〈6, 5〉ababababab

 Blackboard
M, 〈3, 2〉 |= Kab2

M, 〈3, 2〉 |= Ka(a1 ∨ a3)

M, 〈3, 2〉 |= KaKb(b0 ∨ b2 ∨ b4)

M, 〈3, 2〉 |= KbKaKb(a1 ∨ a3 ∨ a5)
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4.1 Epistemic Language

Common Knowledge
Common knowledge of p in a group of agents B means:
All the agents in B know p, they also know that they know
p, they also know that they all know that they know p, . . .
and so on.

So far we have no way to express common knowledge in our
language, e.g. we cannot define a well-formed formula that
describes that for all n ∈ N we have

(KaKb)
nϕ

where (KaKb)
n = KaKb(KaKb)

n−1.
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4 Public Announcement Logic
4.1 Epistemic Language

Example 4.4 (Byzantine Generals)
Imagine two allied generals, a and b, standing on two
mountains, with their enemy in the valley between them. It
is generally known that a and b together can defeat the
enemy, but if only one of them attacks, he will lose the
battle.

General a sends a messenger to b with the message m
about the exact time when the battle starts.
However, it is not guaranteed that the messenger will
arrive.
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4.1 Epistemic Language

Suppose, the messenger does reach the other side:
Kbm and KbKam

Will it be a good idea to attack? No.
a does not know that b knows.
b sends a messenger with an acknowledgment m′:
KaKbKam

Will it be a good idea to attack? No.
b does not know whether m′ has arrived.
We can do this forever,
. . . common knowledge will never be established!
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4.1 Epistemic Language

Group Notions of Knowledge
What about knowledge of groups?

Definition 4.5 (Epistemic Language)

Let Prop be a set of propositions and Ag be a finite set of
(names for) agents. The basic epistemic language with
common and distributed knowledge LCD(Prop,Ag) consists
of all formulae defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | DBϕ | CBϕ

where p ∈ Prop and B ⊆ Ag . The sublanguage without
distributed knowledge is denoted by LC(Prop,Ag).

CB (ϕ): “Agents in B have common knowledge that ϕ”
DB (ϕ): “Agents in B have distributed knowledge that ϕ”
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4.1 Epistemic Language

Definition 4.6 (Macros)

We define the following syntactic constructs as macros
(p ∈ Prop, i ∈ Ag):

⊥ := p ∧ ¬p
> := ¬⊥

ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ)

ϕ→ ψ := ¬ϕ ∨ ψ
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)

Kiϕ := C{i}ϕ

K̂iϕ := ¬Ki¬ϕ

Note: The Ki operator is defined by the C{i} operator.
K̂i (ϕ): “Agent i considers it possible that ϕ”.
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4.1 Epistemic Language

Definition 4.7 (Macros for Groups of Agents)
For any group B ⊆ Ag of agents Ag we define:

EBϕ :=
∧
b∈B

Kbϕ :=
∧
b∈B

C{b}ϕ

ÊBϕ := ¬EB¬ϕ :=
∨
b∈B

K̂bϕ :=
∨
b∈B

¬C{b}¬ϕ

EB (ϕ): “Everybody in B knows ϕ”
ÊB (ϕ): “At least one individual in B considers ϕ a

possibility”

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 310
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Semantics
The semantics for our modal language LCD can be obtained
without adding additional features to our epistemic models.
We only have to define the semantics of the common
knowledge operator. For this we need the transitive closure:
see also Slide 201.

Definition 4.8 ((Reflexive) Transitive Closure)
Let S be a set and R ⊆ S × S be a relation. The transitive
closure of R, denoted R+, is the smallest relation R′ such
that:

1 R ⊆ R′,
2 R′ is transitive.

If we also require that for all x, R+xx holds, we obtain the
reflexive transitive closure, denoted by R∗.
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Remark 4.9
1 If R is reflexive, then R+ = R∗.
2 R+xy iff either x = y and Rxy or else for some n > 1

there is a sequence x1, x2, . . . , xn such that x1 = x, xn = y
and for all i < n, Rxixi+1.

Example 4.10
R = {(a, b), (b, c)}
R+ = {(a, b), (b, c), (a, c)}
R∗ = {(a, b), (b, c), (a, c), (a, a), (b, b), (c, c)}

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 312
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Definition 4.11 (Epistemic Model)
Consider a Kripke model (W, {∼i | i ∈ Ag}, V ). We call such
a model epistemic model or S5-model, if all the relations ∼i
are equivalence relations, i.e. ∼i is transitive, reflexive and
symmetric.

w∼iw′ expresses that for agent i the two worlds w,w′ are
indistinguishable.

Definition 4.12
For A ⊆ Ag we define
∼EA as

⋃
a∈A ∼a, (everybody knows)

∼DA as
⋂
a∈A ∼a, and (distributed knowledge)

∼CA as (∼EA)∗ (common knowledge).
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Definition 4.13 (Semantics)
Let M = (W, {∼i | i ∈ Ag}, V ) be a Kripke model, w ∈ WM,
and ϕ ∈ LC . ϕ is said to be true or satisfied in M and world
w, written as M, w |= ϕ, if the semantics of LML is extended
by the following clause:
M, w |= CBϕ iff for all worlds w′ ∈ W with ∼CB ww′ we have

that M, w′ |= ϕ,
M, w |= DBϕ iff for all worlds w′ ∈ W with ∼DB ww′ we have

that M, w′ |= ϕ.

Example 4.14 (EBϕ)
EB has been defined as macro. We show that: M, w |= EBϕ
iff for all worlds w′ ∈ W with ∼EB ww′ such that M, w′ |= ϕ.
 Blackboard
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Example 4.15 (Consecutive Numbers Ctd.)
We continue Example 4.3.

〈1, 2〉 〈3, 2〉 〈3, 4〉 〈5, 4〉 〈5, 6〉

〈2, 1〉 〈2, 3〉 〈4, 3〉 〈4, 5〉 〈6, 5〉ababababab

 Blackboard
M, 〈3, 2〉 |= ¬b4 ∧ Ê{a,b}b4

M, 〈3, 2〉 |= E{a,b}¬a5 ∧ ¬E{a,b}E{a,b}¬a5

M, 〈3, 2〉 |= E{a,b}E{a,b}¬b6 ∧ ¬E{a,b}E{a,b}E{a,b}¬b6

M, 〈3, 2〉 |= ¬C{a,b}¬a123 ∧ C{a,b}¬b123
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4.2 Public Announcement
Language
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4.2 Public Announcement Language

Introduction
Example 4.16 (Public Announcement)
Consider two stockbrokers a and b sitting together. a gets a
message: Company A did very well!

a says to b: “Guess you don’t know it yet, but A is doing
well.”

a says:
“A is doing well”
“b does not know that A is doing well”

After the announcement b now knows that A is doing well.
“b does not know that A is doing well” is now false.
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4 Public Announcement Logic
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In other words: a has announced something which
becomes false because of the announcement. This is
called an unsuccessful update.
Announcements refer to a specific moment in time, to a
specific information state that may change because of
the announcement that makes an observation about it.

p := “A is doing well”
0 := is the name of the state where p is false
1 := is the name of the state where p is true

0 1
b
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We assume that a only makes truthful, public
announcements:

Truthful: The formula of the announcement must be
true in the actual state while the statement
is made.

Public: b can hear what a is saying, that a knows
that b can hear her, etc., . . .. It is common
knowledge that a is making the
announcement.

From truthful and public it follows that states where
the announcement formula is false are excluded.
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1 ¬Kbp

2 Announcement: p ∧ ¬Kbp

3 C{a,b}p

4 Kbp

1
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Example 4.17 (Three Player Card Game)
a, b and c have each drawn a card from a stack of three cards
{0, 1, 2}. This is commonly known.
V (ai) = {〈ijk〉 | j, k 6= i, j 6= k},
V (bj) = {〈ijk〉 | i, k 6= j, i 6= k},
V (ck) = {〈ijk〉 | i, j 6= k, i 6= j} where ai expresses that a
holds the card i etc. Assume the actual world w = 〈012〉.

〈012〉 〈021〉
〈102〉 〈120〉

〈201〉 〈210〉

a
aabb

bc
c
c
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〈012〉 〈021〉
〈102〉 〈120〉

〈201〉 〈210〉

a
aabb

bc
c
c

M, 〈012〉 |= Ka¬(Kba0 ∨Kba1 ∨Kba2) a knows that b does
not know her card.

M, 〈012〉 |= b1 ∧ K̂ab2 a considers it possible that b holds
card 2 although b1 is true.
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4 Public Announcement Logic
4.2 Public Announcement Language

〈012〉 〈021〉

〈201〉 〈210〉

a
abc

1. Announcement of a “I do not have card 1”: ¬a1.
M, 〈012〉 |= Kca0 ∧ ¬KaKca0 ∧ ¬(Kba0 ∨Kba1 ∨Kba2)
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4 Public Announcement Logic
4.2 Public Announcement Language

〈012〉

〈210〉

b

2. Announcement of b “I do not know the card of a”:
¬(Kba0 ∨Kba1 ∨Kba2)

M, 〈012〉 |= ¬(Kba0 ∨Kba1 ∨Kba2)
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4.2 Public Announcement Language

〈012〉

3. Announcement of a “the card deal is 012”: a0 ∧ b1 ∧ c2

M |= a0 ∧ b1 ∧ c2
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4 Public Announcement Logic
4.2 Public Announcement Language

Syntax

Definition 4.18 (Public Announcements LCPA)
Let Prop be a set of propositions and Ag a finite set of
(names for) agents. The epistemic language with public
announcements and common knowledge LCPA(Prop,Ag)
consists of all formulae defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | CBϕ | [ϕ]ϕ

where p ∈ Prop and B ⊆ Ag . The sublanguage without
common knowledge, denoted LPA(Prop,Ag), is given by:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Kiϕ | [ϕ]ϕ

As before, the dual operator is defined as follows:

〈ψ〉ϕ = ¬[ψ]¬ϕ.
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4 Public Announcement Logic
4.2 Public Announcement Language

The intuitive reading is:
[ψ]ϕ : After truthfully and publicly announcing ψ, ϕ

holds.
〈ψ〉ϕ : ψ holds and after truthfully and publicly

announcing ψ, ϕ holds.

What is the relation to � and ♦ ?

If ϕ cannot be truthfully announced (i.e. ψ is false in the
current state) formula [ψ]ϕ is true!�ϕ is true in states
with no successors.

If ϕ cannot be truthfully announced (i.e. ψ is false in the
current state) formula 〈ϕ〉ϕ is false!♦ ϕ is false in states
with no successors.

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 327



4 Public Announcement Logic
4.2 Public Announcement Language

Example 4.19 (Three Player Card Game)

〈012〉 〈021〉
〈102〉 〈120〉

〈201〉 〈210〉

a
aabb

bc
c
c
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4 Public Announcement Logic
4.2 Public Announcement Language

1. Announcement of a “I do not have card 1”.
2. Announcement of b “I do not know the card of a”.

3a. Announcement of a “the card deal is 012”.
3b. Alternative announcement of a “I now know b’s card”:

Kab0 ∨Kab1 ∨Kab2

b knows a’s card:
[¬a1][¬(Kba0 ∨Kba1 ∨Kba2)][a0 ∧ b1 ∧ c2](Kba0∨Kba1∨Kba2)

b does not know a’s card:
[¬a1][¬(Kab0 ∨Kab1 ∨Kab2)][Kab0 ∨Kab1 ∨Kab2]¬(Kba0 ∨
Kba1 ∨Kba2)
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4 Public Announcement Logic
4.2 Public Announcement Language

Semantics
Definition 4.20 (Semantics M, w |= [ψ]ϕ)
Let M = (W, {∼i | i ∈ Ag}, V ) be a Kripke model, w ∈ WM,
and ϕ ∈ LCPA. ϕ is said to be true or satisfied in M and
world w, written as M, w |= ϕ, if the semantics of LC is
extended by the following clause:
M, w |= [ψ]ϕ iff M, w |= ψ implies M|ψ,w |= ϕ

where M|ψ = (W ′, {∼′i | i ∈ Ag}, V ′):
[[ψ]]M := {w ∈ W |M, w |= ψ}
W ′ := [[ψ]]M

∼′i := ∼i ∩ ([[ψ]]M × [[ψ]]M)

V ′ := V ∩ [[ψ]]M

 Blackboard
Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 330



4 Public Announcement Logic
4.2 Public Announcement Language

Remark 4.21
The semantics for the dual is defined as follows:
M, w |= 〈ψ〉ϕ iff M, w |= ψ and M|ψ,w |= ϕ.
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4 Public Announcement Logic
4.2 Public Announcement Language

Example 4.22 (Three Player Card Game)

〈012〉 〈021〉
〈102〉 〈120〉

〈201〉 〈210〉

a
aabb

bc
c
c

1. Announcement of a “I do not have card 1”
M, 〈012〉 |= [¬a1]Kca0
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4 Public Announcement Logic
4.2 Public Announcement Language

We prove this property. M, 〈012〉 |= [¬a1]Kca0 iff
(M, 〈012〉 |= ¬a1 implies M|¬a1, 〈012〉 |= Kca0)

Consider the former. M, 〈012〉 |= ¬a1 iff M, 〈012〉 6|= a1.
Due to 〈012〉 6∈ V (a1) = {〈102〉, 〈120〉} this is true.
Consider the latter. M|¬a1, 〈012〉 |= Kca0 is equivalent to
∀w ∈ WM|¬a1: 〈012〉∼cw implies M|¬a1, w |= a0. Because
of the fact that only 〈012〉 is c-accessible from 〈012〉 and
〈012〉 ∈ V (a0) = {〈012〉, 〈021〉} the condition is fulfilled.
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4 Public Announcement Logic
4.3 Properties of Public Accouncements

4.3 Properties of Public
Accouncements
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4 Public Announcement Logic
4.3 Properties of Public Accouncements

Properties of Public Announcements
Most of the following properties will be used in the
axiomatization of public announcement logic.

