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What Song the Syrens sang,
or what name Achilles assumed
when he hid himself among women,
though puzzling Questions,
are not beyond all conjecture.

Sir Thomas Browne
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Time and place: Monday, Tuesday 10–12.
Exercises: See schedule (7 exercises in total).

Website
https://www.in.tu-clausthal.de/divisions/
cig/cigroot/teaching/summer-2019/logic

There you will find important information about
the lecture, documents, exercises et cetera.

Organization: Tobias Ahlbrecht;
Exercise class: A. Mantel, J. Schwede;
Exam: 16. September 2019, 9:00 (tentative)
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What is this course about?
This course is about logic based formal methods and how to use
them for verification in computer science.

It rigorously defines the language and semantics of
sentential logic (SL) and
first-order logic (FOL).

We introduce the notion of a model, and show how hardware and
software systems can be modelled within this framework. We also
consider

semantic entailment vs. syntactic derivability
of formulae and how these two notions are related through
correctness and completeness. Completeness is formally proved
for SL and extensively discussed for FOL (in the form of refutation
completeness).
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What is this course about? (cont.)
Both logics are applied to important verification problems:

SL and its extension LTL for verifying linear temporal
properties in concurrent systems, and
FOL for verifying input/output properties of programs (the
Hoare calculus).

We show how the resolution calculus for FOL leads to PROLOG,
a programming language based on FOL.

We also show that SL leads to a declarative version of PROLOG:
Answer Set Programming (ASP), that can be used to solve
problems expressible on the second level of the polynomial
hierarchy.

While ASP is not a full-fledged programming language, it can be
used for many naturally ocurring problems and it allows to model
them in a purely declarative way.
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Lecture Overview

1. Introduction (1 lecture)
2. Sentential Logic (SL) (3 lectures)
3. Verification I: Reactive Systems (3 lectures)
4. First-Order Logic (FOL) (2,5 lectures)
5. Verification II: Hoare Calculus (2,5 lectures)
6. From FOL to PROLOG (2 lectures)
7. PROLOG (3 lectures)

Prof. Dr. Jürgen Dix Clausthal, SS 2019 7



1 Introduction

1. Introduction
1 Introduction

What Is AI?
Logic: From Plato To Zuse
Verification
Verifying reactive systems
Verifying programs

References
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1 Introduction

Content of this chapter (1):

Defining AI: There are several interpretations of
AI. They lead to scientific areas ranging
from Cognitive Science to Rational
Agents.

History: We discuss some important
philosophical ideas in the last three
millennia and touch some events that
play a role in later chapters (syllogisms
of Aristotle, Ars Magna).
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1 Introduction

Content of this chapter (2):

Logic-Based AI since 1958: AI came into being
in 1956-1958 with John McCarthy. We
give a rough overview of its successes
and failures.

Rational Agent: The viewpoint to consider an
agent as a rationally acting entity.
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1 Introduction

Content of this chapter (3):

Model checking: Many problems can be
modelled with finite state systems and
solved by checking whether (1) a given
model has a certain property, (2) a
theory is satisfiable or (3) a formula is
valid.

Verification: Programs are based on an infinite
state space and thus require other
methods, similar to the Hoare calculus.
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1 Introduction
1.1 What Is AI?

1.1 What Is AI?

Prof. Dr. Jürgen Dix Clausthal, SS 2019 12



1 Introduction
1.1 What Is AI?

“The exciting new effort to make computers
think . . . machines with minds, in the full
and literal sense” (Haugeland, 1985)

“The study of mental faculties through the
use of computational models”
(Charniak and McDermott, 1985)

“[The automation of] activities that we asso-
ciate with human thinking, activities such as
decision-making, problem solving, learning
. . .” (Bellman, 1978)

“The study of the computations that make
it possible to perceive, reason, and act”
(Winston, 1992)

“The art of creating machines that perform
functions that require intelligence when per-
formed by people” (Kurzweil, 1990)

“A field of study that seeks to explain and
emulate intelligent behavior in terms of
computational processes” (Schalkoff, 1990)

“The study of how to make computers do
things at which, at the moment, people are
better” (Rich and Knight, 1991)

“The branch of computer science that is con-
cerned with the automation of intelligent
behavior” (Luger and Stubblefield, 1993)

Table 1: Several Definitions of AI

Prof. Dr. Jürgen Dix Clausthal, SS 2019 13



1 Introduction
1.1 What Is AI?

1. Cognitive science

2. ”Socrates is a man. All men are mortal. Therefore
Socrates is mortal.”
(Famous syllogisms by Aristotle.)

(1) Informal description 
(2) Formal description 
(3) Problem solution
(2) is often problematic due to under-specification

(3) is deduction (correct inferences): only enumerable,
but not decidable
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1 Introduction
1.1 What Is AI?

3. Turing Test:
http://cogsci.ucsd.edu/~asaygin/tt/ttest.html

http://www.loebner.net/Prizef/loebner-prize.html
Standard Turing Test
Total Turing Test

Turing believed in 1950:

In 2000 a computer with 109 memory-units could
be programmed such that it can chat with a
human for 5 minutes and pass the Turing Test
with a probability of 30 %.
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1 Introduction
1.1 What Is AI?

4. In item 2. correct inferences were mentioned.

Often not enough information is available
in order to act in a way that makes sense (to
act in a provably correct way).
 Non-monotonic logics.

The world is in general under-specified. It is
also impossible to act rationally without correct
inferences: reflexes.
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1 Introduction
1.1 What Is AI?

The year 1943:
McCulloch and W. Pitts drew on three sources:

1 physiology and function of neurons in the
brain,

2 propositional logic due to Russell/Whitehead,
3 Turing’s theory of computation.

Model of artificial, connected neurons:
Any computable function can be computed by some
network of neurons.
All the logical connectives can be implemented by
simple net-structures.
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1 Introduction
1.1 What Is AI?

The year 1956:
Two-month workshop at Dartmouth organized by
McCarthy, Minsky, Shannon and Rochester.

Idea:

Combine knowledge about automata theory,
neural nets and the studies of intelligence (10
participants)
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1 Introduction
1.1 What Is AI?

Newell und Simon show a reasoning program,
the Logic Theorist, able to prove most of the
theorems in Chapter 2 of the Principia
Mathematica (even one with a shorter proof).

But the Journal of Symbolic Logic rejected a paper
authored by Newell, Simon and Logical Theorist.

Newell and Simon claim to have solved the
venerable mind-body problem.
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1 Introduction
1.1 What Is AI?

The year 1958: Birthyear of AI

The term
Artificial Intelligence

is proposed as the name of the new
discipline.
McCarthy joins MIT and develops:

1 Lisp, the dominant AI programming language
2 Time-Sharing to optimize the use of computer-time
3 Programs with Common-Sense.

Advice-Taker: A hypothetical program that can be seen
as the first complete AI system. Unlike others it
embodies general knowledge of the world.
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1 Introduction
1.1 What Is AI?

The years 1960-1966:
McCarthy concentrates on
knowledge-representation and reasoning in
formal logic ( Robinson’s Resolution, Green’s
Planner, Shakey).

Minsky is more interested in getting programs to
work and focusses on special worlds, the
Microworlds.
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1 Introduction
1.1 What Is AI?

Blocksworld is the most famous microworld.
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1 Introduction
1.1 What Is AI?

From the 70’ies to the 90’ies

’73: PROLOG (Colmerauer, Kowalski)

’74: Relational databases, SQL (Codd)

81-91: Fifth generation project (Japan)

’91: Dynamic Analysis and Replanning
Tool (DART) paid back DARPA’s
investment in AI during the last 30
years.
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1 Introduction
1.1 What Is AI?

From the 90’ies until today

’93: Nine Men‘s Morris (“Mühle”) solved (Gasser
(ETH)). #: 1010.

’97: IBM’s Deep Blue wins against Kasparow. #: 1046.

’98: NASA’s remote agent program: Deep Space 1.
Many modules have been model-checked.
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1 Introduction
1.1 What Is AI?

From the 90’ies until today (2)

’07: Checkers (“Dame”) solved: Chinook by J.
Schaeffers. #: 1020.

’10: IBM’s Watson winning Jeopardy
http://www-05.ibm.com/de/pov/watson/

’16: Google’s AlphaGo winning 4: 1 against Lee
Sedol in a professional Go match.
#: 10170.
https://de.wikipedia.org/wiki/AlphaG

’17: Google’s AlphaZero as a program learning
arbitrary games by itself. Even Chess, as one
particular instance, and achieving high
Elo-ranking.
https://de.wikipedia.org/wiki/AlphaZero
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1 Introduction
1.2 Logic: From Plato To Zuse

1.2 Logic: From Plato To Zuse
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1 Introduction
1.2 Logic: From Plato To Zuse

450 BC : Plato, Socrates, Aristotle

Sokr.: ”What is characteristic of piety which
makes all actions pious?”
Aris.: ”Which laws govern the rational part of
the mind?”

800 : Al Chwarizmi (Arabia): Algorithm

1300 : Raymundus Lullus: Ars Magna

1646–1716: G. W. Leibniz:
Materialism, uses ideas of Ars Magna to build
a machine for simulating the human mind
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1 Introduction
1.2 Logic: From Plato To Zuse

1805 : Jacquard: Loom

1815–1864: G. Boole:
Formal language,
Logic as a mathematical discipline

1792–1871: Ch. Babbage:
Difference Engine: Logarithm-tables
Analytical Engine: with addressable memory,
stored programs and conditional jumps
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1 Introduction
1.2 Logic: From Plato To Zuse

Figure 1.1: Reconstruction of Babbage’s difference engine.
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1 Introduction
1.2 Logic: From Plato To Zuse

1848–1925 : G. Frege: Begriffsschrift
2-dimensional notation for PL1

Figure 1.2: A formula from Frege’s Begriffsschrift.
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1 Introduction
1.2 Logic: From Plato To Zuse

1862–1943: D. Hilbert:
Famous talk 1900 in Paris: 23 problems
23rd problem: The Entscheidungsproblem

1872–1970: B. Russell:
1910: Principia Mathematica
Logical positivism, Vienna Circle (1920–40)

1906–1978: K. Gödel:
Completeness theorem (1930)
Incompleteness theorem (1930/31)
Unprovability of theorems (1936)

1912–1954: A. Turing:
Turing-machine (1936)
Computability
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1 Introduction
1.2 Logic: From Plato To Zuse

1938/42: First operational programmable computer: Z 1
Z 3 by K. Zuse (Deutsches Museum)
with floating-point-arithmetic.
Plankalkül: First high-level programming language

Figure 1.3: Reconstruction of Zuse’s Z3.
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1 Introduction
1.2 Logic: From Plato To Zuse

1940 : First computer ”Heath Robinson” built to
decipher German messages (Turing)
1943 ”Collossus” built from vacuum tubes

1940–45: H. Aiken: develops MARK I, II, III.
ENIAC
First general purpose electronic computer

1952 : IBM: IBM 701, first computer to yield profit
(Rochester et alii)
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1 Introduction
1.2 Logic: From Plato To Zuse

1948: First stored program computer (The Baby)
Tom Kilburn (Manchester)
Manchester beats Cambridge by 3 months

Figure 1.4: Reconstruction of Kilburn’s baby.
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1 Introduction
1.2 Logic: From Plato To Zuse

First program run on The Baby in 1948:

Figure 1.5: Reconstruction of first executed program on The Baby.
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1 Introduction
1.3 Verification

1.3 Verification
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1 Introduction
1.3 Verification

Model Checking Technique
Errors are expensive: Ariane 5 missile crash, . . .

Model checking provides means to detect such erros!

Formal model

Logical (formal) 
specification

Let's model ckeck...

M |= hh{1, 2}ii⇤ g>
' = hh{1, 2}ii⇤ g> Computational
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1 Introduction
1.3 Verification

Model checking refers to the problem to
determine whether a given formula ϕ is
satisfied in a state q of modelM.

Local model checking is the decision problem
that determines membership in the set

MC(L,MOD, |=) =def

{(M, q, ϕ) ∈ MOD× L | M, q |= ϕ},
where

L is a logical language,
MOD is a class of (pointed) models for L (i.e. a tuple
consisting of a model and a state), and
|= is a semantic satisfaction relation compatible with L and
MOD.
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1 Introduction
1.3 Verification

Example 1.1 (Concurrency)
We assume the following three processes which run
independently and parallel and share the integer variable x.

Inc while t do if x � 200 then x := x+ 1 fi do
Dec while t do if x 
 0 then x := x− 1 fi do
Reset while t do if x == 200 then x := 0 fi do

Does this ensure that the value of x is always between
(possibly including) 0 and 200?
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1 Introduction
1.3 Verification

Example 1.2 (Deadlock: Dining philosophers)

Five philosophers are sitting at a round table with a bowl of
rice in the middle. They can just do three things: (1)
thinking, (2) eating and (3) waiting to do (1) or (2). The
problem is that they can eat only by using two chopsticks
and eating rice out of the bowl.
But between two adjacent philosophers there is only one
chopstick. Therefore, at any point in time, only two
philosophers can eat concurrently.
If they all take the chopstick on their left, a deadlock
occurs.

What is a fair synchronization so that there is no
deadlock and no philosopher is starving?

How can this be modelled and the two properties
formally verified?
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1 Introduction
1.3 Verification

Dining philosophersDeadlock 91

P0

P1 P2

P3

P4

Stick0

Stick1

Stick2

Stick3Stick4

Five philosophers are sitting at a round table with a bowl of rice in the middle. For the
philosophers (being a little unworldly) life consists of thinking and eating (and waiting,
as we will see). To take some rice out of the bowl, a philosopher needs two chopsticks.
In between two neighboring philosophers, however, there is only a single chopstick. Thus,
at any time only one of two neighboring philosophers can eat. Of course, the use of the
chopsticks is exclusive and eating with hands is forbidden.

Note that a deadlock scenario occurs when all philosophers possess a single chopstick.
The problem is to design a protocol for the philosophers, such that the complete system is
deadlock-free, i.e., at least one philosopher can eat and think infinitely often. Additionally,
a fair solution may be required with each philosopher being able to think and eat infinitely
often. The latter characteristic is called freedom of individual starvation.

The following obvious design cannot ensure deadlock freedom. Assume the philosophers
and the chopsticks are numbered from 0 to 4. Furthermore, assume all following calcula-
tions be “modulo 5”, e.g., chopstick i−1 for i=0 denotes chopstick 4, and so on.

Philosopher i has stick i on his left and stick i−1 on his right side. The action request i,i

express that stick i is picked up by philosopher i. Accordingly, request i−1,i denotes the
action by means of which philosopher i picks up the (i−1)th stick. The actions release i,i

and release i−1,i have a corresponding meaning.

The behavior of philosopher i (called process Phil i) is specified by the transition system
depicted in the left part of Figure 3.2. Solid arrows depict the synchronizations with the
i-th stick, dashed arrows refer to communications with the i−1th stick. The sticks are
modeled as independent processes (called Stick i) with which the philosophers synchronize
via actions request and release; see the right part of Figure 3.2 that represents the process
of stick i. A stick process prevents philosopher i from picking up the ith stick when
philosopher i+1 is using it.

Figure 1.6: Dining philosophers.
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1 Introduction
1.3 Verification

Example 1.3 (What does program P(x) calculate?)

The input, x, ranges over integers.

y := 1;
z := 0;
while z 6= x {

z := z + 1;
y := y · z

}

Prof. Dr. Jürgen Dix Clausthal, SS 2019 43



1 Introduction
1.3 Verification

Example 1.4 (What do these programs calculate?)

int foo1(int n) {
local int k, int j;
k := 0;
j := 1;
while (k 6= n){

k := k + 1;
j := 2 ∗ j

} return(j) }

int foo2(int n) {
local int k, int j;
k := 0;
j := 1;
while (k 6= n){

k := k + 1;
j := 2 + j

} return(j) }
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1 Introduction
1.4 References

1.4 References
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1 Introduction
1.4 References

This lecture covers several areas, from classical logic, via
classical verification techniques to the programming
language PROLOG.
There exist many good textbooks for all these areas.
However, each has its own particular viewpoint and
therefore introduces the notions in a different way. In
particular concerning logic, many other, equivalent,
approaches are possible.
A theorem in our approach can be a definition in
another and vice versa.
To solve the exercises, strictly stick to the exposition
on the slides, and what has been lectured until then.
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1 Introduction
1.4 References
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2 Sentential Logic (SL)

2. Sentential Logic (SL)
2 Sentential Logic (SL)

Motivation
Syntax and Semantics
Some examples
Sudoku
Wumpus in SL
A Puzzle

Hilbert Calculus
Resolution Calculus
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2 Sentential Logic (SL)

Content of this chapter (1):

Logic: Logics can be used to describe the world and
how it evolves. We start with propositional logic
as the fundamental basis. All important notions
(model, theory, validity, deducibility,
derivability, calculus, model checking,
counterexamples) are rigorously introduced and
are the basis for first-order logic.