Proposition 4.23 (Negation)
|= [ψ]¬ϕ↔ (ψ → ¬[ψ]ϕ) where ϕ, ψ ∈ LCPA.

[ψ]¬ϕ can be true for two reasons:
1 the formula ψ cannot be announced.
2 ψ is true and after the announcement of ψ, the formula
ϕ is false.

Proof.
 Blackboard
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4 Public Announcement Logic
4.3 Properties of Public Accouncements

Proposition 4.24
The following formulae are equivalent over all S5-models
where ϕ, ψ ∈ LCPA:

ψ → [ψ]ϕ

ψ → 〈ψ〉ϕ
[ψ]ϕ
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4 Public Announcement Logic
4.3 Properties of Public Accouncements

Proof.
We show: ψ → [ψ]ϕ iff [ψ]ϕ

M, w |= ψ → [ψ]ϕ

⇔ M, w |= ψ implies M, w |= [ψ]ϕ

⇔ M, w |= ψ implies (M, w |= ψ implies M|ψ,w |= ϕ)

⇔ (M, w |= ψ and M, w |= ψ) implies M|ψ,w |= ϕ

⇔ M, w |= ψ implies M|ψ,w |= ϕ

⇔ M, w |= [ψ]ϕ

The other points are left as exercise.

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 337



4 Public Announcement Logic
4.3 Properties of Public Accouncements

The following properties are easy to verify:

Proposition 4.25
The following formulae are equivalent over all S5C-models
where ϕ, ψ ∈ LCPA:
〈ψ〉ϕ
ψ ∧ 〈ψ〉ϕ
ψ ∧ [ψ]ϕ

Proof.
 Exercise
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4 Public Announcement Logic
4.3 Properties of Public Accouncements

The following theorem allows to reduce the number of
announcements:

Proposition 4.26 (Composition)
[ψ ∧ [ψ]ϕ]χ is equivalent to [ψ][ϕ]χ for ϕ, ψ ∈ LCPA.

Proof.
For arbitrary M and w:

w ∈M|(ψ ∧ [ψ]ϕ)

⇔ M, w |= ψ ∧ [ψ]ϕ

⇔ M, w |= ψ and (M, w |= ψ implies M|ψ,w |= ϕ)

⇔ w ∈M|ψ and M|ψ,w |= ϕ

⇔ w ∈ (M|ψ)|ϕ
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4 Public Announcement Logic
4.3 Properties of Public Accouncements

But how does the knowledge change after an
announcement? Firstly, we analyse individual knowledge.

Proposition 4.27 ([ψ]Kaϕ 6⇔ Ka[ψ]ϕ)
[ψ]Kaϕ is in general not equivalent to Ka[ψ]ϕ for ϕ, ψ ∈ LCPA.

Proof.
Counterexample. Consider the Three Player Card
Game-Example ( Blackboard):

M, 〈012〉 |= [a1]Kca0

(because the announcement cannot take place in 〈012〉)
but

M, 〈012〉 6|= Kc[a1]a0
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4 Public Announcement Logic
4.3 Properties of Public Accouncements

Proposition 4.28 (Knowledge and
Accouncements)

[ψ]Kaϕ is equivalent to ψ → Ka[ψ]ϕ for ϕ, ψ ∈ LCPA.

Proof.
For arbitrary M and w:

M, w |= ψ → Ka[ψ]ϕ

⇔ M, w |= ψ implies M, w |= Ka[ψ]ϕ

⇔ M, w |= ψ implies
(∀w′ ∈M : w∼aw′ implies M, w′ |= [ψ]ϕ)

⇔ M, w |= ψ implies (∀w′ ∈M : w∼aw′

implies (M, w′ |= ψ implies M|ψ,w′ |= ϕ))
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4 Public Announcement Logic
4.3 Properties of Public Accouncements

Proof. (Cont.)

⇔ M, w |= ψ implies (∀w′ ∈M : M, w′ |= ψ and
w∼aw′ implies M|ψ,w′ |= ϕ)

⇔ M, w |= ψ implies (∀w′ ∈M|ψ,
w∼aw′ implies M|ψ,w′ |= ϕ)

⇔ M, w |= ψ implies M|ψ,w |= Kaϕ)

⇔ M, w |= [ψ]Kaϕ
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4 Public Announcement Logic
4.3 Properties of Public Accouncements

Is public announcement logic without group knowledge
more expressive than epistemic logic? No! We can remove
all announcements! Why do we consider the logic at all?

Proposition 4.29 (From PAL to Epistemic Logic)

For ϕ, ψ, χ ∈ LCPA we have the following equivalences:

[ψ]p ↔ (ψ → p),

[ψ](χ ∨ ϕ) ↔ ([ψ]χ ∨ [ψ]ϕ),

[ψ](χ→ ϕ) ↔ ([ψ]χ→ [ψ]ϕ),

[ψ]¬ϕ ↔ (ψ → ¬[ψ]ϕ),

[ψ]Kaϕ ↔ (ϕ→ Ka[ψ]ϕ),

[ψ][ϕ]χ ↔ [ψ ∧ [ψ]ϕ]χ.

These validities allow us to eliminate announcements if only
individual knowledge is used.
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4 Public Announcement Logic
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PA and Common Knowledge
In Proposition 4.28 we have shown that

[ψ]Kaϕ↔ ψ → Ka[ψ]ϕ

Is the same valid for common kowledge?

Example 4.30
Consider the following model M with V (p) = {〈10〉, 〈11〉}
and V (q) = {〈01〉, 〈11〉} and the instance:

[p]C{a,b}q↔ (p→ C{a,b}[p]q).

〈11〉 〈01〉 〈10〉ab

We show that the equivalence is false in 〈11〉.
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4 Public Announcement Logic
4.3 Properties of Public Accouncements

〈11〉M 〈01〉 〈10〉

〈11〉M|p 〈10〉

ab

M, 〈11〉 |= [p]C{a,b}q because M|p, 〈11〉 |= C{a,b}q

M, 〈11〉 6|= p→ C{a,b}[p]q although M, 〈11〉 |= p but
M, 〈11〉 6|= C{a,b}q because 〈11〉∼C{a,b}〈10〉 and
M, 〈10〉 6|= [p]q:
When evaluating q in M|p we are in its other
disconnected part, where q is false: M|p, 〈10〉 6|= q
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4 Public Announcement Logic
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Proposition 4.31 ([ψ]CAϕ 6⇔ ψ → CA[ψ]ϕ)
[ψ]CAϕ is in general not equivalent to ψ → CA[ψ]ϕ for
ϕ, ψ ∈ LCPA.

The proof is given by the previous example.
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4 Public Announcement Logic
4.3 Properties of Public Accouncements

We can derive common knowledge by the following rule

Proposition 4.32 (PA and CK)

Let ϕ, ψ, χ ∈ LCPA. If χ→ [ϕ]ψ and (χ ∧ ϕ)→ EBχ are valid,
then so is χ→ [ϕ]CBψ.

Proof.
 Blackboard
Let the premises χ→ [ϕ]ψ and (χ ∧ ϕ)→ EBχ be valid.
Suppose M, w |= χ. We show that M, w |= [ϕ]CBψ.
If M, w 6|= ϕ we are done. So, suppose M, w |= ϕ and let
w′ ∈ WM|ϕ with w∼CBw′.
By induction on the length of the path from w to w′ we
show M|ϕ,w′ |= ψ.
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Proof. (Cont.)
|Path| = 0: Then w = w′, and M|ϕ,w |= ψ follows from

M, w |= χ and |= χ→ [ϕ]ψ.
|Path| = n+ 1 for n ∈ N: Suppose the path has length n+ 1

where w∼aw′′∼CBw′ for a ∈ B and w′′ ∈M|ϕ.
From M, w |= χ, M, w |= ϕ, and
|= (χ ∧ ϕ)→ EBχ it follows |= (χ ∧ ϕ)→ Kaχ
and hence M, w′′ |= χ follows as ∼aww′′.
Because of w′′ ∈M|ϕ we have M, w′′ |= ϕ.
We now apply the induction hypothesis and
obtain M|ϕ,w′ |= ψ.
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4 Public Announcement Logic
4.3 Properties of Public Accouncements

Corollary 4.33
[ϕ]ψ is valid iff [ϕ]CBψ is valid.

Proof.
From right to left is obvious. From left to right follows when
taking χ = > in Proposition 4.32.
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4.4 Epistemic Logic
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4 Public Announcement Logic
4.4 Epistemic Logic

Axiomatization
in this section we present a sound and complete
axiomatization for LCD. The part without common and
distributed knowledge has already been shown to be sound
and complete for S5. For common knowledge we proceed
similarly by construction of the canonical model.
But as worlds of the model we cannot simply take the
maximal consistent sets (cf. Def 3.40). Consider

{En
Bp | n ∈ N} ∪ {¬CBp}

and recall the construction in Lindenbaums’s theorem 3.42:

Σn+1 :=

{
Σn ∪ {Φn}, if this theory is consistent;
Σn ∪ {¬Φn}, else.

and Σ+ :=
⋃
n≥0 Σn.

We notice that LC is not compact!
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4.4 Epistemic Logic

For the common knowledge operator and the basic modal
system S5C we have to write down all these axioms for each
agent i ∈ Ag :

Definition 4.34 (Modal System S5C)

K: C{i}(ϕ→ ψ)→ (C{i}ϕ→ C{i}ψ)
(distribution of C{i} over→)

T: C{i}ϕ→ ϕ (truth)
4: C{i}ϕ→ C{i}C{i}ϕ (positive introspection)
5: ¬C{i}ϕ→ C{i}¬C{i}ϕ (negative introspection)

MP: ϕ,ϕ→ψ
ψ

(modus ponens)
NEC: ϕ

C{i}ϕ
(necessitation of C{i})

This part is just our definition of Ki.
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4.4 Epistemic Logic

Axioms for everybody knowledge and common knowledge:
E: EBϕ↔

∧
i∈B C{i} (everybody knows)

C1: CB(ϕ→ ψ)→ (CBϕ→ CBψ) (distribution of CB
over→)

C2: CBϕ→ (ϕ ∧ EBCBϕ) (mix)
C3: CB(ϕ→ EBϕ)→ (ϕ→ CBϕ) (induction of

common knowledge)
NECC: ϕ

CBϕ
(necessitation of CB)

where B ⊆ Ag .

Note, that EB is defined as macro!

Exercise: Show that axioms K, D,T, 4, and 5 for operator CB
can be derived from S5C.
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To show completeness we proceed as follows:
1 We define the closure of a formula finite MCS’s.
2 We construct canonical models wrt. the closure. These

models are finite!
3 We prove Lindenbaum’s theorem (over finite sets) and

basic properties about the canonical model.
4 We prove the truth lemma which gives us the desired

completeness result. We show:

Every S5C-consistent set is satisfiable.

Note: The sublanguage without common and distributed
knowledge is shown to be complete as before. The
following is only necessary due to group knowledge.
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Closure
Recall the notion Sub(ϕ) from Defintion 3.61.

Definition 4.35 (Closure)

We define the closure of ϕ, cl(ϕ), as follows:
1 ϕ ∈ cl(ϕ),
2 if ψ ∈ cl(ϕ) then Sub(ψ) ⊆ cl(ϕ),
3 if ψ ∈ cl(ϕ) and ψ is not negated then ¬ψ ∈ cl(ψ),
4 if CBψ ∈ cl(ϕ) then {KiCBψ | i ∈ B} ⊆ cl(ϕ),

We would like to build maximal S5C-consistent sets over
cl(ϕ). Note that the closure is finite!

Why do we need rule 4?
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Maximal Consistency
We define maximal consistency wrt. to a set of formulae.
When is a set maximal consistent?

Definition 4.36 (T -maximal S5C-consistent)
Let T ⊆ LC . We say that a set Γ is T -maximal
S5C-consistent iff

1 Γ ⊆ T ,
2 Γ is S5C-consistent (i.e. Γ 6`S5C ⊥),
3 Γ is a maximal set with these properties wrt. T .

The set of all T -maximal S5C-consistent sets is defined as
MCS S5C

T .

For a finite set X of formulae we define X as
∧
ϕ∈X ϕ.

Lindenbaum’s theorem over finite sets is trivially true.
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We define the canonical S5C-model completely analogously
to Definition 3.43.

Definition 4.37 (Canonical Model)

The canonical model MS5C
ϕ = (W S5C, {∼S5C

a | a ∈ Ag}, V S5C)
for S5C and ϕ is defined as follows:

1 W S5C = MCS S5C
cl(ϕ);

2 ∼S5C
a ⊆ W S5C ×W S5C such that Γ ∼S5C

a Γ′ iff
{Kaϕ | Kaϕ ∈ Γ} = {Kaϕ | Kaϕ ∈ Γ′};

3 V S5C(p) := {w ∈ W S5C | p ∈ w}.
FS5C
ϕ = (W S5C, {∼S5C

a | a ∈ Ag}) is the canonical frame of S5C
and ϕ.

What is the justification for the definition of the accessibility
relations?
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We need some notation to show completeness.

Definition 4.38 (Paths)
Let B ⊆ Ag , T be a set of formulae and Γ ∈ MCS S5C

T .
A (B,Γ)-path is given by Γ0, . . . ,Γn where

each Γi ∈ MCS S5C
T ,

Γ0 = Γ, and
for all k with 0 ≤ k < n there is an a ∈ B such that
Γk ∼S5C

a Γk+1.
A ϕ-path is given by Γ0, . . . ,Γn where each Γi ∈ MCS S5C

T and
ϕ ∈ Γk forall k = 0, . . . , n.

Such paths are closely related to the semantics of ∼CB. How?
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The following is fundamental for the truth lemma.

Lemma 4.39 (Common knowledge)

Let T be a set of formulae and Γ ∈ MCS S5C
T .

If CBϕ ∈ T then CBϕ ∈ Γ iff every (B,Γ)-path is a ϕ-path.

Proof.
“⇒”: We proceed by induction on the length of a path.
Suppose CBϕ ∈ Γ. We show the stronger statement every
(B,Γ)-path is a ϕ-path and CBϕ-path.

n = 0: By ` CBϕ→ ϕ we have {ϕ,CBϕ} ⊆ Γ.
Let the claim be true for paths of length n. Consider a
path of length n+ 1. We have CB ∈ Γn and there is an
agent a ∈ B such that Γn ∼a Γn+1.
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From ` CBϕ→ EBCBϕ and ` EBCBϕ→ KaCBϕ we
have KaCBϕ ∈ Γn ∩ Γn+1 due to ∼a. Again, due to the
truth axiom, we have {ϕ,CBϕ} ⊆ Γn+1.

“⇐”: Let every (B,Γ)-path be a ϕ-path.
Let G ⊆ MCS S5C

ϕ consist of all ∆ such that every
(B,∆)-path is a ϕ-path. We define

χ ≡
∨

∆∈G

∆.

Suppose we have proven: (1) ` Γ→ χ, (2) ` χ→ ϕ,
and (3) ` χ→ EBχ. From (3) and NECC
` CB(χ→ EBχ). By the induction ax. ` χ→ CBχ, then
by (1) ` Γ→ CBχ. Finally by (2), NECC, and the
distribution ax. ` Γ→ CBϕ which shows that CBϕ ∈ Γ.
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It remains to show the validity of (1-3). (1-2) Exercise. We
show (3).

Suppose for the sake of contradiction χ ∧ ¬EBχ is
consistent.
Then, there must be a disjunct ∆ of χ such that
∆ ∧ ¬EBχ is consistent and also an a ∈ B such that
∆ ∧ ¬Kaχ which is ∆ ∧ K̂a¬χ
From `

∨
∆∈MCSS5C

ϕ
∆ (Why?) we have that

∆ ∧ K̂a

∨
∆′∈MCSS5C

ϕ \G
∆′ is consistent and by modal

reasoning ∆ ∧
∨

∆′∈MCSS5C
ϕ \G

K̂a∆
′ is.

Hence, there is Θ ∈ MCS S5C
ϕ \G with ∆ ∧ K̂aΘ is

consistent, but then ∆ ∼S5C
a Θ (Why?) and there is a

(B,Θ)-path which is not a ϕ-path, but then the same
holds for ∆. Contradiction to ∆ ∈ G.
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Lemma 4.40 (Truth lemma)
Let MS5C

ϕ be the canonical model for ϕ. Then, we have

ϕ ∈ w iff MS5C
ϕ , w |= ϕ.

Proof.
The proof is done by structural induction. We do only
consider the case for CAψ.

CAψ ∈ w iff (Lemma 4.39) every (A,w)-path is a ψ path
iff ψ ∈ w′ for every state w′ reachable from w by
∼i1 ◦ · · · ◦ ∼il where ∼ij∈

⋃
a∈A ∼a for j = 1, . . . , l iff

ψ ∈ w′ for every state w′ with w ∼CA w′ iff M, w′ |= ψ for
every state w′ with w ∼CA w′ iff MS5C

ϕ , w |= CAψ.
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The following is immediate from the definition of the
accessibility relation.

Proposition 4.41
The canonical model for ϕ ∈ LC is an S5C-model.

Theorem 4.42 (Soundness and Completeness)

System S5C is sound and complete for LC with respect to
Kripke frames (W, {∼i | i ∈ Ag}) where ∼i is an equivalence
relation.

Proof.
Soundness is left as exercise. Suppose |= ϕ and 6` ϕ. Hence,
{¬ϕ} is consistent. Then, there is an w ∈ MCS S5C

¬ϕ with
¬ϕ ∈ w. By the truth lemma MS5C

¬ϕ , w |= ¬ϕ.
Contradiction.
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Distributed Knowledge

We will present an axiomatization for distributed
knowledge. The main axiom is illustrated by

Kiϕ→ DAϕ i ∈ A

indicating that if ϕ is known by i then any group A
containing i knows ϕ.

Otherwise, the operator behaves as a standard knowledge
operator.
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Definition 4.43 (S5CD)
The axiomatization S5CD extends S5C by the following
axioms for distributed knowledge:

DK: DB(ϕ→ ψ)→ (DBϕ→ DBψ)
(distribution of DB over→)

DT: DBϕ→ ϕ (truth)
D4: DBϕ→ DBDBϕ (positive introspection)
D5: ¬DBϕ→ DB¬DBϕ (negative introspection)

NECD: ϕ
DBϕ

(necessitation of DB)
D1: Diϕ↔ Kiϕ

D2: DBϕ→ DB′ϕ for B ⊆ B′
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In order to show completeness we extend the notion of
closure given in Defintion 4.35 by the following conditions:

1 D{i}ψ ∈ cl(ϕ) iff K{i}ψ ∈ cl(ϕ),
2 if DBψ ∈ cl(ϕ) then DB′ψ ∈ cl(ϕ) for all B ⊆ B′ ⊆ Ag .

Theorem 4.44 (Soundness and Completeness)

System S5CD is sound and complete for LCD with respect to
Kripke frames (W, {∼i | i ∈ Ag}) where ∼i is an equivalence
relation.

In order to show completeness we proceed as follows:
1 We show that every S5CD-consistent set is

pseudo-satisfiable.
2 For each Kripke model there is an equivalent tree-like

Kripke model.
3 If ϕ is pseudo-satisfiable then also satisfiable.
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Definition 4.45 (Pseudo-S5-model)
A pseudo-(S5-)model is an S5-model
(W, {∼i | i ∈ Ag ∪ {A | A ⊆ Ag , A 6= ∅}}, V ) with ∼i=∼{i}.

That is, such a model simply adds “groups of agents” A.
Satisfaction in pseudo models, denoted |=P , is defined as
before but we replace the clause for distributed knowledge
by

M, w |=P DAϕ iff ∀w′(w ∼A w′ then M, w′ |=P ϕ)

That is, we interpret DA as “standard” knowledge operator.

We say that ϕ is pseudo-satisfiable if there is a
pseudo-model M and a state w such that M, w |=P ϕ.
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Lemma 4.46

Let ϕ ∈ LCD(Prop,Ag). If ϕ is S5CD-consistent then it is
pseudo-satisfiable.

Proof.
We construct a canonical pseudo-model similar to the
construction of the canonical MS5C

ϕ -model from
Definition 4.37 by handling each DA operator as a
“standard” knowledge operator.

We consider S5CD-consistent sets and use the modified
definition of closure. This model pseudo satisfies ϕ
(Why? Exercise). It remains to show that ∼a=∼{a} to
ensure that it really is a pseudo model. This is immediate
due to the axiom Diϕ↔ Kiϕ and due to construction (cf.
Theorem 4.42).
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In the following we show that every S5-model is equivalent
to a tree-like model. First, we need to make this notion
precise.

Definition 4.47 (Path, reduced)
Let M = (W, {∼i| i ∈ Ag}, V ) be a S5-model and w,w′ ∈ W .
A (w,w′)-path is given by w0 ∼i0 · · · ∼ik−1

wk with w0 = w,
wk = w′ and wj ∼ij wj+1 for j = 0, . . . , k − 1.
A (w,w′)-path w0 ∼i0 · · · ∼ik−1

wk is said to be reduced if
ij 6= ij+1 for j = 0, . . . , k − 1.

Definition 4.48 (Tree like)
An S5-model is called tree-like if there is at most one
reduced (w,w′)-path between any two worlds w and w′ of
M.
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Lemma 4.49

For every S5-model M there is a tree-like S5-model M′ such
that for all w ∈ WM there is a state w′ ∈ WM′ such that for all
ϕ ∈ LCD, M, w |= ϕ iff M′, w′ |= ϕ, and vice versa.

Proof.
 Exercise

How “big” are these tree-like models?  Exercise
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Lemma 4.50

If ϕ is pseudo satisfiable then it is also S5-satisfiable.

proof
First, we consider the case for one agent, n = 1.

Let M′ = (W,∼1,∼{1}, V ) be a satisfying pseudo model
and let be M = (W,∼1, V ).
By structural induction, we show M′, w |=P ψ iff
M, w |= ψ

All cases apart from ψ = D1ψ
′ are clear.

For ψ = D1ψ
′ we have that Blackboard

M′, w |=P D1ψ
′ iff M, w |= K1ψ

′ (by definition of a
pseudo model and induction hypothesis) iff
M, w |= D1ψ

′.
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Now the case for n ≥ 2. By Lemma 4.49 we can assume that
the pseudo model M′ is tree-like and M′, w |= ϕ. (The
relations are denoted ∼′.) For each i ∈ Ag we define

∼i:= (∼′i ∪
⋃
{∼′A| A ⊆ Ag , i ∈ A})+

Each ∼i is an equivalence relation (Why?). We define

M = (WM′ , {∼i| i ∈ Ag}, VM′).

Now we show by structural induction on ψ that

M′, w |=P ψ iff M, w |= ψ.

We only show the two cases ψ = Kiγ and ψ = DAγ.
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Case: ψ = Kiγ. Blackboard
“⇐”: Suppose M′, w 6|=P Kiγ. Hence, there is a state w′ with
w ∼′i w′ such that M′, w′ 6|=P γ. Since ∼′i⊆∼i and by
induction hypothesis, M, w 6|= Kiγ.

“⇒”: Suppose M′, w |=P Kiγ. We have to show that
M, w′ |= γ for all w′ with w ∼i w′. If w ∼i w′ then there are
nodes w = w1, . . . , wk = w′ which are interconnected by
∼′i ∪

⋃
A⊆Ag,i∈A ∼′A. If (?) M′, wj |=P Kiγ for all j = 1, . . . , k

then M, w′ |= γ. Because, as M′, w′ |=P Kiγ then by axiom T
also M′, w′ |=P γ and by induction hypothesis M, w′ |= γ.
It remains to show (?). Suppose the claim holds up to wj.
Then, also M′, wj |=P KiKiγ (axiom 4). If wj ∼′i wj+1 then
also M′, wj+1 |=P Kiγ. Else, if wj ∼′A wj+1 we have
M′, wj+1 |=P Kiγ due to axioms DAϕ→ DBϕ, A ⊆ B and
Ki ↔ Di.
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Case: ψ = DAγ and i ∈ A. Blackboard
“⇐”: Suppose M′, w 6|=P DAγ. Then, there is a w′, w ∼′A w′,
M′, w′ 6|=P γ. By construction ∼′A⊆∼i, hence M, w′ 6|= γ for
each i ∈ A. This shows M, w 6|= DAγ.
“⇒”: Suppose M, w 6|= DAγ.

Then, ∃w′(w ∼DA w′ and M, w′ 6|= γ).
Then, ∃w′∀a ∈ A(w ∼a w′ and M, w′ 6|= γ).
Then, ∃w′∀a ∈ A(w ∼a w′ and M′, w′ 6|=P γ) by
induction hypothesis. Then,
∃w′∀a ∈ A∃ reduced (w,w′)-path λa = wa0 ∼ia0 · · · ∼iak−1

wak with iaj ∈ {a} ∪ {A | a ∈ A} and M′, w′ 6|=P γ,
but then λa = λb for all a, b ∈ A, and furthermore each
iaj = A (Why?).
Hence, k = 1, w ∼′A w′, M′, w′ 6|=P γ and thus
M′, w 6|=P DAγ.
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Finally we can state the sound-and completeness proof.

of Theorem 4.44.
Let ϕ be an S5CD-consistent formula. Then it is pseudo
satisfiable (Lemma 4.46) and S5-satisfiable
(Lemma 4.50).
As before, suppose |= ϕ and 6` ϕ. Then, ¬ϕ is
S5CD-consistent and thus S5-satisfiable. Contradiction!
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4.5 Public Announcement
Logic
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Announcements without Common
Knowledge
The axiomatization for public announcement logic without
common knowledge is an extension of system S5.