Examples: We illustrate the use of SL with three examples:
The game of Sudoku, the Wumpus world and
one of the weekly puzzles in the newspaper Die
Zeit. Finding a solution for these problems is
reduced to computing models of a certain
theory.
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2 Sentential Logic (SL)

Content of this chapter (2):

Calculi for SL: While it is nice to describe the world, we
also want to draw conclusions about it.
Therefore we have to derive new information
and deduce statements, that are not explicitly
given, but somehow contained in the
description. We introduce a Hilbert-type
calculus and the notion of proof in a purely
syntactical way.

While Hilbert-type calculi are easily motivated,
they cannot be efficiently implemented.
Robinson’s resolution calculus is much more
suited and will be later extended to FOL.
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2 Sentential Logic (SL)
2.1 Motivation

2.1 Motivation
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2 Sentential Logic (SL)
2.1 Motivation

Folklore (1)
We all know the laws of Boole in algebra (Boolean Algebra)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

(A ∩B) = A ∪B
(A ∪B) = A ∩B

A = A
A ∪ (B ∩A) = A
A ∩ (B ∪A) = A

A ∪A = U

A ∩A = ∅
∅ = U

U = ∅

Expressions formed using ∪,∩, , (, ), U, ∅ are called Boolean
expressions (U is the universe).  blackboard 2.1
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2 Sentential Logic (SL)
2.1 Motivation

Folklore (2)

Can we show, using these laws, that each
Boolean expression (formed using A,B,C, . . .
and ∩,∪, (, ), ) can be written as an
intersection of unions of A,A,B,B,C,C . . . ?
Can we show, using these laws, that each
Boolean expression (formed using A,B,C, . . .
and ∩,∪, (, ), ) can be written as a union of
intersections of A,A,B,B,C,C . . .?

 blackboard 2.2
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2 Sentential Logic (SL)
2.1 Motivation

Folklore (3)

With the correspondence
= corresponds to ↔

corresponds to ¬
∩ corresponds to ∧
∪ corresponds to ∨
∅ corresponds to false
U corresponds to true

we immediately get valid formulae in SL.

 blackboard 2.3
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2 Sentential Logic (SL)
2.1 Motivation

Example 2.1 (Tweety and Friends)

We want to throw a party for Tweety, his friend Gentoo and
Tux. But they have different circles of friends and dislike
some. Tweety tells you that he would like to see either his
friend the King or not to meet Gentoo’s Adelie. But Gentoo
proposes to invite Adelie or Humboldt or both. Tux,
however, does not like Humboldt and the King too much, so
he suggests to exclude at least one of them.

Can we represent this using sentential logic?

What do we gain by doing that?

Exactly how many solutions are there?
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2 Sentential Logic (SL)
2.1 Motivation

Propositional Symbols

k means invite The King
a means invite Adelie
h means invite Humboldt

¬k means exclude The King
¬a means exclude Adelie
¬h means exclude Humboldt

Problem Formalized
Tweety: k ∨ ¬a means “invite The King or exclude Adelie”, but

not both: ¬(k ∧ ¬a),
Gentoo: a ∨ h means “invite Adelie or Humboldt or both”,
Tux: ¬h ∨ ¬k means “exclude Humboldt or The King or both”.

Resulting Formula
Can we make the following formula true?

ϕparty : (k ∨ ¬a) ∧ ¬(k ∧ ¬a) ∧ (a ∨ h) ∧ (¬h ∨ ¬k)
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2 Sentential Logic (SL)
2.1 Motivation

There seems to be only one method of solution:
to check all possibilities.

ϕparty : (k ∨ ¬a) ∧ ¬(k ∧ ¬a) ∧ (a ∨ h) ∧ (¬h ∨ ¬k)

k a h k ∨ ¬a ¬(k ∧ ¬a) a ∨ h ¬h ∨ ¬k ϕparty

1 1 1 1 1 1 0 0
1 1 0 1 1 1 1 1
1 0 1 1 0 1 0 0
1 0 0 1 0 0 1 0
0 1 1 0 1 1 1 0
0 1 0 0 1 1 1 0
0 0 1 1 1 1 1 1
0 0 0 1 1 0 1 0
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2 Sentential Logic (SL)
2.1 Motivation

Therefore there are exactly two solutions.
We can also deduce, that either Humboldt or
both The King and Adelie can be invited.
Later we call the rows in the table models (or
valuations).

Complexity

Truth tables have 2n rows, where n is the number
of propositional constants. In the worst case, all
have to be checked (or maybe not???????).
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2.1 Motivation

Overview

real world

true 
(t)

false 
(f)

semantics –– gives meaning

propositional symbols

⇧ = {p, q, . . .}

^, _, ¬, !

p ! (q ^ r)

logical connectives

propositional formulae

syntax –– no meaning in real world

v̄

valuation
v : ⇧ ! {t, f}

extended valuation

uniquely 
defines

v |= '

A valuation corresponds to a row in a 
truth table (assignment of variables)

An extended valuation corresponds to a 
complete row in a truth table.

p q p ^ q
t t t
t f f
f t f
f f f

v

v̄

Figure 2.7: Syntax and Semantics for SL
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2.2 Syntax and Semantics
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Syntax: Language L =L (Prop)
The sentential (propositional) language is built upon
propositional constants: �, p1, p2, p3, . . . (countably

many). We also use a, b, c, . . . , p, q, r, . . .. The
symbol � has a special meaning: it stands for
falsity, the statement that is always false. This
will become clear when we define the semantics
of SL.

logical connectives: ¬ (unary), ∨ (binary), and
grouping symbols: (, ) for unique readability.
Often, for concrete applications, we consider only a finite, nonempty set
of propositional constants and refer to it as Prop (e.g. Prop = {a, p, q}).
However, the symbol � is always present, we do not include it in the set
Prop.

Logical connectives are used to construct complex formulae
from the propositional constants.
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Definition 2.2 (Sentential Language L(Prop))

Given a set Prop, the signature, the sentential (or
propositional) language L(Prop) over Prop
determines the set FmlSLL(Prop) of L (Prop) formulae
defined by

ϕ ::= � | p | (¬ϕ) | (ϕ ∨ ϕ)

where p ∈ Prop.
Note that this only makes sense for finite Prop. However, by adding

symbols 0 and 1, one can easily produce infinitely many propositional

symbols p100101 using finitely many grammar rules.

 blackboard 2.4
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We assume that Prop is fixed and omit it if clear from context: so
we write FmlSLL instead of FmlSLL(Prop) to denote the set of all
SL-formulae over Prop. We freely omit parentheses in formulae for
better readability.

What about other connectives? They are defined as macros.

Definition 2.3 (SL connectives as macros)

We define the following syntactic constructs as macros:

> =def (¬�)

ϕ ∧ ψ =def (¬((¬ϕ) ∨ (¬ψ)))

ϕ→ ψ =def ((¬ϕ) ∨ ψ)

ϕ↔ ψ =def ((ϕ→ ψ) ∧ (ψ → ϕ))

 blackboard 2.5
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Semantics
What should it mean that a L (Prop)-formula ϕ is
true? Intuitively, we want the following:

> is always t
� is always f

¬ϕ is t iff ϕ is f
ϕ ∨ ψ is t iff ϕ or ψ (or both) are t
ϕ ∧ ψ is t iff both ϕ and ψ are t
ϕ→ ψ is t iff either ϕ is f or ψ is t
ϕ↔ ψ is t iff ϕ and ψ are both t, or both f
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Transitions systems (see next chapter)
consist of a set of states and actions
(transitions) between these states.
States are determined by what holds true in
them.
A state will be uniquely determined by the
facts that are true in it.
These facts are exactly the elements in Prop:
the propositional constants.
Therefore, we need to fix the truth values of
the propositional constants.
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Definition 2.4 (Valuation, truth assignment)

A valuation (or truth assignment) for a language
L(Prop) is a mapping v : Prop → {t, f} from the
set of propositional constants into the set {t, f}.
A valuation fixes the values of individual propositional
constants.

We are particularly interested in the truth of complex
formulae like (p ∨ q) ∧ r.

Semantics
The process of mapping a set of L-formulae into {t, f} is
called semantics.
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2.2 Syntax and Semantics

It suffices to state the semantics for the basic connectives.

Definition 2.5 (Semantics v |= ϕ, v̄)
Let v be a valuation. We define inductively the notion of a formula
ϕ ∈ FmlSLL(Prop) being true or satisfied by v (notation: v |= ϕ):

v |= � does not hold,
v |= p if, by definition, v(p) = t and p ∈ Prop,
v |= ¬ϕ if, by definition, not v |= ϕ,
v |= ϕ ∨ ψ if, by definition, v |= ϕ or v |= ψ

We denote a set of L (Prop)-formulae by T . Given a set
T ⊆ FmlSLL(Prop) we write v |= T if, by definition, v |= ϕ for all
ϕ ∈ T . We use v 6|= ϕ instead of “not v |= ϕ”.

Thus we have uniquely extended a valuation v to a mapping v̄
from FmlSLL(Prop) into the set {t, f}.
 blackboard 2.6
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Truth Tables

Truth tables are a conceptually simple way of
working with SL (invented by Peirce in 1893 and
used by Wittgenstein in 1910’ies (and in TLP)).

p q ¬p p ∨ q p ∧ q p→ q p↔ q

t t f t t t t
f t t t f t f
t f f t f f f
f f t f f t t
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Definition 2.6 (Model, Theory, Tautology (Valid))

1 If v |= ϕ, we also call v (or v̄) a model of ϕ. We write
MOD(T ) for all models of a theory T :

MOD(T ) =def {v : v |= T}

2 A theory is any set T ⊆ FmlSLL(Prop).
v satisfies T if, by definition, v |= ϕ for all ϕ ∈ T .

3 A L-formula ϕ is called L-tautology (or simply called
valid) if it is satisfied in all models: for all models v it
holds that v |= ϕ.

We suppress the language L when obvious from context.
 blackboard 2.7
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Tweety revisited (1)

In Example 2.1 we can now state the following:
The language we consider is Prop = {a, k, h}.
The valuation v which makes k, a, h all true
defines a structure which is not a model of the
formula φparty.
The valuation which makes k, a true and h
false, is a model of φparty.
φparty can also be seen as the theory Tparty
consisting of the four formulae k ∨ ¬a,
¬(k ∧ ¬a), a ∨ h, and ¬h ∨ ¬k.
The formula φparty is not a tautology, but k→ k
is one.

Prof. Dr. Jürgen Dix Clausthal, SS 2019 71



2 Sentential Logic (SL)
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Definition 2.7 (Consequence Set Cn(T ), entailment)

A formula ϕ follows (semantically) from T (or is
entailed from T ) if for all models v of T
(i.e. v |= T ) also v |= ϕ holds. We denote this by
T |= ϕ.
We call

CnL(T ) =def {ϕ ∈ FmlSLL(Prop) : T |= ϕ},

or simply Cn(T ), the semantic consequence
operator.

We also say ϕ can be deduced from T .
 blackboard back to 2.7
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Duality of MOD and Cn

Both Cn and MOD are defined on theories (sets of

formulae). But the definition of Cn can easily be extended

to also deal with sets of models. For a setM consisting

solely of models, we define

Cn(M) =def {ϕ ∈ FmlSLL(Prop) : v |= ϕ for all v ∈M}.

MOD is obviously dual to Cn:

Cn(MOD(T )) = Cn(T ),
MOD(Cn(T )) = MOD(T ).
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Tweety revisited (2)

Considering again Example 2.1 how does
CnL(Tparty) look like?

It is infinite.
It contains all tautologies.
It contains (k ∧ a ∧ ¬h) ∨ h.
Is CnL(Tparty) = CnL({(k ∧ a ∧ ¬h) ∨ h})?
Is
CnL(Tparty) = CnL({(k∧a∧¬h)∨(¬k∧¬a∧h)})?
So there are different axiomatisations of
CnL(Tparty). How to decide which are
equivalent?
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Duality

The duality principle is an important property in
algebra and logic. It can be stated as follows.
Theorem 2.8 (Duality Principle)

We consider formulae φ, ψ over Prop built using
only ¬,∨,∧,�,>. For such a formula ϕ, let D(ϕ) be
the formula obtained by switching ∨ and ∧, and �
and >.
Then the following are equivalent:

φ is equivalent to ψ
D(φ) is equivalent to D(ψ).

 blackboard 2.8
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Conjunctive/disjunctive Normal form
We consider formulae φ built over Prop from only ¬,∨,∧,�.
Using the simple boolean rules, any formula φ can be written as a
conjunction of disjunctions (conjunctive normal form)

n∧

i=1

mi∨

j=1

φi,j

The φi,j are just prop. constants or negated prop. constants from
Prop.
Definition 2.9 (Clauses, literals)
Constants and negated constants (¬p) are called literals.
Disjunctions

∨mi
j=1 φi,j built from literals φi,j are called clauses.

 blackboard 2.9

Prof. Dr. Jürgen Dix Clausthal, SS 2019 76
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2.2 Syntax and Semantics

Theorem 2.10 (Conjunctive/disjunctive normal form)

Any formula over Prop built using only ¬,∨,∧,� can be equivalently
transformed into one with the same constants of the form

n∧

i=1

mi∨

j=1

φi,j ,

(the φi,j are, possibly negated, constants from Prop, the empty
disjunction is identified with �): conjunctive normal form.

Dually, any formula can be transformed into one of the form

n∨

i=1

mi∧

j=1

φi,j ,

(the φi,j are, possibly negated, constants from Prop, the empty
conjunction is identified with >): disjunctive normal form.
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Normal forms

What are the normal forms of the
following formulae?

p,
¬p,
p→ p,
�,
¬¬(p→ ¬�).
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Clauses
Normal form

Instead of working on arbitrary formulae, it is
sometimes easier to work on finite sets of
clauses.
This is without loss of generality (wlog): all
formulae can be equivalently represented as a
set (conjunction) of clauses.
This approach is much more suited for
implementing a calculus (theorem proving) and
we discuss it in detail in Subsection 2.5 from
Slide 144 on.
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Lemma 2.11 (Properties of Cn(T ))

The semantic consequence operator has the
following properties:

1 T -expansion: T ⊆ Cn(T ),
2 Monotony: T ⊆ T ′ ⇒ Cn(T ) ⊆ Cn(T ′),
3 Closure: Cn(Cn(T )) = Cn(T ).
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To entail (or deduce) something from a theory is
important. But it is equally important to know
that something is not entailed from a theory
(i.e it does not follow from it): we emphasize
this importance in the next lemma.
Lemma 2.12 (ϕ 6∈ Cn (T), countermodel)

ϕ 6∈ Cn(T ) if and only if there is a model v with
v |= T and v |= ¬ϕ.

This model is often referred to as a countermodel
for ϕ.
 blackboard 2.10
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Definition 2.13 (Completeness of a Theory T )

T is called complete if for each formula
ϕ ∈ FmlSLL(Prop): T |= ϕ or T |= ¬ϕ holds.

Do not mix up this last condition with the property of a
valuation (model) v: each model is complete in the
above sense.
A complete theory gives us a perfect description of
the world (or state) we are in: we know everything!
In most cases, however, our knowledge is incomplete.
An incomplete theory leaves open many possibilities:
many complete extensions of it, namely exactly the
models of it.
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Lemma 2.14 (Ex Falso Quodlibet)

The following are equivalent:
T has a model,
Cn(T ) 6= FmlSLL(Prop).

Russel story: Derive from “7 = 8” that you are the
pope.

 blackboard 2.11
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Tweety revisited (3)

We discuss the following statements.
Is the theory CnL(Tparty) complete, does it
have a model?

What about the theory CnL({A,A→ B,¬B})?
Does each theory with a model posess a
maximal extension that still has a model?

How many such extensions are there for Tparty?

Is there a theory T such that Cn(T ) = ∅? What
about Cn(∅)?
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Who killed Tuna, the cat?

Example 2.15 (Tuna the cat)

There are two people, Jack and Bill. There is also a
cat, called Tuna, and a dog with no name, owned
by Bill. Tuna has been killed by either Jack or Bill,
but it is not known by whom precisely.
All we know is that animal lovers do not kill
animals and that dog owners are animal lovers.
So who killed Tuna?
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Who killed Tuna, the cat? (2)

How can we formalize this story in SL? We need
to choose Prop appropriately.

We need to express that Tuna is a cat: catTuna.
Either Jack or Bill killed Tuna: killer_of_TunaBill,
killer_of_TunaJack.
dog_ownerBill, dog_ownerJack.
animal_loverBill, animal_loverJack.

What about dog_ownerTuna, catBill?
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Who killed Tuna, the cat? (3)
Our theory T consists of:

catTuna.
killer_of_TunaBill ∨ killer_of_TunaJack,
¬(killer_of_TunaBill ∧ killer_of_TunaJack)
dog_ownerBill.
dog_ownerBill → animal_loverBill,
dog_ownerJack → animal_loverJack. What about
dog_ownerTuna → animal_loverTuna.
animal_loverJack → ¬killer_of_AnimalsJack,
animal_loverBill → ¬killer_of_AnimalsBill.
animalTuna ∧ (¬killer_of_AnimalsBill)→ ¬killer_of_TunaBill,
animalTuna ∧ (¬killer_of_AnimalsJack)→ ¬killer_of_TunaJack.

What is missing?
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2.3 Some examples
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2.3 Some examples

Since some time, Sudoku puzzles are becoming quite famous.

Table 2: A simple Sudoku (S1)

Prof. Dr. Jürgen Dix Clausthal, SS 2019 89



2 Sentential Logic (SL)
2.3 Some examples

Can they be solved with sentential logic?
Idea: Given a Sudoku-Puzzle S, construct a
language PropSudoku and a theory
TS ⊆ FmlSLL(PropSudoku) such that

MOD(TS) = Solutions of the puzzle S

Solution

In fact, we construct a theory TSudoku and for each
(partial) instance of a 9× 9 puzzle S a particular
theory TS such that

MOD(TSudoku ∪ TS) = {S : S is a solution of S}
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We introduce the following prop. constants:

1 einsi,j, 1 ≤ i, j ≤ 9,
2 zweii,j, 1 ≤ i, j ≤ 9,
3 dreii,j, 1 ≤ i, j ≤ 9,
4 vieri,j, 1 ≤ i, j ≤ 9,
5 fuenfi,j, 1 ≤ i, j ≤ 9,
6 sechsi,j, 1 ≤ i, j ≤ 9,
7 siebeni,j, 1 ≤ i, j ≤ 9,
8 achti,j, 1 ≤ i, j ≤ 9,
9 neuni,j, 1 ≤ i, j ≤ 9.

This completes the language PropSudoku.

How many symbols are these?
Prof. Dr. Jürgen Dix Clausthal, SS 2019 91



2 Sentential Logic (SL)
2.3 Some examples

We distinguished between the puzzle S and a
solution S of it.
What is a model (or valuation) in the sense of
Definition 2.6 (Slide 70)?

Table 3: How to construct a model S?
Prof. Dr. Jürgen Dix Clausthal, SS 2019 92



2 Sentential Logic (SL)
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We have to give our symbols a meaning (the
semantics), i.e. a valuation v.

einsi,j means 〈i, j〉 contains a 1
zweii,j means 〈i, j〉 contains a 2

...
neuni,j means 〈i, j〉 contains a 9

To be precise: given a 9× 9 square that is

completely filled out, we define our valuation v as
follows (for all 1 ≤ i, j ≤ 9).

v(einsi,j) =

{
true, if 1 is at position 〈i, j〉,
false, else .
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v(zweii,j) =

{
true, if 2 is at position 〈i, j〉,
false, else .

v(dreii,j) =

{
true, if 3 is at position 〈i, j〉,
false, else .

v(vieri,j) =

{
true, if 4 is at position 〈i, j〉,
false, else .

etc.

v(neuni,j) =

{
true, if 9 is at position 〈i, j〉,
false, else .

Therefore any 9× 9 square can be seen as a model or
valuation with respect to the language LSudoku.
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How does TS look like?

TS = { eins1,4, eins5,8, eins6,6,
zwei2,2, zwei4,8,
drei6,8, drei8,3, drei9,4,
vier1,7, vier2,5, vier3,1, vier4,3, vier8,2, vier9,8,
...
neun3,4, neun5,2, neun6,9,

}
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How should the theory TSudoku look like (s.t. models
of TSudoku ∪ TS correspond to solutions of the puzzle)?

First square: T1

1 eins1,1 ∨ . . . ∨ eins3,3
2 zwei1,1 ∨ . . . ∨ zwei3,3
3 drei1,1 ∨ . . . ∨ drei3,3
4 vier1,1 ∨ . . . ∨ vier3,3
5 fuenf1,1 ∨ . . . ∨ fuenf3,3
6 sechs1,1 ∨ . . . ∨ sechs3,3
7 sieben1,1 ∨ . . . ∨ sieben3,3

8 acht1,1 ∨ . . . ∨ acht3,3
9 neun1,1 ∨ . . . ∨ neun3,3
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The formulae on the last slide are saying, that
1 The number 1 must appear somewhere in the
first square.

2 The number 2 must appear somewhere in the
first square.

3 The number 3 must appear somewhere in the
first square.

4 etc

Does that mean, that each number 1, . . . , 9
occurs exactly once in the first square?
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No! We have to say, that each number occurs
only once:
T ′1:

1 ¬(einsi,j ∧ zweii,j), 1 ≤ i, j ≤ 3,
2 ¬(einsi,j ∧ dreii,j), 1 ≤ i, j ≤ 3,
3 ¬(einsi,j ∧ vieri,j), 1 ≤ i, j ≤ 3,
4 etc
5 ¬(zweii,j ∧ dreii,j), 1 ≤ i, j ≤ 3,
6 ¬(zweii,j ∧ vieri,j), 1 ≤ i, j ≤ 3,
7 ¬(zweii,j ∧ fuenfi,j), 1 ≤ i, j ≤ 3,
8 etc

How many formulae are these?
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Second square: T2

1 eins1,4 ∨ . . . ∨ eins3,6
2 zwei1,4 ∨ . . . ∨ zwei3,6
3 drei1,4 ∨ . . . ∨ drei3,6
4 vier1,4 ∨ . . . ∨ vier3,6
5 fuenf1,4 ∨ . . . ∨ fuenf3,6
6 sechs1,4 ∨ . . . ∨ sechs3,6
7 sieben1,4 ∨ . . . ∨ sieben3,6

8 acht1,4 ∨ . . . ∨ acht3,6
9 neun1,4 ∨ . . . ∨ neun3,6

And all the other formulae from the previous
slides (adapted to this case): T ′2
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The same has to be done for all 9 squares.

What is still missing:
Rows: Each row should contain exactly the

numbers from 1 to 9 (no number twice).
Columns: Each column should contain exactly

the numbers from 1 to 9 (no number
twice).
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First Row: TRow 1

1 eins1,1 ∨ eins1,2 ∨ . . . ∨ eins1,9
2 zwei1,1 ∨ zwei1,2 ∨ . . . ∨ zwei1,9
3 drei1,1 ∨ drei1,2 ∨ . . . ∨ drei1,9
4 vier1,1 ∨ vier1,2 ∨ . . . ∨ vier1,9
5 fuenf1,1 ∨ fuenf1,2 ∨ . . . ∨ fuenf1,9
6 sechs1,1 ∨ sechs1,2 ∨ . . . ∨ sechs1,9
7 sieben1,1 ∨ sieben1,2 ∨ . . . ∨ sieben1,9

8 acht1,1 ∨ acht1,2 ∨ . . . ∨ acht1,9
9 neun1,1 ∨ neun1,2 ∨ . . . ∨ neun1,9
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Analogously for all other rows, eg.
Ninth Row: TRow 9

1 eins9,1 ∨ eins9,2 ∨ . . . ∨ eins9,9
2 zwei9,1 ∨ zwei9,2 ∨ . . . ∨ zwei9,9
3 drei9,1 ∨ drei9,2 ∨ . . . ∨ drei9,9
4 vier9,1 ∨ vier9,2 ∨ . . . ∨ vier9,9
5 fuenf9,1 ∨ fuenf9,2 ∨ . . . ∨ fuenf9,9
6 sechs9,1 ∨ sechs9,2 ∨ . . . ∨ sechs9,9
7 sieben9,1 ∨ sieben9,2 ∨ . . . ∨ sieben9,9

8 acht9,1 ∨ acht9,2 ∨ . . . ∨ acht9,9
9 neun9,1 ∨ neun9,2 ∨ . . . ∨ neun9,9

Is that sufficient? What if a row contains
several 1’s?
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First Column: TColumn 1

1 eins1,1 ∨ eins2,1 ∨ . . . ∨ eins9,1
2 zwei1,1 ∨ zwei2,1 ∨ . . . ∨ zwei9,1
3 drei1,1 ∨ drei2,1 ∨ . . . ∨ drei9,1
4 vier1,1 ∨ vier2,1 ∨ . . . ∨ vier9,1
5 fuenf1,1 ∨ fuenf2,1 ∨ . . . ∨ fuenf9,1
6 sechs1,1 ∨ sechs2,1 ∨ . . . ∨ sechs9,1
7 sieben1,1 ∨ sieben2,1 ∨ . . . ∨ sieben9,1

8 acht1,1 ∨ acht2,1 ∨ . . . ∨ acht9,1
9 neun1,1 ∨ neun2,1 ∨ . . . ∨ neun9,1

Analogously for all other columns.

Is that sufficient? What if a column contains
several 1’s?
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All put together:

TSudoku = T1 ∪ T ′1 ∪ . . . ∪ T9 ∪ T ′9
TRow 1 ∪ . . . ∪ TRow 9

TColumn 1 ∪ . . . ∪ TColumn 9
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Here is a more difficult one.

Table 4: A difficult Sudoku Sdifficult
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Example 2.16 (Wumpus)
A wumpus is moving around in a grid. A knight in shining armour
moves around and is looking for gold. The wumpus is trying to
kill him when they are on the same cell. The knight is also dying
when he enters a pit. Fortunately, in the cells adjacent to pits
there is a cold breeze. And in adjacent cells to the wumpus, there
is an incredible stench.
How should the knight behave?

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

1 2 3 4

1

2

3

4

START

Gold

Stench
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A
B
G

P
S

W

 = Agent
 = Breeze
 = Glitter, Gold

 = Pit
 = Stench

 = Wumpus

OK  = Safe square

V  = Visited

A

OK

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

OKOK
B

P?

P?A

OK OK

OK

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

V

(a) (b)
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BB P!

A

OK OK

OK

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

V

OK

W!

V
P!

A

OK OK

OK

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4  3,4  4,4

V

S

OK

W!

V

V V

B
S G

P?

P?

(b)(a)

S

A
B
G

P
S

W

 = Agent
 = Breeze
 = Glitter, Gold

 = Pit
 = Stench

 = Wumpus

OK  = Safe square

V  = Visited
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Language definition:
si,j stench on field 〈i, j〉
bi,j breeze on field 〈i, j〉
piti,j 〈i, j〉 is a pit
gli,j 〈i, j〉 glitters
wi,j 〈i, j〉 contains Wumpus

General knowledge:
¬s1,1 −→ (¬w1,1 ∧ ¬w1,2 ∧ ¬w2,1)
¬s2,1 −→ (¬w1,1 ∧ ¬w2,1 ∧ ¬w2,2 ∧ ¬w3,1)
¬s1,2 −→ (¬w1,1 ∧ ¬w1,2 ∧ ¬w2,2 ∧ ¬w1,3)

s1,2 −→ (w1,3 ∨ w1,2 ∨ w2,2 ∨ w1,1)
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Knowledge after the 3rd move:

¬s1,1 ∧ ¬s2,1 ∧ s1,2 ∧ ¬b1,1 ∧ b2,1 ∧ ¬b1,2

Question:

Can we derive that the wumpus is located at
〈1, 3〉?
Answer:

Yes. With any correct and complete calculus.
Because it is semantically entailed.

Prof. Dr. Jürgen Dix Clausthal, SS 2019 110



2 Sentential Logic (SL)
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We now formalize a ”Logelei“ (in order to solve it with a theorem
prover).

Example 2.17 (”Logelei“ from ”Die Zeit“ (1))
Alfred ist als neuer Korrespondent in Wongowongo. Er soll über
die Präsidentschaftswahlen berichten, weiß aber noch nichts über
die beiden Kandidaten, weswegen er sich unter die Leute begibt,
um Infos zu sammeln. Er befragt eine Gruppe von Passanten, von
denen drei Anhänger der Entweder-oder-Partei sind und drei
Anhänger der Konsequenten.
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”Logelei“ from ”Die Zeit“ (2)

Auf seinem Notizzettel notiert er stichwortartig die
Antworten.
A: »Nachname Songo: Stadt Rongo«,
B: »Entweder-oder-Partei: älter«,
C: »Vorname Dongo: bei Umfrage hinten«,
A: »Konsequenten: Vorname Mongo«,
B: »Stamm Bongo: Nachname Gongo«,
C: »Vorname Dongo: jünger«,
D: »Stamm Bongo: bei Umfrage vorn«,
E: »Vorname Mongo: bei Umfrage hinten«,
F: »Konsequenten: Stamm Nongo«,
D: »Stadt Longo: jünger«,
E: »Stamm Nongo: jünger«.
F: »Konsequenten: Nachname Gongo«.
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”Logelei“ from ”Die Zeit“ (3)

Jetzt grübelt Alfred. Er weiß, dass die Anhänger
der Entweder-oder-Partei (A, B und C) immer eine
richtige und eine falsche Aussage machen,
während die Anhänger der Konsequenten (D, E
und F) entweder nur wahre Aussagen oder nur
falsche Aussagen machen.
Welche Informationen hat Alfred über die beiden
Kandidaten?

(By Zweistein)
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Towards a solution

Selection of the language L (Prop).
Analysis and formalization of the problem.
Transformation to the input format of a prover.
Output of a solution, i.e. a model.
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Definition of the constants
surx,Songo ≡ x’s surname is Songo
surx,Gongo ≡ x’s surname is Gongo
firstx,Dongo ≡ x’s first name is Dongo
firstx,Mongo ≡ x’s first name is Mongo
tribex,Bongo ≡ x belongs to the Bongos
tribex,Nongo ≡ x belongs to the Nongos
cityx,Rongo ≡ x comes from Rongo
cityx,Longo ≡ x comes from Longo
seniorx ≡ x is the senior candidate
juniorx ≡ x is the junior candidate
worsex ≡ x’s poll is worse
betterx ≡ x’s poll is better

Here x is a candidate, i.e. x ∈ {a, b}. So we have 24
constants in total.
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The correspondent Alfred noted 12 statements
about the candidates (each interviewee gave 2
statements, φ, φ′) which we enumerate as follows

φA, φ
′
A, φB, φ

′
B, . . . , φF , φ

′
F ,

All necessary symbols are now defined, and we
can formalize the given statements.
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Formalization of the statements

φA ↔ (sura,Songo ∧ citya,Rongo)∨
(surb,Songo ∧ cityb,Rongo)

φ′A ↔ firstb,Mongo

φB ↔ seniora

φ′B ↔ (tribea,Bongo ∧ sura,Gongo)∨
(tribeb,Bongo ∧ surb,Gongo)

...
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Furthermore, explicit conditions between the
statements are given, e.g.

(φA ∧ ¬φ′A) ∨ (¬φA ∧ φ′A)

and
(φD ∧ φ′D) ∨ (¬φD ∧ ¬φ′D).

Analogously, for the other statements.