Definition 4.51 (System PA)

System PA extends S5 by the following axioms:

[ϕ]p↔ (ϕ→ p) (atomic permanence)
[ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ) (PA and negation)

[ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ) (PA and conjunction)
[ϕ][ψ]χ↔ ([ϕ ∧ [ϕ]ψ]χ) (PA composition)
[ϕ]Kiψ ↔ (ϕ→ Ki[ϕ]ψ) (PA and knowledge)

Soundness is shown above.
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Here, we follow a different approach to show completeness,
not directly via canonical models! Thanks to
Proposition 4.29 we can translate all axioms of PA to
formulae of LK (without public announcements!).

Suppose we have defined the translation tr : LPA → LK
such that the following lemma holds.

Lemma 4.52

For all ϕ ∈ LPA it holds that `PA ϕ↔ tr(ϕ).

Then, we can use the sound and complete axiomatization
for S5 to prove sound and completeness for PA.
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Theorem 4.53
PA is sound and complete for LPA over the class of epistemic
Kripke models.

Proof.
Suppose |= ϕ, then |= tr(ϕ) by Lemma 4.52. As tr(ϕ) ∈ LK
we have `S5 tr(ϕ) by completeness for S5. Now, from
S5 ⊆ PA we conclude `PA tr(ϕ) and by Lemma 4.52 we get
`PA ϕ.

It remains to define tr and to prove Lemma 4.52.
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Definition 4.54 (Translation tr)
We define tr : LPA → LK as follows:

tr(p) = p

tr(¬ϕ) = ¬tr(ϕ)

tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ)

tr(Kaϕ) = Katr(ϕ)

tr([ψ]p) = tr(ψ → p)

tr([ϕ]¬ψ) = tr(ϕ→ ¬[ϕ]ψ)

tr([ψ](χ ∧ ϕ)) = tr([ψ]χ ∧ [ψ]ϕ)

tr([ψ]Kaϕ) = tr(ψ → Ka[ψ]ϕ)

tr([ψ][ϕ]χ) = tr([ψ ∧ [ψ]ϕ]χ)

Note that tr(ϕ) ∈ LK  Exercise
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How can we prove Lemma 4.52: `PA ϕ↔ tr(ϕ)?

Can we simply apply structural induction as usual?

To prove a property for ϕ one assumes that the property
has been proven for all real subformulae of ϕ.

But now consider tr([ϕ]¬ψ) = tr(ϕ→ ¬[ϕ]ψ). The formula
[ϕ]ψ is not a subformula of [ϕ]¬ψ.

The subformulae of a formula ϕ define some order on ϕ;
e.g. ψ is “smaller” than ¬ψ. We define a new order on LPA
which preserves this very order.
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Definition 4.55 (Complexity measure cPA)

The complexity measure cPA : LPA → N is defined as
follows:

cPA(p) = 1,

cPA(¬ϕ) = 1 + cPA(ϕ),

cPA(ϕ ∧ ψ) = 1 + max{cPA(ϕ), cPA(ψ)},
cPA(Kaϕ) = 1 + cPA(ϕ),

cPA([ϕ]ψ) = (4 + cPA(ϕ)) · cPA(ψ).

It is easily seen that this complexity measure preserves the
order imposed by the “subformula order”.
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Lemma 4.56
For all ϕ, ψ, χ ∈ LPA we have the following:

1 cPA(ψ) ≥ cPA(ϕ) if cPA(ϕ) if ϕ ∈ subform(ψ),
2 cPA([ϕ]p) > cPA(ϕ→ p),
3 cPA([ϕ]¬ψ) > cPA(ϕ→ ¬[ϕ]ψ),
4 cPA([ϕ](ψ ∧ χ) > cPA([ϕ]ψ ∧ [ϕ]χ),
5 cPA([ϕ]Kaψ) > cPA(ϕ→ Ka[ϕ]ψ),
6 cPA([ϕ][ψ]χ) > cPA([ϕ ∧ [ϕ]ψ]χ).

Proof.
The proof is easily done by calculating the measure. We just
give a proof for the last point: cPA([ϕ ∧ [ϕ]ψ]χ) =
(5+max{ϕ, [ϕ]ψ})·cPA(χ) = (5+(4+cPA(ϕ))·cPA(ψ))·cPA(χ) ≤
(4 + cPA(ϕ))(4 + cPA(ψ)) · cPA(χ) = cPA([ϕ][ψ]χ).
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Exercise: Show that the lemma does not hold if the 4 in
Definition 4.55 were replaced by 3.

Now, we prove `PA ϕ↔ tr(ϕ).

Proof of Lemma 4.52
The proof is done by induction on c := cPA.
Base case. c(ϕ) = 1, i.e. |= p↔ tr(p). Trivial.
Induction hypothesis. For all ϕ with c(ϕ) ≤ n: ` ϕ↔ tr(ϕ).
Induction step. The inductive step is very easy now. We
illustrate it for [ϕ][ψ]χ:
` [ϕ][ψ]χ iff ` [ϕ ∧ [ϕ]ψ]χ by the composition axiom iff
` tr([ϕ ∧ [ϕ]ψ]χ) by induction hypothesis iff
` tr([ϕ][ψ]χ).

The other cases follow completely analogously.
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Public Announcement Logic
The axiomatization for public announcement logic with
common knowledge is a combination of system S5C with PA.

Definition 4.57 (System PAC)
System PAC combines PA (Definition 4.51) and S5C
(Definition 4.34) and the following two rules:

ϕ
[ψ]ϕ

(necessitation of [ψ])
χ→[ϕ]ψ and χ∧ϕ→EBχ

χ→[ϕ]CBψ
(PA and common knowledge)

Soundness of the latter rule is proven in Proposition 4.32.
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Finally, we state that this axiomatization is sound and
complete for public announcement logic.

The proof combines ideas previously introduced.
Completeness is shown similarly to S5C. The main
observation is the following (cf. Lemma 4.39):

[ϕ]CBψ ∈ Γ iff every (B,Γ)-path which also is a ϕ-path is
also a [ϕ]ψ-path.

Structural induction is done via an extension of the
complexity measure as introduced in Definition 4.55 by
adding cPA(CBϕ) = 1 + cPA(ϕ).

Theorem 4.58 ( Soundness and Completeness)
System PAC is sound and complete for LCPA with respect to
S5C-models.
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5 More About Models

Invariance Results
Ultrafilter Extensions
Saturated Models and Ultraproducts
Characterization Theorem
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Content of this Chapter
In this chapter we discuss advanced topics about models.
We start with basic satisfaction invariance results and
introduce the fundamental concept of bisimulations. The
main result about bisimulations is that bisimular models are
modally equivalent. In order to show the other direction,
we introduce ultrafilters and ultrafilter extensions. The
latter allows to completely characterize modally equivalent
models.
In the last two subsections we discuss basic concepts of
first-order model theory, in particular saturated models
and ultraproducts. These notions are needed to prove van
Benthem’s Characterization Theorem which shows that
the modal language is the bisimulation invariant fragment of
the first-order language.
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5.1 Invariance Results
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We have introduced what it means for a formula to be
satisfied or valid in a model. We also showed how to
describe structural properties of frames. For example, we
introduced formulae which were valid on transitive, serial,
or Euclidean frames.

In the following we consider properties which cannot be
expressed within the modal language and analyse when
two models are not distinguishable by modal formulae. In

the following we mostly assume that all models are of the
same similarity type! And restrict ourself to the basic
modal language if the general case is obtained in the same
way.
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In this section we consider invariance properties of models.
That is, we would like to modify models without changing
the set of satisfiable and unsatisfiable formulae.

Firstly, we need to specify a criterion to compare different
models.

How can such criteria look like?
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Definition 5.1 (Theory)
Let M be a Kripke model and w ∈ WM. The theory of w
(with respect to M), denoted by ThM(w) is given by all
modal formulae satisfied in M, w, i.e.

ThM(w) = {ϕ |M, w |= ϕ}.

We will also write Th (w) whenever the model is clear from
context.

The theory of M, denoted by Th (M), is given by all
globally valid formulae (see Definition 2.11) in M, i.e.

Th (M) = {ϕ |M |= ϕ}

Note: A theory is given with respect to a set of
propositions.
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Example 5.2
Consider Prop = {p, q}. What is the theory of the following
model?

w0

p

w1

p

t, p, p ∧ p,. . . , p ∧ ¬q,. . . , K, 4,. . . , ¬q, ¬¬¬q,. . .

Intuitively, models are considered “equal” if they have the
same theory.
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Definition 5.3 ((Modal) Equivalence)
Let M1 and M2 be two Kripke models of the same similarity
type, w1 ∈ WM1 and w2 ∈ WM2.

We say that w1 and w2 are (modally) equivalent (with
respect to M1 and M2), denoted by M1, w1 ! M2, w2, iff

ThM1(w1) = ThM2(w2)

We will also write w1 ! w2 whenever the models are clear
from context.

We say that M1 and M2 are (modally) equivalent, denoted
by M1 ! M2 iff

Th (M1) = Th (M2)
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In the following we describe operations on models such
that the satisfaction of formulae is invariant under these
operations. That is, if such a satisfiability preserving
operation is applied to a model the resulting model should
be modally equivalent to the original one.

We discuss the following invariance operations:
1 Disjoint unions,
2 Generated submodels,
3 Bounded morphisms,
4 Bisimulations, and
5 Ultrafilter extensions (next section).
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Disjoint Unions
Disjoint unions are used to construct bigger models from
smaller ones.

M1: M2:w w1 w2 w3

M1 ]M2: w w1 w2 w3
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Definition 5.4 (Disjoint Models, - Union)
Two models M1 and M2 are said to be disjoint iff
WM1 ∩WM2 = ∅; i.e. if they have no worlds in common.

Let all Mi be disjoint models for i ∈ I ⊆ N. The disjoint
union of the models Mi is defined as

⊎
i∈I Mi := (W,R, V )

where
W :=

⋃
i∈IWi,

R :=
⋃
i∈I Ri, and

V (p) :=
⋃
i∈I Vi(p).

What can we say about the satisfaction in Mi and
⊎

Mi?

Note, that every set of models can be made disjoint by
simply renaming worlds.
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Proposition 5.5 (Invariance under Disjoint U.)

Let all Mi be disjoint Kripke models of the same similarity
type for i ∈ I. Then, for each formula ϕ, for each i ∈ I, and
each world w ∈ WMi

it holds that

Mi, w |= ϕ iff
⊎
i∈I

Mi, w |= ϕ

This result is about satisfaction! Does it also hold for global
truth? No! Why not?

Proof.
Structural induction on ϕ.  Exercise
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By means of this result we can show that some operators are
not definable in the modal language!

Example 5.6
The global universal modality A is defined as follows:

M, w |= Aφ iff ∀w ∈ WM (M, w |= φ)

Is this modality definable in the modal language?
Assume that a(p) is a basic modal formula such that
M, w |= a(p) iff M, w |= Ap. That is, a(p) defines A.
Let M1 be a model with VM1(p) = WM1 and M2 be a model
with VM2(p) = ∅. Since M1, w |= a(p) also M1 ]M2, w |= a(p)
and thus also M2, w |= a(p) by Proposition 5.5.
Contradiction! So, a(p) is not definable in ML.
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Generated Submodels
Now, we present a way to obtain smaller models from
bigger ones.

The idea is to remove points from a model without affecting
the satisfiability of formulae.

Example 5.7
Consider the following frames: F1 = (Z, <), F2 = (Z−, <)
and F3 = (N, <) where Z− := {x ∈ Z | x ≤ 0}

Is there a modal formula which can distinguish F1 from F2?
Yes, consider ♦ >!

What about a formula which can distinguish F1 from F3?
Why does such a formula not exist?
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Definition 5.8 (Submodel)

Let M1 = (W1,R1, V1) and M2 = (W2,R2, V2) be two Kripke
models. M2 = (W2,R2, V2) is called a submodel of
M1 = (W1,R1, V1) iff

1 WM2 ⊆ WM1,
2 RM2 = RM1 ∩ (WM2 ×WM2)

(i.e. RM2 is the restriction of RM1 to WM2),
3 VM2(p) = VM1(p) ∩WM2

(i.e. VM2 is the restriction of VM1 to WM2).

That is, some points are removed and the accessibility
relations and the valuation function are restricted
accordingly (cf. with the modal update of public
announcements).
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In the following we formalize the observation made in the
previous example.

Definition 5.9 (Generated Submodel)
Let M1 = (W1,R1, V1) and M2 = (W2,R2, V2) be two Kripke
models. M2 = (W2,R2, V2) is called a generated submodel
of M1 = (W1,R1, V1), denoted by M2 �M1, iff

1 M2 is a submodel of M1 and
2 if w2 ∈ WM2 and w2RM1w1 for some w1 ∈ WM1 then also
w1 ∈ WM2.

Let X ⊆ WM1. The submodel generated by X is defined as
the smallest generated submodel of M1 whose set of
worlds contains X.

 Exercise: Prove that the “submodel generated by X”
does always exist!
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If a point w is identified in some model then the submodel
generated by w must contain all points reachable from w!

Example 5.10
Recall the frames from the previous example extended by
some valuation: M1 = (Z, <, V1), M2 = (Z−, <, V1) and
M3 = (N, <, V1).

It is easy to see that M3 is the {1}-generated submodel of
M1 but M2 6�M1.
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Proposition 5.11 (Invariance under G.S.)

Let M1 and M2 be two models such that M2 is a generated
submodel of M1. Then, for each modal formula ϕ and each
world w2 ∈ WM2 it holds that

M1, w2 |= ϕ iff M2, w2 |= ϕ

Proof.
By structural induction on ϕ Exercise

This result is quite obvious: All points reachable from w2 are
contained in both models.