Is this enough information to solve the puzzle?
E.g., can the following formula be satisfied?

sura,Songo ∧ sura,Gongo
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We also need implicit conditions (axioms) which
are required to solve this problem.
It is necessary to state that each candidate has
only one name, comes from one city, etc.
We need the following background knowledge...

surx,Songo ↔ ¬surx,Gongo

firstx,Dongo ↔ ¬firstx,Mongo

...
worsex ↔ ¬betterx

Can we abstain from these axioms by changing
our representation of the puzzle?
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What is still missing?
Can we prove that when a’s poll is worse, then s’s
poll is better?
We need to state the relationships between these
attributes:

worsex ↔ bettery

seniorx ↔ juniory

Finally, we have modeled all “sensible”
information. Does this yield a unique model?

No! There are 6 models in total, but this is all
right. It just means there is no unique solution.
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What if a unique model is desirable?
Often, there are additional assumptions hidden
“between the lines”. Think, for example, of
deductions by Sherlock Holmes (or Miss Marple,
Spock, Monk etc).
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For example, it might be sensible to assume that
both candidates come from different cities:

cityx,Rongo ↔ cityy,Longo

Indeed, with this additional axiom there is an
unique model.

But, be careful...

... this additional information may not be
justified by the nature of the task!
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2.4 Hilbert Calculus
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Deriving formulae purely algorithmically

We have a clear undestanding of what it
means that “a formula follows or can be
deduced from a theory T”.

Can we automize that?

Can we find a procedure to systematically
derive new formulae?

In such a way that all formulae that do indeed
follow from T will be eventually derived?
Let us take inspiration of what mathematicians
have done since centuries!

Prof. Dr. Jürgen Dix Clausthal, SS 2019 124



2 Sentential Logic (SL)
2.4 Hilbert Calculus

Definition 2.18 (Hilbert-Type Calculi)

A Hilbert-Type calculus over a language L is a pair
〈Ax, Inf〉 where

Ax: is a subset of the set of L-formulae: they are
called axioms,

Inf: is a set of pairs written in the form

φ1, φ2, . . . , φn
ψ

where φ1, φ2, . . . , φn, ψ are from FmlSLL(Prop): they
are called inference rules.

Intuitively, we assume the axioms to be true and use the
inference rules to derive new formulae.
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Definition 2.19 (Calculus for Propositional Logic SL)

We define HilbertSLL = 〈{¬ϕ ∨ ϕ,¬�}, Inf〉, a Hilbert-Type
calculus for SL. The only axiom schema is ¬ϕ ∨ ϕ, the only
axiom is ¬�.
The set Inf of inference rules consists of the following four
schemata
Expansion: ϕ

ψ∨ϕ ,

Associativity: ϕ∨(ψ∨χ)
(ϕ∨ψ)∨χ ,

Shortening: ϕ∨ϕ
ϕ

,

Cut: ϕ∨ψ,¬ϕ∨χ
ψ∨χ .

(ϕ,ψ, χ stand for arbitrarily complex formulae (not just constants). They
represent schemata, rather than particular formulae in the language.)
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Definition 2.20 (Proof)

A proof of a formula ϕ from a theory T ⊆ FmlSLL(Prop) is a finite
sequence ϕ1, . . . , ϕn of formulae such that ϕn = ϕ and for all
i with 1 ≤ i ≤ n one of the following conditions holds:

ϕi is instance of the axiom schema, or of the form ¬�,
ϕi ∈ T ,
there is ϕl with l < i and ϕi is obtained from ϕl by
expansion, associativity, or shortening,

there is ϕl, ϕk with l, k < i and ϕi is obtained from ϕl, ϕk
by cut.

We write: T `SL ϕ (ϕ can be derived (or proved) from T ).
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We have now introduced two important notions:
Syntactic derivability `SL: the notion that certain

formulae can be derived (or proved)
from other formulae using a certain
calculus,

Semantic validity |=: the notion that certain
formulae follow (semantically) (or can
be deduced (are entailed)) from other
formulae based on the semantic notion
of a model.
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Definition 2.21 (Correct-, Completeness for a calculus)
Given an arbitrary calculus (which defines a notion `) and a
semantics based on certain models (which defines a
relation |=), we say that

Correctness: The calculus is correct with respect to the
semantics, if the following holds:

T ` φ implies T |= φ.

Completeness: The calculus is complete with respect to
the semantics, if the following holds:

T |= φ implies T ` φ.
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Lemma 2.22 (Corrrectness of HilbertSLL )

Let T be a (possibly infinite) theory and ϕ a formula over Prop.
Then T `SL ϕ implies that T |= ϕ.

I.e. each provable formula is also entailed!

Proof.
By induction on the structure of ϕ.
We have to show that

1 all instances of the axiom schema are valid, ¬� is
valid, and

2 for each inference rule the conjunction of the
premises entails its conclusion.
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We show a few simple facts that we need later to
prove completeness.
Lemma 2.23 (Some derivations)

1 `SL ¬�.
2 φ ∨ ψ `SL ψ ∨ φ.
3 ϕ `SL ϕ ∨ ψ.
4 φ ∨ ψ `SL ¬¬φ ∨ ψ.
5 ¬¬φ ∨ ψ `SL φ ∨ ψ.
6 {¬φ ∨ χ,¬ψ ∨ χ} `SL ¬(φ ∨ ψ) ∨ χ.

The first three are shown on blackboard 2.12.
(4) and (5) are exercise.
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Lemma 2.24 (Derived inference rules)

The following rules can be added to the calculus
without affecting the set of derivable
formulae. They are also called derived rules.

1 (Modus Ponens) χ,χ→ϕ
ϕ ,

2 (Commutativity) ψ∨ϕ
ϕ∨ψ ,

3 Let i1, i2, . . . , im ∈ {1, 2, . . . , n}. Then

(Gen. Expansion)
ϕi1 ∨ . . . ∨ ϕim
ϕ1 ∨ . . . ∨ ϕn
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Theorem 2.25 (Weak completeness)

Let ϕ1, . . . , ϕn and ϕ formulae over Prop.Then:
{ϕ1, . . . , ϕn} |= ϕ implies that {ϕ1, . . . , ϕn} `SL ϕ.
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Definition 2.26 ((In-) Consistency of a theory T )

A theory T is called consistent, if there is a
formula that can not be proved from it.

A theory T is called inconsistent, if it is not
consistent. I.e. from an inconsistent theory, all
formulae can be proved.

Consistency is a property of a calculus. It is often mixed up
with existence of a model (which it is often equivalent to).

Attention: Completeness

After we have proved the completeness theorem, we know
that inconsistent theories are exactly those that do not
posess any models (see Slide 83). But we do not know this
yet! It has to be proved.
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The key to prove completeness of our calculus is
based on the following

Theorem 2.27 (Deduction Theorem)

Let T be a theory and φ, ψ be formulae from
FmlSLL(Prop). Then the following holds

T `SL (φ→ ψ) if and only if T ∪ {φ} `SL ψ
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Proof.

One direction (left to right) is trivial: just an
application of Modus Ponens (which we have
shown to be a derived rule on Slide 132). The
other direction is by induction on the length of a
proof for ψ.
A proof of ψ from T ∪ {φ}might have used φ at
several places. The idea is to replace in each step
of the proof of ψ a formula η by φ→ η. This then
transforms the old proof into one of (φ→ ψ) in
T .
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An important consequence of the deduction
theorem is the following

Lemma 2.28 (Consistency and Derivability)

Let T be a theory and φ a formula from FmlSLL(Prop)

(both could be inconsistent). Then the following
holds

1 T `SL φ if and only if T ∪ {¬φ} is inconsistent.
2 T 6`SL φ if and only if T ∪ {¬φ} is consistent.
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Proof of Lemma 2.28.

The second statement follows trivially from the
first (contraposition).

Let T `SL φ. Adding ¬φ does not influence the
proof of φ, so T ∪ {¬φ} `SL φ. But, trivially,
T ∪ {¬φ} `SL ¬φ, so T ∪ {¬φ} is inconsistent.
Conversely, if T ∪ {¬φ} is inconsistent, then
T ∪ {¬φ} `SL φ (because any formula can be
derived). By the deduction theorem,
T `SL ¬φ→ φ, thus T `SL φ.
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Theorem 2.29 (Correct-, Completeness for HilbertSLL )

A formula follows semantically from a theory T if
and only if it can be derived:

T |= ϕ if and only if T `SL ϕ
Proof of the Correctness part of Theorem 2.29.

Correctness follows by induction on the length
of proofs: the axiom is valid and all four inference
rules have the property, that from their premises,
the conclusions follow. We have already discussed
this in Lemma 2.22.
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Proof of the Completeness part of Theorem 2.29.
To prove completeness, it is enough to show that each consistent
theory is satisfiable (because if T |= ϕ and not T `SL ϕ, then
T ∪ {¬ϕ} is consistent (why?), thus satisfiable: a contradiction).
Given a consistent theory T , how to construct a model for T? We
claim that the models of T are exactly the maximal consistent
extensions of T . Let ϕ0, ϕ1, . . . an enumeration of FmlSLL(Prop). We
construct the sequence Ti as follows: T0 := T ,

Ti+1 :=

{
Ti if Ti `SL ϕi,
Ti ∪ {¬ϕi} else.

Then
⋃∞
i=0 Ti is a maximal consistent extension of T :If it were

inconsistent, then there were a proof of �; this proof uses only finitely
many formulae; but then there is a n0 such that Tn0 contains all of them,
so Tn0 were inconsistent; but all Ti are consistent by Lemma 2.28! It is
maximal because ϕ0, ϕ1, . . . is an enumeration of FmlSLL(Prop).
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The following important result is equivalent to the
completeness theorem:

Corollary 2.30 (Compactness for HilbertSLL )

A formula follows from a theory T if and only if
it follows from a finite subset of T :

Cn(T ) =
⋃
{Cn(T ′) : T ′ ⊆ T, T ′finite}.
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Proof.

Derivability in a calculus means that there is a
proof, a finite object. Thus, by completeness, if a
formula follows from a (perhaps infinite) theory
T , there is a finite proof of it which involves only
finitely many formulae from T . Thus the formula
follows from these finitely many formulae.
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Satisfiability of a theory

The following equally important result is again a
corollary to the completeness theorem

Corollary 2.31 (Compactness for theories T )

Let T be a theory from FmlSLL(Prop). Then the
following are equivalent:

T is satisfiable,
each finite subset of T is satisfiable.
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2.5 Resolution Calculus
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Conjunctive Normal Form

We have already seen that each formula can be
written in conjunctive normal form.
Thus each formula can be identified with a set
of clauses.
We note that it is possible, that a clause is
empty: it is represented by �.
We also note that it is possible, that a
conjunction is empty. The empty conjunction
is obviously dual to the empty disjunction: it is
represented by ¬� (or by the macro >
introduced in Definition 2.3 on Slide 64).
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Language for the Resolution Calculus
How can we determine whether a disjunction

∨mi
j=1 φi,j is

satisfiable or not?

Definition 2.32 (Clauses, Language FmlclausalL )
A propositional formula of the form

∨mi
j=1 φi,j , where all φi,j are

constants or negated constants, is called a clause.

We also allow the empty clause, represented by �. Dually, ¬�
can be interpreted as the empty conjunction.

Given a signature Prop, determining a language L(Prop) or just L,
we denote by FmlclausalL(Prop), or just FmlclausalL the set of formulae
consisting of just clauses over Prop.
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Definition 2.33 (Set-notation of clauses)

A clause A ∨ ¬B ∨ C ∨ . . . ∨ ¬E can also be represented as a
set

{A,¬B,C, . . . ,¬E}.
Thus the set-theoretic union of such sets corresponds
again to a clause: {A,¬B} ∪ {A,¬C} represents A ∨ ¬B ∨ ¬C.
The empty set ∅ corresponds to the empty disjunction and
is represented by �.

But we know this already from Slides 52–54.
Note that we identify double occurrences implicitly by
using the set-notation: {A,A,B,C} = {A,B,C}.
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We define an inference rule on FmlclausalL :
Definition 2.34 (SL resolution)

Let C1, C2 be clauses and let X by any constant
from Prop. The following inference rule allows to
derive the clause C1 ∨C2 from C1 ∨X and C2 ∨¬X:

(Res)
C1 ∨ X, C2 ∨ ¬X

C1 ∨ C2

If C1 = C2 = ∅, then C1 ∨ C2 = �.
Compare with the Cut rule in Definition 2.19.
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If we use the set-notation for clauses, we can
formulate the inference rule as follows:
Definition 2.35 (SL resolution (Set notation))

Derive the clause C1 ∪ C2 from C1 ∪ {X} and
C2 ∪ {¬X}:

(Res)
C1 ∪ {X}, C2 ∪ {¬X}

C1 ∪ C2

In the rule C1 or C2 can be both empty, in which
case � is derived from X and ¬X. (Note, that we
identify the empty set ∅ with �.)
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Definition 2.36 (Resolution Calculus for SL)

We define the resolution calculus RobinsonSLLclausal

as the pair 〈∅, {Res}〉 operating on the set
FmlclausalL of clauses.
We denote the corresponding derivation
relation by `Res (in contrast to `SL induced by the
Hilbert calculus from Definition 2.19).

So there are no axioms at all and only one
inference rule.
The notion of a proof in this system is obvious:
it is literally the same as given in
Definition 2.19.
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Question:

Is this calculus correct and complete?

Answer:

It is correct, but not complete!

But “T |= φ” is equivalent to

“T ∪ {¬φ} is unsatisfiable”
or rather to

T ∪ {¬φ} `SL �.

Now in such a case, the resolution calculus is
powerful enough to derive �.
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Resolution calculus is not complete

Example 2.37 (Complete vs refutation complete)

We consider Prop = {a, b}. Obviously a |=SL a ∨ b
and a `SL a ∨ b. But a 6`RES a ∨ b.

The reason is that with a alone, there is no
possibility to derive a ∨ b with the resolution rule
(the premises are not fulfilled). Whereas when
¬(a ∨ b) is added, i.e. both ¬a and ¬b, then the
rules can be applied and lead to the derivation of
�.
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If T `SL ϕ does not imply T `Res ϕ.
If T `Res ϕ then also T `SL ϕ
(for ϕ ∈ FmlclausalL ).
But the following holds:

T ∪ {¬φ} `SL � if and only if T ∪ {¬φ} `Res �
We say that resolution is refutation complete.

Theorem 2.38 (Completeness of resolution refutation)

IfM is an unsatisfiable set of clauses then the
empty clause � can be derived in RobinsonSLLclausal .
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How to use the resolution calculus? (1)

Suppose we want to prove that T |= φ. Using the
Hilbert calculus, we could try to prove φ directly.
This is not possible for the resolution calculus, for
two different reasons:

it operates on clauses, not on arbitrary
formulae,
there is no completeness result in a form
similar to Theorem 2.29.
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How to use the resolution calculus? (2)

But we have refutation completeness (see
Theorem 2.38) of the resolution calculus, which
allows us to do the following:

1 We transform T ∪ {¬φ} into a set of clauses.

2 Then we apply the resolution calculus and try
to derive �. I.e. instead of T `res φ we try to
show T ∪ {¬φ} `res �.

3 If we succeed, we have shown T |= φ.

4 If we can show that the empty clause is not
derivable at all, then T 6|= φ.
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2 Sentential Logic (SL)
2.5 Resolution Calculus

How to use the resolution calculus? (3)
How to show that the empty clause is not derivable from a
theory T?

One could try to formally prove that no such derivation
is possible in the resolution calculus.
This could be done by a clever induction on the
structure of all possible derivations.
But this is often very complicated and far from trivial.
Just applying the calculus and not being able to derive
the empty clause is not enough (there might be other
ways).

The best way is to argue semantically: to show that there is
a model of T ∪ {¬φ} by giving a concrete valuation.
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3. Verification I: LT properties
3 Verification I: LT properties

Motivation
Basic transition systems
Interleaving and handshaking
State-space explosion
LT properties in general
LTL
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3 Verification I: LT properties

Content of this chapter (1):
In this chapter we explore ways to use SL for the verification of
reactive systems. First we need to model concurrent systems
using SL. This allows us to analyse a broad class of hardware and
software systems.
Transition Systems: They are the main underlying abstraction to

describe concurrent systems. We start with
asynchronous systems and then deal with
synchronization: interleaving, and handshaking. An
important classic example that we discuss is the
dining philosophers problem.

LT properties: Which properties of the concurrent systems that
we introduced do we want to verify? It turns out that
many interesting conditions are linear temporal
properties. Among them are fairness, safety as well
as starvation and deadlock-freeness.
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Content of this chapter (2):
LTL: This is an extension of SL to formulate

linear-temporal properties within a logic. Given a
model and a LTL formula, checking whether the
formula is satisfied in the model is called LTL model
checking. We describe and discuss this method in
detail.

CTL, timed CTL: These are nontrivial extensions of LTL and allow
us to express much more interesting properties.
However, these are too advanced and will not be
dealt with in this course.
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3.1 Motivation
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3 Verification I: LT properties
3.1 Motivation

The need for verification
System Verification 5

Analysis Conceptual
Design Programming Unit Testing Operation

0

Time (non-linear)

errors errors
detected

cost of
correction
per error
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System Testing
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Figure 1.3: Software lifecycle and error introduction, detection, and repair costs [275].

About 50% of all defects are introduced during programming, the phase in which actual
coding takes place. Whereas just 15% of all errors are detected in the initial design stages,
most errors are found during testing. At the start of unit testing, which is oriented to
discovering defects in the individual software modules that make up the system, a defect
density of about 20 defects per 1000 lines of (uncommented) code is typical. This has
been reduced to about 6 defects per 1000 code lines at the start of system testing, where
a collection of such modules that constitutes a real product is tested. On launching a new
software release, the typical accepted software defect density is about one defect per 1000
lines of code lines1.

Errors are typically concentrated in a few software modules – about half of the modules
are defect free, and about 80% of the defects arise in a small fraction (about 20%) of
the modules – and often occur when interfacing modules. The repair of errors that are
detected prior to testing can be done rather economically. The repair cost significantly
increases from about $ 1000 (per error repair) in unit testing to a maximum of about
$ 12,500 when the defect is demonstrated during system operation only. It is of vital
importance to seek techniques that find defects as early as possible in the software design
process: the costs to repair them are substantially lower, and their influence on the rest
of the design is less substantial.

Hardware Verification Preventing errors in hardware design is vital. Hardware is
subject to high fabrication costs; fixing defects after delivery to customers is difficult, and
quality expectations are high. Whereas software defects can be repaired by providing

1For some products this is much higher, though. Microsoft has acknowledged that Windows 95 contained
at least 5000 defects. Despite the fact that users were daily confronted with anomalous behavior, Windows
95 was very successful.

Figure 3.9: Errors in software development
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3.1 Motivation

The need for verification

System Verification 3

Hard- and Software Verification

System verification techniques are being applied to the design of ICT systems in a more
reliable way. Briefly, system verification is used to establish that the design or product
under consideration possesses certain properties. The properties to be validated can be
quite elementary, e.g., a system should never be able to reach a situation in which no
progress can be made (a deadlock scenario), and are mostly obtained from the system’s
specification. This specification prescribes what the system has to do and what not,
and thus constitutes the basis for any verification activity. A defect is found once the
system does not fulfill one of the specification’s properties. The system is considered
to be “correct” whenever it satisfies all properties obtained from its specification. So
correctness is always relative to a specification, and is not an absolute property of a
system. A schematic view of verification is depicted in Figure 1.2.

Design Process

bug(s) found

no bugs found

product or
prototype

properties

specification
system

Verification

Figure 1.2: Schematic view of an a posteriori system verification.

This book deals with a verification technique called model checking that starts from a
formal system specification. Before introducing this technique and discussing the role
of formal specifications, we briefly review alternative software and hardware verification
techniques.

Software Verification Peer reviewing and testing are the major software verification
techniques used in practice.

A peer review amounts to a software inspection carried out by a team of software engineers
that preferably has not been involved in the development of the software under review. The

Figure 3.10: Overall approach
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3.1 Motivation

Inference Tasks: The Three Questions
The semantical perspective allows us to think about the
following inference tasks:

Inference Tasks
Model Checking: Given ϕ and a modelM, does the

formula correctly describe this model?

Satisfiability Checking: Given ϕ, does there exist a
model in which the formula is true?

Validity Checking: Given ϕ, is it true in all models?
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3.1 Motivation

Model Checking

This is the simplest of the three tasks.
Nevertheless it is useful, e.g. for hardware
verification.

Example 3.1

Think of a modelM as amathematical picture of
a chip. A logical description ϕmight define some
security issues. IfM fulfills ϕ, then this means that
the chip will be secure wrt. these issues.
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3.1 Motivation

Model checking for simple SL

Given a model v and a description ϕ.
Is v |= ϕ true?

Example 3.2

Given a model v in which a is true and b is false.
Is ϕ := (a ∨ ¬b)→ b true?
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3.1 Motivation

Model checking

system requirement

formal model formal specification

model checking
algorithm

true

false 

counterexample

flaw in system

model checker

formalization

informal problem

Figure 3.11: Model Checking
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3.1 Motivation

Satisfiability Checking

One can interpret the description as a constraint.
Is there anything that matches this description?
We have to create model after model until we find one
that satisfies ϕ.
In the worst case we have to generate all models.

A good example is our sudoku problem.

Satisfiability Checking for SL

Given a description ϕ. Is there a model v s.t. v |= ϕ is true?
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3.1 Motivation

Validity Checking

The intuitive idea is that we write down a set of all our
fundamental and indisputable axioms.
Then, with this theory, we derive new formulae.

Example 3.3
Mathematics: We are usually given a set of axioms.
E.g. Euclid’s axioms for geometry. We want to prove
whether a certain statement follows from this set, or can
be derived from it.

Validity Checking for SL

Given a description ϕ. Does v |= ϕ hold for all models v?
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3.2 Basic transition systems
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3.2 Basic transition systems

What is an appropriate abstraction to model
hardware and software systems?

 transition systems.
Easy: processes run completely
autonomously.
Difficult: processes communicate with each
other.
Main notion is a state: this is exactly what we
called a model in Chapter 2.
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3.2 Basic transition systems

Definition 3.4 (Transition system)
A transition system TS is a tuple 〈S,Act,−→, I,Prop, π〉
where

S is a set of states, denoted by s1, s2, . . .,
Act is a set of actions, denoted by α, β, γ, . . .,
−→ ⊆ S× Act× S is a transition relation,
I ⊆ S is the set of initial states,
Prop is a set of atomic propositions, and
π : S→ 2Prop is a labelling (or valuation).

A TS is finite if, by definition, S, Act and Prop are all finite.

This is in accordance with LSL. States are what we called
models. A labelling corresponds to a set of valuations. The
new feature is that we can move between states by means
of actions: instead of 〈s, α, s′〉 we write s α−→ s′.
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3.2 Basic transition systems

Example 3.5 (Beverage Vending Machine)
A machine delivers soda or beer after a coin has been inserted. A
possible TS is:

Prop = {pay, soda, beer, select},
S = {spay, sbeer, ssoda, sselect}, I = {spay},
Act = {αinsert-coin, αget-soda, αget-beer, τ},
the transitions: spay

αinsert-coin−−−−−→ sselect, sbeer
αget-beer−−−−→ spay,

ssoda
αget-soda−−−−−→ spay, sselect

τ−→ sbeer, sselect
τ−→ ssoda.
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3.2 Basic transition systems

Beverage Vending Machine (cont.)

soda select beer

pay

insert_coin

get_beerget_soda

⌧
⌧

Figure 3.12: TS of a beverage vending machine
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3.2 Basic transition systems

Simple Beverage Vending Machine (cont.)

Note that the machine nondeterministically chooses beer or
soda after a coin has been inserted. Nondeterminism can be
seen as implementation freedom.
Often we choose Prop = S, so that the labelling function is
very simple: π(s) = {s}.
When some properties do not refer to particular constants,
we can also choose Prop ( S and π(s) = {s} ∩ Prop.
We can also choose Prop and S independently. “The
machine only delivers a drink after a coin has been
inserted”. We choose Prop = {paid, drink} with labelling
function: π(spay) =def ∅, π(ssoda) =def π(sbeer) =def

{paid, drink}, π(sselect) =def {paid}.
Sometimes we want to abstract away from particular actions
(internal actions of the machine not of any interest), like
τ1, τ2. In that case, we use the symbol τ for all such actions.

Prof. Dr. Jürgen Dix Clausthal, SS 2019 174



3 Verification I: LT properties
3.2 Basic transition systems

Simple Hardware Circuit
We consider the hardware circuit diagram below. Next to it is the
corresponding transition system TS .

XOR

OR

NOT

r

x y x = 0, r = 0 x = 1, r = 0

x = 0, r = 1 x = 1, r = 1

{y} {x}

{r} {x,r,y}

Figure 3.13: TS of a hardware circuit
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3.2 Basic transition systems

Example 3.6 (Simple Hardware Circuit)

Here we are dealing with boolean variables: input
x, output y and register r. They can be easily
treated within Prop.

A state is determined by the contents of x and
register r: sx=0,r=0, sx=0,r=1, sx=1,r=0, sx=1,r=1.
Prop =def {x, r, y}.
The labelling is given by π(sx=0,r=0) = {y},
π(sx=0,r=1) = {r}, π(sx=1,r=0) = {x},
π(sx=1,r=1) = {x, r, y}.
One could also use Prop =def {x, y} and
modify π accordingly.
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3.2 Basic transition systems

Successor/predeccessor, terminal states

Successor (resp. predeccessor) states of a given
state s in a transition system TS are important.
They are determined by all outgoing (resp.
ingoing) transitions.

Post(s) =def

⋃
α∈Act Succ(s, α), where

Succ(s, α) =def {s′ : s
α−→ s′}.

Pre(s) =def

⋃
α∈Act Anc(s, α), where

Anc(s, α) =def {s′ : s′
α−→ s}.

A terminal state s is a state without any outgoing
transitions: Post(s) = ∅.
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3.2 Basic transition systems

Determinism/indeterminism
We already discussed the indeterminism of transition
systems on Slide 174. It is similar to the indeterministic
choice in a proof-calculus: there are many paths that are
proofs.

Sometimes the observable behaviour is deterministic.
How can we formalize that?
Level of actions versus level of states.

Definition 3.7 (Deterministic transition system)
A transition system TS is called

action-deterministic, if, by definition, |I| ≤ 1 and for
all s ∈ S and α ∈ Act: |Succ(s, α)| ≤ 1.
Prop-deterministic, if, by definition, |I| ≤ 1 and for all
s ∈ S and T ⊆ Prop: |Post(s) ∩ {s′ ∈ S : π(s′) = T}| ≤ 1.
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3.2 Basic transition systems

Executions
The informal working of a transition system is clear. How
can we formally describe it and work with it?

An execution of a TS is a (usually infinite) sequence of
states and actions starting in an initial state and built
using the transition relation of TS .
We require the sequence to be maximal, i.e. it either
ends in a terminal state or it is infinite.
Sometimes we also consider initial fragments of an
execution.
Reachable states are those states of TS that can be
reached with initial fragments of executions.
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3.2 Basic transition systems

Executions/Reachable states

Definition 3.8 (Executions and reachable states)

Given a transition system TS , an execution (or run) is an
alternating sequence of states and actions, written
s0α1s1α2 . . . αnsn . . . or

s0
α1−→ · · · αn−→ sn · · ·

satisfying:
s0 ∈ I,
si

αi+1−−→ si+1 for all i,
either (1) the sequence is finite and ends in a terminal
state, or (2) the sequence is infinite.

A state s ∈ S is called reachable, if there is a finite initial
fragment of an execution that ends in the state s.
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3.2 Basic transition systems

Example 3.9 (Extended beverage vending machine)

The extended machine counts the number of bottles available
and returns the coin if it is empty. It also refills automatically if
there are no bottles left.

We need more complex transitions: conditional transitions,
e.g. select ↪

nsoda=0∧nbeer=0: ret-coin−−−−−−−−−−−−−−−−−→ start,

select ↪
nsoda
0: sget−−−−−−−−−→ start, select ↪

nbeer
0: bget−−−−−−−−−→ start,
start ↪

t: coin−−−−→ select, start ↪
t: refill−−−−→ start.

sget and bget decrement the numbers nsoda and nbeer by
one, refill sets it to the maximum value max.
This leads to the notion of a program graph.
Such a graph can be unfolded to a transition system TS.
So we end up with model checking transition systems.

Prof. Dr. Jürgen Dix Clausthal, SS 2019 181



3 Verification I: LT properties
3.2 Basic transition systems

The extended beverage
vending machine has
been introduced in Ex-
ample 3.9 on Slide 181.
It counts the number of
bottles and returns the
coin if it is empty. Setting
max to 2 we get the un-
folded transition system
depicted on the right.

start

select

start start

select select

start
start start

selectselect select

start start

select select

start

select

refill

refill

refill

coin

coin coin

coin
coin

coin

coin coin

coinret_coin

beer soda

sget

sget

sget

sget

sget bget

bget

bget

bget

bget

Figure 3.14: TS of the extended
beverage vending machine
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Program graph

Instead of a TS , a program graph PG is the
right notion, as it deals with conditional
transitions and allows variables Var.
The role of Prop and the labelling function π is
taken over by an evaluation function Eval, that
assigns values to the typed variables in Var
(see Definition 3.10).
The program graph is a directed graph, the
nodes of which are called locations: they take
the role of the states in a TS .
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Program graph

Definition 3.10 (Program graph)

A program graph PG over a set of typed variables Var is a
directed graph where the edges are labelled with conditions and
actions: it is a tuple 〈Loc,Act,Effect, ↪→, Loc0,Prop, g0〉 where

Loc is a set of locations, denoted by l1, l2, . . .,
Act is a set of actions, denoted by α, β, γ, . . .,
Eval(Var) is the set of all assignments % of values to
variables in Var (compatible with their type).
Effect : Act× Eval(Var)→ Eval(Var) takes an assignment %,
applies action α and computes the resulting assignment %′.
↪→ ⊆ Loc× Cond(Var)× Act× Loc is a conditional transition
relation,
Loc0 ⊆ Loc is the set of initial locations,
g0 ∈ Cond(Var) is the initial condition.
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Boolean conditions over Var

Cond(Var) is the set of all boolean conditions over Var.
E.g.:

(−3 ≤ x � 5) ∧ (y = blue) ∨ (z = �)

How can we define these conditions formally?
Assume we consider variables x1, . . . , xn of particular
types ranging over domains dom1, . . . , domn. For
1 ≤ i ≤ n let Di ⊆ domi. We consider the set PropVar of
sentential constants of the form “px∈Di

” (for arbitrary i,
and variable x of type i and Di). px∈Di

is true whenever
the actual value of x is indeed in Di, otherwise it is false.
Then Cond(Var) is the set of all SL formulae over
PropVar.
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PG of extended beverage vending machine

Var: nsoda, nbeer, with domain {0, 1, . . . ,max};
Loc: start, select;
Act: bget, sget, coin, ret-coin, refill;

Effect: 〈coin, η〉 7→ η, 〈ret-coin, η〉 7→ η,
〈sget, η〉 7→ η[nsoda− 1/nsoda],
〈bget, η〉 7→ η[nbeer− 1/nbeer],
〈refill, η〉 7→ η′, where η′(nsoda) := η′(nbeer) := max.

↪→: obvious from Figure 3.14,
Loc0: start,
g0: nsoda = max ∧ nbeer = max.
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Synchronous product

Often there exists a central clock that allows
two transition systems to be synchronized.
e.g. synchronous hardware circuits.

This leads to the synchronous product
TS1 ⊗ TS2 of two transition systems: both
systems have to perform all steps in a
synchronous fashion.
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Synchronous product (cont.)

Definition 3.11 (Synchronous product: TS1 ⊗ TS2)

Given two transition systems TS1, TS2 (〈Si,Act,−→i, Ii,Propi, πi〉,
i = 1, 2) with a common set of actions Act, we define the
synchronous product TS1 ⊗ TS2 by

〈S1 × S2,Act,−→, I1 × I2,Prop1 ∪ Prop2, π〉

where the labelling π and −→ are defined by
π(〈s1, s2〉) =def π1(s1) ∪ π2(s2),
〈s1, s2〉 α?β−−→ 〈s′1, s′2〉 if, by definition, s1

α−→1 s
′
1 and s2

β−→2 s
′
2.