How does the generated submodel look like for a model
in which all points are reachable from each other?

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 404



5 More About Models
5.1 Invariance Results

Remark 5.12
Note that Proposition 5.5 (disjoint union) is a special case of
Proposition 5.11. Why?  Exercise
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Bounded Morphisms

In the previous section we showed that models can be
combined and that worlds can “carefully” be removed
without affecting the satisfaction of formulae.

Now, we present a more general tool: Functions that
preserve the structure of models.
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Homomorphisms
We define the basic mathematical notion of a
homomorphism for models. It is simply a mapping
between states respecting relational properties and
valuations.

Definition 5.13 (Homomorphism)
Let M1 and M2 be two models of the same similarity type. A
homomorphism f from M1 to M2, f : M1 →M2, is a
function f : WM1 → WM2 with the following properties:

1 ∀p ∈ Prop ∀w ∈ WM1 (w ∈ VM1(p)⇒ f(w) ∈ VM2(p))

2 ∀w,w′ ∈ WM1 (RM1ww
′ ⇒ RM2f(w)f(w′))

(homomorphic condition)
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Does a homomorphism ensure invariance under
satisfiability?

No! The structure of M2 is not reflected back to M1.

 Exercise: Give a counterexample.
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Isomorphisms
We have to strengthen the definition of homomorphisms in
order to obtain modal equivalence.

Definition 5.14 (Strong Homomorphism)
Let M1 and M2 be two models of the same similarity type. A
strong homomorphism f from M1 to M2 is a
homomorphism f : M1 →M2 with the following
properties:

1 ∀p ∈ Prop ∀w ∈ WM1 (w ∈ VM1(p)⇔f(w) ∈ VM2(p))

2 ∀w,w′ ∈ WM1 (RM1ww
′ ⇔RM2f(w)f(w′))

(strong homomorphic condition)
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Definition 5.15 (Isomorphism)
An isomorphism is a bijective strong homomorphism. We
say that two models M1 and M2 are isomorphic, M1 wM2,
if there is an isomorphism from M1 to M2.
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Proposition 5.16 (Invariance)

Let M1 and M2 be two models of the same similarity type.
1 Let w (resp. w2) of M1 (resp. M2). If there is a surjective

strong homomorphism f : M1 →M2 with f(w1) = w2

then M1, w1 ! M2, w2.

2 If M1 wM2 then M1 ! M2

Proof.
The first item is shown by induction on formulae ( 
Blackboard). The second follows from it.

These results are not very surprising since isomorphisms
usually describe identical entities (apart from renaming).
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It is also not surprising that we cannot strengthen the result
to an equivalence: There are morphisms which imply
modal equivalence but which are not strong! In
particular, isomorphic models have the same number of
worlds.

Example 5.17
Both models are modally equivalent but not isomorphic:

w0

p

w1

p

w0

p

 Exercise: Construct a model and a morphism which is not
strong but which ensures invariance under satisfiability.

The following definition refines the approach.
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Bounded Morphism

Definition 5.18 (Bounded Morphism)
Let M1 and M2 be two models of the same similarity type. A

bounded morphism f between M1 and M2, f : M1
b→M2, is a

homomorphism f : M1 →M2 such that the following
conditions are satisfied:

1 For all w ∈ WM1 it holds that w and f(w) satisfy the
same propositions,

2 if RM1ww
′ then also RM2f(w)f(w′),

3 If RM2f(w)v′ then there is a v ∈ WM1 such that RM1wv
and f(v) = v′ (back condition).

If the underlying homomorphism is surjective we say that

M2 is a bounded homomorphic image of M1, M1

b
�M2.
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Example 5.19 (B.M. in the Basic Modal Logic)
Consider the models M1 = (N,R1, V1) and
M2 = ({e, o},R2, V2) where

1 R1mn iff n = m+ 1

2 V1(p) = {2n | n ∈ N}
3 R2 = {(e, o), (o, e)}
4 V2(p) = {e}

We define f : WM1 → WM2 as follows:

f(n) =

{
e if n is even
o if n is odd

f is a surjective bounded morphism but not strong!
 Exercise
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Proposition 5.20 (Invariance under bm)

Let M1 and M2 be two models of the same similarity type such

that f : M1
b→M2. Then, for each modal formula ϕ and each

w ∈ WM1 it holds that

M1, w |= ϕ iff M2, f(w) |= ϕ.
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Proof.
The proof is done by induction on ϕ. We just consider the
case where ϕ = ♦ ψ.

“⇒“: Assume M1, w |= ♦ ψ. So, there is a w′ with M1, w
′ |= ψ

and RM1ww
′. Hence, also RM2f(w)f(w′) and by induction

hypothesis M2, f(w′) |= ψ; hence, M2, f(w) |= ♦ ψ.

”⇐“: Assume M2, f(w) |= ♦ ψ. So, there is a v′ with
M2, v

′ |= ψ and RM2f(w)v′. Hence, also RM1wv for some v
with f(v) = v′ and by induction hypothesis M1, v |= ψ;
hence, M1, w |= ♦ ψ.
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Application
Often, one is interested in models with a special structure;
e.g. tree-like models. These are models which have the
shape of a tree: They have a root node and are acyclic.

Proposition 5.21 (Tree Model Property)
Let M1 = (W1,R1, V1) be a {w}-generated Kripke submodel
where w ∈ W1.
Then, there is a tree-like model M2 = (W2,R2, V2) such that

M2

b
�M1. This means that any satisfiable formula is

satisfiable on a tree-like model.
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Proof.
W2 consists of all finite sequences (w,w1, . . . , wn) such that

R1ww1,R1w1w2,R1w2w3, . . . ,R1wn−1wn

Let v, v′ ∈ W2 we define R2 as follows: R2vv
′ iff

v = (w,w1, . . . , wn), v′ = (w,w1, . . . , wn, wn+1), andR1wnwn+1

We set (w,w1, . . . , wn) ∈ V2(p) iff wn ∈ V1(p).
Finally, the function f(w,w1, . . . , wn) := wn is a surjective
bounded morphism from M2 to M1 ( Why? Exercise!).
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Bisimulations
Up to now, we introduced special kinds of relations
between models:

Submodels: Identity relation.
Homomorphisms: Functions.

They have two things in common:
Related states satisfied the same propositions, and
transitions were preserved.

Here, we introduce a more general relation between
models such that related models are modally equivalent.
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Definition 5.22 (Bisimulation)

Let M1 = (W1,R1, V1) and M2 = (W2,R2, V2) be two Kripke
models. A bisimulation between M1 and M2, B : M1 �M2,
is a non-empty binary relation B ⊆ W1 ×W2 such that
whenever w1Bw2 the following hold:

1 V1(w1) = V2(w2) (atomic harmony)
2 if w1R1v1 then there is v2 ∈ W2 st v1Bv2 and w2R2v2

(force condition)
3 if w2R2v2 then there is v1 ∈ W1 st v1Bv2 and w1R2v1

(back condition)
If there is a bisimulation between two states w1 ∈ W1 and
w2 ∈ W2 we write M1, w1 �M2, w2 or just w1 � w2 if the
models are clear from context. If there is a bisimulation
between M1 and M2 we write M1 �M2.
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Example 5.23
The following models M and M′ are bisimular:

w1

p

w2

q

w3

p
w4

q

w5

q
w′1

p
w′2

q

w′3

q
w′4

p

w′5

q

We define the following bisimulation between the models:
B := {(w1, w

′
1), (w2, w

′
2), (w2, w

′
3), (w3, w

′
4), (w4, w

′
5), (w5, w

′
5)}.

It is easy to verify the bisimulation conditions. Note that
both models are neither a generated submodel nor a
bounded homomorphic image of the other.
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How do we have to adopt the definition of bisimulation in
order to fit with the general case for arbitrary similarity
types?

Definition 5.24 (Bisimulation - General Case)
Let M1 and M2 be τ -models. A bisimulation is defined as in
Definition 5.22 but the back and force conditions are
modified as follows: w1Bw2 iff

V1(w1) = V2(w2) (atomic harmony)
if R1

mw1v1 . . . vn then there are v′1, . . . , v
′
n ∈ W2 such that

viBv′i for all i = 1, . . .n and R2
mw2v

′
1 . . . v

′
n

(force condition)
if R2

mw2v
′
1 . . . v

′
n then there are v1, . . . , vn ∈ W1 such that

viBv′i for all i = 1, . . .n and R1
mw1v1 . . . vn

(back condition)
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All constructions of the previous section are bisimulations.

Proposition 5.25
Let M, M′, and Mi for i ∈ I ⊆ N be models of the same
similarity type.

1 If M wM′ then M�M′

2 For all i ∈ I and w ∈ WMi
it holds that Mi, w �

⊎
iMi, w

3 If M′�M then M′, w �M, w for all w ∈ WM′

4 If f : M
b→M′ then M, w �M′, f(w) for all w ∈M.
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Proof.
1 Define B as {(w, f(w)) | w ∈ WM} where f is an

isomorphism between M and M′. Then, it is easy to
check that B is a bisimulation between M and M′.

2 Define B as {(w,w) | w ∈ WMi
}. Then, it is easy to check

that B is a bisimulation between Mi and
⊎
iMi.

3 Define B as {(w,w) | w ∈ WM′}. Then, it is easy to check
that B is a bisimulation between M′ and M.

4 Define B as {(w, f(w)) | w ∈ WM} where f is a bounded
morphism between M and M′. Then, it is easy to check
that B is a bisimulation between M and M′.
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Theorem 5.26 (Bisimulation Invariance T.)

Let M and M′ be models of the same similarity type. Then, for
every (w,w′) ∈ WM ×WM′ it holds that

w � w′ implies that w! w′.

The proof is done by structural induction of formulae.
What about the reverse? It does not hold in general!
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Proof.
If ϕ is a proposition it is obvious, as well as for boolean
connectives. Now let ϕ = ♦ ψ.

Let w � w′. Since M, w |= ♦ ψ we have that
∃v(Rwv and M, v |= ψ). Then, there is an
v′ (Rw′v′ and v � v′) by the bisimulation force property. By
induction hypothesis we get M′, v′ |= ψ. So, we have that
M′, w′ |= ♦ ψ.

The reverse direction is done analogously by using the back
condition.
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Example 5.27

Consider the following two models:

w

. . .

w′

. . . . . .

Left model M: All branches of finite length. Right model
M′: an additional infinite path (p is always true). Both
models are modally equivalent in w and w′. But: there is
no bisimulation!
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We prove that a bisimulation cannot exist. Suppose the
contrary.

Let v1 be the state of the infinite path with R2w
′v1, and w1 a

point in M bisimular with v1. Let the path corresponding to
w1 have length n+ 1, say ww1 . . . wn. Since both models are
bisimular wn has to be bisimular with the (n+ 1)th state vn
on the infinite path as well. However, now vn has a
successor but wn does not. Contradiction!
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Definition 5.28 (Image-Finite Model)
Let M = (W,R1, . . . ,Rk, V ) be a Kripke model of modal
similarity type τ . The model M is called image-finite iff for
each relation Rm in the model the set

{(x1, . . . , xn) | Rixx1 . . . xn}

is finite where τ(m) = n− 1 (i.e. Rm is a n+ 1-ary relation).

This definition says that the branching factor of each
relation must be finite.
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Theorem 5.29 (Hennessy-Milner Theorem)

Let M and M′ be image-finite models. Then, for every
(w,w′) ∈ WM ×WM′ it holds that

w � w′ if, and only if, w! w′.

Proof.
“⇒”: Theorem 5.26
“⇐”: We show that w! w′ itself is a bisimulation.
Therefore, we have to verify the three properties.
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1 Clearly, w and w′ satisfy the same proposition letters.
2 Forth condition: Assume Rwv and that there is no v′

with R′w′v′ and v! v′. Let S ′ := {u′ | R′w′u′}. The set
it non-empty! Why? Image-finiteness implies that
S ′ = {w′1, . . . w′n} is finite! By assumption there is a
formula φi for each w′i ∈ S ′ such that M, v |= φi and
M′, w′i 6|= φi. Hence

M, w |= ♦ (φ1∧· · ·∧φn) and M′, w′ 6|= ♦ (φ1∧· · ·∧φn)

which contradicts w! w′.
3 Back condition: Analogously to the previous point.
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5.2 Ultrafilter Extensions
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The Picture so Far
Bisimulations are an important tool to characterize modally
equivalent models. However, Example 5.27 and the
Hennessy-Milner Theorem 5.29 show that bisimulations do
not completely characterize modally equivalent models.

In this section, we introduce the final step: Ultrafilter
extensions. The main result of this section is the following:

Two models are modally equivalent if, and only if,
there is a bisimulation somewhere else!

Here, “somewhere else” means in the ultrafilter extension!

M, w! M′, w′ iff ue(M), πw � ue(M′), πw′ .
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Modal Saturation
We would like to generalize the Hennessy-Milner Theorem:
Image-finite models form just a special class of models.

Definition 5.30 (Hennessy-Milner Property)
LetM be a class of τ -models. We say that M has the
Hennessy-Milner property iff for all M,M′ ∈M, w ∈ WM,
w′ ∈ WM′ it holds that

w! w′ implies M, w �M′, w′.

This is the converse direction of Theorem 5.26.