? is a mapping from Act× Act into Act that assigns to each pair
〈α, β〉 an action α ? β.

? is usually assumed to be commutative and associative. Often action names are
irrelevant (e.g. for hardware circuits), so they do not play any role in such cases.
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Synchronous product

There is no autonomy, as in the interleaving
operator to be introduced below in
Definition 3.14 on Slide 198.
Normally, when asynchronous systems are
represented by transition systems, one does
not make any assumptions about how long
the processes take for execution. Only that
these are finite time intervals.
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Synchronous product

Example 3.12 (Synchronous product of two circuits)

We consider the following circuits. The first one
has no input variables (output is y defined by r1

and register transition ¬r1), the second one has
input x, and output y′ defined by x ∨ r2 and
register transition x ∨ r2 .76 Modelling Concurrent Systems

r1

NOT

y
OR

r2

y′x

0

1

00 01

10 11

TS2 :TS1 :

000 100

010

101 001

111 011

110

TS1 ⊗ TS2 :

Figure 2.23: Synchronous composition of two hardware circuits.

be a mapping4 that assigns to each pair of actions α,β, the action name α ∗ β. The
synchronous product TS1 ⊗ TS2 is given by:

TS1 ⊗ TS2 = (S1 × S2,Act,→, I1 × I2,AP1 ∪ AP2, L),

where the transition relation is defined by the following rule

s1
α−−→ 1 s′

1 ∧ s2
β−−→ 2 s′

2

〈s1, s2〉 α∗β−−−→ 〈s′
1, s

′
2〉

and the labeling function is defined by: L(〈s1, s2〉) = L1(s1) ∪ L2(s2).

Action α∗β denotes the synchronous execution of actions α and β. Note that compared to
the parallel operator ‖ where components perform actions in common synchronously, and
other action autonomously (i.e., asynchronously), in TS1 ⊗ TS2, both transition systems
have to perform all steps synchronously. There are no autonomous transitions of either
TS1 or TS2.

4Operator ∗ is typically assumed to be commutative and associative.
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Synchronous product

The corresponding transition systems are:

76 Modelling Concurrent Systems

r1

NOT

y
OR

r2

y′x

0

1

00 01
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TS2 :TS1 :

000 100

010

101 001

111 011

110

TS1 ⊗ TS2 :

Figure 2.23: Synchronous composition of two hardware circuits.

be a mapping4 that assigns to each pair of actions α,β, the action name α ∗ β. The
synchronous product TS1 ⊗ TS2 is given by:

TS1 ⊗ TS2 = (S1 × S2,Act,→, I1 × I2,AP1 ∪ AP2, L),

where the transition relation is defined by the following rule

s1
α−−→ 1 s′

1 ∧ s2
β−−→ 2 s′

2

〈s1, s2〉 α∗β−−−→ 〈s′
1, s

′
2〉

and the labeling function is defined by: L(〈s1, s2〉) = L1(s1) ∪ L2(s2).

Action α∗β denotes the synchronous execution of actions α and β. Note that compared to
the parallel operator ‖ where components perform actions in common synchronously, and
other action autonomously (i.e., asynchronously), in TS1 ⊗ TS2, both transition systems
have to perform all steps synchronously. There are no autonomous transitions of either
TS1 or TS2.

4Operator ∗ is typically assumed to be commutative and associative.
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Synchronous product

The synchronous product of Example 3.12 is:

76 Modelling Concurrent Systems

r1

NOT
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y′x
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TS2 :TS1 :
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110

TS1 ⊗ TS2 :

Figure 2.23: Synchronous composition of two hardware circuits.

be a mapping4 that assigns to each pair of actions α,β, the action name α ∗ β. The
synchronous product TS1 ⊗ TS2 is given by:

TS1 ⊗ TS2 = (S1 × S2,Act,→, I1 × I2,AP1 ∪ AP2, L),

where the transition relation is defined by the following rule

s1
α−−→ 1 s′

1 ∧ s2
β−−→ 2 s′

2

〈s1, s2〉 α∗β−−−→ 〈s′
1, s

′
2〉

and the labeling function is defined by: L(〈s1, s2〉) = L1(s1) ∪ L2(s2).

Action α∗β denotes the synchronous execution of actions α and β. Note that compared to
the parallel operator ‖ where components perform actions in common synchronously, and
other action autonomously (i.e., asynchronously), in TS1 ⊗ TS2, both transition systems
have to perform all steps synchronously. There are no autonomous transitions of either
TS1 or TS2.

4Operator ∗ is typically assumed to be commutative and associative.

Figure 3.15: Synchronous product of two circuits
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3.3 Interleaving and handshaking
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Interleaving independent processses

How can we merge two completely independent
transition systems? (Think of finite state
automata!)

Consider traffic lights that can simply switch
between green and red .
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Interleaving independent processses (cont.)

Example 3.13 (Two independent traffic lights)

Two independent traffic lights on two roads.
Parallelism and Communication 37

TrLight1
red

green

TrLight2
red

green

TrLight1 ||| TrLight2 red red

green red

green green

red green

Figure 2.4: Example of interleaving operator for transition systems.

modeling a red light, the other one modeling a green light (see upper part of Figure 2.4).
The transition system of the parallel composition of both traffic lights is sketched at the
bottom of Figure 2.4 where ||| denotes the interleaving operator. In principle, any form
of interlocking of the “actions” of the two traffic lights is possible. For instance, in the
initial state where both traffic lights are red, there is a non-deterministic choice between
which of the lights turns green. Note that this nondeterminism is descriptive, and does
not model a scheduling problem between the traffic lights (although it may seem so).

An important justification for interleaving is the fact that the effect of concurrently ex-
ecuted, independent actions α and β, say, is identical to the effect when α and β are
successively executed in arbitrary order. This can symbolically be stated as

Effect(α |||β, η) = Effect((α ; β) + (β ; α), η)

where the operator semicolon ; stands for sequential execution, + stands for nondetermin-
istic choice, and ||| for the concurrent execution of independent activities. This fact can
be easily understood when the effect is considered from two independent value assignments

Figure 3.16: TS of two independent traffic lights
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Interleaving independent processses (cont.)
The result should be:

green green

red red

green red red green

TrLight1 TrLight2

Figure 3.17: TS of two traffic lights
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Interleaving independent processses

The result of interleaving the following processes
is also obvious.

x = 0 y = 7

x = 1 y = 5

↵ � x = 1, y = 7 x = 0, y = 5

x = 0, y = 7

x = 1, y = 5

↵

↵
�

�

=

Figure 3.18: TS of two independent processes
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Definition 3.14 (Interleaving: TS1 9 TS2)

Given two transition systems TS1, TS2

(〈Si,Acti,−→i, Ii,Propi, πi〉, i = 1, 2) we define the
interleaved transition system TS1 9 TS2 by

〈S1 × S2,Act1 ∪ Act2,−→, I1 × I2,Prop1 ∪ Prop2, π〉

where the labelling π and −→ are defined by
π(〈s1, s2〉) =def π1(s1) ∪ π2(s2),

〈s1, s2〉 α−→ 〈s′1, s′2〉 if, by definition, s1
α−→1 s

′
1 or

s2
α−→2 s

′
2.

In contrast to the synchronous product (Definition 3.11 on
Slide 188) there is no clock: executions do not depend on time.
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Shared variables
The examples on Slides 196 and 197 are simple, because there are
no shared variables.
What happens, if we do the same construction in the following
example:

x = 3 x = 3

x = 6 x = 4

↵ � x = 6, x = 3 x = 3, x = 4

x = 3, x = 3

x = 6, x = 4

↵

↵
�

�

=

Figure 3.19: TS of processes with shared variable
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Semaphores

Example 3.15 (Mutex via a semaphore)

Two processes P1 and P2 have access to a binary variable y,
a semaphore. Value 0 of y means the semaphore is
possessed by one process, value 1 means it is free.

Each process Pi is in one of three states:
noncriti,waiti, criti.
There is a transition from noncriti to waiti and from
waiti to criti but the last one only when y is 1 (then the
transition fires and the value is set to 0).
There is a transition from criti to noncriti and y is set to
1.

How can we model this as a TS?
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Semaphores (cont.)

We first model it as program graphs.Parallelism and Communication 43

wait1

crit1

noncrit1

y := y+1

y := y−1
y > 0 :

wait2

crit2

noncrit2

y := y + 1

y := y − 1
y > 0 :

PG1 : PG2 :

Figure 2.6: Individual program graphs for semaphore-based mutual exclusion.

Example 2.24. Mutual Exclusion with Semaphores

Consider two simplified processes Pi, i=1, 2 of the form:

Pi loop forever
... (* noncritical actions *)
request
critical section
release
... (* noncritical actions *)
end loop

Processes P1 and P2 are represented by the program graphs PG1 and PG2, respectively,
that share the binary semaphore y. y=0 indicates that the semaphore—the lock to get
access to the critical section—is currently possessed by one of the processes. When y=1,
the semaphore is free. The program graphs PG1 and PG2 are depicted in Figure 2.6.

For the sake of simplicity, local variables and shared variables different from y are not
considered. Also, the activities inside and outside the critical sections are omitted. The
locations of PGi are noncriti (representing the noncritical actions), waiti (modeling the
situation in which Pi waits to enter its critical section), and criti (modeling the critical
section). The program graph PG1 |||PG2 consists of nine locations, including the (unde-
sired) location 〈crit1, crit2〉 that models the situation where both P1 and P2 are in their
critical section, see Figure 2.7.

When unfolding PG1 |||PG2 into the transition system TSSem = TS(PG1 |||PG2) (see
Figure 2.8 on page 45), it can be easily checked that from the 18 global states in TSSem

Figure 3.20: Semaphores and program graphs
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Interleaved program graph

A construction similar to Definition 3.14 yields an
interleaved program graph44 Modelling Concurrent Systems

〈wait1, noncrit2〉 〈noncrit1, wait2〉

〈noncrit1, noncrit2〉

〈wait1, wait2〉〈crit1, noncrit2〉 〈noncrit1, crit2〉

〈crit1, wait2〉 〈wait1, crit2〉

〈crit1, crit2〉

y > 0 :
y := y−1

y := y+1 y := y+1

y := y+1y := y+1

y := y−1y := y−1
y > 0 :y > 0 : y := y+1

PG1 ||| PG2 :

Figure 2.7: PG1 |||PG2 for semaphore-based mutual exclusion.

only the following eight states are reachable:

〈noncrit1,noncrit2, y = 1〉 〈noncrit1,wait2, y = 1〉
〈wait1,noncrit2, y = 1〉 〈wait1,wait2, y = 1〉
〈noncrit1, crit2, y = 0〉 〈crit1,noncrit2, y = 0〉
〈wait1, crit2, y = 0〉 〈crit1,wait2, y = 0〉

States 〈noncrit1,noncrit2, y = 1〉, and 〈noncrit1, crit2, y = 0〉 stand for examples of sit-
uations where both P1 and P2 are able to concurrently execute actions. Note that in
Figure 2.8 n stands for noncrit, w for wait, and c for crit. The nondeterminism in these
states thus stand for interleaving of noncritical actions. State 〈crit1,wait2, y = 0〉, e.g.,
represents a situation where only PG1 is active, whereas PG2 is waiting.

From the fact that the global state 〈crit1, crit2, y = . . .〉 is unreachable in TSSem , it follows
that processes P1 and P2 cannot be simultaneously in their critical section. The parallel
system thus satisfies the so-called mutual exclusion property.

In the previous example, the nondeterministic choice in state 〈wait1,wait2, y = 1〉 rep-
resents a contention between allowing either P1 or P2 to enter its critical section. The
resolution of this scheduling problem—which process is allowed to enter its critical section
next?—is left open, however. In fact, the parallel program of the previous example is
“abstract” and does not provide any details on how to resolve this contention. At later
design stages, for example, when implementing the semaphore y by means of a queue of
waiting processes (or the like), a decision has to be made on how to schedule the processes
that are enqueued for acquiring the semaphore. At that stage, a last-in first-out (LIFO),

Figure 3.21: Interleaving program graphs
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Unfolding program graph into TS

Here is the transition system that we obtain from
Figure 3.21
Linear-Time Behavior 99

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

Figure 3.6: Transition system of semaphore-based mutual exclusion algorithm.

other process is no longer in its critical section. Situations in which one process is in its
critical section whereas the other is moving from the noncritical state to the waiting state
are impossible.

The path π in the state graph of TSSem where process P1 is the first to enter its critical
section is of the form

π = 〈n1, n2, y = 1〉 → 〈w1, n2, y = 1〉 → 〈c1, n2, y = 0〉 →
〈n1, n2, y = 1〉 → 〈n1, w2, y = 1〉 → 〈n1, c2, y = 0〉 → . . .

The trace of this path is the infinite word:

trace(π) = ∅ ∅ { crit1 } ∅ ∅ { crit2 } ∅ ∅ { crit1 } ∅ ∅ { crit2 } . . . .

The trace of the finite path fragment

π̂ = 〈n1, n2, y = 1〉 → 〈w1, n2, y = 1〉 → 〈w1, w2, y = 1〉 →
〈w1, c2, y = 0〉 → 〈w1, n2, y = 1〉 → 〈c1, n2, y = 0〉

is trace(π̂) = ∅ ∅ ∅ { crit2 } ∅ { crit1 }.

Figure 3.22: The final transition system
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Semaphores (cont.)

The transition system does not contain
anymore the critical state (because it is not
reachable). The system satisfies the mutual
exclusion property.

But it is possible that both processes are at the
same time in the waiting state: this is a
deadlock situation that should be avoided (by
an appropriate scheduling algorithm to
implement the nondeterministic choice).
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What have we achieved so far?

Interleaving of transition systems works well
for independent systems.

It is not appropriate when synchronization of
certain parts is essential.

Instead of a TS , the program graph PG
(introduced in Definition 3.10 on Slide 184) is
the right notion, as it deals with conditional
transitions and allows shared variables Var.

We have just seen that shared variable
communication (e.g. semaphores) can be used
to model synchronization.
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What have we achieved so far? (cont.)

An interleaving of program graphs can be
defined similarly to Definition 3.14: see
Slide 202.

This interleaved graph can again be unfolded
to a transition system TS : see Slide 203.

We end up again with model checking
transition systems.

We are now introducing another method for
modelling synchronization: handshaking, a
refined version of interleaving on the level of
transition systems (not program graphs).
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From interleaving to handshaking

Concurrent processes that need to interact
can do so in a synchronous fashion via
handshaking.
Sometimes one process has to wait for the
other to finish: they have to synchronize.
We introduce a set of distinguished
handshake actions H.

We define a transition system TS1‖HTS2 that
takes into account the handshakes in H.

For an empty set H we get back our notion of
an interleaved transition system TS1 9 TS2.
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Example 3.16 (Traffic junction)

We consider a traffic junction with two traffic lights. Both
switch from green to red and green etc., but in a
synchronized way: when one is green the other one should
be red (to avoid accidents).

Figure 3.23: Traffic junction
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Traffic junction

Figure 3.24: Traffic junction

The interleaved system TrLight1 9 TrLight1does not work
anymore!
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Example 3.17 (Railroad crossing)

A railroad crossing consists of a train, a gate and a controller.
An approaching train sends a signal so that the gates have
to be closed. The gates open again only when another
signal, indicating that the train has passed, has been sent.

far near

in

approachapproach

enterexit

Train

0

1

2

3

approach raise

exitlower

up

down

lower raise

Controller Gate

Figure 3.25: Components of Railroad crossing
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Mutual exclusion in general

Suppose we have two processes P1, P2 with
shared variables.

When they are operating on these shared
variables, they are in a critical phase.
Otherwise they are in an uncritical phase.
We assume the processes alternate between
critical and noncritical phases (infinitely
often).
The problem is to avoid concurrency when
both are in critical phases.
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Mutual exclusion in general (cont.)

Mutual exclusion algorithms are scheduling
algorithms to ensure that no critical actions
are executed in parallel.

One of the most prominent solutions is
Peterson’s mutex algorithm.

As Peterson’s algorithm is based on the
interleaving of program graphs (which we
have not formally introduced but illustrated on
Slides 201—203), we introduce a variant based
on ‖H between transition systems.
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Definition 3.18 (Handshaking: TS1‖HTS2)

For transition systems TS1, TS2 (〈Si,Acti,−→i, Ii,Propi, πi〉),
H ⊆ Act1 ∩ Act2 and τ 6∈ H, we define the transition system
with handshaking TS1‖HTS2 by

〈S1 × S2,Act1 ∪ Act2,−→, I1 × I2,Prop1 ∪ Prop2, π〉

where the labelling π and α−→ are defined by
π(〈s1, s2〉) =def π1(s1) ∪ π2(s2),
for α 6∈ H, α−→ is defined as in Definition 3.14,
for α ∈ H, 〈s1, s2〉 α−→ 〈s′1, s′2〉 if, by definition, s1

α−→1 s
′
1,

and s2
α−→2 s

′
2.

When H = Act1 ∩ Act2, we simply write TS1‖TS2 instead of
TS1‖HTS2. When H = ∅ then TS1‖∅TS2 = TS1 9 TS2.
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Example 3.19 (Mutual exclusion via an arbiter)

Suppose we have two processes P1 and P2. Both alternate
infinitely often between critical and noncritical phases.
The interleaved system TS1 9 TS2 has a critical state that has
to be avoided (shared resources). How can a third process,
the arbiter, be used to resolve the conflicts?Parallelism and Communication 51

T1 T2 Arbiter :

unlock

lock

noncrit1 noncrit2

crit1 noncrit2 noncrit1 crit2

T1 T2 : Arbiter:

crit1 crit2

request
release

noncrit1 noncrit2 unlock

crit1 noncrit2 lock noncrit1 crit2 lock
requestrequest

releaserelease

Figure 2.12: Mutual exclusion using handshaking with arbiter process.

nondeterminism stands for the concurrent execution of the actions scanning the bar code
and the synchronous transfer of the price to the printer.

Example 2.30. Railroad Crossing

For a railroad crossing a control system needs to be developed that on receipt of a signal
indicating that a train is approaching closes the gates, and only opens these gates after the
train has sent a signal indicating that it crossed the road. The requirement that should be
met by the control system is that the gates are always closed when the train is crossing the
road. The complete system consists of the three components Train, Gate, and Controller:

Train ‖ Gate ‖ Controller.

Figure 2.15 depicts the transition systems of these components from left (modeling the
Train) to right (modeling the Gate). For simplicity, it is assumed that all trains pass
the relevant track section in the same direction—from left to right. The states of the
transition system for the Train have the following intuitive meaning: in state far the train
is not close to the crossing, in state near it is approaching the crossing and has just sent a
signal to notify this, and in state in it is at the crossing. The states of the Gate have the
obvious interpretation. The state changes of the Controller stand for handshaking with

Figure 3.26: Transition systems and arbiter
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Mutual exclusion via an arbiter (cont.)
Asssume P1 and P2 have each actions request and release. We
set H = {request, release} = Act1 ∩ Act2 and get the system:

Parallelism and Communication 51

T1 T2 Arbiter :

unlock

lock

noncrit1 noncrit2

crit1 noncrit2 noncrit1 crit2

T1 T2 : Arbiter:

crit1 crit2

request
release

noncrit1 noncrit2 unlock

crit1 noncrit2 lock noncrit1 crit2 lock
requestrequest

releaserelease

Figure 2.12: Mutual exclusion using handshaking with arbiter process.

nondeterminism stands for the concurrent execution of the actions scanning the bar code
and the synchronous transfer of the price to the printer.

Example 2.30. Railroad Crossing

For a railroad crossing a control system needs to be developed that on receipt of a signal
indicating that a train is approaching closes the gates, and only opens these gates after the
train has sent a signal indicating that it crossed the road. The requirement that should be
met by the control system is that the gates are always closed when the train is crossing the
road. The complete system consists of the three components Train, Gate, and Controller:

Train ‖ Gate ‖ Controller.

Figure 2.15 depicts the transition systems of these components from left (modeling the
Train) to right (modeling the Gate). For simplicity, it is assumed that all trains pass
the relevant track section in the same direction—from left to right. The states of the
transition system for the Train have the following intuitive meaning: in state far the train
is not close to the crossing, in state near it is approaching the crossing and has just sent a
signal to notify this, and in state in it is at the crossing. The states of the Gate have the
obvious interpretation. The state changes of the Controller stand for handshaking with

Figure 3.27: Mutual exclusion via arbiter
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Traffic junction revisited

We reconsider Example 3.16 from Slide 208.

This time we build TS1‖HTS2 with H = {α, β}
and it all works!

However, there is a small problem. The state
〈red, red〉 is a deadlock.
So even if two transition systems do not have
deadlocks (an assumption to be made on
Slide 229) their parallel composition might
have.
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Railroad crossing revisited

We reconsider Example 3.17 from Slide 210.

This time we build

Train‖{approach,exit}Controller‖{lower,raise}Gate,

or, according to our convention, simply

Train‖Controller‖Gate.

Prof. Dr. Jürgen Dix Clausthal, SS 2019 217



3 Verification I: LT properties
3.3 Interleaving and handshaking

Railroad crossing: almost working

< far, 0, up >

< near, 1, up >

< near, 2, down > < in, 1, up >

< in, 2, down > < far, 1, up >

< far, 3, down > < far, 2, down >

< near, 3, down >

< near, 0, up >< in, 3, down >

< in, 0, up >

approach

lower enter approach

lower

approach

approach

enter

enter

enter

exit

exit

exit

exit

raise

raise

exit

lower

Figure 3.28: TS of Railroad crossing
Prof. Dr. Jürgen Dix Clausthal, SS 2019 218



3 Verification I: LT properties
3.3 Interleaving and handshaking

Dining Philosophers revisited

We reconsider Example 1.2 from Slide 41. An
obvious representation is for each philosopher to
have four actions available (request left stick,
request right stick, release left stick, release right
stick) — we model “thinking” and “waiting” in the
states. And for each stick also two requests and
two releases (from the adjacent philosophers).
This results in the overall system

Phil0‖Stick4‖Phil4‖Stick3‖Phil3‖Stick2‖ . . . ‖Phil4‖Stick0
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Dining Philosophers revisited (cont)92 Linear-Time Properties

wait for
left stick

left stick right stick

wait for
right stick

return the return the

think

eat

requesti i

releasei i

requesti 1 i

requesti 1 irequesti i

releasei 1 i

releasei 1 ireleasei i

available

occupied occupied

reqi i reqi i 1

reli i reli i 1

Figure 3.2: Transition systems for the ith philosopher and the ith stick.

The complete system is of the form:

Phil4 ‖Stick 3 ‖Phil3 ‖Stick2 ‖Phil2 ‖Stick1 ‖Phil 1 ‖Stick0 ‖Phil0 ‖Stick4

This (initially obvious) design leads to a deadlock situation, e.g., if all philosophers pick
up their left stick at the same time. A corresponding execution leads from the initial state

〈think4, avail3, think3, avail 2, think 2, avail 1, think 1, avail 0, think 0, avail 4〉

by means of the action sequence request4, request3, request2, request1, request0 (or any
other permutation of these 5 request actions) to the terminal state

〈wait4,0, occ4,4,wait3,4, occ3,3,wait2,3, occ2,2,wait1,2, occ1,1,wait0,1, occ0,0〉.

This terminal state represents a deadlock with each philosopher waiting for the needed
stick to be released.

A possible solution to this problem is to make the sticks available for only one philosopher
at a time. The corresponding chopstick process is depicted in the right part of Figure 3.3.
In state available i,j only philosopher j is allowed to pick up the ith stick. The above-
mentioned deadlock situation can be avoided by the fact that some sticks (e.g., the first,
the third, and the fifth stick) start in state available i,i, while the remaining sticks start in
state available i,i+1. It can be verified that this solution is deadlock- and starvation-free.

Figure 3.29: Dining Philosophers

Prof. Dr. Jürgen Dix Clausthal, SS 2019 220



3 Verification I: LT properties
3.3 Interleaving and handshaking

Dining Philosophers revisited (cont.)

What is wrong with this model?

deadlock, starvation.

How can it be improved?

Idea: make sticks available only for one
philosopher at a time.

And make sure, that one half of the sticks start
in a different state than the other half.

Prof. Dr. Jürgen Dix Clausthal, SS 2019 221



3 Verification I: LT properties
3.3 Interleaving and handshaking

Dining Philosophers revisited (cont)

Deadlock 93

wait for
left stick

left stick right stick

wait for
right stick

return the return the

think

eat

reqi i

reli i

reqi 1 i

reqi 1 ireqi i

reli 1 i

reli 1 ireli i

availablei

occupied occupied

reqi i

reqi i 1

reli i 1

availablei 1

reli i

Figure 3.3: Improved variant of the ith philosopher and the ith stick.

A further characteristic often required for concurrent systems is robustness against failure
of their components. In the case of the dining philosophers, robustness can be formulated
in a way that ensures deadlock and starvation freedom even if one of the philosophers is
“defective” (i.e., does not leave the think phase anymore).1 The above-sketched deadlock-
and starvation-free solution can be modified to a fault-tolerant solution by changing the
transition systems of philosophers and sticks such that philosopher i+1 can pick up the ith
stick even if philosopher i is thinking (i.e., does not need stick i) independent of whether
stick i is in state available i,i or available i,i+1. The corresponding is also true when the roles
of philosopher i and i+1 are reversed. This can be established by adding a single Boolean
variable xi to philosopher i (see Figure 3.4). The variable xi informs the neighboring
philosophers about the current location of philosopher i. In the indicated sketch, xi is a
Boolean variable which is true if and only if the ith philosopher is thinking. Stick i is
made available to philosopher i if stick i is in location available i (as before), or if stick i
is in location available i+1 while philosopher i+1 is thinking.

Note that the above description is at the level of program graphs. The complete system is
a channel system with request and release actions standing for handshaking over a channel
of capacity 0.

1Formally, we add a loop to the transition system of a defective philosopher at state think i.

Figure 3.30: Dining Philosophers refined
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3.4 State-space explosion

Prof. Dr. Jürgen Dix Clausthal, SS 2019 223



3 Verification I: LT properties
3.4 State-space explosion

Input size

Remember: input size of an integer n is log n,
not n.

n is exponential in log n.

Similarly, the program graph is a compact
representation of the underlying transition
system, which is obtained by unfolding.
When asking “how complex is it to check a
property of a TS”, the representation of the
TS matters.

Size of program graph versus size of TS.
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Size of unfolded transition system

What is the size of a transition system obtained
from unfolding a program graph with variables
x ∈ Var?

Size of underlying domains is important.

dom(x) infinite: unfolded transition system is
infinite and undecidability issues arise.

dom(x) finite: number of states is
|Loc| Πx∈Var |dom(x)| .
# states is exponential in # variables.
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3.4 State-space explosion

Influence of |Prop| and |S|
Clearly also the # constants in a state plays a role. The same
is true for the size of the state space of the interleaved
system.
Prop can be large, due to the allowed conditions of the
variables in the program graph. In practice only a small
number of such conditions are interesting.
What about the labelling function π?
Representing π explicitly is expensive. Often, this info
can be derived from the state.
State space of TS1 9 . . . 9 TSn is cartesian product:
Πn
i=1Si. Size is exponential in # components.

In general, the size of the TS obtained from a program
graph is exponential in the size of the program graph.

Prof. Dr. Jürgen Dix Clausthal, SS 2019 226



3 Verification I: LT properties
3.5 LT properties in general

3.5 LT properties in general
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3.5 LT properties in general

LT properties of transition systems

Transition systems are abstractions from systems
in the real world. We would like to

reason about particular computations of a TS ;
reason about all possible executions in a TS ,
formulate interesting properties such a TS
should satisfy.

Main notion: a path in a TS . It is a sequence of
states starting in an initial state. It corresponds to
an execution of the TS and is closely related to the
notion of run introduced in Definition 3.8 on
Slide 180.
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Transitions systems without terminal nodes

From now on, we assume wlog that all transition systems do not
have any terminal nodes. In case a TS has terminal nodes, we
could simply add for each such node a new action and a new state
(with an arrow pointing to itself) and extend the TS appropriately.

Definition 3.20 (Path λ (of a TS))

A path λ : N0 → S in a TS is a sequence of states
starting with an initial state such that this
sequence corresponds to a run of the TS .
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Paths versus traces
Often, we are not so much interested in the states as such,
only what is true in them, i.e. which propositions from Prop
are true: π(si).

Definition 3.21 (Trace of λ of a TS)
The trace of a path λ : N0 → S in a TS with Prop is the
following infinite sequence

π(λ(0))π(λ(1))π(λ(2)) . . . π(λ(i)) . . .

(π(λ(i)) is the set of all propositions that are true in state λ(i)).
We call this also an ω-word over 2Prop.

The set of all traces of a TS is the set of the traces of all paths
from TS : it is denoted by Traces(TS).
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Runs or paths?

We want to define what it means that
two transition systems behave the same.

1 We take the set of runs of a TS as the defining
behaviour.

2 Often the actions do not play any role, only
the states do. Then we could take the set of
paths of a TS as the defining behaviour.

Both possibilities rely on the internal behaviour,
that we might not be able to determine.
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Runs or paths? (cont.)

Often one cannot distinguish between certain
states, we only know what is true in them (and
that depends on the language Prop).

3 Therefore we choose from now on the
observable behaviour to describe a TS : the
set of traces as the defining behaviour of a
TS.

Die Grenzen meiner Sprache bedeuten die
Grenzen meiner Welt.

L. Wittgenstein, TLP, Satz 5.6
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3.5 LT properties in general

Definition 3.22 (Equivalence of transition systems)

Let TS1 and TS2 be two transition systems over
Prop and let A ⊆ Prop. We say that

1 TS1 and TS2 are A-equivalent, if, by definition,
Traces(TS1) |A = Traces(TS2) |A,

2 TS1 is a correct implementation of TS2, if, by
definition, Traces(TS1) ⊆ Traces(TS2).
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3.5 LT properties in general

Example 3.23 (Two transition systems TS1, TS2)

s3

s2s1

s4

{q}

{p}{p,q}
s3

s4

s1

s5

{q}{p}

{p,q}
s2

{p}

What are the paths, traces of them?
1 s1s2s

ω
3 , s1s2s

ω
4 . {p, q}{p}{q}ω, {p, q}{p}{}ω

2 s1s2s
ω
3 , s1s4s

ω
5 . {p, q}{p}{q}ω, {p, q}{p}{}ω.

3 Both transition systems have the same set of
traces. Is there any difference between
them?
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3.5 LT properties in general

Properties of transition systems

“Whenever p holds, a state with q is
reachable.”
Obviously this is true in TS1 but not in TS2.
Later: this cannot be expressed in LTL.
Any property that is solely based on the set
of traces of a TS can not distinguish between
TS1 and TS2.
But still many useful properties can be
defined: linear time (LT) properties.
The former two transition systems cannot be
distinguished by any LT-property.
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3.5 LT properties in general

Properties of transition systems

Definition 3.24 (LT properties)

Given a set Prop, a LT property over Prop is any
subset of (2Prop)ω.
A transition system TS satisfies such a property, if
all its traces are contained in it.

A LT property is a, possibly infinite, set of
infinite words.

Attention

{p, q}{p}{q}ω really means the infinite word
{p, q}{p}{q} . . . {q} . . ., not {p}{p}{q} . . . {q} . . .,
or {q}{p}{q} . . . {q} . . . as in regular expressions.
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3.5 LT properties in general

Properties of transition systems
We also use {{p, q}, {p}}{p}{q}ω to denote the set of words
that either start with {p, q} or with {p}.
Example 3.25

1 When p then q two steps farther ahead.
2 It is never the case that p and q. This is important for

mutual exclusion algorithms: one wants to ensure that
never two processes are at the same time in their critical
section.