Example 5.31
The class of image-finite models has the Hennessy-Milner
property.
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Definition 5.32 ((Finitely) Satisfiable)
Let M be a model, X ⊆ WM and Σ be a set of formulae.
We say that Σ is satisfiable in X iff there is an w ∈ X such
that M, w |= Σ.
Σ is said to be finitely satisfiable in X iff every finite subset
of Σ is satisfiable in X.

Example 5.33
Assume Σ = {ϕ1, ϕ2, . . . } is an infinite set of formulae and
that S := {v1, v2, . . . } is the set of successors of a state w.
Moreover, assume that vi satisfies exactly the formula
ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕi for all i. Then, Σ is finitely satisfiable in S
but not satisfiable.
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We mention a very important result of first-order logic and
define an analogon for the modal language.

Remark 5.34 (Compactness in FOL)
Let Σ be a set of first-order formulae (or propositional
formulae), possibly infinite. The compactness theorem says
that if every finite subset Σ′ of Σ has a model (i.e. there is a
model M such that M |= Σ′) then there also is a model for Σ
itself.

In the following we present the “modal counterpart” of the
compactness theorem.
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The following definition generalizes the image-finite model
property.

Definition 5.35 (Modal Saturation)
Let M be a model. M is said to be modally saturated if the
following condition is satisfied for every state w ∈ WM and
every set Σ of formulae:

If Σ is finitely satisfiable in {w′ ∈ WM | Rww′} then Σ itself
is satisfiable in this set.

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 437



5 More About Models
5.2 Ultrafilter Extensions

Proposition 5.36 (Modally Saturated Models)

The class of modally saturated models has the
Hennessy-Milner property.

Proof.
Let M and M′ be two modally-saturated models. We show
that ! is a bisimulation. We only show the forth
condition.
Let w, v ∈ W , w′ ∈ W ′, Rwv, and w! w′. Let Σ be the set of
formulae true at v. For every finite Σ′ ⊆ Σ holds:
M, v |=

∧
Σ′, hence also M, w |= ♦

∧
Σ′. From w! w′ it

follows that M′, w′ |= ♦
∧

Σ′, hence M′, v′ |=
∧

Σ′ for some
v′ ∈ W ′ with R′w′v′. So, Σ is finitely satisfiable in
{v′ ∈ W ′ | R′w′v′} and hence, also satisfiable in some
v′ ∈ W ′ with R′w′v′. This shows that v! v′.
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Ultrafilter Extensions
We have just seen that that modally saturated models have
a very nice property. Now, we show how to construct such
models.

An ultrafilter can be seen as a completion of a model:
States are added to the model until it is modally saturated.

Filters and ultrafilters are just sets of sets which are closed
under various operations.

Before we consider ultrafilter extensions we need to
introduce some basic things about filters and ultrafilters.
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Zorn’s Lemma
For the ultrafilter theorem we need Zorn’s Lemma.

Let X be a set of sets. Then, ⊆ defines a partial order on X.
X is said to be a chain iff for all A,B ∈ X it holds that A ⊆ B
or B ⊆ A.

An element A of X is said to be maximal iff for all elements
B ∈ X with A ⊆ B it follows that A = B.

Lemma 5.37 (Zorn’s Lemma)

Let X 6= ∅ be a set of sets which is closed under unions of
non-empty chains over X.
Then, X has a maximal element.
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Filters and Ultrafilters
Definition 5.38 ((Proper) Filter)
Let W 6= ∅. A filter F over W is a set F ⊆ P(W ) with the
following properties:

1 W ∈ F ,
2 X, Y ∈ F implies X ∩ Y ∈ F (closed under

intersection),
3 X ∈ F and X ⊆ Z ⊆ W implies Z ∈ F (upward

closed).
A filter F is called proper if F 6= P(W ).

It is easy to verify that P(W ) is a filter but no proper one.

Note that a filter is proper iff it does not contain ∅!
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Definition 5.39 (Ultrafilter)
Let W 6= ∅. An ultrafilter U over W is a proper filter U
over W such that the following condition holds:

∀X ∈ P(W ) : X ∈ U iff W\X 6∈ U

We use Uf (W ) to denote the set of ultrafilters over W .

Note the relation to a complete theory: Either a formula or
its negation holds in it.

Example 5.40
Let W = {1, 2}. Then, {{1},W} and {{2},W} are ultrafilter
over W .
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Definition 5.41 (Generated Filter)
Let W 6= ∅ and E ⊆ P(W ). The filter F generated by E is
defined as follows:

F :=
⋂
{G | E ⊆ G and G is a filter over W}

That is, F is the smallest filter containing E.

 Exercise: Prove that F is a filter.

Definition 5.42 (Prinicpal Ultrafilter)
Let W 6= ∅ and w ∈ W . The principal ultrafilter πw
generated by w over W is the filter generated by {w}.

 Exercise: Prove that πw is an ultrafilter and that
πw = {X ⊆ W | w ∈ X}.
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Definition 5.43 (Finite Intersection Property)

Let E ⊆ P(W ). We say that E has the finite intersection
property iff the intersection of any two elements of E is
non-empty.

Proposition 5.44

Let F be the filter generated by E ⊆ P(W ).
F is a proper filter over W iff E has the finite intersection
property.

Proof.
 Blackboard
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Proof.
Firstly, we show that the set D = {X ⊆ P(W ) | X =
W or ∃Y1, . . . , Yn ∈ E (Y1 ∩ · · · ∩ Yn ⊆ X)} is equal to F .

“F ⊆ D”: Let W,X,X ′ ∈ F and Yi, Y ′i ∈ E such that

Y1 ∩ · · · ∩ Yn ⊆ X and Y ′1 ∩ · · · ∩ Y ′m ⊆ X ′

X ⊆ Z ⊆ W ⇒ Y1 ∩ · · · ∩ Yn ⊆ Z ⇒ Z ∈ D
Y1 ∩ · · · ∩ Yn ∩ Y ′1 ∩ · · · ∩ Y ′m ⊆ X ∩X ′ ⇒
X ∩X ′ ∈ D

⇒ D is a filter over W . Since E ⊆ D ⇒ F ⊆ D.
“D ⊆ F”: Let G ⊆ P(W ) be any filter with E ⊆ G, then

W ∈ G. For Y1, . . . , Yn ∈ E ⇒ Y1 ∩ · · · ∩ Yn ∈ G.
So, ∀X ∈ P(W ) (Y1 ∩ · · · ∩ Yn ⊆ X ⇒ X ∈ G).
Hence, D ⊆ G and therewith also D ⊆ F as F is
a filter and contains E as well.
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So, we have shown that F is equal to

{X ⊆ P(W ) | X = W or ∃Y1, . . . , Yn ∈ E (Y1 ∩ · · · ∩ Yn ⊆ X)}

Now, it is easy to prove the proposition:
“⇒”: Assume there are X,X ′ ∈ E such that

X ∩X ′ = ∅. Since E ⊆ F also X,X ′ ∈ F and
hence ∅ = X ∩X ′ ∈ F and F = P(W ).

“⇐”: Let E has the finite intersection property.
Suppose ∅ ∈ F . Hence, there are Y1, . . . , Yn ∈ E
with Y1 ∩ · · · ∩ Yn ⊆ ∅. But this contradicts the
finite intersection property of E.
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Proposition 5.45

If U is a maximal proper filter over W , then U is an
ultrafilter.

Note: The reverse direction does also hold.
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Proof.
Let U be a maximal proper filter. Then not both X ∈ U and
W\X ∈ U (otherwise ∅ ∈ F , Contradiction).
We prove: If W\X 6∈ U then X ∈ U .

Assume W\X 6∈ U . Let E := U ∪ {X} and F be the filter
generated by E. We show that E has thefinite intersection
property. Let Y1, . . . , Yn ∈ E and Z =

⋂
Yi.

Since U is closed under finite intersections it holds either
1 Z ∈ U , where Z 6= ∅ since U is proper, or
2 Z = X ∩ Y for Y ∈ U where Z 6= ∅. Assume the

contrary, then Y ⊆ W\X, hence also W\X ∈ U .
Contradiction.

Thus, Z 6= ∅ and, by Proposition 5.44, we have ∅ 6∈ F (F
proper). Since U ⊆ F we have U = F , E ⊆ U and X ∈ U .
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Theorem 5.46 (Ultrafilter Theorem)

If E ⊆ P(W ) has the finite intersection property then E
can be extended to an ultrafilter U over W ; i.e. E ⊆ U .
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Proof.
Let P be the class of all proper filters over W that
contain E. By Proposition 5.44 the filter generated by E
is proper and thus P is non-empty.
Then, by Zorn’s Lemma, P has a maximal element U
as it is closed under unions of non-empty chains: Let C
be a non-empty chain of proper filters, then

⋃
C is a

proper filter. ( Exercise)
Then, E ⊆ U and U is a maximal proper filter of W . For,
assume M is is a proper filter in W with U ⊆M , so
E ⊆M , hence M ∈ P and U = M .
Proposition 5.45: U is ultrafilter over W .
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Logical Interpretation of Filters
A proposition can be considered as a set of states; namely,
the states in which the proposition is true:

V (p) = Wp

Then, a filter is a (propositional) theory (a set of
propositions) which is closed under logical operations:
Wp ∩Wq: Represents the conjunction. All states in which p

and q are true.
Wp ∈ F and Wp ⊆ Wq ⊆ W implies Wq ∈ F : entailment

“p→ q.

What is a proper filter? A consistent theory!

What is an ultrafilter? A complete theory!
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Ultrafilter Extensions
Definition 5.47 (Pre-Image Operator)
LetR be a (n+ 1)-ary relation on W . Let X1, . . . , Xn ∈ P(W ).
We define the following pre-image operator:

preR(X1, . . . , Xn) := {x ∈ W | ∃(x1, . . . , xn) ∈ X1 × · · · ×Xn

such that Rxx1 . . . xn}

What is the interpretation of the operator for binary
relations?

preR(X) = {x ∈ W | ∃y ∈ X such that Rxy}
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Definition 5.48 (Dual of the Pre-Image)
We define the dual of the pre-image operator for any set
Xi ⊆ W and (n+ 1)-ary relation R as follows:

predR(X1, . . . , Xn) := W\pre(W\X1, . . . ,W\Xn)

Note, that the dual of the pre-image predR(X1, . . . , Xn) is
equivalent to the following set

{x ∈ W | ∀x1, . . . , xn ∈ W (Rxx1 . . . xn → ∃i (1 ≤ i ≤ n∧xi ∈ Xi))}
And for the simple case:

predR(X) = {x ∈ W | ∀y ∈ W (Rxy → y ∈ X)}

There is no x-related element which is not in X.

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 453



5 More About Models
5.2 Ultrafilter Extensions

Definition 5.49 (Ultrafilter Extension)
Let F = (W,R) be a frame. The ultrafilter extension of F,
ue(F), is defined by (Uf (W ),Rue) where Rueuu′ for
u, u′ ∈ Uf (W ) if the following condition holds:

If X ′ ∈ u′ then preR(X ′) ∈ u.

The ultrafilter extension of a model M = (F, V ) is defined
as the model ue(M) = (ue(F), V ue) where
V ue(pi) = {u ∈ Uf (W ) | V (pi) ∈ u}.
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Ultrafilter Extension: Interpretation
As mentioned above, an ultrafilter can be considered as
complete theory, we also call it a state of affairs.

Now, not every state of affairs needs to be realized in a
frame: There might not be a single state in a frame that
satisfies exactly all the proposition described by the state of
affairs (i.e. a state of the model is not a member of all
elements of the ultrafilter).

Which states of affairs are realized in a frame? A principal
ultrafilter πw is realized (exactly) at world w of the frame!

Thus, the ultrafilter extension adds to a frame all states of
affairs; thus, every proposition of the model is realized at
some point of the ultrafilter extension.

Finally, two states are related (Rueuu′) whenever u “sees” u′.
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Proposition 5.50 (Relation to Prinicpal Uf)
Let F be a Kripke frame and ue(F) its ultrafilter extension.
Then, we have for all v, w ∈ WF that

Rvw iff Rueπvπw.

So, F is isomorphic to a submodel of ue(F). In general, this
submodel is not a generated submodel.

Proof.
 Exercise
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Example 5.51

Consider the following frame F = (N0, <).
There are two kinds of ultrafilters ( Exercise):

1 Principal ones: They form an isomorphic copy of F
inside ue(F); and

2 Non-principal ones: They contain all co-finite sets and
only infinite sets.

How are the non-principal ultrafilters related to the others?
Let u ∈ Uf (N) and u′ be non-principal. Then, for any X ∈ u′
we have

pre(X) = {x ∈ N0 | ∃i ∈ X (x < i)} = N0
because X is an infinite subset of N.
Now, for any u ∈ Uf (N0) we have that N0 ∈ u and thus it
holds that Rueuu′.
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Lemma 5.52 (Rue and pred)

Let M = (W,R, V ) be given, and u, v ∈ Uf (W ). Then, we
have that

Rueuv iff {Y | predR(Y ) ∈ u} ⊆ v

and {Y | predR(Y ) ∈ u} is closed under finite intersection.
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Proof.