3 When p then eventually q. When a message has been
sent, it will eventually be received.
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3.5 LT properties in general

Example 3.26 (Sets of paths)

s1s0

{p}

s2 s3 sn… …

{q} {p} {p} {p}

s1s0

{p}

s2 s3 sn… …

{p} {q} {p} {p}

etc.

s1s0

{q}

s2 s3 sn… …

{p} {p} {p} {p}

s1s0

{p}

s2 s3 sn… …

{q} {q} {p} {p}

s1s0

{p}

s2 s3 sn… …

{p} {q} {q} {p}

etc.

s1s0

{q}

s2 s3 sn… …

{q} {p} {p} {p}

The first infinite set of pathsM1 can be denoted more
succinctly by {p}∗{q}{p}ω and the second,M2, by
{p}∗{q}{q}{p}ω (we are using the Kleene ∗ as in regular
expressions). These expressions are called ω regular
expressions.
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Which properties doesM1 satisfy?
At some time q is true and then always p holds.
q is true exactly once.
p is always true with one single exception,
when q is true.
q is true exactly once (and in that state p is
not true), and before and after that, only p
holds true. This will be expressed as a LTL
formula shortly.

Can M1 be represented as a (finite) transition
system at all?
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3.5 LT properties in general

Theorem 3.27 (Traces and LT-properties)

Let TS1 and TS2 be two transition systems over Prop.
Then the following are equivalent:

Traces(TS1) ⊆ Traces(TS2)

for all LT propertiesM : if TS2 satisfiesM , so
does TS1.

Corollary 3.28

TS1 and TS2 satisfy the same LT properties if and
only if Traces(TS1) = Traces(TS2).
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3.5 LT properties in general

More interesting properties

For the formal specification and verification of
concurrent and distributed systems, the following
useful concepts can be formally, and concisely,
specified as LT properties (and later also using
temporal logics):

safety properties,
liveness properties,
fairness properties.
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3.5 LT properties in general

Safety Properties
Many safety properties are quite simple, they are just
conditions on the states and called invariants. They have
the form (Ai ⊂ 2Prop)

M = {A0A1 . . . Ai . . . : for all i: Ai |= ϕ}
for a propositional formula ϕ.
Examples are

mutual exclusion properties: ¬crit1 ∨ ¬crit2,
deadlock freedom: ¬wait0 ∨ . . . ∨ ¬wait5. Deadlock
freedom does not imply a fair distribution, i.e. ¬wait0
can always hold.

Others require conditions on finite fragments, for example
a traffic light with three phases requiring an orange phase
immediately before a red phase. This is not an invariant.
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3.5 LT properties in general

Safety Properties (cont.)

Definition 3.29 (Safety property)

A LT propertyMsafe is called a safety property, if
for all words λ ∈ (2Prop)ω \Msafe there exists a finite
prefix (a bad prefix) λ̂ of λ such that

Msafe∩{λ′ : λ′ ∈ (2Prop)ω, λ̂ is a finite prefix of λ′} = ∅
So it is a condition on a finite initial fragment:
no extended word resulting from such a bad
prefix is allowed.
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3.5 LT properties in general

Liveness Properties

Definition 3.30 (Liveness property)

A LT propertyM is a liveness property, if the set
of finite prefixes of the elements ofM is identical
to (2Prop)∗. I.e. each finite prefix can be extended
to an infinite word that satisfies the property.

Each process will eventually enter its critical
section.
Each process will enter its critical section
infinitely often.
Each waiting process will eventually enter its
critical section.
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3.5 LT properties in general

Liveness Properties (cont.)

Starvation freedom in the dining philosophers is
a typical example: each philosopher is getting her
sticks infinitely often.
Starvation freedom: For all timepoints i, if there
is a waiting process at time i, then the process
gets into its critical section eventually.
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3.5 LT properties in general

Safety versus Liveness

Are safety properties also liveness properties?
Vice versa?
There is only one property that is both:
(2Prop)ω, i.e. the trivial property that contains
all paths.

Theorem 3.31 (LT properties as intersections)

Each LT-property can be represented as the
intersection of a safety with a liveness property.

But there are LT properties that are neither safe
nor live.
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3.5 LT properties in general

Fairness Properties

Definition 3.32 (Fairness property)

A LT property is a fairness property, if one of the
following applies:
Each process gets its turn infinitely often
provided that
unconditional: (no restrictions)
strong: it is enabled infinitely often,
weak: it is continuously enabled from a certain

time on.
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3.5 LT properties in general

LT properties used in practice126 Linear-Time Properties

liveness properties

neither liveness
nor safety properties

invariants

safety properties

safety and liveness property
(2AP)ω

Figure 3.11: Classification of linear-time properties.

the safety properties are exactly the closed sets, while the liveness properties agree with
the dense sets. In fact, closure(P ) is the topological closure of P , i.e., the smallest closed
set that contains P . The result stated in Theorem 3.37 then follows from the well-known
fact that any subset of a topological space (of the kind described above) can be written
as the intersection of its closure and a dense set.

3.5 Fairness

An important aspect of reactive systems is fairness. Fairness assumptions rule out infinite
behaviors that are considered unrealistic, and are often necessary to establish liveness
properties. We illustrate the concept of fairness by means of a frequently encountered
problem in concurrent systems.

Example 3.40. Process Fairness

Consider N processes P1, . . . , PN which require a certain service. There is one server
process Server that is expected to provide services to these processes. A possible strategy
that Server can realize is the following. Check the processes starting with P1, then P2,
and so on, and serve the first thus encountered process that requires service. On finishing
serving this process, repeat this selection procedure once again starting with checking P1.

Figure 3.31: Overview LT-properties
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3.6 LTL
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3.6 LTL

Typical temporal operators

Xϕ ϕ is true in the neXt moment in time
Gϕ ϕ is true Globally: in all future moments
Fϕ ϕ is true Finally: eventually (in the future)
ϕUUU ψ ϕ is true Until at least the moment when ψ

becomes true (and this eventually happens)

G((¬passport ∨ ¬ticket) → X¬board_flight)

send(msg, rcvr) → Freceive(msg, rcvr)
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3.6 LTL

Safety: Something bad will not happen,
something good will always hold.

G¬bankrupt,
GfuelOK,
Usually: G¬ . . ..

Liveness: Something good will happen.
Frich,
power_on→ Fonline,
Usually: F . . ..
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3.6 LTL

Fairness: Combinations of safety and liveness:
FG¬dead or
G(request_taxi→ Farrive_taxi).
Strong fairness: “If something is

requested then it will be
allocated”:

G(attempt → Fsuccess),

GFattempt → GFsuccess.
Scheduling processes, responding to
messages, no process is blocked forever,
etc.
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Definition 3.33 (Language LLTL [Pnueli 1977])

The language LLTL(Prop) is given by all formulae generated by the
following grammar, where p ∈ Prop is a proposition:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUUU ϕ | Xϕ.
The additional operators

F (eventually in the future) and
G (always from now on)

can be defined as macros :

Fϕ ≡ (¬�)UUU ϕ and Gϕ ≡ ¬F¬ϕ

The standard Boolean connectives >,∧,→, and↔ are defined in
their usual way as macros (see Definition 2.3 on Slide 64).
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Models of LLTL

The semantics is given over paths, which are infinite sequences
of states from S, and a standard labelling function
π : S→ P(Prop) that determines which propositions are true at
which states.

Definition 3.34 (Path λ = q0q1q2q3 . . .)

A path λ over a set of states S is an infinite sequence of
states. We can view it as a mapping N0 → S. The set of all
sequences is denoted by Sω.

λ[i] denotes the ith position on path λ (starting from i = 0)
and
λ[i,∞] denotes the subpath of λ starting from i
(λ[i,∞] = λ[i]λ[i+ 1] . . . ).
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3.6 LTL

λ = q0q1q2q3 . . . ∈ Sω

Definition 3.35 (Semantics of LLTL)

Let λ be a path and π be a labelling function over S. The
semantics of LTL, |=LTL, is defined as follows:

λ, π |=LTL p if, by definition, p ∈ π(λ[0]) and p ∈ Prop;
λ, π |=LTL ¬ϕ if, by definition, not λ, π |=LTL ϕ (we write
λ, π 6|=LTL ϕ);
λ, π |=LTL ϕ ∨ ψ if, by definition, λ, π |=LTL ϕ or λ, π |=LTL ψ;

λ, π |=LTL Xϕ if, by definition, λ[1,∞], π |=LTL ϕ; and
λ, π |=LTL ϕUUU ψ if, by definition, there is an i ∈ N0 such that
λ[i,∞], π |= ψ and λ[j,∞], π |=LTL ϕ for all 0 ≤ j < i.
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Other temporal operators

λ, π |= Fϕ if, by definition, λ[i,∞], π |= ϕ for some
i ∈ N0 ;
λ, π |= Gϕ if, by definition, λ[i,∞], π |= ϕ for all
i ∈ N0 ;

Exercise

Prove that the semantics does indeed match the
definitions;

Fϕ is equivalent to (¬�)UUU ϕ, and
Gϕ is equivalent to ¬F¬ϕ.
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3.6 LTL

Validity, satisfiability

satisfiable: a LTL formula is satisfiable, if, by
definition, there is a model for it,

valid: a LTL formula is valid, if, by definition, it
is true in all models,

contradictory: a LTL formula is contradictory, if,
by definition, there is no model for it.
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q2q1q0 q2q1q0

pos1 pos1pos0 pos0pos2 pos2

λ, π |= Fpos1

λ′ = λ[1,∞], π |= pos1

pos1 ∈ π(λ′[0])
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q2q1q0 q2q1q0

pos1 pos1pos0 pos0pos2 pos2

λ, π |= GFpos1 if and only if

λ[0,∞], π |= Fpos1 and
λ[1,∞], π |= Fpos1 and
λ[2,∞], π |= Fpos1 and

. . .
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Paths and infinite sets of paths

Paths are infinite entities, and so are infinite
sets of them.

They are both theoretical constructs.

In order to work with them we need a finite
representation:

namely transition systems (also called
pointed Kripke structures).
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A set of paths (1)

We reconsider the paths λ0, λ1, . . . , λi, . . . from
Example 3.26 on Slide 238:

s1s0

{p}

s2 s3 sn… …

{q} {p} {p} {p}

s1s0

{p}

s2 s3 sn… …

{p} {q} {p} {p}

etc.

s1s0

{q}

s2 s3 sn… …

{p} {p} {p} {p}
q ∧ ¬p ∧ XG(p ∧ ¬q)

p ∧ Xq ∧ XXGp

p ∧ Xp ∧ XXq

Can we distinguish between them (using LTL)?

Prof. Dr. Jürgen Dix Clausthal, SS 2019 261



3 Verification I: LT properties
3.6 LTL

Indistinguishable paths

Observation
While any two paths can be distinguished by appropriate
LTL formulae, these formulae get more and more
complicated: operators need to be nested.

The first two paths can be distinguished by just
propositional logic, no LTL connectives are needed.
But the second and third cannot: we need X.
For the third and fourth we need a nesting XX.

By induction over the structure of ϕ

Given any LTL formula ϕ, there is a i0 ∈ N such that for all
i, j ≥ i0: λi |= ϕ if and only if λj |= ϕ.

Prof. Dr. Jürgen Dix Clausthal, SS 2019 262



3 Verification I: LT properties
3.6 LTL

A set of paths (2)

Can we find a LTL formula, or a set of LTL
formulae, that characterize exactly the
whole set of paths?
So what holds true in all of these paths?
pUUU q. But this is also true in other paths not
listed above.

(p ∧ ¬q)UUU (q ∧ ¬p). Again, this is also true in
other paths.

(p ∧ ¬q)UUU (q ∧ ¬p ∧ XG(p ∧ ¬q)). That is it.
This describes exactly the set of paths above.
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Another set of paths (1)

We reconsider the second set of paths from
Example 3.26 on Slide 238:

s1s0

{p}

s2 s3 sn… …

{q} {q} {p} {p}

s1s0

{p}

s2 s3 sn… …

{p} {q} {q} {p}

etc.

s1s0

{q}

s2 s3 sn… …

{q} {p} {p} {p}
q∧Xq∧XXG(p∧¬q)

p∧Xq∧XXq∧XXXGp

etc.

What holds true in exactly these paths?
(p ∧ ¬q)UUU (q ∧ ¬p ∧ X(q ∧ ¬p) ∧ XXG(p ∧ ¬q))
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LTL formulae and transition systems: TS |= φ

Up to now we have defined LTL formulae only
for paths.

For a transition system TS , we say that an LTL
formula is true in a state s, if it is true in all
runs resulting from that state.

A LTL formula is true in the whole transition
system, if it is true in all runs resulting from
the initial states.
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LTL formulae and transition systems: TS |= ϕ

Definition 3.36 (TS and LTL formulae: TS |= φ)

Let a TS and a LTL formula ϕ be given.

A LTL formula ϕ is true in a state s of TS , if,
by definition, it is true in all runs resulting
from s.

A LTL formula ϕ is true in TS, if, by
definition,it is true in all runs resulting from
all initial states.
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LTL formulae and transition systems

Example 3.37 (LTL formulae)

s1

{p,q}

s2

{p,q} {p}

s3

s2

{p}

s0

{} {}

s1

Which formulae hold true?
TS1: TS1 |= Gp, TS1 6|= X(p ∧ q),

TS1 6|= G(q→ G(p ∧ q)),
but TS1 |= G(q→ (p ∧ q)))

TS2: TS2 6|= Fp and TS2 6|= ¬Fp
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From system to behavioral structure

System Computational str.

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1pos2
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From computational to behavioral structure

Computational str. Behavioral str.

q0

q2 q1

pos0

pos1pos2

q0

q0

q0

q1

q1 q1 q2

The behavioral structure is usually infinite! Here, it is an infinite
tree. We say it is the q0-unfolding of the model.
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Example 3.38 (LTL indistinguishable transition systems)

TS1:

s1s0

{p}{}

TS2:

s0

{}

Both systems can be distinguished by the property
“a state where p holds can be reached”.

Each trace of TS2 is also one of TS1: each LTL formula true in
TS1 is also true in TS2.
So the above property cannot be expressed in LTL.
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LT-Properties and their expressibility

The example on the preceding slide shows that a
certain property is not a LT property.
This does not mean that the two transition systems
cannot be distinguished.
In fact the formula X¬p is true in TS2 but not in TS1.
The traces of the two systems are also different, so both
define different LT properties.

Are there TS1 and TS2 that define different LT-properties
but cannot be distinguished by any set of LLTL formulae?
Yes. LLTL formulae express exactly “∗-free ω-regular
properties”, a strict subset of “ω-regular properties”, which
is itself a strict subset of LT-properties.
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LT-Properties and their expressibility (cont.)

We consider again Example 3.23 with the two
transition systems TS1 and TS2.

s3

s2s1

s4

{q}

{p}{p,q}
s3

s4

s1

s5

{q}{p}

{p,q}
s2

{p}

1 The property whenever p a state with q can
be reached distinguishes them.

2 Can this property be expressed in LTL?
3 No, because both have the same set of

traces.
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Some Exercises

Example 3.39 (Formalizing properties in LTL)

Formalise the following properties as LTL
formulae over Prop = {p}

1 p should never occur.
2 p should occur exactly once.
3 At least once p is directly be followed by ¬p.
4 p is true at exactly all even states.
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Some Exercises (cont.)

Compare the following two transition systems:

s2

{p}

s0

{p} {}

s1

s0

{p} {}

s1

Example 3.40 (Evenness)

Formalise the following as a LTL formula: p is true
at all even states (the odd states do not matter).

Does p ∧G(p→ XXp) work?
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Satisfiability of LTL formulae

A formula is satisfiable, if there is a model
(i.e. path) where it holds true. Can we restrict the
structure of such paths? I.e. can we restrict to
simple paths, for example paths that are periodic?

If this is the case, then we might be able to
construct counterexamples more easily, as
we need only check very specific paths.

It would be also useful to know how long the
period is and within which initial segment
of the path it starts, depending on the length
of the formula ϕ.
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3 Verification I: LT properties
3.6 LTL

Satisfiability of LTL formulae (cont.)

Theorem 3.41 (Periodic model theorem [SistlaClarke 1985])

A formula ϕ ∈ LTL is satisfiable if and only if
there is a path λ which is ultimately periodic, and
the period starts within 21+|ϕ| steps and has a length
which is ≤ 41+|ϕ|.

 2O(n)  4O(n)
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