Rueuv iff ∀X ∈ v (pre(X) ∈ u) iff X ∈ v (pred(W\X) 6∈ u)

iff ∀X(W\X 6∈ v → pred(W\X) 6∈ u)

iff ∀X(pred(W\X) ∈ u→ W\X ∈ v)

iff {Y | pred(Y ) ∈ u} ⊆ v

Now, we show that the set is closed under intersection.
Assume X, Y ∈ {Y | pred(Y ) ∈ u}. So, we have that
pred(X) ∈ u and pred(Y ) ∈ u. Ultrafilter are closed under
intersection, thus pred(X) ∩ pred(Y ) ∈ u. Now the set
pred(X) ∩ pred(Y ) is equivalent to

{x | ∀y (Rxy → y ∈ X ∩ Y )} = pred(X ∩ Y )
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Given a model M and a formula ϕ, we write V (ϕ), the
denotation of ϕ in M, for the set of worlds which satisfy ϕ,
i.e. V (ϕ) = {w |M, w |= ϕ}.

Proposition 5.53 (Uf Equivalence Theorem)

Let M be a model, ϕ a formula, and u ∈ Uf (W ) an ultrafilter
over W . Then it holds that

V (ϕ) ∈ u iff ue(M), u |= ϕ

So, we have that for every state w ∈ W it holds that
M, w! ue(M), πw.

This theorem is very important as it relates truth in the
ultrafiler extension with truth in the original model and
vice versa.
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Proof.
Firstly, we prove the second part: M, w! ue(M), πw.
Assume that the first part holds. Then

M, w |= ϕ

iff w ∈ V (ϕ)

iff V (ϕ) ∈ πw (property of the principal uf)
iff ue(M), πw |= ϕ (first result)

Now we come to the more difficult part. We proceed by
induction on ϕ. The cases for ϕ = p, ϕ = ¬ψ or ϕ = ψ ∧ ψ′

are as usual!  Exercise.
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We now consider the case ϕ = ♦ ψ.

“⇐”:

ue(M), u |= ♦ φ
iff ∃u′ ∈ Uf (W )(Rueuu′ ∧ ue(M), u′ |= φ)

iff ∃u′ ∈ Uf (W )(Rueuu′ ∧ V (φ) ∈ u′) (by induction)
iff ∃u′ ∈ Uf (W )(∀X ∈ u′(pre(X) ∈ u) ∧ V (φ) ∈ u′)
⇒ ∃u′ ∈ Uf (W )(pre(V (φ)) ∈ u ∧ V (φ) ∈ u′)
⇒ V (♦ φ)) ∈ u since pre(V (φ)) = V (♦ φ)
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“⇒”: Let V (♦ ϕ) ∈ u. We show ue(M), u |= ♦ ϕ.
The latter is the case iff ∃u′(Rueuu′ ∧ V (ϕ) ∈ u′) and by
Lemma 5.52 iff

∃u′(u′0 := {Y | predR(Y ) ∈ u} ⊆ u′ ∧ V (ϕ) ∈ u′).

In the following we construct u′. We would like to apply the
ultrafilter theorem.

Show ∀Y ∈ u′0 (Y ∩ V (ϕ) 6= ∅).
For Y ∈ u′0 we have pred(Y ) ∈ u and
pred(Y )∩ V (♦ ϕ) ∈ u. There must also be some element
x in the intersection. x ∈ V (♦ ϕ) implies that there is an
y with Rxy and y ∈ V (ϕ). x ∈ pred(Y ) implies that
y ∈ Y and hence y ∈ Y ∩ V (ϕ).
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u′0 closed under intersection and Y ∩ V (ϕ) 6= ∅ implies
that u′0 ∪ {V (ϕ)} has the finite intersection property (cf.
Def. 5.43). Hence, by the Ultrafilter Theorem 5.46 there
is an ultrafilter u′ with u′0 ∪ {V (ϕ)} ⊆ u′.

So we have that Rueuu′ and V (ϕ) ∈ u′ which concludes
the proof.
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Example 5.54 (Undefinability in LML)
We can use ultrafilter extensions to compare the expressive
power of modal languages. Is the following operator ref
definable in the modal language?

M, w |= ref iff ∃w′ ∈ W (Rw′w′)

That is, this operator is true in a model which has at least
one reflexive point.

Consider the frame F = (N, <) and its ultrafilter extension
from Example 5.51.

Now, if such an operator would be definable we would not
have 0! π0 because F has no loops but its ultrafilter
extensions does have (infinitely many) loops. That
contradicts the previous proposition!
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Finally, we have the theorem which says that the ultrafilter
extensions is modally saturated and therewith does have
the Hennessy-Milner property.

Proposition 5.55 (Uf are Modally Saturated)

The ultrafilter extension ue(M) of any model M is modally
saturated.
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Proof.
Let M = (W,R, V ) be a model, u ∈ Uf (W ), and Σ a set of
formulae that is finitely satisfiable in {v | Rueuv}. We have to
show that there is an u′ in this set such that ue(M), u′ |= Σ.
We defined ∆ := {V (ϕ) | ϕ ∈ con(Σ)} ∪ {Y | pred(Y ) ∈ u}
where con(Σ) is the set of finite conjunctions of Σ.

We prove that ∆ has the finite intersection property.
Both parts of ∆ are closed under intersection. We show that
V (φ) ∩ Y 6= ∅. Since φ ∈ con(Σ), there is v with Rueuv and
ue(M), v |= φ by assumption. pred(Y ) ∈ u implies Y ∈ v
(Lemma 5.52). So we have that V (φ) ∩ Y 6= ∅.

Again, by the Ultrafilter Theorem 5.46 there is an ultrafilter
u′ with ∆ ⊆ u′ where u′ satisfies all required properties.
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The main theorem tells us that modal equivalence of models
can completely be characterized by bisimulations in their
ultrafilter extensions.

Theorem 5.56 (Bisimulation-somewhere-else)

Let M and M′ be two models of the same similarity type,
w ∈ WM and w′ ∈ WM′. Then, we have the following:

M, w! M′, w′ iff ue(M), πw � ue(M′), πw′ .

Proof.
Result of Proposition 5.55, Proposition 5.53, and
Theorem 5.36:
M, w! M′, w′ iff M, w! ue(M′), πw and
M′, w′! ue(M), πw′ iff ue(M), πw! ue(M′), πw′
iff ue(M), πw � ue(M′), πw′
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5.3 Saturated Models and
Ultraproducts
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Basics of FOL Model Theory

Our main result relates the modal language to first-order
language therefore we need some basic model theoretic
concepts about FOL. Also the standard translation (see
Slide 183 ff) is needed.

Recall that a FOL model was given by (U, I) where U is the
universe or domain and I the interpretation function.
From now on, we usually use A and A′ to denote FOL
models.
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Let A = (U, I) and A′ = (U ′, I ′) be two FOL models for the
same first-order language. Both models are said to be
isomorphic if there is a bijective function f : U → U ′ which
satisfies the following properties:

1 For each predicate symbol P (k-ary) it holds that

I(P )(u1, . . . , uk) iff I ′(P )(f(u1), . . . , f(uk))

2 For each function symbol F (k-ary) it holds that

f(I(F )(u1, . . . , uk)) = I ′(F )(f(u1), . . . , f(uk))

3 For each variable it holds that

f(I(x)) = I ′(x)

f is called an isomorphism between A and A′, short:
f : A → A′.
Inuitively: Isomorphic models can be considered to be “the
same”.
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We use the notation ϕ(x1, . . . , xn) to indicate that ϕ includes
the free variables x1, . . . , xn. Moreover, given n constants
u1, . . . , un we use

A |= ϕ(x1, . . . , xn)[u1, . . . , un]

as shortcut for A[x1/u1]...[xn/un] |= ϕ. Often we also just write

A |= ϕ[u1, . . . , un]

for A |= ϕ(x1, . . . , xn)[u1, . . . , un] if the variables of ϕ are clear
from context.

Proposition 5.57
Let f be an isomorphism between A and A′. Then for all
ϕ(x1, . . . , xn) and u1, . . . , un ∈ UA we have that

A |= ϕ[u1, . . . , un] iff A′ |= ϕ[f(u1), . . . , f(un)]
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Definition 5.58 (Elementarily Equivalent)
Let L be a FOL language. Two models are said to be
L-elementarily equivalent if they satisfy the same formulae
of L.

Does elementary equivalence imply isomorphism? What if
the models are finite?

Proposition 5.59 (Elementary Eq. and Isom.)

If A1
∼= A2 then A1,A2 are L-elementary equivalent. If the

case of finite structures the converse does also hold.

Analogously to Definition 5.8 we define a first-order
submodel. The functions and predicates have just to be
restricted to the respective subset of the universe.
Whenever A is a submodel of A′ we call A′ an extension of
A.
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Definition 5.60 (Elementary Ext., -Embedding)
We call a model A′ an elementary extension of A (A � A′)
if the following holds:

1 A′ is an extension of A, and
2 for any formula ϕ(x1, . . . , xn) and elements
u1, . . . , un ∈ A the following holds:

A |= ϕ[u1, . . . , un] iff A′ |= ϕ[u1, . . . , un]

We call a function f : U → U ′ an elementary embedding of
A to A′ if for any formula ϕ(x1, . . . , xn) and elements
u1, . . . , un ∈ A it holds that

A |= ϕ[u1, . . . , un] iff A′ |= ϕ[f(u1), . . . , f(un)]
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Next, we extend a given language by new constants which
allow to refer to specific elements of the model.

Definition 5.61 (L[A], Expansion)
Let A = (U, I) be a first-order model for L ⊆ LFOL and
A ⊆ U (so, A is a subset of the universe).

Then L[A] denotes the language which is defined by L
extended by the new constants ca, one for each a ∈ A.

The expansion of A with respect to A (denoted by AA)
extends A by the new constants ca which are interpeted as a
for all a ∈ A (i.e. AA(ca) = a).

That is, the expansion includes new constants which allow
to refer to specific individuals. All elements have names and
can be used in formulae.
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The next proposition characterizes elementary extensions:
Models which are elementarily equivalent must be “very
similar”.

Proposition 5.62
A′ is an elementary extension of A = (U, I) iff A is a
submodel of A′ and AU is isomorphic to A′U .

Theorem 5.63
Let A be a model and let #(L) ≤ c ≤ |U | where #(L) denotes
the number of non-logical symbols in L. Then, there is an
elementary submodel of cardinality c. Furthermore, for
X ⊆ U , |X| ≤ c there is an elementary submodel of A with
cardinality ≤ c which contains X.
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Saturated Models

Definition 5.64 (L1
FOL, free, x-type)

We define L1
FOL ⊂ LFOL as the first-order sublanguage in

which each formula has exactly one free variable. (A
variable is called free if it is not in the scope of any
quantifier).

Let Σ(x) ⊆ L1
FOL is called x-type if x is the only free variable

in Σ(x). We will often just use type to refer to an x-type.
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Definition 5.65 ((Finite) Realization)
Let Σ(x) be an x-type and let A = (U, I) be a first-order
model.
We say that A realizes Σ(x) if there is a u ∈ U so that for all
ϕ ∈ Σ(x) it holds that A |= ϕ[x]. Σ(x) is said to be finitely
realizable in A if A realizes every finite subset of Σ.

The next defintion characterizes how “expressive” a FOL
model is. Suppose we can refer to any element of the
universe of the model. Can the model realize any
reasonable set of formulae which we can build?
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Definition 5.66 (Countably Saturated)
A model A is called countably saturated if for every subset
A ⊆ WA the expansion AA realizes every x-type
Γ ⊆ L1

FOL[A] that is consistent with the first-order theory of
AA.

Note: There also is the notion of α-saturation where one
requires that |A| ≤ α. However, for our needs countable
saturation suffices.
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Example 5.67
Every finite model A is countably saturated.

Let Γ(x) be an x-type consistent with the theory of A. That
is, there is a model A′ with A′ |= Th (A) ∪ Σ(x).
Then, there is an elementary extension of A′ for
Th (A) ∪ Γ(x). Hence, A′ realizes Γ(x) but then also A as
both models must be isomorphic (cf. Prop. 5.59).
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Example 5.68 ((Q, <) is countably saturated)
The model A = (Q, <) is countably saturated.

Consider the FOL language L over < and =. Let A ⊆ Q and
Σ(x) be an x-type of L[A] consistent with Th (AA). Then,
there is a model A′ of Th (AA) which realizes Σ(x). Now, let
A′′ be a countably elementary submodel of A′ that realizes
Σ(x).

How does A′′ look like? The model has to be a countable
dense linear ordering without endpoints! (Why?). Hence,
A′′ and A are isomorphic! Hence, AA realizes Σ(x).

So, can we give a similar proof that (N, <) is countably
saturated?
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Example 5.69 ((N, <) is not countably
saturated)
Consider the model A = (N, <) and define the following set
of formulae

Γ(x) := {∃y1(y1 < x), . . . ,∃y1 . . . yn(y1 < · · · < yn < x), . . . }

It is easy to see that Γ(x) and A are consistent as Σ(x) is
finitely realizable in A (see Proposition 5.70). (Can you
come up with a model?) However, Γ(x) is obviously not
realizable in A.
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Proposition 5.70 (Consistency & Realization)

Let A be a FOL-model and Σ be an x-type of L1[A] where
A ⊆ U . Then, the following holds:
Σ is consistent with Th (AA) iff Σ is finitely realizable in AA.

Proof.
Σ is consistent with Th (AA)

iff Th (AA) ∪ Σ 6|= ⊥
iff ∃A′ (A′ |= Th (AA) ∪ Σ(x))

iff ∃A′ ∀Σ′ ⊆ Σ, |Σ′| <∞(A′ |= Th (AA) ∪ {∃x
∧

Σ′(x)})

iff ∀Σ′ ⊆ Σ, |Σ′| <∞(AA |= Th (AA) ∪ {∃x
∧

Σ′(x)})

iff Σ is finitely realizable in AA
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Ultraproducts and Ultrapowers
Let I be a non-empty set. Moreover, let for each i ∈ I, Wi be
a non-empty set as well. We define the following Cartesian
product:

C :=
∏
i∈I

Wi

We can also interpret C as the set of functions
f : I →

⋃
i∈IWi such that f(i) ∈ Wi. We also write f ∈ C to

refer to such a function. In the following we assume that C
is always defined as above.

Definition 5.71 (U -Equivalence)
Let U be an ultrafilter over I and f, g ∈ C. Functions f and
g are called U-equivalent, f ∼U g, if {i ∈ I | f(i) = g(i)} ∈ U .

Note: ∼U is an equivalence relation.
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Definition 5.72 (Ultraproduct of Sets)
Let U be an ultrafilter over I. The ultraproduct

∏
U Wi of Wi

modulo U is defined as follows:∏
U

Wi := {[f ]U | f ∈
∏
i∈I

Wi}

If there is a W such that Wi = W for all i ∈ I the
ultraproduct is called ultrapower and is denoted by

∏
U W .

Note: [f ]U denotes the equivalence class of f regarding ∼U .
We now transfer the construction to models.
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Definition 5.73 (Ultraproduct of Models)
Let Mi = (Wi, Ri, Vi) be models for i ∈ I and U be an
ultrafilter over I. The ultraproduct

∏
U Mi of Mi modulo U

is the following model (WU , RU , VU):
1 WU =

∏
U Wi (WU is the ultraproduct of the worlds)

2 VU is defined as follows:

[f ]U ∈ VU(p) iff {i ∈ I | f(i) ∈ Vi(p)} ∈ U

3 RU is defined as follows:

RU [f ]U [f ′]U iff {i ∈ I | Rif(i)f ′(i)} ∈ U

So, where do we need ultraproducts for?
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The next proposition states that a model is modally
equivalent to its ultrapower for any ultrafilter over any
non-empty index set I.

Proposition 5.74 (Models and Ultrapowers)

Let U be an ultrafiler over a non-empty I, M be a model and∏
U M its ultrapower modulo U . Then,

M, w and
∏

U M, [fw]U are modally equivalent

where fw denotes the constant function i 7→ w for all i ∈ I.

In the next step, we show that the ultrapower is also
countably saturated (interpreted as FOL model) if we use a
particular ultrafilter over I.
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Proof.
The proof is done by structural induction. We consider the
two cases, the remaining are left as exercise.

M, w |= p iff w ∈ V (p)

iff {i ∈ I | fw(i) ∈ V (p)} = I

iff {i ∈ I | fw(i) ∈ V (p)} = I ∈ U
iff [f ]U ∈ VU(p)

iff
∏
U

M, [fw]U |= p
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Let us consider the case ϕ = ♦ ψ

“⇒”: Let M, w |= ♦ ψ. Then, there is w′ with Rww′ and
M, w′ |= ψ. So, we have {i ∈ I | Rifw(i)fw′(i)} = I which
gives us that RU [fw][ww′ ]. By induction we have∏

U M, [fw′ ] |= ψ which proves that
∏

U M, [fw] |= ♦ ψ.

“⇐”: Let
∏

U M, [fw] |= ♦ ψ. Then, there is a w′ such that
RU [fw][fw′ ] and

∏
U M, [fw′ ] |= ψ which implies that

∅ 6= {i ∈ I | Riww
′} ∈ U hence Rww′ and by induction

M, w′ |= ψ and therewith M, w |= ♦ ψ.
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Definition 5.75 (Countable Incompleteness)
An ultrafilter is called countably incomplete if it is not
closed under countable intersections.

Note: It still must be closed under finite intersections
otherwise it would not be an ultrafilter!

Example 5.76 (Countably Incomplete Uf)

Let U be an ultrafilter over N which does not contain any
singleton {n} for n ∈ N. (Such an ultrafilter exists!  
Exercise). As U is an ultrafiler we have that N\{n} ∈ U for all
n ∈ N but

∅ =
⋂
n∈N

(N\{n}) 6∈ U

otherwise U would be proper and therefore {n} ∈ U .
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We state the following theorem without proof. The
construction of an ultraproduct for first-order logic is done
in a similar way as for modal logic.

Lemma 5.77

Let L be a countable first-order language, U be a countably
incomplete ultrafilter over I 6= ∅, and A be a FOL model for
L. Then, the ultrapower

∏
U A is countably saturated.

Proof.
See Chang/Keisler: Model Theory.
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5.4 Characterization
Theorem
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5.4 Characterization Theorem

In this section, we prove the following result:

Modal logic is the bisimulation-invariant fragment of
first-order logic.

For our main result, we need some abstract concepts which
were introduced in the previous section:

Basics of first-order model theory,
Saturated models, and
Ultraproducts.
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5.4 Characterization Theorem

The following result states that modal saturation can be
seen as modal counterpart of countable saturation in FOL.

Theorem 5.78

Let M be τ -model. If the first-order interpretation of M is
countably saturated then M is modally saturated. Hence,
the class of such models has the Hennessy-Milner property.
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Proof.
We tackle the basic modal logic case. Let A be countably
saturated and be the first-order representation of
M = (W,R, V ). Let w ∈ W and Σ ⊆ LBML be a set of
formulae finitely satisfiable in {w′ | Rww′} of M. Let

Σ′ := {Rcax} ∪ {ST x(ϕ) | ϕ ∈ Σ}
Σ′ is consistent with Th (Aa) as Σ′ is finitely realizable.
Hence, Σ′ realizable in some b ∈ A.
Since, in particular, A |= Rcab, b must be a successor of
a.
By Theorem ?? and A |= ST x(ϕ)[b] for all φ ∈ Σ we have
M, b |= Σ.

This shows that M is modally saturated!
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In Theorem 5.56 we have shown that models are modally
equivalent iff there is a bisimulation somewhere-else,
namely in the ultrafilter extension. Here we show that
somewhere-else can also mean in the ultrapower.

Theorem 5.79 (Bisimulation in Ultrapowers)

Let M and M′ be modal models of the same similarity type,
w ∈M and w′ ∈M′. Then, the following are equivalent:

1 M, w! M′, w′

2 There are ultrapowers (i.e. an appropriate ultrafilter U
over a non-empty set I)

∏
U M and

∏
U M′ such that∏

U M, [fw]U �
∏

U M′, [fw′ ]U where fw denotes the
constant function i 7→ w for all i ∈ I and fw′ is defined
analogously.
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Proof.
“(2)⇒(1)”: By Proposition 5.74 we have:

M, w!
∏
U

M, [fw]U and M′, w′!
∏
U

M′, [f ′w]U

and since bisimulation implies modal equivalence we also
have that M, w! M′, w′ as ! is transitive.
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“(1)⇒(2)”: Assume M, w! M′, w′. We construct
bisimular ultrapowers. Firstly, take I := N as index set and
let U be a countably incomplete ultrafilter over I (cf.
Example 5.76). By Lemma 5.77 the ultrapowers

∏
U M and∏

U M′ are countably saturated.

By Proposition 5.74 and the assumption that w! w′ we
have that

∏
U M, [fw]U !

∏
U M′, [fw′ ]U .

Finally, as
∏

U M and
∏

U M′ are countably saturated by
Theorem 5.78 it follows that

∏
U M and

∏
U M′ are modally

saturated. Hence, they have the Hennesey-Millner property
and thus are bisimular.
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Characterization Theorem
We know the following results:

1 FOL is equivalent to the hybrid language with
renaming

2 The modal language is weaker than FOL.

The characterization theorem exactly identifies which
fragment of FOL is equally expressive as the modal
language!

In order to prove this theorem we need all the theoretical
tools presented in this and the previous section: This
indicates the depth of this result.

Let M be a modal model then we use MF to denote its
first-order representation. Analogously, we use AM to
denote the modal representation of a first-order model A.
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The following Lemma gives another characterization of
modal equivalence. The characterization in terms of
elementary embeddings is important because satisfaction
of FOL formulae is not closed under ultrafilter extensions
but it is under elementary embeddings!
Lemma 5.80 (Detour Lemma)
Let M1 and M2 be modal models, w1 ∈ W1 and w2 ∈ W2.
Then, the following statements are all equivalent:

1 M1, w1 ! M2, w2

2 ue(M1), πw1 � ue(M2), πw2

3 There are countably saturated models A′1 and A′2, states
w′1 ∈ U ′1, w′2 ∈ U ′2 and elementary embeddings
f1 : (M1)F � A′1 and f2 : (M2)F � A′2 such that

1 f1(w1) = w′1 and f2(w2) = w′2, and
2 (A′1)M , w

′
1 � (A′2)M , w

′
2
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Proof.
“(1)⇔(2)”: Bisimulation somewhere-else Theorem 5.56
“(1)⇔(3)”: By Theorem 5.79, (1) iff there are ultrapowers∏

U M and
∏

U M′ such that∏
U M, [gw]U �

∏
U M′, [gw′ ]U where gw denotes

the constant function i 7→ w for all i ∈ I.

We just chose M′
1 and M′

2 as the ultraproducts
of M and M′ and define f1(w1) := [gw1 ]U and
f2(w2) := [gw2 ]U . The functions are elementary
embeddings and the ultrapowers can also be
constructed as countably saturated models
(proof of Theorem 5.79).
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Now, we are ready to prove our main theorem:

Modal logic is the bisimulation-invariant fragment of
the first-order language.

Formally, the next definition states how
bisimulation-invariance is understood for first-order logic.

Definition 5.81 (Invariant for Bisimulation)
Let {ϕ(x)} be an x-type. ϕ(x) is invariant for bisimulation if
for all modal models M and M′, all worlds w ∈M and
w′ ∈M′, and all bisimulations B ⊆M×M′ with wBw′ it
holds that

MF |= ϕ(x)[w] iff M′
F |= ϕ(x)[w′].
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The final theorem of this section is named after the logician
Johan van Benthem.

Theorem 5.82 (Characterization Theorem)
Let {ϕ(x)} be an x-type. Then, the following are equivalent:

1 ϕ(x) is invariant for bisimulation.
2 ϕ(x) is equivalent to the standard translation of a modal

formula.

Proof.
The easy part first. “⇐”: Let ϕ be the standard translation of
a modal formula. Clearly, by Theorem 5.26 we have that ϕ
is invariant under bisimulation.
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“⇒”: Let α(x) be a FOL formula invariant for
bisimulation. Consider the modal consequences of α:

Cn(α) := {ST x(ϕ) | ϕ ∈ LML and α(x) |= ST x(ϕ)}

Claim 1: If Cn(α) |= α(x) then ∃ϕ ∈ LML such that α(x)
is equivalent to ST x(ϕ). Proof: Assume that
Cn(α) |= α(x) then by the compactness theorem there
is a finite X ⊆ Cn(α) such that X |= α(x) and hence
|=
∧
X → α(x) and trivially also the reverse implication

thus
∧
X ↔ α(x). Finally, it is easy to see that ∃ϕ ∈ LML

with
∧
X = ST x(ϕ).
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So, it remains to show that Cn(α) |= α(x). Proof: Assume
A |= Cn(α)[u] with u ∈ A. We have to show that
A |= α(x)[w]. We set

T (x) := {ST x(ϕ) | A |= ST x(ϕ)[w]}

Claim 2.1: T (x) ∪ {α(x)} is consistent. Proof: Assume
the opposite. By the compactness theorem there is a
finite T ′ ⊆ T (x) such that |= α(x)→ ¬

∧
T ′(x), hence,

¬
∧
T ′(x) ∈ Cn(α). This implies A |= ¬

∧
T ′(x)[w].

Contradiction!
So, let B |= T (x) ∪ {α(x)}[v]. Now, it is easy to see that
AM , w and BM , v are modally equivalent. If modal
equivalence implied bisimularity we would be done! (But
this is not the case!)
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However, by the Detour Lemma, we have that there are two
countably saturated models A′ and B′ such that A and B
are elementarily embedded, respectively, and states
w′ ∈ A′ and v′ ∈ B′ such that A′M , w′ � B′M , v′. Now,
satisfaction of FOL formulae is preserved under elementary
embeddings. (Which is not the case for ultrafilter
extension! And that is the reason we need ultraproducts!)

Hence, B |= α(x)[v] implies that B′ |= α(x)[v′] and hence
A′ |= α(x)[w′] because α(x) is invariant for bisimulation by
assumption. Now we finally have that A |= α(x)[w].

We end this section with a small summary of the basic
relationships.

Prof. J. Dix, Dr. N. Bulling Department of Informatics ? TU Clausthal Clausthal, WS 10/11 506



5 More About Models
5.4 Characterization Theorem

Summary
Bisimulation implies modal equivalence.
In general, modal equivalence does not imply
bisimulation.
Ultrafilter extensions completely characterize modal
equivalence.
However, they are too weak for the Characterization
Theorem as satisfaction of FOL formulae is not closed
under ultrafilter extensions.
The Detour Lemma also completely characterizes
modal equivalence but in terms of elementary
embeddings (which preserve satisfaction of FOL
formulae).
Ultraproducts were needed to prove the existence of
these elementary embeddings.
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